1
|
Frank JK, Kampleitner C, Heimel P, Leinfellner G, Hanetseder D, Sperger S, Frischer A, Schädl B, Tangl S, Lindner C, Gamauf J, Grillari-Voglauer R, O’Brien FJ, Pultar M, Redl H, Hackl M, Grillari J, Marolt Presen D. Circulating miRNAs are associated with successful bone regeneration. Front Bioeng Biotechnol 2025; 13:1527493. [PMID: 40225119 PMCID: PMC11985807 DOI: 10.3389/fbioe.2025.1527493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Bone healing is a well-orchestrated process involving various bone cells and signaling pathways, where disruptions can result in delayed or incomplete healing. MicroRNAs (miRNAs) are small non-coding RNAs capable of influencing various cellular processes, including bone remodeling. Due to their biological relevance and stable presence in biofluids, miRNAs may serve as candidates for diagnosis and prognosis of delayed bone healing. The aim of the study was to investigate changes in miRNAs circulating in the blood during the healing of rat calvaria defects as biomarkers of successful bone regeneration. Methods Standardized calvaria defects were created in 36 Wistar rats with a trephine drill and treated with collagen hydroxyapatite (CHA) scaffolds. The treatment groups included CHA scaffolds only, CHA scaffolds containing a plasmid coding for bone morphogenetic protein 2 (BMP2) and miR-590-5p, CHA scaffolds containing mesenchymal stromal cell-derived extracellular vesicles, and empty defects as a control group. After 1, 4 and 8 weeks of healing, the animals were evaluated by microcomputed tomography (microCT), as well as subjected to histological analyses. Blood was sampled from the tail vein prior to surgeries and after 1, 4, and 8 weeks of healing. miRNAs circulating in the plasma were determined using next-generation sequencing. Results Variability of bone regeneration within the four groups was unexpectedly high and did not result in significant differences between the groups, as indicated by the microCT and histological analyses of the newly formed bone tissue. However, irrespective of the treatment group and regenerative activity, we identified miRNAs with distinct expression patterns of up- and downregulation at different time points. Furthermore, rats with high and low regenerative activity were characterized by distinct circulating miRNA profiles. miR-133-3p was identified as the top upregulated miRNA and miR-375-3p was identified as the top downregulated miRNA in animals exhibiting strong regeneration over all time points evaluated. Conclusion Our study indicates that regardless of the treatment group, success or lack of bone regeneration is associated with a distinct expression pattern of circulating microRNAs. Further research is needed to determine whether their levels in the blood can be used as predictive factors of successful bone regeneration.
Collapse
Affiliation(s)
- Julia K. Frank
- Herz Jesu Krankenhaus, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Carina Kampleitner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Patrick Heimel
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Gabriele Leinfellner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Dominik Hanetseder
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Simon Sperger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Amelie Frischer
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Schädl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Stefan Tangl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Claudia Lindner
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Evercyte GmbH, Vienna, Austria
| | - Johanna Gamauf
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Evercyte GmbH, Vienna, Austria
| | | | - Fergal J O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, Ireland
| | - Marianne Pultar
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- TAmiRNA GmbH, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Matthias Hackl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- TAmiRNA GmbH, Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Centre for the Technologies of Gene and Cell Therapy, The National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
2
|
Long G, Liu F, Cheng H, Guo J, Wang P, Luo Y, Li Z, Tong F. miR-374-5p inhibits osteogenesis by targeting PTEN/PI3K/AKT signaling pathway. J Orthop Surg Res 2025; 20:283. [PMID: 40087681 PMCID: PMC11907802 DOI: 10.1186/s13018-025-05670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
PURPOSE This study aims to evaluate the effects of miR-374-5p on osteogenesis in rat osteoblasts, validate its target on PTEN, and explore its role in the PTEN/PI3K/AKT signaling pathway during osteoblast differentiation. METHODS We transfected 293T cells with miR-374-5p mimics and inhibitors, followed by Western blot and qRT-PCR analyses to assess protein and mRNA expression levels. A dual-luciferase assay was performed to confirm direct targeting. Markers of osteoblast function, such as Runx2, OSX, and OCN, were examined in osteoblasts from rats by qRT-PCR and Western blot. Additionally, we developed a lentiviral vector to overexpress miR-374-5p, which successfully infected rat osteoblast progenitors. Bone formation was subsequently assessed using Alizarin Red staining and ALP activity assays. Finally, rescue experiments were conducted to validate the involvement of the miR-374-5p/PTEN/PI3K/AKT signaling pathway. RESULTS Our results demonstrate that miR-374-5p significantly downregulates both the protein and mRNA levels of its target gene PTEN, as confirmed by dual luciferase assays. qRT-PCR and Western blot analyses revealed that osteoblastic markers-including Runx2, OSX, and OCN-were markedly reduced in the miR-374-5p mimic group, whereas an opposite trend was observed in the inhibitor group. In vitro, overexpression of miR-374-5p suppressed osteoblast differentiation, as evidenced by decreased calcium nodule formation and reduced ALP activity compared to controls. Furthermore, co-transfection of miR-374-5p mimics with the PI3K/AKT pathway inhibitor LY294002 in osteoblasts led to significantly lower expression of PI3K/AKT pathway-related genes, and notably, the inhibitory effect of miR-374-5p on osteoblast differentiation was reversed by LY294002 treatment. CONCLUSION Our findings indicate that miR-374-5p inhibits osteogenesis in rat osteoblasts by targeting PTEN and modulating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Guangning Long
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, PR China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, PR China
| | - Fen Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, PR China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, PR China
| | - Hongmeng Cheng
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, PR China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, PR China
| | - Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, PR China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, PR China
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, PR China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, PR China
| | - Yunfei Luo
- School of Basic Medicine, Nanchang Medical College, Nanchang, 330006, PR China
| | - Zhihua Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, PR China.
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, PR China.
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, 330006, PR China.
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, 330006, PR China.
| |
Collapse
|
3
|
Bell-Hensley A, Brito VGB, Cai L, Liu J, Feeney K, Zheng H, McAlinden A. MicroRNA-181a/b-1 enhances chondroprogenitor anabolism and downregulates aquaporin-9. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100550. [PMID: 39691700 PMCID: PMC11650276 DOI: 10.1016/j.ocarto.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
Objective Effective osteoarthritis treatments that enhance the anabolic/regenerative capacity of chondrocytes are needed. Studying cartilage development processes may inform us of approaches to control chondrocyte differentiation and anabolism and, ultimately, how to effectively treat OA. MicroRNAs are broad-acting epigenetic regulators known to affect many skeletal processes. Previous reports from our group indicated that miR-181a-1 is upregulated during chondrocyte differentiation. The goal of this study was to determine how the entire miR-181a/b-1 cluster regulates in vitro chondrogenesis. Design Precursor miR-181a/b-1 was over-expressed in cartilage progenitor cells using lentiviral technology Transduced cartilage progenitor cells were cultured as micromass pellets in hypoxic conditions and stimulated to undergo chondrogenic differentiation for five weeks. Bulk RNA-sequencing and immunostaining was applied to evaluate chondrogenic differentiation and matrix production. Results Immunostaining of cartilage pellet sections showed that miR-181a/b-1 increased mature type II collagen and decreased expression of the chondroprogenitor type IIA collagen isoform. Bulk RNA-Seq at day 7 of chondrogenesis revealed upregulation of pro-anabolic genes such as COL2A1, COL9A2/3, COL11A2 and SNORC. Of the genes significantly downregulated by miR-181a/b-1, aquaporin 9 (AQP9) was the top hit which decreased in expression by over 14-fold. While a predicted target of miR-181a/b, our data showed that this miRNA cluster likely suppresses AQP9 via an indirect targeting mechanism. Conclusions Our findings demonstrate a pro-differentiation/anabolic function for miR-181a/b-1 during in vitro chondrogenesis that may be due, in part, to suppression of AQP9. Future studies are needed to elucidate the role of this membrane channel protein in regulating chondrocyte differentiation and homeostasis.
Collapse
Affiliation(s)
- Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Lei Cai
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Jin Liu
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Kathryn Feeney
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Hongjun Zheng
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Department of Cell Biology & Physiology, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospital for Children – St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
John A, Almulla N, Elboughdiri N, Gacem A, Yadav KK, Abass AM, Alam MW, Wani AW, Bashir SM, Rab SO, Kumar A, Wani AK. Non-coding RNAs in Cancer: Mechanistic insights and therapeutic implications. Pathol Res Pract 2025; 266:155745. [PMID: 39637712 DOI: 10.1016/j.prp.2024.155745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Non-coding RNAs have gathered significant attention for their unique roles in biological regulation. Across a broad spectrum of developmental processes and diseases, particularly in human malignancies, ncRNAs play pivotal roles in regulatory mechanisms. MicroRNAs, long noncoding RNAs, and small nucleolar RNAs stand out among the diverse forms of ncRNAs that have been implicated in cancer. MiRNAs, classified as short non-coding RNAs, modulate gene expression by binding to messenger RNA molecules, thereby inhibiting their translation. Altered miRNA expression has been associated with the onset and progression of various malignancies, including lung, breast, and prostate cancer. In contrast, lncRNAs, characterized as longer ncRNAs, exert control over gene expression through various mechanisms, such as chromatin remodelling and gene silencing. This review offers a comprehensive examination of the numerous ncRNAs that have emerged as crucial regulators of gene expression, playing implicated roles in the initiation and progression of diverse cancers.
Collapse
Affiliation(s)
- Arjumand John
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab 144411, India
| | - Nuha Almulla
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Aout, Skikda 1955, Algeria
| | - Krishna Kumar Yadav
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 602105, Tamil Nadu, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Anass M Abass
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia.
| | - Ab Waheed Wani
- Department of Horticulture, School of Agriculture, Lovely Professional University, Jalandhar, Punjab 144411, India
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia; Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab 144411, India.
| |
Collapse
|
5
|
Xu X, Feng J, Lin T, Liu R, Chen Z. miR-181a/MSC-Loaded Nano-Hydroxyapatite/Collagen Accelerated Bone Defect Repair in Rats by Targeting Ferroptosis Pathway. J Funct Biomater 2024; 15:385. [PMID: 39728185 DOI: 10.3390/jfb15120385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Background: The reparative regeneration of jawbone defects poses a significant challenge within the field of dentistry. Despite being the gold standard, autogenous bone materials are not without drawbacks, including a heightened risk of postoperative infections. Consequently, the development of innovative materials that can surpass the osteogenic capabilities of autologous bone has emerged as a pivotal area of research. Methods: Mesenchymal stem cells (MSCs), known for their multilineage differentiation potential, were isolated from human umbilical cords and transfected with miR-181a. The osteogenic differentiation of miR-181a/MSC was investigated. Then, physicochemical properties of miR-181a/MSC-loaded nano-hydroxyapatite (nHAC) scaffolds were characterized, and their efficacy and underlying mechanism in rat calvarial defect repair were explored. Results: miR-181a overexpression in MSCs significantly promoted osteogenic differentiation, as evidenced by increased alkaline phosphatase activity and expression of osteogenic markers. The miR-181a/MSC-loaded nHAC scaffolds exhibited favorable bioactivity and accelerated bone tissue repair and collagen secretion in vivo. Mechanistic studies reveal that miR-181a directly targeted the TP53/SLC7A11 pathway, inhibiting ferroptosis and enhancing the osteogenic capacity of MSCs. Conclusions: The study demonstrates that miR-181a/MSC-loaded nHAC scaffolds significantly enhance the repair of bone defects by promoting osteogenic differentiation and inhibiting ferroptosis. These findings provide novel insights into the molecular mechanisms regulating MSC osteogenesis and offer a promising therapeutic strategy for bone defect repair.
Collapse
Affiliation(s)
- Xiongjun Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Junming Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Tianze Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Runheng Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
6
|
Hong G, Zhou Y, Yang S, Yan S, Lu J, Xu B, Zhan Z, Jiang H, Wei B, Wang J. Metformin acts on miR-181a-5p/PAI-1 axis in stem cells providing new strategies for improving age-related osteogenic differentiation decline. Stem Cells 2024; 42:1055-1069. [PMID: 39283761 DOI: 10.1093/stmcls/sxae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/26/2024] [Indexed: 12/12/2024]
Abstract
A general decline in the osteogenic differentiation capacity of human bone marrow mesenchymal stem cells (hBMSCs) in the elderly is a clinical consensus, with diverse opinions on the mechanisms. Many studies have demonstrated that metformin (MF) significantly protects against osteoporosis and reduces fracture risk. However, the exact mechanism of this effect remains unclear. In this study, we found that the decreased miR-181a-5p expression triggered by MF treatment plays a critical role in recovering the osteogenic ability of aging hBMSCs (derived from elderly individuals). Notably, the miR-181a-5p expression in hBMSCs was significantly decreased with prolonged MF (1000 μM) treatment. Further investigation revealed that miR-181a-5p overexpression markedly impairs the osteogenic ability of hBMSCs, while miR-181a-5p inhibition reveals the opposite result. We also found that miR-181a-5p could suppress the protein translation process of plasminogen activator inhibitor-1 (PAI-1), as evidenced by luciferase assays and Western blots. Additionally, low PAI-1 levels were associated with diminished osteogenic ability, whereas high levels promoted it. These findings were further validated in human umbilical cord mesenchymal stem cells (hUCMSCs). Finally, our in vivo experiment with a bone defects rat model confirmed that the agomiR-181a-5p (long-lasting miR-181a-5p mimic) undermined bone defects recovery, while the antagomiR-181a-5p (long-lasting miR-181a-5p inhibitor) significantly promoted the bone defects recovery. In conclusion, we found that MF promotes bone tissue regeneration through the miR-181a-5p/PAI-1 axis by affecting MSC osteogenic ability, providing new strategies for the treatment of age-related bone regeneration disorders.
Collapse
Affiliation(s)
- Guanhao Hong
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Yulan Zhou
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Shukai Yang
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Shouquan Yan
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Jiaxu Lu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Bo Xu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Zeyu Zhan
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Huasheng Jiang
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Bo Wei
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| | - Jiafeng Wang
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, People's Republic of China
| |
Collapse
|
7
|
McIntyre G, Jackson Z, Colina J, Sekhar S, DiFeo A. miR-181a: regulatory roles, cancer-associated signaling pathway disruptions, and therapeutic potential. Expert Opin Ther Targets 2024; 28:1061-1091. [PMID: 39648331 DOI: 10.1080/14728222.2024.2433687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION microRNA-181a (miR-181a) is a crucial post-transcriptional regulator of many mRNA transcripts and noncoding-RNAs, influencing cell proliferation, cancer cell stemness, apoptosis, and immune responses. Its abnormal expression is well-characterized in numerous cancers, establishing it as a significant genomic vulnerability and biomarker in cancer research. AREAS COVERED Here, we summarize miR-181a's correlation with poor patient outcomes across numerous cancers and the mechanisms governing miR-181a's activity and processing. We comprehensively describe miR-181a's involvement in multiple regulatory cancer signaling pathways, cellular processes, and the tumor microenvironment. We also discuss current therapeutic approaches to targeting miR-181a, highlighting their limitations and future potential. EXPERT OPINION miR-181a is a clinically relevant pan-cancer biomarker with potential as a therapeutic target. Its regulatory control of tumorigenic signaling pathways and immune responses positions it as a promising candidate for personalized treatments. The success of miR-181a as a target relies on the development of specific therapeutics platforms. Future research on miR-181a's role in the tumor microenvironment and the RNA binding proteins that regulate its stability will help uncover new techniques to targeting miR-181a. Further research into miR-181a serum levels in patients undergoing therapy will help to better stratify patients and enhance therapeutic success.
Collapse
Affiliation(s)
- Grace McIntyre
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Zoe Jackson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jose Colina
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Sreeja Sekhar
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Analisa DiFeo
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Hu Y, Hou Z, Liu Z, Wang X, Zhong J, Li J, Guo X, Ruan C, Sang H, Zhu B. Oyster mantle-derived exosomes alleviate osteoporosis by regulating bone homeostasis. Biomaterials 2024; 311:122648. [PMID: 38833761 DOI: 10.1016/j.biomaterials.2024.122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/20/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Osteoporosis is a major public health problem with an urgent need for safe and effective therapeutic interventions. The process of shell formation in oysters is similar to that of bone formation in mammals, and oyster extracts have been proven to exert osteoprotective effects. Oyster mantle is the most crucial organ regulating shell formation, in which exosomes play an important role. However, the effects of oyster mantle-derived exosomes (OMEs) on mammalian osteoporosis and the underlying mechanisms remain unknown. The OMEs investigated herein was found to carry abundant osteogenic cargos. They could also survive hostile gastrointestinal conditions and accumulate in the bones following oral administration. Moreover, they promoted osteoblastic differentiation and inhibited osteoclastic differentiation simultaneously. Further mechanistic examination revealed that OMEs likely promoted osteogenic activity by activating PI3K/Akt/β-catenin pathway in osteoblasts and blunted osteoclastic activity by inhibiting NF-κB pathway in osteoclasts. These favorable pro-osteogenic effects of OMEs were also corroborated in a rat femur defect model. Importantly, oral administration of OMEs effectively attenuated bone loss and improved the bone microstructure in ovariectomy-induced osteoporotic mice, and demonstrating excellent biosafety. The mechanistic insights from our data support that OMEs possess promising therapeutic potential against osteoporosis.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zuoxu Hou
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiao Wang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Jintao Zhong
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, 518060, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
9
|
Xu H, Yan S, Gerhard E, Xie D, Liu X, Zhang B, Shi D, Ameer GA, Yang J. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402871. [PMID: 38801111 PMCID: PMC11309907 DOI: 10.1002/adma.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis, and immunomodulation. Moreover, the recent US Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represents a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Academy of Orthopedics of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, P. R. China
| | - Xiaodong Liu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Bing Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
| |
Collapse
|
10
|
Wang C, Chen R, Zhu X, Zhang X, Lian N. DOT1L decelerates the development of osteoporosis by inhibiting SRSF1 transcriptional activity via microRNA-181-mediated KAT2B inhibition. Genomics 2024; 116:110759. [PMID: 38072145 DOI: 10.1016/j.ygeno.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
OBJECTIVE Our study explored the function of DOT1L in osteoporosis (OP) via the microRNA (miR)-181/KAT2B/SRSF1 axis. METHODS Osteoclast (OC) number was evaluated via TRAP staining, and serum CTXI, PINP, and ALP contents were tested by ELISA. Following identification of bone marrow mesenchymal stem cells (BMSCs), OC differentiation was induced by M-CSF and RANKL, followed by the detection of OC differentiation and the expression of bone resorption-related genes, DOT1L, miR-181, KAT2B, and SRSF1. RESULTS Overexpressed DOT1L or miR-181 stimulated calcified nodule formation and increased alkaline phosphatase activity and osteogenic marker gene expression. KAT2B knockdown enhanced the osteogenic differentiation of BMSCs by reducing SRSF1 acetylation. The enhancement of OC differentiation induced by overexpressed SRSF1 was inhibited by simultaneous DOT1L or miR-181 overexpression. DOT1L suppressed OP development in vivo via the miR-181/KAT2B/SRSF1 axis. CONCLUSION DOT1L overexpression slowed down bone loss and promoted bone formation via the miR-181/KAT2B/SRSF1 axis, thereby alleviating OP development.
Collapse
Affiliation(s)
- Changsheng Wang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China.
| | - Rongsheng Chen
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Xitian Zhu
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Xiaobo Zhang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Nancheng Lian
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| |
Collapse
|
11
|
Yoon J, Kaya S, Matsumae G, Dole N, Alliston T. miR181a/b-1 controls osteocyte metabolism and mechanical properties independently of bone morphology. Bone 2023; 175:116836. [PMID: 37414200 PMCID: PMC11156520 DOI: 10.1016/j.bone.2023.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Bone derives its ability to resist fracture from bone mass and quality concurrently; however, many questions about the molecular mechanisms controlling bone quality remain unanswered, limiting the development of diagnostics and therapeutics. Despite the increasing evidence on the importance of miR181a/b-1 in bone homeostasis and disease, whether and how osteocyte-intrinsic miR181a/b-1 controls bone quality remains elusive. Osteocyte-intrinsic deletion of miR181a/b-1 in osteocytes in vivo resulted in compromised overall bone mechanical behavior in both sexes, although the parameters affected by miR181a/b-1 varied distinctly based on sex. Furthermore, impaired fracture resistance in both sexes was unexplained by cortical bone morphology, which was altered in female mice and intact in male mice with miR181a/b-1-deficient osteocytes. The role of miR181a/b-1 in the regulation of osteocyte metabolism was apparent in bioenergetic testing of miR181a/b-1-deficient OCY454 osteocyte-like cells and transcriptomic analysis of cortical bone from mice with osteocyte-intrinsic ablation of miR181a/b-1. Altogether, this study demonstrates the control of osteocyte bioenergetics and the sexually dimorphic regulation of cortical bone morphology and mechanical properties by miR181a/b-1, hinting at the role of osteocyte metabolism in the regulation of mechanical behavior.
Collapse
Affiliation(s)
- Jihee Yoon
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA; Oral and Craniofacial Sciences Program, School of Dentistry, University of California San Francisco, California, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA
| | - Gen Matsumae
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA
| | - Neha Dole
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, AR, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA; Oral and Craniofacial Sciences Program, School of Dentistry, University of California San Francisco, California, USA.
| |
Collapse
|
12
|
Schoen C, Bloemen M, Carels CEL, Verhaegh GW, Van Rheden R, Roa LA, Glennon JC, Von den Hoff JW. A potential osteogenic role for microRNA-181a-5p during palatogenesis. Eur J Orthod 2023; 45:575-583. [PMID: 37454242 PMCID: PMC10756689 DOI: 10.1093/ejo/cjad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND In a previous study, we found that the highly conserved hsa-miR-181a-5p is downregulated in palatal fibroblasts of non-syndromic cleft palate-only infants. OBJECTIVES To analyze the spatiotemporal expression pattern of mmu-miR-181a-5p during palatogenesis and identify possible mRNA targets and their involved molecular pathways. MATERIAL AND METHODS The expression of mmu-miR-181a-5p was analyzed in the developing palates of mouse embryos from E11 to E18 using qPCR and ISH. Mouse embryonic palatal mesenchyme cells from E13 were used to analyze mmu-miR-181a-5p expression during osteogenic differentiation. Differential mRNA expression and target identification were analyzed using whole transcriptome RNA sequencing after transfection with a mmu-miR-181a-5p mimic. Differentially expressed genes were linked with underlying pathways using gene set enrichment analysis. RESULTS The expression of mmm-miR-181a-5p in the palatal shelves increased from E15 and overlapped with palatal osteogenesis. During early osteogenic differentiation, mmu-miR-181a-5p was upregulated. Transient overexpression resulted in 49 upregulated mRNAs and 108 downregulated mRNAs (adjusted P-value < 0.05 and fold change > ± 1.2). Ossification (Stc1, Mmp13) and cell-cycle-related GO terms were significantly enriched for upregulated mRNAs. Analysis of possible mRNA targets indicated significant enrichment of Hippo signaling (Ywhag, Amot, Frmd6 and Serpine1) and GO terms related to cell migration and angiogenesis. LIMITATIONS Transient overexpression of mmu-miR-181a-5p in mouse embryonic palatal mesenchyme cells limited its analysis to early osteogenesis. CONCLUSION Mmu-miR-181-5p expression is increased in the developing palatal shelves in areas of bone formation and targets regulators of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Christian Schoen
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marjon Bloemen
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carine E L Carels
- Department of Human Genetics and Department of Oral Health Sciences, KU Leuven and orthodontic clinic, University Hospitals KU Leuven, Belgium
| | - Gerald W Verhaegh
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rene Van Rheden
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laury A Roa
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- MERLN Institute for Technology—Inspired Regenerative Medicine, Maastricht University, the Netherlands
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Ireland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Yao W, Kulyar MFEA, Ding Y, Du H, Hong J, Loon KS, Nawaz S, Li J. The Effect of miR-140-5p with HDAC4 towards Growth and Differentiation Signaling of Chondrocytes in Thiram-Induced Tibial Dyschondroplasia. Int J Mol Sci 2023; 24:10975. [PMID: 37446153 DOI: 10.3390/ijms241310975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
There is evidence to suggest that microRNA-140-5p (miR-140), which acts as a suppressor, is often elevated and has a role in various malignancies. Nevertheless, neither the function nor the mechanisms in chondrocytes linked with bone disorders, e.g., tibial dyschondroplasia (TD), have been satisfactorily established. The purpose of this study was to look into the role of microRNA-140-5p (miR-140) and its interaction with HDAC4 in chondrocytes, as well as the implications for tibial dyschondroplasia (TD), with a particular focus on the relationship between low miR-140 expression and poor pathologic characteristics, as well as its physiological effects on chondrocyte growth, differentiation, and chondrodysplasia. In this investigation, we discovered that TD had a reduced expression level of the miR-140. There was a correlation between low miR-140 expression, poor pathologic characteristics, and the short overall survival of chondrocytes. Our findings show an aberrant reduction in miR-140 expression, and HDAC4 overexpression caused disengagement in resting and proliferation zones. This further resulted in uncontrolled cell proliferation, differentiation, and chondrodysplasia. Mechanistically, HDAC4 inhibited the downstream transcription factors MEF2C and Runx2 and interacted with Col-Ⅱ, Col-X, and COMP. However, miR-140 binding to the 3'-UTR of HDAC4 resulted in the growth and differentiation of chondrocytes. Moreover, the expression of HDAC4 through LMK-235 was significantly decreased, and the expression was significantly increased under ITSA-1, referring to a positive feedback circuit of miR-140 and HDAC4 for endochondral bone ossification. Furthermore, as a prospective treatment, the flavonoids of Rhizoma drynariae (TFRD) therapy increased the expression of miR-140. Compared to the TD group, TFRD treatment increased the expression of growth-promoting and chondrocyte differentiation markers, implying that TFRD can promote chondrocyte proliferation and differentiation in the tibial growth plate. Hence, directing this circuit may represent a promising target for chondrocyte-related bone disorders and all associated pathological bone conditions.
Collapse
Affiliation(s)
- Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Du
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajia Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kyein San Loon
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Yang H, Zhang F, Sun S, Li H, Li L, Xu H, Wang J, Shao M, Li C, Wang H, Pei J, Niu J, Yuan G, Lyu F. Brushite-coated Mg-Nd-Zn-Zr alloy promotes the osteogenesis of vertebral laminae through IGF2/PI3K/AKT signaling pathway. BIOMATERIALS ADVANCES 2023; 152:213505. [PMID: 37327764 DOI: 10.1016/j.bioadv.2023.213505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable magnesium (Mg) alloys have been extensively investigated in orthopedic implants due to their suitable mechanical strength and high biocompatibility. However, no studies have reported whether Mg alloys can be used to repair lamina defects, and the biological mechanisms regulating osteogenesis are not fully understood. The present study developed a lamina reconstruction device using our patented biodegradable Mg-Nd-Zn-Zr alloy (JDBM), and brushite (CaHPO4·2H2O, Dicalcium phosphate dihydrate, DCPD) coating was developed on the implant. Through in vitro and in vivo experiments, we evaluated the degradation behavior and biocompatibility of DCPD-JDBM. In addition, we explored the potential molecular mechanisms by which it regulates osteogenesis. In vitro, ion release and cytotoxicity tests revealed that DCPD-JDBM had better corrosion resistance and biocompatibility. We found that DCPD-JDBM extracts could promote MC3T3-E1 osteogenic differentiation via the IGF2/PI3K/AKT pathway. The lamina reconstruction device was implanted on a rat lumbar lamina defect model. Radiographic and histological analysis showed that DCPD-JDBM accelerated the repair of rat lamina defects and exhibited lower degradation rate compared to uncoated JDBM. Immunohistochemical and qRT-PCR results showed that DCPD-JDBM promoted osteogenesis in rat laminae via IGF2/PI3K/AKT pathway. This study shows that DCPD-JDBM is a promising biodegradable Mg-based material with great potential for clinical applications.
Collapse
Affiliation(s)
- Haiyuan Yang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Fan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiwei Sun
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Hailong Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Linli Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Haocheng Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyan Li
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, China
| | - Feizhou Lyu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China; Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Mo J, Wan MT, Au DWT, Shi J, Tam N, Qin X, Cheung NKM, Lai KP, Winkler C, Kong RYC, Seemann F. Transgenerational bone toxicity in F3 medaka (Oryzias latipes) induced by ancestral benzo[a]pyrene exposure: Cellular and transcriptomic insights. J Environ Sci (China) 2023; 127:336-348. [PMID: 36522066 DOI: 10.1016/j.jes.2022.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/17/2023]
Abstract
Benzo[a]pyrene (BaP), a ubiquitous pollutant, raises environmental health concerns due to induction of bone toxicity in the unexposed offspring. Exposure of F0 ancestor medaka (Oryzias latipes) to 1 µg/L BaP for 21 days causes reduced vertebral bone thickness in the unexposed F3 male offspring. To reveal the inherited modifications, osteoblast (OB) abundance and molecular signaling pathways of transgenerational BaP-induced bone thinning were assessed. Histomorphometric analysis showed a reduction in OB abundance. Analyses of the miRNA and mRNA transcriptomes revealed the dysregulation of Wnt signaling (frzb/ola-miR-1-3p, sfrp5/ola-miR-96-5p/miR-455-5p) and bone morphogenetic protein (Bmp) signaling (bmp3/ola-miR-96-5p/miR-181b-5p/miR-199a-5p/miR-205-5p/miR-455-5p). Both pathways are major indicators of impaired bone formation, while the altered Rank signaling in osteoclasts (c-fos/miR-205-5p) suggests a potentially augmented bone resorption. Interestingly, a typical BaP-responsive pathway, the Nrf2-mediated oxidative stress response (gst/ola-miR-181b-5p/miR-199a-5p/miR-205), was also affected. Moreover, mRNA levels of epigenetic modification enzymes (e.g., hdac6, hdac7, kdm5b) were found dysregulated. The findings indicated that epigenetic factors (e.g., miRNAs, histone modifications) may directly regulate the expression of genes associated with transgenerational BaP bone toxicity and warrants further studies. The identified candidate genes and miRNAs may serve as potential biomarkers for BaP-induced bone disease and as indicators of historic exposures in wild fish for conservation purposes.
Collapse
Affiliation(s)
- Jiezhang Mo
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Miles Teng Wan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Doris Wai-Ting Au
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Jingchun Shi
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Nathan Tam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xian Qin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Napo K M Cheung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin 541004, China
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, 119077, Singapore
| | - Richard Yuen-Chong Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| | - Frauke Seemann
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China; Center for Coastal Studies and Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas 78412, USA.
| |
Collapse
|
16
|
Bell-Hensley A, Das S, McAlinden A. The miR-181 family: Wide-ranging pathophysiological effects on cell fate and function. J Cell Physiol 2023; 238:698-713. [PMID: 36780342 PMCID: PMC10121854 DOI: 10.1002/jcp.30969] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/14/2023]
Abstract
MicroRNAs (miRNAs) are epigenetic regulators that can target and inhibit translation of multiple mRNAs within a given cell type. As such, a number of different pathways and networks may be modulated as a result. In fact, miRNAs are known to regulate many cellular processes including differentiation, proliferation, inflammation, and metabolism. This review focuses on the miR-181 family and provides information from the published literature on the role of miR-181 homologs in regulating a range of activities in different cell types and tissues. Of note, we have not included details on miR-181 expression and function in the context of cancer since this is a broad topic area requiring independent review. Instead, we have focused on describing the function and mechanism of miR-181 family members on differentiation toward a number of cell lineages in various non-neoplastic conditions (e.g., immune/hematopoietic cells, osteoblasts, osteoclasts, chondrocytes, adipocytes). We have also provided information on how modulation of miR-181 homologs can have positive effects on disease states such as cardiac abnormalities, pulmonary arterial hypertension, thrombosis, osteoarthritis, and vascular inflammation. In this context, we have used some examples of FDA-approved drugs that modulate miR-181 expression. We conclude by discussing some common mechanisms by which miR-181 homologs appear to regulate a number of different cellular processes and how targeting specific miR-181 family members may lead to attractive therapeutic approaches to treat a number of human disease or repair conditions, including those associated with the aging process.
Collapse
Affiliation(s)
- Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, Missouri
| | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Audrey McAlinden
- Department of Orthopaedic Surgery Washington University School of Medicine, St Louis, Missouri
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, USA
- Shriners Hospital for Children – St Louis, Missouri
| |
Collapse
|
17
|
Smith N, Shirazi S, Cakouros D, Gronthos S. Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. Int J Mol Sci 2023; 24:ijms24076499. [PMID: 37047469 PMCID: PMC10095074 DOI: 10.3390/ijms24076499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Many crucial epigenetic changes occur during early skeletal development and throughout life due to aging, disease and are heavily influenced by an individual’s lifestyle. Epigenetics is the study of heritable changes in gene expression as the result of changes in the environment without any mutation in the underlying DNA sequence. The epigenetic profiles of cells are dynamic and mediated by different mechanisms, including histone modifications, non-coding RNA-associated gene silencing and DNA methylation. Given the underlining role of dysfunctional mesenchymal tissues in common age-related skeletal diseases such as osteoporosis and osteoarthritis, investigations into skeletal stem cells or mesenchymal stem cells (MSC) and their functional deregulation during aging has been of great interest and how this is mediated by an evolving epigenetic landscape. The present review describes the recent findings in epigenetic changes of MSCs that effect growth and cell fate determination in the context of aging, diet, exercise and bone-related diseases.
Collapse
Affiliation(s)
- Nicholas Smith
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Suzanna Shirazi
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| |
Collapse
|
18
|
Huang J, Zhou H, He L, Zhong L, Zhou D, Yin Z. The promotive role of USP1 inhibition in coordinating osteogenic differentiation and fracture healing during nonunion. J Orthop Surg Res 2023; 18:152. [PMID: 36859264 PMCID: PMC9979441 DOI: 10.1186/s13018-023-03594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Nonunion is a failure of fracture healing and a major complication after fractures. Ubiquitin-specific protease 1 (USP1) is a deubiquitinase that involved in cell differentiation and cell response to DNA damage. Herein we investigated the expression, function and mechanism of USP1 in nonunion. METHODS AND RESULTS Clinical samples were used to detect the USP1 expression in nonunion. ML323 was selected to inhibit USP1 expression throughout the study. Rat models and mouse embryonic osteoblasts cells (MC3T3-E1) were used to investigate the effects of USP1 inhibition on fracture healing and osteogenesis in vivo and in vitro, respectively. Histological changes were examined by micro-computerized tomography (Micro-CT), hematoxylin & eosin (H&E) staining and Masson staining. Alkaline phosphatase (ALP) activity detection and alizarin red staining were used for osteogenic differentiation observation. The expression of related factors was detected by quantitative real-time PCR, western blot or immunohistochemistry (IHC). It was shown that USP1 was highly expressed in nonunion patients and nonunion rats. USP1 inhibition by ML323 promoted fracture healing in nonunion rats and facilitated the expression of osteogenesis-related factors and the signaling of PI3K/Akt pathway. In addition, USP1 inhibition accelerated osteogenic differentiation and promoting PI3K/Akt signaling in MC3T3-E1 cells. CONCLUSIONS USP1 inhibition plays a promotive role in coordinating osteogenic differentiation and fracture healing during nonunion. PI3K/Akt may be the downstream pathway of USP1.
Collapse
Affiliation(s)
- Jun Huang
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Hongxiang Zhou
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Liang He
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Lin Zhong
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Ding Zhou
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Zongsheng Yin
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
19
|
Long Z, Dou P, Cai W, Mao M, Wu R. MiR-181a-5p promotes osteogenesis by targeting BMP3. Aging (Albany NY) 2023; 15:734-747. [PMID: 36734882 PMCID: PMC9970307 DOI: 10.18632/aging.204505] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
High-throughput microRNA (miRNA) sequencing of osteoporosis was analyzed from the Gene Expression Omnibus (GEO) database to investigate specific microRNAs that control osteogenesis. MiR-181a-5p was differentially expressed among healthy subjects and those with osteoporosis. Inhibitors and mimics were transfected into cells to modulate miR-181a-5p levels to examine the role in MC3T3-E1 functions. Alkaline phosphatase (ALP) staining and Alizarin Red S (ARS) staining were used for morphological detection, and proteins of ALP and Runt-related transcription factor 2 (RUNX2), as osteogenesis markers, were detected. During the osteogenic differentiation of MC3T3-E1, the transcription level of miR-181a-5p was significantly increased. The inhibition of miR-181a-5p suppressed MC3T3-E1 osteogenic differentiation, whereas its overexpression functioned oppositely. Consistently, the miR-181a-5p antagomir aggravated osteoporosis in old mice. Additionally, we predicted potential target genes via TargetScan and miRDB and identified bone morphogenetic protein 3 (BMP3) as the target gene. Moreover, the reduced expression of miR-181a-5p was validated in our hospitalized osteoporotic patients. These findings have substantial implications for the strategies targeting miR-181a-5p to prevent osteoporosis and potential related fractures.
Collapse
Affiliation(s)
- Ze Long
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weiliang Cai
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Minzhi Mao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ren Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
20
|
Hu J, Huang X, Zheng L, Zhang Y, Zeng H, Nie L, Pang X, Zhang H. MiR-199a-5P promotes osteogenic differentiation of human stem cells from apical papilla via targeting IFIT2 in apical periodontitis. Front Immunol 2023; 14:1149339. [PMID: 37063854 PMCID: PMC10098181 DOI: 10.3389/fimmu.2023.1149339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction Periapical alveolar bone loss is the common consequence of apical periodontitis (AP) caused by persistent local inflammation around the apical area. Human stem cells from apical papilla (hSCAPs) play a crucial role in the restoration of bone lesions during AP. Studies have recently identified the critical role of microRNAs (miRNAs) involved in AP pathogenesis, but little is known about their function and potential molecular mechanism, especially in the osteogenesis of hSCAPs during AP. Here, we investigated the role of clinical sample-based specific miRNAs in the osteogenesis of hSCAPs. Methods Differential expression of miRNAs were detected in the periapical tissues of normal and patients with AP via transcriptomic analysis, and the expression of miR-199a-5p was confirmed by qRT-PCR. Treatment of hSCAPs with miR-199a-5p mimics while loaded onto beta-tricalcium phosphate (β-TCP) ceramic particle scaffold to explore its effect on osteogenesis in vivo. RNA binding protein immunoprecipitation (RIP) and Luciferase reporter assay were conducted to identify the target gene of miR-199a-5p. Results The expression of miR-199a-5p was decreased in the periapical tissues of AP patients, and miR-199a-5p mimics markedly enhanced cell proliferation and osteogenic differentiation of hSCAPs, while miR-199a-5p antagomir dramatically attenuated hSCAPs osteogenesis. Moreover, we identified and confirmed Interferon Induced Protein with Tetratricopeptide Repeats 2 (IFIT2) as a specific target of miR-199a-5p, and silencing endogenous IFIT2 expression alleviated the inhibitory effect of miR-199a-5p antagomir on the osteogenic differentiation of hSCAPs. Furthermore, miR-199a-5p mimics transfected hSCAPs loaded onto beta-tricalcium phosphate (β-TCP) scaffolds induced robust subcutaneous ectopic bone formation in vivo. Discussion These results strengthen our understanding of predictors and facilitators of the key AP miRNAs (miR-199a-5p) in bone lesion repair under periapical inflammatory conditions. And the regulatory networks will be instrumental in exploring the underlying mechanisms of AP and lay the foundation for future regenerative medicine based on dental mesenchymal stem cells.
Collapse
Affiliation(s)
- Jing Hu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, the Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Xia Huang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China
| | - Liwen Zheng
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, the Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Yuxin Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, the Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Huan Zeng
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, the Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| | - Li Nie
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
- *Correspondence: Hongmei Zhang, ; Xiaoxiao Pang,
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, the Affiliated Hospital of Stomatology of Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, the Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
- *Correspondence: Hongmei Zhang, ; Xiaoxiao Pang,
| |
Collapse
|
21
|
Bell-Hensley A, Zheng H, McAlinden A. Modulation of MicroRNA Expression During In Vitro Chondrogenesis. Methods Mol Biol 2023; 2598:197-215. [PMID: 36355294 PMCID: PMC10069062 DOI: 10.1007/978-1-0716-2839-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Since their discovery in 1993, microRNAs (miRNAs) are now recognized as important epigenetic regulators of many mammalian cellular processes including proliferation, apoptosis, metabolism, and differentiation. These small non-coding RNAs function by interacting with specific regions in the 3'-untranslated region of mRNAs, thereby resulting in mRNA degradation or suppression of translation. Since miRNAs have the ability to target many mRNAs within a given cell type, a number of cellular pathways and networks may be regulated as a result. To study the function of miRNAs, a number of methods can be used to modulate their activity in cells such as synthetic mimics or antagomirs for short-term assays or viral-based approaches for longer-term experiments such as cell differentiation assays. In this chapter, we provide our methodology to constitutively overexpress a desired miRNA during in vitro chondrogenesis of human cartilage progenitor cells (CPCs). Specifically, we describe how we obtain CPCs from human articular cartilage specimens, how we generate and titrate lentivirus engineered to overexpress a precursor miRNA, how we transduce CPCs with lentivirus and differentiate them toward the chondrocyte lineage, and how we extract RNA and measure expression levels of the miRNA of interest during in vitro chondrogenesis. We also provide some data from our laboratory demonstrating that we can achieve and maintain miRNA overexpression for up to 14 days in cartilage pellet cultures. We predict that these lentiviral-based approaches will also be useful to study how miRNA modulation of progenitor cells affects cell differentiation and extracellular matrix production within three-dimensional biomaterial scaffolds.
Collapse
Affiliation(s)
- Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Hongjun Zheng
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, USA.
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, MO, USA.
- Shriners Hospitals for Children - St Louis, St Louis, MO, USA.
| |
Collapse
|
22
|
Pulik Ł, Mierzejewski B, Sibilska A, Grabowska I, Ciemerych MA, Łęgosz P, Brzóska E. The role of miRNA and lncRNA in heterotopic ossification pathogenesis. Stem Cell Res Ther 2022; 13:523. [PMID: 36522666 PMCID: PMC9753082 DOI: 10.1186/s13287-022-03213-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of bone in non-osseous tissues, such as skeletal muscles. The HO could have a genetic or a non-genetic (acquired) background, that is, it could be caused by musculoskeletal trauma, such as burns, fractures, joint arthroplasty (traumatic HO), or cerebral or spinal insult (neurogenetic HO). HO formation is caused by the differentiation of stem or progenitor cells induced by local or systemic imbalances. The main factors described so far in HO induction are TGFβ1, BMPs, activin A, oncostatin M, substance P, neurotrophin-3, and WNT. In addition, dysregulation of noncoding RNAs, such as microRNA or long noncoding RNA, homeostasis may play an important role in the development of HO. For example, decreased expression of miRNA-630, which is responsible for the endothelial-mesenchymal transition, was observed in HO patients. The reduced level of miRNA-421 in patients with humeral fracture was shown to be associated with overexpression of BMP2 and a higher rate of HO occurrence. Down-regulation of miRNA-203 increased the expression of runt-related transcription factor 2 (RUNX2), a crucial regulator of osteoblast differentiation. Thus, understanding the various functions of noncoding RNAs can reveal potential targets for the prevention or treatment of HO.
Collapse
Affiliation(s)
- Łukasz Pulik
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland.
| | - Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Aleksandra Sibilska
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Paweł Łęgosz
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005, Warsaw, Poland
| | - Edyta Brzóska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| |
Collapse
|
23
|
Jimenez MT, Clark ML, Wright JM, Michieletto MF, Liu S, Erickson I, Dohnalova L, Uhr GT, Tello-Cajiao J, Joannas L, Williams A, Gagliani N, Bewtra M, Tomov VT, Thaiss CA, Henao-Mejia J. The miR-181 family regulates colonic inflammation through its activity in the intestinal epithelium. J Exp Med 2022; 219:213450. [PMID: 36074090 PMCID: PMC9462864 DOI: 10.1084/jem.20212278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/02/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022] Open
Abstract
The intestinal epithelium is a key physical interface that integrates dietary and microbial signals to regulate nutrient uptake and mucosal immune cell function. The transcriptional programs that regulate intestinal epithelial cell (IEC) quiescence, proliferation, and differentiation have been well characterized. However, how gene expression networks critical for IECs are posttranscriptionally regulated during homeostasis or inflammatory disease remains poorly understood. Herein, we show that a conserved family of microRNAs, miR-181, is significantly downregulated in IECs from patients with inflammatory bowel disease and mice with chemical-induced colitis. Strikingly, we showed that miR-181 expression within IECs, but not the hematopoietic system, is required for protection against severe colonic inflammation in response to epithelial injury in mice. Mechanistically, we showed that miR-181 expression increases the proliferative capacity of IECs, likely through the regulation of Wnt signaling, independently of the gut microbiota composition. As epithelial reconstitution is crucial to restore intestinal homeostasis after injury, the miR-181 family represents a potential therapeutic target against severe intestinal inflammation.
Collapse
Affiliation(s)
- Monica T Jimenez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Megan L Clark
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jasmine M Wright
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Suying Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Isabel Erickson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lenka Dohnalova
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Giulia T Uhr
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Tello-Cajiao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Leonel Joannas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Adam Williams
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nicola Gagliani
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Meenakshi Bewtra
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA.,Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA
| | - Vesselin T Tomov
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Christoph A Thaiss
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
24
|
Dysregulation of miRISC Regulatory Network Promotes Hepatocellular Carcinoma by Targeting PI3K/Akt Signaling Pathway. Int J Mol Sci 2022; 23:ijms231911300. [PMID: 36232606 PMCID: PMC9569668 DOI: 10.3390/ijms231911300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains the third leading malignancy worldwide, causing high mortality in adults and children. The neuropathology-associated gene AEG-1 functions as a scaffold protein to correctly assemble the RNA-induced silencing complex (RISC) and optimize or increase its activity. The overexpression of oncogenic miRNAs periodically degrades the target tumor suppressor genes. Oncogenic miR-221 plays a seminal role in the carcinogenesis of HCC. Hence, the exact molecular and biological functions of the oncogene clusters miR-221/AEG-1 axis have not yet been examined widely in HCC. Here, we explored the expression of both miR-221 and AEG-1 and their target/associate genes by qRT-PCR and western blot. In addition, the role of the miR-221/AEG-1 axis was studied in the HCC by flow cytometry analysis. The expression level of the AEG-1 did not change in the miR-221 mimic, and miR-221-transfected HCC cells, on the other hand, decreased the miR-221 expression in AEG-1 siRNA-transfected HCC cells. The miR-221/AEG-1 axis silencing induces apoptosis and G2/M phase arrest and inhibits cellular proliferation and angiogenesis by upregulating p57, p53, RB, and PTEN and downregulating LSF, LC3A, Bcl-2, OPN, MMP9, PI3K, and Akt in HCC cells.
Collapse
|
25
|
Li T, Zhang S, Yang Y, Zhang L, Yuan Y, Zou J. Co-regulation of circadian clock genes and microRNAs in bone metabolism. J Zhejiang Univ Sci B 2022; 23:529-546. [PMID: 35794684 DOI: 10.1631/jzus.b2100958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mammalian bone is constantly metabolized from the embryonic stage, and the maintenance of bone health depends on the dynamic balance between bone resorption and bone formation, mediated by osteoclasts and osteoblasts. It is widely recognized that circadian clock genes can regulate bone metabolism. In recent years, the regulation of bone metabolism by non-coding RNAs has become a hotspot of research. MicroRNAs can participate in bone catabolism and anabolism by targeting key factors related to bone metabolism, including circadian clock genes. However, research in this field has been conducted only in recent years and the mechanisms involved are not yet well established. Recent studies have focused on how to target circadian clock genes to treat some diseases, such as autoimmune diseases, but few have focused on the co-regulation of circadian clock genes and microRNAs in bone metabolic diseases. Therefore, in this paper we review the progress of research on the co-regulation of bone metabolism by circadian clock genes and microRNAs, aiming to provide new ideas for the prevention and treatment of bone metabolic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Tingting Li
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China.,School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Shihua Zhang
- College of Graduate Education, Jinan Sport University, Jinan 250102, China
| | - Yuxuan Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China. ,
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
26
|
Wu X, Fan X, Crawford R, Xiao Y, Prasadam I. The Metabolic Landscape in Osteoarthritis. Aging Dis 2022; 13:1166-1182. [PMID: 35855332 PMCID: PMC9286923 DOI: 10.14336/ad.2021.1228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/28/2021] [Indexed: 11/01/2022] Open
Abstract
Articular cartilage function depends on the temporal and zonal distribution of coordinated metabolic regulation in chondrocytes. Emerging evidence shows the importance of cellular metabolism in the molecular control of the cartilage and its dysregulation in degenerative diseases like osteoarthritis (OA). Compared to most other tissues, chondrocytes are sparsely located in the extracellular matrix, lacking the typical proximity of neural, vascular, and lymphatic tissue. Making up under 5% of the total tissue weight of cartilage, chondrocytes have a relative deficiency of access to nutrients and oxygen, as well as limited pathways for metabolite removal. This makes cartilage a unique tissue with hypocellularity, prolonged metabolic rate, and tissue turnover. Studies in the past decade have shown that several pathways of central carbon metabolism are essential for cartilage homeostasis. Here, we summarised the literature findings on the role of cellular metabolism in determining the chondrocyte function and how this metabolic dysregulation led to cartilage aging in OA and provided an outlook on how the field may evolve in the coming years. Although the various energy metabolism pathways are inextricably linked with one another, for the purpose of this review, we initially endeavoured to examine them individually and in relative isolation. Subsequently, we comment on what is known regarding the integration and linked signalling pathways between these systems and the therapeutic opportunities for targeting OA metabolism.
Collapse
Affiliation(s)
- Xiaoxin Wu
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Department of Orthopaedic Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiwei Fan
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Ross Crawford
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- The Prince Charles Hospital, Orthopedic Department, Brisbane, Queensland, Australia.
| | - Yin Xiao
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
27
|
Sautchuk R, Eliseev RA. Cell energy metabolism and bone formation. Bone Rep 2022; 16:101594. [PMID: 35669927 PMCID: PMC9162940 DOI: 10.1016/j.bonr.2022.101594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Energy metabolism plays an important role in cell and tissue ability to effectively function, maintain homeostasis, and perform repair. Yet, the role of energy metabolism in skeletal tissues in general and in bone, in particular, remains understudied. We, here, review the aspects of cell energy metabolism relevant to bone tissue, such as: i) availability of substrates and oxygen; ii) metabolism regulatory mechanisms most active in bone tissue, e.g. HIF and BMP; iii) crosstalk of cell bioenergetics with other cell functions, e.g. proliferation and differentiation; iv) role of glycolysis and mitochondrial oxidative phosphorylation in osteogenic lineage; and v) most significant changes in bone energy metabolism observed in aging and other pathologies. In addition, we review available methods to study energy metabolism on a subcellular, cellular, tissue, and live animal levels.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Roman A. Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| |
Collapse
|
28
|
Han N, Qian F, Niu X, Chen G. Circ_0058792 regulates osteogenic differentiation through miR-181a-5p/Smad7 axis in steroid-induced osteonecrosis of the femoral head. Bioengineered 2022; 13:12807-12822. [PMID: 35611880 PMCID: PMC9276051 DOI: 10.1080/21655979.2022.2074617] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) caused by steroids is a severe orthopedic disorder resulting from the use of high-dose steroid drugs, characterized by structural changes in the bone, joint dysfunction, and femoral head collapse. CircRNAs and miRNAs have increasingly been suggested to play pivotal roles in osteogenic differentiation and osteogenesis. Significant upregulation of circ_0058792 was observed in patients with steroid-induced ONFH. Bioinformatic analysis showed that circ_0058792 might act as a sponge for miR-181a-5p. This study further investigated the mechanisms underlying the role of circ_0058792 and miR-181a-5p in osteogenic differentiation in methylprednisolone-induced ONFH rats and MC3T3-E1 cells. The results showed a notable decrease in the serum of miR-181a-5p in methylprednisolone-induced ONFH rats. Silencing of circ_0058792 using siRNAs and overexpression of miR-181a-5p significantly increased alkaline phosphatase activity and matrix mineralization capacity. Additionally, markers for osteogenic differentiation were significantly upregulated in miR-181a-5p-transfected cells. However, overexpression of circ_0058792 and the addition of the miR-181a-5p inhibitor reversed this increase. Smad7 was identified to be miR-181a-5p's direct target and circ_0058792 was confirmed to be miR-181a-5p's competing endogenous RNA (ceRNA). Upregulation of miR-181a-5p promotes phosphorylation of Smad2 and Smad3. Furthermore, circ_0058792 and miR-181a-5p had opposing effects on Smad7 expression. Collectively, these findings indicate that circ_0058792 regulates osteogenic differentiation by sponging miR-181a-5p via the TGF-β/Smad7 pathway. These findings elucidated the functions of circ_0058792 and miR-181a-5p in the regulation of steroid-induced ONFH. Our findings also indicated that circ_0058792 and miR-181a-5p are possible diagnostic markers and therapeutic targets for treating steroid-induced ONFH.
Collapse
Affiliation(s)
- Ning Han
- Department of Orthopaedic Traumatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Qian
- Department of Stomatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xianping Niu
- Department of Geriatric Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guoting Chen
- Department of Emergency Traumatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Wei Z, Guo S, Wang H, Zhao Y, Yan J, Zhang C, Zhong B. Comparative proteomic analysis identifies differentially expressed proteins and reveals potential mechanisms of traumatic heterotopic ossification progression. J Orthop Translat 2022; 34:42-59. [PMID: 35615641 PMCID: PMC9117278 DOI: 10.1016/j.jot.2022.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 01/09/2023] Open
Abstract
Background Traumatic Heterotopic Ossification (tHO) is one of complications of elbow fractures to the detriment of patients' rehabilitation, and the severity of tHO corresponds to the size of ectopic bone. It has yet to be elucidated which proteins and pathways underlying the progression of tHO, and biomarkers to predict the severity of tHO at early stage of the disease also need further investigation. Methods In this study, a new rat model with distinct volume of ectopic bone was established first. Then a data-independent acquisition proteomics approach was used to investigate injured site tissues sequentially obtained from these rats (2, 7, 14, and 28 days post-injury). Differentially expressed analysis, functional annotation and co-expression analysis and protein-protein interaction network were performed to explore the pathways and hub proteins in the tHO progression. Clinical samples from a nest case-control study were used to validate the selected proteins for predicting the severity of tHO. Results The Achilles Tenotomy (AT) induced significantly larger sizes of ectopic bone compared to Partial Achilles Tenotomy (PAT) in rat models. A total of 3547 quantifiable proteins were screened for differential expression analysis among the AT, PAT and control groups. The hierarchical clustering and expression pattern analysis revealed more apparent difference in the pathways such as oxidative phosphorylation, mitochondrial function, and sirtuin signaling between AT and PAT group at the early stage (2 dpi) of tHO. The co-expression analysis identified five hub proteins, UBA1, EIF3E, RPL17, RPL27, and RPS28. qPCR assay, immunoblot assay and immunohistochemistry assay verified that these proteins had higher expression level in the tissue samples of clinically relevant HO patients and clinically irrelevant HO patients than HO negative patients. Conclusion The new established animal model and proteome profile could serve as a solid foundation for the comprehensive investigation of the progression of traumatic heterotopic ossification. And the identified 5 proteins (UBA1, EIF3E, RPL17, RPL27, and RPS28) may serve as potential biomarkers to predict the severity of tHO. The translational potential of this article The proteins identified in this study may be the potential biomarkers and therapeutic targets for predicting and treating the tHO at early stage.
Collapse
Affiliation(s)
- Zhenyuan Wei
- Department of Orthopedic Surgery, And Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shang Guo
- Department of Orthopedic Surgery, And Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hongwei Wang
- Department of Medicine, the University of Chicago. Chicago, IL 60637, USA
| | - Yang Zhao
- Department of Orthopedic Surgery, And Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jiren Yan
- Department of Orthopedic Surgery, And Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chi Zhang
- Department of Orthopedic Surgery, And Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China,Corresponding author.
| | - Biao Zhong
- Department of Orthopedic Surgery, And Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China,Corresponding author.
| |
Collapse
|
30
|
Liu C, Wei X, Li J, Liang C, Geng W, Ma P. Glimepiride Loaded Poly(D,L-lactide-co-glycolide) Microspheres Improve Osseointegration of Dental Implants in Type 2 Diabetic Rats. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The patients with type 2 diabetes mellitus (T2DM) have high dental implant failure frequency. This study explores the function of glimepiride local delivery on dental implant osseointegration in diabetes animal. Glimepiride loaded PLGA microspheres were loaded on the surface of the
dental implant, and transplanted into ten Goto-Kakizaki (GK) rats. Blood sugar level and Implant Stability Quotient (ISQ) were measured every week after surgery. Histological, osseointegration rate and bone-implant contact (BIC) rate analysis were performed to evaluate dental osseointegration.
The results showed that Glimepiride loaded Poly-lactide-co-glycolide (PLGA) microspheres have sustained-release curve. The glimepiride group exhibited greater ISQ than the control group. The BIC rate of the control and glimepiride group was 44.60%±1.95% and 59.80%±1.79%, respectively.
This study demonstrated that the glimepiride group has a significantly greater osseointegration rate than that of the control group. Thus, Glimepiride could provide an alternative drug release microspheres for enhance the dental implant osseointegration in diabetes patients.
Collapse
Affiliation(s)
- Changying Liu
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Xuezhu Wei
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Chao Liang
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Pan Ma
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
31
|
Yang JJ, Peng WX, Zhang MB. LncRNA KCNQ1OT1 promotes osteogenic differentiation via miR-205-5p/RICTOR axis. Exp Cell Res 2022; 415:113119. [PMID: 35341776 DOI: 10.1016/j.yexcr.2022.113119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Osteoporosis is a prevalent degenerative disease that is characterized by decreased bone density and strength, resulting in gradually increasing bone fragility. Osteoporosis is caused by an imbalance between osteoblastic bone formation and osteoclastic bone resorption. Recently, increasing evidence has suggested that long non-coding RNAs (lncRNAs) participate in the occurrence and development of osteoporosis. Herein, we explored the role of lncRNA KCNQ1OT1 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). QPCR results indicated that KCNQ1OT1 and RICTOR were down-regulated, while miR-205-5p was up-regulated in the osteoporotic patients, as compared with non-osteoporotic controls. During the osteogenic differentiation of BMSCs, the expression of KCNQ1OT1 and RICTOR was upregulated, whereas miR-205-5p was downregulated. The interaction among KCNQ1OT1, miR-205-5p and RICTOR was validated by dual luciferase reporter system. KCNQ1OT1 promoted RICTOR expression via inhibiting miR-205-5p, therefore promoting osteogenesis as demonstrated by ALP assay, alizarin red staining and the increased expression of osteogenic markers (OPN, RUNX2 and OCN). Furthermore, KCNQ1OT1 overexpression or miR-205-5p inhibition could promote ALP activity and mineralization of BMSCs, while overexpressed miR-205-5p could reverse the effects of overexpressed KCNQ1OT1, and knockdown of RICTOR could reverse the effects of miR-205-5p inhibition. In conclusion, our study illustrated that KCNQ1OT1 might inhibit miR-205-5p in BMSCs, thus upregulating the expression of RICTOR and promoting osteogenic differentiation.
Collapse
Affiliation(s)
- Jing-Jin Yang
- Department of Endocrinology, The First People's Hospital of Huaihua, HuaiHua, 418000, Hunan Province, PR China.
| | - Wei-Xia Peng
- Department of Endocrinology, Yiyang Central Hospital, YiYang, 413000, Hunan Province, PR China
| | - Mei-Biao Zhang
- Department of Endocrinology, The First People's Hospital of Huaihua, HuaiHua, 418000, Hunan Province, PR China
| |
Collapse
|
32
|
Guo X, Zhang J, Han X, Wang G. LncRNA SNHG1 Delayed Fracture Healing via Modulating miR-181a-5p/PTEN Axis. J INVEST SURG 2022; 35:1304-1312. [PMID: 35263556 DOI: 10.1080/08941939.2022.2048926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiuquan Guo
- Department of Spinal Surgery, Zhucheng People’s Hospital, Weifang, Shandong, China
| | - Jialiang Zhang
- Zhucheng Linjia Village Central Health Center, Weifang, Shandong, China
| | - Xuemei Han
- Zhucheng Longdu Health Center, Weifang, Shandong, China
| | - Ganggang Wang
- Department of Hand and Foot Surgery, Zhucheng People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
33
|
Ning K, Liu S, Yang B, Wang R, Man G, Wang DE, Xu H. Update on the Effects of Energy Metabolism in Bone Marrow Mesenchymal Stem Cells Differentiation. Mol Metab 2022; 58:101450. [PMID: 35121170 PMCID: PMC8888956 DOI: 10.1016/j.molmet.2022.101450] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal (stromal) stem cells (BMSCs) play key roles in bone homeostasis, tissue regeneration, and global energy homeostasis; however, the intrinsic mechanism of BMSC differentiation is not well understood. Plasticity in energy metabolism allows BMSCs to match the divergent demands of osteo-adipogenic differentiation. Targeting BMSC metabolic pathways may provide a novel therapeutic perspective for BMSC differentiation unbalance related diseases. Scope of review This review covers the recent studies of glucose, fatty acids, and amino acids metabolism fuel the BMSC differentiation. We also discuss recent findings about energy metabolism in BMSC differentiation. Major conclusions Glucose, fatty acids, and amino acids metabolism provide energy to fuel BMSC differentiation. Moreover, some well-known regulators including environmental stress, hormone drugs, and biological and pathological factors may also influence BMSC differentiation by altering metabolism. This offers insight to the significance of metabolism on BMSC fate determination and provides the possibility of treating diseases related to BMSC differentiation, such as obesity and osteoporosis, from a metabolic perspective.
Collapse
|
34
|
Yang J, Gao J, Gao F, Zhao Y, Deng B, Mu X, Xu L. Extracellular vesicles-encapsulated microRNA-29b-3p from bone marrow-derived mesenchymal stem cells promotes fracture healing via modulation of the PTEN/PI3K/AKT axis. Exp Cell Res 2022; 412:113026. [PMID: 35026284 DOI: 10.1016/j.yexcr.2022.113026] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are well-established as vital regulators of fracture healing, whereas angiogenesis is one of the critical processes during the course of bone healing. Accordingly, the current study sought to determine the functions of microRNA (miR)-29b-3p from BM-MSCs-derived extracellular vesicles (EVs) on the angiogenesis of fracture healing via the PTEN/PI3K/AKT axis. Firstly, BM-MSCs-EVs were extracted and identified. The lentiviral protocol was adopted to construct miR-29b-3pKD-BMSCs or miR-negative control-BMSCs, which were then co-cultured with human umbilical vein endothelial cells (HUVECs) in vitro to determine the roles of EVs-encapsulated miR-29b-3p on the proliferation, migration, and angiogenesis of HUVECs in vitro with the help of a CCK-8 assay, scratch test, and tube formation assay. Subsequent database prediction, luciferase activity assay, RT-qPCR, and Western blot assay findings identified the downstream target gene of miR-29b-3p, PTEN, and a signaling pathway, PI3K/AKT. Furthermore, the application of si-PTEN attenuated the effects induced by miR-29b-3pKD-EVs. Finally, a mouse model of femoral fracture was established with a locally instilled injection of equal volumes of BM-MSCs-EVs and miR-29b-3pKD-BM-MSCs-EVs. Notably, the mice treated with BMSC-EVs presented with enhanced neovascularization at the fracture site, in addition to increased bone volume (BV), BV/tissue volume, and mean bone mineral density; whereas miR-29b-3pKD-BMSCs-EVs-treated mice exhibited decreased vessel density with poor fracture healing capacity. Collectively, our findings elicited that BM-MSCs-EVs carrying miR-29b-3p were endocytosed by HUVECs, which consequently suppressed the PTEN expression and activated the PI3K/AKT pathway, thereby promoting HUVEC proliferation, migration, and angiogenesis, and ultimately facilitating fracture healing.
Collapse
Affiliation(s)
- Jizhou Yang
- Department of Orthopaedics, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jian Gao
- Mckelvey School of Engineering at Washington University in St. Louis, University City, Missouri, 63130, USA
| | - Feng Gao
- Department of Surgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Tongzhou District, Beijing, 101121, China
| | - Yi Zhao
- Department of Orthopaedics, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Bowen Deng
- Department of Orthopaedics, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaohong Mu
- Department of Orthopaedics, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Lin Xu
- Department of Orthopaedics, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
35
|
Groven RVM, van Koll J, Poeze M, Blokhuis TJ, van Griensven M. miRNAs Related to Different Processes of Fracture Healing: An Integrative Overview. Front Surg 2021; 8:786564. [PMID: 34869574 PMCID: PMC8639603 DOI: 10.3389/fsurg.2021.786564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
Fracture healing is a complex, dynamic process that is directed by cellular communication and requires multiple cell types, such as osteoblasts, osteoclasts, and immune cells. Physiological fracture healing can be divided into several phases that consist of different processes, such as angiogenesis, osteogenesis, and bone resorption/remodelling. This is needed to guarantee proper bone regeneration after fracture. Communication and molecular regulation between different cell types and within cells is therefore key in successfully orchestrating these processes to ensure adequate bone healing. Among others, microRNAs (miRNAs) play an important role in cellular communication. microRNAs are small, non-coding RNA molecules of ~22 nucleotides long that can greatly influence gene expression by post-transcriptional regulation. Over the course of the past decade, more insights have been gained in the field of miRNAs and their role in cellular signalling in both inter- and intracellular pathways. The interplay between miRNAs and their mRNA targets, and the effect thereof on different processes and aspects within fracture healing, have shown to be interesting research topics with possible future diagnostic and therapeutic potential. Considering bone regeneration, research moreover focusses on specific microRNAs and their involvement in individual pathways. However, it is required to combine these data to gain more understanding on the effects of miRNAs in the dynamic process of fracture healing, and to enhance their translational application in research, as well as in the clinic. Therefore, this review aims to provide an integrative overview on miRNAs in fracture healing, related to several key aspects in the fracture healing cascade. A special focus will be put on hypoxia, angiogenesis, bone resorption, osteoclastogenesis, mineralization, osteogenesis, osteoblastogenesis, osteocytogenesis, and chondrogenesis.
Collapse
Affiliation(s)
- Rald V M Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands.,Division of Traumasurgery, Department of Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Johan van Koll
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Martijn Poeze
- Division of Traumasurgery, Department of Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Taco J Blokhuis
- Division of Traumasurgery, Department of Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
36
|
Wang N, Han X, Yang H, Xia D, Fan Z. miR-6807-5p Inhibited the Odontogenic Differentiation of Human Dental Pulp Stem Cells Through Directly Targeting METTL7A. Front Cell Dev Biol 2021; 9:759192. [PMID: 34790668 PMCID: PMC8591228 DOI: 10.3389/fcell.2021.759192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Tooth tissue regeneration mediated by mesenchymal stem cells (MSCs) has become the most ideal treatment. Although the known regulatory mechanism and some achievements have been discovered, directional differentiation cannot effectively induce regeneration of tooth tissue. In this study, we intended to explore the function and mechanism of miR-6807-5p and its target gene METTL7A in odontogenic differentiation. Methods: In this study, human dental pulp stem cells (DPSCs) were used. Alkaline phosphatase (ALP), Alizarin red staining (ARS), and calcium ion quantification were used to detect the odontogenic differentiation of miR-6807-5p and METTL7A. Real-time RT-PCR, western blot, dual-luciferase reporter assay, and pull-down assay with biotinylated miRNA were used to confirm that METTL7A was the downstream gene of miR-6807-5p. Protein mass spectrometry and co-immunoprecipitation (Co-IP) were used to detect that SNRNP200 was the co-binding protein of METTL7A. Results: After mineralized induction, the odontogenic differentiation was enhanced in the miR-6807-5p-knockdown group and weakened in the miR-6807-5p-overexpressed group compared with the control group. METTL7A was the downstream target of miR-6807-5p. After mineralized induction, the odontogenic differentiation was weakened in the METTL7A-knockdown group and enhanced in the METTL7A-overexpressed group compared with the control group. SNRNP200 was the co-binding protein of METTL7A. The knockdown of SNRNP200 inhibited the odontogenic differentiation of DPSCs. Conclusion: This study verified that miR-6807-5p inhibited the odontogenic differentiation of DPSCs. The binding site of miR-6807-5p was the 3′UTR region of METTL7A, which was silenced by miR-6807-5p. METTL7A promoted the odontogenic differentiation of DPSCs. SNRNP200, a co-binding protein of METTL7A, promoted the odontogenic differentiation of DPSCs.
Collapse
Affiliation(s)
- Ning Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Xiao Han
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Dengsheng Xia
- Department of General Dentistry and Integrated Emergency Dental Care, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Gan M, Zhou Q, Ge J, Zhao J, Wang Y, Yan Q, Wu C, Yu H, Xiao Q, Wang W, Yang H, Zou J. Precise in-situ release of microRNA from an injectable hydrogel induces bone regeneration. Acta Biomater 2021; 135:289-303. [PMID: 34474179 DOI: 10.1016/j.actbio.2021.08.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Critical bone defects are a common yet challenging orthopedic problem. Tissue engineering is an emerging and promising strategy for bone regeneration in large-scale bone defects. The precise on-demand release of osteogenic factors is critical for controlling the osteogenic differentiation of seed cells with the support of appropriate three dimensional scaffolds. However, most of the effective osteogenic factors are biomacromolecules with release behaviors that are difficult to control. Here, the cholesterol-modified non-coding microRNA Chol-miR-26a was used to promote the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Chol-miR-26a was conjugated to an injectable poly(ethylene glycol) (PEG) hydrogel through an ultraviolet (UV)-cleavable ester bond. The injectable PEG hydrogel was formed by a copper-free click reaction between the terminal azide groups of 8-armed PEG and dibenzocyclooctyne-biofunctionalized PEG, into which UV-cleavable Chol-miR-26a was simultaneously conjugated via a Michael addition reaction. Upon UV irradiation, Gel-c-miR-26a (MLCaged) released Chol-c-miR-26a selectively and exhibited significantly improved efficacy in bone regeneration compared to the hydrogel without UV irradiation and UV-uncleavable MLControl. MLCaged significantly enhanced alkaline phosphatase activity and promoted calcium nodule deposition in vitro and repaired critical skull defects in a rat animal model, demonstrating that injectable implantation with the precise release of osteogenic factors has the potential to repair large-scale bone defects in clinical practice. STATEMENT OF SIGNIFICANCE: Provide a novel and practical strategy via hydrogel for efficient delivery and precisely controlled release of miRNAs into bone defect sites. The hydrogel is formed by polyethylene glycol (PEG), which is crosslinked by 'click' reaction. Cholesterol-modified miR-26a loading on the hydrogel is covalently patterned onto the fibers of hydrogel through a UV light-cleavable linker, which prevents undesired release of miRNA. This hydrogel could realize the controlled release of miRNA under light regulation both in vitro and in vivo, thus realize bone regeneration.
Collapse
|
38
|
Li Y, Chen G, He Y, Yi C, Zhang X, Zeng B, Huang Z, Deng F, Yu D. Selenomethionine-Modified Polyethylenimine-Based Nanoparticles Loaded with miR-132-3p Inhibitor-Biofunctionalized Titanium Implants for Improved Osteointegration. ACS Biomater Sci Eng 2021; 7:4933-4945. [PMID: 34583510 DOI: 10.1021/acsbiomaterials.1c00880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Titanium and its alloys have been widely used as bone implants, but for reduced treatment span, improvements are urgently needed to achieve faster and better osteointegration. In this study, we found that miR-132-3p inhibited bone-marrow-derived stem cell (BMSC) osteogenic differentiation via targeting BMP2, and that inhibiting miR-132-3p could significantly improve the osteogenic capability of BMSCs. Moreover, we fabricated a biocompatible selenomethionine (SEMET)-modified polyethylene glycol (PEG)/polyethylenimine (PEI) nanoparticle (SeNP) cross-linked with 0.2% gelatin solutions and delivered miR-132-3p inhibitor to biofunctionalize alkali heat-treated titanium implants, resulting in the development of a novel coating for reverse transfection. The biological performances of PEG/PEI/miR-132-3p inhibitor and SeNP/miR-132-3p inhibitor-biofunctionalized titanium were compared. The biological effects, including cell viability, cytotoxicity, adhesion, cellular uptake, and osteogenic capacity of SeNP/miR-132-3p inhibitor-biofunctionalized titanium implants, were then assessed. Results showed that SeNPs presented appropriate morphology, diameter, and positive zeta potential for efficient gene delivery. The transfection efficiency of the SeNP/miR-132-3p inhibitor was comparable to that of the PEG/PEI/miR-132-3p inhibitor, but the former induced less reactive oxygen species (ROS) production and lower apoptosis rates. Confocal laser scanning microscopy (CLSM) demonstrated that SeNP/miR-132-3p inhibitor nanoparticles released from the titanium surfaces and were taken up by adherent BMSCs. In addition, the release profile showed that transfection could obtain a long-lasting silencing effect for more than 2 weeks. The cell viability, cytotoxicity, and cell spreading of SeNP/miRNA-132-3p inhibitor-biofunctionalized titanium were comparable with those of untreated titanium and the SeNP/miRNA-132-3p inhibitor negative control (NC)-biofunctionalized titanium but resulted in higher ALP activity and osteogenic gene expression levels. In vivo animal studies further certified that SeNP/miRNA-132-3p inhibitor nanoparticles from titanium surfaces promoted osteointegration, which was revealed by microcomputed tomography (micro-CT) and histological observations. Taken together, these findings suggested that selenomethionine-modified PEI-based nanoparticles could achieve better biocompatibility. Moreover, titanium implants biofunctionalized by SeNP/miRNA-132-3p inhibitor nanoparticles might have significant clinical potential for more effective osteointegration.
Collapse
Affiliation(s)
- Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Guanhui Chen
- Department of Stomatology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Chen Yi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Binghui Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| |
Collapse
|
39
|
Zheng H, Liu J, Yu J, McAlinden A. Expression profiling of mitochondria-associated microRNAs during osteogenic differentiation of human MSCs. Bone 2021; 151:116058. [PMID: 34144232 PMCID: PMC8944210 DOI: 10.1016/j.bone.2021.116058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022]
Abstract
Small non-coding microRNAs (miRNAs) have the ability to target and bind to many mRNAs within the cytosol resulting in reduced protein expression and modulation of a number of cellular pathways and networks. In addition to the cytosol, miRNAs have been identified in other cellular compartments and organelles, including the mitochondria. While a few mitochondria-associated miRNAs (mitomiRs) are predicted to be derived from the mitochondrial genome, the majority appear to be transcribed from nuclear DNA and somehow transported into the mitochondria. These findings raise interesting questions about why miRNAs are located in the mitochondria and if they play a role in regulating processes within these organelles. Previously published work from our laboratory showed that miR-181a/b can regulate osteogenesis, in part, by enhancing mitochondrial metabolism. In other published studies, miR-181 paralogs and many other miRNAs have been identified in mitochondrial extracts derived from common cell lines and specific primary cells and tissues. Taken together, we were motivated to identify mitomiR expression profiles during in vitro osteogenesis. Specifically, we obtained RNA from purified mitochondrial extracts of human bone marrow-derived mesenchymal stem/stromal cells (MSCs) and from whole cell extracts of MSCs at day 0 or following osteogenic induction for 3, 7 and 14 days. Utilizing Affymetrix GeneChip™ miRNA 4.0 arrays, mitomiR expression signatures were determined at each time point. Based on the Affymetrix detection above background algorithm, the total number of miRNAs detected in MSC mitochondria extracts was 527 (non-induced MSCs), 627 (day 3 induced), 372 (day 7 induced) and 498 (day 14 induced). In addition, we identified significantly differentially-expressed mitomiRs at day 7 and day 14 of osteogenic induction when compared to day 0 (fold change ≥1.5; adjusted p value <0.05). In general, the most pronounced and highly significant changes in mitomiR expression during osteogenesis were observed at the day 7 time point. Interestingly, most miRNAs found to be differentially-expressed in mitochondria extracts did not show significantly altered expression in whole cell extracts at the same time points during osteoblast differentiation. This array study provides novel information on miRNAs associated with the mitochondria in MSCs during differentiation toward the osteoblast phenotype. These findings will guide future research to identify new miRNA candidates that may function in regulating mitochondrial function and/or bone formation, homeostasis or repair.
Collapse
Affiliation(s)
- Hongjun Zheng
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America.
| | - Jin Liu
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America.
| | - Jinsheng Yu
- Genome Technology Access Center, Washington University School of Medicine, St Louis, MO, United States of America.
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, United States of America; Shriners Hospital for Children - St Louis, St Louis, MO, United States of America.
| |
Collapse
|
40
|
Ghafouri-Fard S, Abak A, Tavakkoli Avval S, Rahmani S, Shoorei H, Taheri M, Samadian M. Contribution of miRNAs and lncRNAs in osteogenesis and related disorders. Biomed Pharmacother 2021; 142:111942. [PMID: 34311172 DOI: 10.1016/j.biopha.2021.111942] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs have been found to regulate several developmental processes among them is osteogenesis. Although these transcripts have several distinct classes, two classes i.e. microRNAs and long non-coding RNAs have attained more attention. These transcripts regulate intramembranous as well as endochondral ossification processes. The effects of microRNAs on osteogenesis are mostly mediated through modulation of Wnt/β-catenin and TGFβ/BMP pathways. Long non-coding RNAs can directly affect expression of these pathways or osteogenic transcription factors. Moreover, they can serve as a molecular sponge for miRNAs. MALAT1/miR-30, MALAt1/miR-214, LEF1-AS1/miR-24-3p, MCF2L-AS1/miR-33a, MSC-AS1/miR-140-5p and KCNQ1OT1/miR-214 are examples of such kind of interaction between lncRNAs and miRNAs in the context of osteogenesis. In the current paper, we explain these two classes of non-coding RNAs in the osteogenesis and related disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Xie B, Qiao M, Xuan J. lncRNA MEG3 Downregulation Relieves Intracerebral Hemorrhage by Inhibiting Oxidative Stress and Inflammation in an miR-181b-Dependent Manner. Med Sci Monit 2021; 27:e929435. [PMID: 34267173 PMCID: PMC8290977 DOI: 10.12659/msm.929435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND This study was designed to illustrate the effects and latent mechanism of lncRNA maternally expressed gene 3 (MEG3) on intracerebral hemorrhage (ICH)-induced brain injury. MATERIAL AND METHODS An ICH rat model was generated to determine the role of lncRNA MEG3 in ICH. The interaction between lncRNA MEG3 and microRNA (miR)-181b were confirmed by Starbase and dual-luciferase reporter assay. One hour (h) or 3 days after ICH stimulation, rat neurological injury was evaluated by modified Neurological Severity Score (mNSS). Brain water content and cell apoptosis were assessed using brain edema assessment and flow cytometry (FCM), respectively. Caspase3 activity was also determined. Enzyme-linked immunosorbent assay (ELISA) was applied to evaluate the levels of pro-inflammatory cytokines. Moreover, the representative biomarkers of oxidative stress were evidenced using detection kits. RESULTS The lncRNA MEG3 level in ICH rat brain tissues was higher than that in the sham group. miR-181b was a direct target of lncRNA MEG3 and it was downregulated in brain tissues of ICH rats. Notably, we found that neurobehavioral scores, brain water content, and neuronal apoptosis were decreased and caspase3 activity was reduced in MEG3-shRNA-treated ICH rats, while we observed the opposite result in ICH+MEG3-shRNA+miR-181b inhibitor rats. Further analyses revealed that MEG3-shRNA inhibited inflammatory cytokines release and reduced oxidative stress. All these results were reversed by miR-181b inhibitor. In addition, MEG3-shRNA activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway, which was reversed by miR-181b inhibitor. CONCLUSIONS MEG3-shRNA restrained oxidative stress and inflammation following ICH in an miR-181b-dependent manner.
Collapse
Affiliation(s)
- Bo Xie
- Department of Neurosurgery, Rongcheng Shidao People's Hospital, Weihai, Shandong, China (mainland)
| | - Mingliang Qiao
- Department of Neurosurgery, Rongcheng Shidao People's Hospital, Weihai, Shandong, China (mainland)
| | - Jialong Xuan
- Department of Neurosurgery, Chaohu Hospital, Anhui Medical University, Chaohu, Anhui, China (mainland)
| |
Collapse
|
42
|
Man K, Brunet MY, Fernandez‐Rhodes M, Williams S, Heaney LM, Gethings LA, Federici A, Davies OG, Hoey D, Cox SC. Epigenetic reprogramming enhances the therapeutic efficacy of osteoblast-derived extracellular vesicles to promote human bone marrow stem cell osteogenic differentiation. J Extracell Vesicles 2021; 10:e12118. [PMID: 34262674 PMCID: PMC8263905 DOI: 10.1002/jev2.12118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging in tissue engineering as promising acellular tools, circumventing many of the limitations associated with cell-based therapies. Epigenetic regulation through histone deacetylase (HDAC) inhibition has been shown to increase differentiation capacity. Therefore, this study aimed to investigate the potential of augmenting osteoblast epigenetic functionality using the HDAC inhibitor Trichostatin A (TSA) to enhance the therapeutic efficacy of osteoblast-derived EVs for bone regeneration. TSA was found to substantially alter osteoblast epigenetic function through reduced HDAC activity and increased histone acetylation. Treatment with TSA also significantly enhanced osteoblast alkaline phosphatase activity (1.35-fold), collagen production (2.8-fold) and calcium deposition (1.55-fold) during osteogenic culture (P ≤ 0.001). EVs derived from TSA-treated osteoblasts (TSA-EVs) exhibited reduced particle size (1-05-fold) (P > 0.05), concentration (1.4-fold) (P > 0.05) and protein content (1.16-fold) (P ≤ 0.001) when compared to untreated EVs. TSA-EVs significantly enhanced the proliferation (1.13-fold) and migration (1.3-fold) of human bone marrow stem cells (hBMSCs) when compared to untreated EVs (P ≤ 0.05). Moreover, TSA-EVs upregulated hBMSCs osteoblast-related gene and protein expression (ALP, Col1a, BSP1 and OCN) when compared to cells cultured with untreated EVs. Importantly, TSA-EVs elicited a time-dose dependent increase in hBMSCs extracellular matrix mineralisation. MicroRNA profiling revealed a set of differentially expressed microRNAs from TSA-EVs, which were osteogenic-related. Target prediction demonstrated these microRNAs were involved in regulating pathways such as 'endocytosis' and 'Wnt signalling pathway'. Moreover, proteomics analysis identified the enrichment of proteins involved in transcriptional regulation within TSA-EVs. Taken together, our findings suggest that altering osteoblasts' epigenome accelerates their mineralisation and promotes the osteoinductive potency of secreted EVs partly due to the delivery of pro-osteogenic microRNAs and transcriptional regulating proteins. As such, for the first time we demonstrate the potential to harness epigenetic regulation as a novel engineering approach to enhance EVs therapeutic efficacy for bone repair.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | | | | | - Soraya Williams
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Liam M. Heaney
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Lee A. Gethings
- Waters CorporationStamford AvenueWilmslowUK
- Division of Infection, Immunity and Respiratory MedicineFaculty of Biology, Medicine and HealthManchester Institute of BiotechnologyUniversity of ManchesterManchesterUK
| | - Angelica Federici
- Trinity Biomedical Sciences InstituteTrinity CollegeTrinity Centre for Biomedical EngineeringDublinIreland
- Department of Mechanical, Manufacturing, and Biomedical EngineeringSchool of EngineeringTrinity College DublinIreland
- Trinity College Dublin & RCSIAdvanced Materials and Bioengineering Research CentreDublinIreland
| | - Owen G. Davies
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - David Hoey
- Trinity Biomedical Sciences InstituteTrinity CollegeTrinity Centre for Biomedical EngineeringDublinIreland
- Department of Mechanical, Manufacturing, and Biomedical EngineeringSchool of EngineeringTrinity College DublinIreland
- Trinity College Dublin & RCSIAdvanced Materials and Bioengineering Research CentreDublinIreland
| | - Sophie C. Cox
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| |
Collapse
|
43
|
Qi P, Niu Y, Wang B. MicroRNA-181a/b-1-encapsulated PEG/PLGA nanofibrous scaffold promotes osteogenesis of human mesenchymal stem cells. J Cell Mol Med 2021; 25:5744-5752. [PMID: 33991050 PMCID: PMC8184675 DOI: 10.1111/jcmm.16595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Bioactive nanofibres play a useful role in increasing the efficiency of tissue engineering scaffolds. MicroRNAs (miRs) alone, and in combination with tissue engineering scaffolds, can be effective in treating bone fractures and osteoporosis by regulating many post‐transcriptional cellular pathways. Herein, miR‐181a/b‐1 was incorporated in the electrospun poly (lactic‐co‐glycolic acid) (PLGA) nanofibres (PLGA‐miR). After characterization scaffolds, the osteoinductive capacity of the nanofibres was investigated when adipose‐derived mesenchymal stem cells (AT‐MSCs) were cultured on the PLGA and PLGA‐miR nanofibres. miR incorporating in the nanofibres has not any significant effect on the size and morphology of the nanofibres, but its biocompatibility was increased significantly compared to the empty nanofibres. Alkaline phosphatase (ALP) activity and calcium measures were evaluated as two important osteogenic markers, and the results revealed that the highest measures were observed in the AT‐MSCs cultured on PLGA‐miR nanofibres. Detected ALP activity and calcium measures in miR‐transduced AT‐MSCs cultured on TCPS were also significantly higher than AT‐MSCs cultured on PLGA and TCPS groups. The highest expression levels of bone‐related genes were observed in the AT‐MSCs cultured on PLGA‐miR nanofibres. This improvement in the osteogenic differentiation potential of the AT‐MSCs was also confirmed by evaluating osteopontin protein in the cells cultured on PLGA‐miR. It can be concluded that miR‐181a/b‐1 has a significant impact on the AT‐MSC osteogenic differentiation, and this impact synergistically increased when incorporated in the PLGA nanofibres.
Collapse
Affiliation(s)
- Peiyi Qi
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yali Niu
- Department of Lung Transplantation Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- Department of Thoracic Heart Surgery, Changyi People's Hospital, Weifang, China
| |
Collapse
|
44
|
Sun Y, Liu W, Zhao Q, Zhang R, Wang J, Pan P, Shang H, Liu C, Wang C. Down-Regulating the Expression of miRNA-21 Inhibits the Glucose Metabolism of A549/DDP Cells and Promotes Cell Death Through the PI3K/AKT/mTOR/HIF-1α Pathway. Front Oncol 2021; 11:653596. [PMID: 34046349 PMCID: PMC8144645 DOI: 10.3389/fonc.2021.653596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
miRNA-21 is a single-stranded non-coding RNA that is highly expressed in a variety of tumor cells. It participates in tumor cell proliferation, metabolism, metastasis, and drug resistance. Here, we tested the potential mechanism of miRNA-21 in cisplatin-resistant non-small cell lung cancer A549/DDP (human lung adenocarcinoma drug-resistant cell line) cells. A549 and A549/DDP RNAs were sequenced to show that miRNA-21 was highly expressed in the latter, and this was verified by qRT-PCR. In addition, we found that miRNA-21 combined with cisplatin can significantly inhibit glycolysis and glycolysis rate-limiting enzyme protein expression in A549/DDP cells. We also found that miRNA-21 combined with cisplatin can promote A549/DDP cell death. Further investigations showed that miRNA-21 combined with cisplatin caused excessive inactivation of the pI3K/AKT/mTOR/HIF-1α signaling pathway in cisplatin-resistant A549/DDP cells. Hence, reduction of the expression of miRNA-21 in combination with cisplatin chemotherapy may effectively improve the therapeutic effect on patients with non-small cell lung cancer, and this may provide a theoretical basis for the treatment of this disease.
Collapse
Affiliation(s)
- Ye Sun
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China.,Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, China
| | - Wenjun Liu
- Teaching and Experimental Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Qiuyu Zhao
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine (TCM) Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | | | - Jianbo Wang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine (TCM) Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Pengyu Pan
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Hai Shang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Chunying Liu
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Chun Wang
- Department of Cell Biology, College of Integrated Chinese and Western Medical, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
45
|
张 根, 刘 瑞, 党 晓, 刘 继, 焦 海. [Experimental study on improvement of osteonecrosis of femoral head with exosomes derived from miR-27a-overexpressing vascular endothelial cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:356-365. [PMID: 33719246 PMCID: PMC8171754 DOI: 10.7507/1002-1892.202011026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/21/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate whether exosomes derived from miR-27a-overexpressing human umbilical vein endothelial cells (HUVECs)-exo (miR-27a) can promote bone regeneration and improve glucocorticoids (GC) induced osteonecrosis of femoral head (ONFH) (GC-ONFH). METHODS The exo (miR-27a) were intended to be constructed and identified by transmission electron microscopy, nanoparticle tracking analysis, Western blot, and real-time fluorescent quantitative PCR (qRT-PCR). qRT-PCR was used to evaluate the effect of exo (miR-27a) in delivering miR-27a to osteoblasts (MC3T3-E1 cells). Alkaline phosphatase staining, alizarin red staining, and qRT-PCR were used to evaluate its effect on MC3T3-E1 cells osteogenesis. Dual-luciferase reporter (DLRTM) assay was used to verify whether miR-27a targeting Dickkopf WNT signaling pathway inhibitor 2 (DKK2) was a potential mechanism, and the mechanism was further verified by qRT-PCR, Western blot, and alizarin red staining in MC3T3-E1 cells. Finally, the protective effect of exo (miR-27a) on ONFH was verified by the GC-ONFH model in Sprague Dawley (SD) rats. RESULTS Transmission electron microscopy, nanoparticle tracking analysis, Western blot, and qRT-PCR detection showed that exo (miR-27a) was successfully constructed. exo (miR-27a) could effectively deliver miR-27a to MC3T3-E1 cells and enhance their osteogenic capacity. The detection of DLRTM showed that miR-27a promoted bone formation by directly targeting DDK2. Micro-CT and HE staining results of animal experiments showed that tail vein injection of exo (miR-27a) improved the osteonecrosis of SD rat GC-ONFH model. CONCLUSION exo (miR-27a) can promote bone regeneration and protect against GC-ONFH to some extent.
Collapse
Affiliation(s)
- 根生 张
- 西安交通大学医学部附属三二〇一医院骨科(陕西汉中 723000)Department of Orthopaedics, 3201 Hospital of Xi’an Jiaotong University Health Science Center, Hanzhong Shaanxi, 723000, P.R.China
| | - 瑞宇 刘
- 西安交通大学医学部附属三二〇一医院骨科(陕西汉中 723000)Department of Orthopaedics, 3201 Hospital of Xi’an Jiaotong University Health Science Center, Hanzhong Shaanxi, 723000, P.R.China
| | - 晓谦 党
- 西安交通大学医学部附属三二〇一医院骨科(陕西汉中 723000)Department of Orthopaedics, 3201 Hospital of Xi’an Jiaotong University Health Science Center, Hanzhong Shaanxi, 723000, P.R.China
| | - 继超 刘
- 西安交通大学医学部附属三二〇一医院骨科(陕西汉中 723000)Department of Orthopaedics, 3201 Hospital of Xi’an Jiaotong University Health Science Center, Hanzhong Shaanxi, 723000, P.R.China
| | - 海斌 焦
- 西安交通大学医学部附属三二〇一医院骨科(陕西汉中 723000)Department of Orthopaedics, 3201 Hospital of Xi’an Jiaotong University Health Science Center, Hanzhong Shaanxi, 723000, P.R.China
| |
Collapse
|
46
|
Shim NY, Ryu JI, Heo JS. Osteoinductive function of fucoidan on periodontal ligament stem cells: Role of PI3K/Akt and Wnt/β-catenin signaling pathways. Oral Dis 2021; 28:1628-1639. [PMID: 33682270 DOI: 10.1111/odi.13829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES Fucoidan has been focused as a multifunctional therapeutic uses including bone health supplements. However, the critical molecular mechanisms of fucoidan for bone therapeutic agents have not been fully understood. We investigated the osteoinductive effect of fucoidan on periodontal ligament stem cells (PDLSCs) and how this polymer encouraged PDLSC osteogenesis. MATERIALS AND METHODS Osteogenic induction of PDLSCs was processed by culturing cells with fucoidan treatment. Osteogenic differentiation of PDLSCs was verified by alkaline phosphatase (ALP) activity, matrix mineralization assay, intracellular calcium levels, and mRNA expression and protein levels of osteogenic markers. RESULTS Fucoidan treatment showed higher osteogenic activity in the PDLSCs than the control groups. PDLSCs with fucoidan also presented increased levels of the phosphatidylinositol-3-kinase (PI3K) isoforms, p110α and p110γ compared to control cells. The phosphorylation of Akt, a PI3K downstream effector, was significantly increased at 90 min of fucoidan induction. Expression of β-catenin, a coactivator of canonical Wnt pathways, was increased in PDLSCs with fucoidan. β-catenin was found to link with PI3K activation during the fucoidan stimulation. When cells were blocked by PI3K inhibitor or β-catenin-specific siRNA, fucoidan-induced osteogenic activity of PDLSCs was significantly attenuated. CONCLUSION These findings suggest that the fucoidan stimulates osteogenic differentiation of PDLSCs via the PI3K/Akt and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Na Young Shim
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Jae-In Ryu
- Department of Preventive and Social Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Jung Sun Heo
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
47
|
Hensley AP, McAlinden A. The role of microRNAs in bone development. Bone 2021; 143:115760. [PMID: 33220505 PMCID: PMC8019264 DOI: 10.1016/j.bone.2020.115760] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation is critical for proper bone development. Evidence from a large body of published literature informs us that microRNAs (miRNAs) are important epigenetic factors that control many aspects of bone development, homeostasis, and repair processes. These small non-coding RNAs function at the post-transcriptional level to suppress expression of specific target genes. Many target genes may be affected by one miRNA resulting in alteration in cellular pathways and networks. Therefore, changes in levels or activity of a specific miRNA (e.g. via genetic mutations, disease scenarios, or by over-expression or inhibition strategies in vitro or in vivo) can lead to substantial changes in cell processes including proliferation, metabolism, apoptosis and differentiation. In this review, Section 1 briefly covers general background information on processes that control bone development as well as the biogenesis and function of miRNAs. In Section 2, we discuss the importance of miRNAs in skeletal development based on findings from in vivo mouse models and human clinical reports. Section 3 focuses on describing more recent data from the last three years related to miRNA regulation of osteoblast differentiation in vitro. Some of these studies also involve utilization of an in vivo rodent model to study the effects of miRNA modulation in scenarios of osteoporosis, bone repair or ectopic bone formation. In Section 4, we provide some recent information from studies analyzing the potential of miRNA-mediated crosstalk in bone and how exosomes containing miRNAs from one bone cell may affect the differentiation or function of another bone cell type. We then conclude by summarizing where the field currently stands with respect to miRNA-mediated regulation of osteogenesis and how information gained from developmental processes can be instructive in identifying potential therapeutic miRNA targets for the treatment of certain bone conditions.
Collapse
Affiliation(s)
- Austin P Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, MO, United States of America
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, United States of America; Shriners Hospital for Children - St Louis, St Louis, MO, United States of America.
| |
Collapse
|
48
|
Li R, Han K, Xu D, Chen X, Lan S, Liao Y, Sun S, Rao S. A Seven-Long Non-coding RNA Signature Improves Prognosis Prediction of Lung Adenocarcinoma: An Integrated Competing Endogenous RNA Network Analysis. Front Genet 2021; 11:625977. [PMID: 33584817 PMCID: PMC7876394 DOI: 10.3389/fgene.2020.625977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Early and precise prediction is an important way to reduce the poor prognosis of lung adenocarcinoma (LUAD) patients. Nevertheless, the widely used tumor, node, and metastasis (TNM) staging system based on anatomical information only often could not achieve adequate performance on foreseeing the prognosis of LUAD patients. This study thus aimed to examine whether the long non-coding RNAs (lncRNAs), known highly involved in the tumorigenesis of LUAD through the competing endogenous RNAs (ceRNAs) mechanism, could provide additional information to improve prognosis prediction of LUAD patients. To prove the hypothesis, a dataset consisting of both RNA sequencing data and clinical pathological data, obtained from The Cancer Genome Atlas (TCGA) database, was analyzed. Then, differentially expressed RNAs (DElncRNAs, DEmiRNAs, and DEmRNAs) were identified and a lncRNA-miRNA-mRNA ceRNA network was constructed based on those differentially expressed RNAs. Functional enrichment analysis revealed that this ceRNA network was highly enriched in some cancer-associated signaling pathways. Next, lasso-Cox model was run 1,000 times to recognize the potential survival-related combinations of the candidate lncRNAs in the ceRNA network, followed by the "best subset selection" to further optimize these lncRNA-based combinations, and a seven-lncRNA prognostic signature with the best performance was determined. Based on the median risk score, LUAD patients could be well distinguished into high-/low-risk subgroups. The Kaplan-Meier survival curve showed that LUAD patients in the high-risk group had significantly shorter overall survival than those in the low-risk group (log-rank test P = 4.52 × 10-9). The ROC curve indicated that the clinical genomic model including both the TNM staging system and the signature had a superior performance in predicting the patients' overall survival compared to the clinical model with the TNM staging system only. Further stratification analysis suggested that the signature could work well in the different strata of the stage, gender, or age, rendering it to be a wide application. Finally, a ceRNA subnetwork related to the signature was extracted, demonstrating its high involvement in the tumorigenesis mechanism of LUAD. In conclusion, the present study established a lncRNA-based molecular signature, which can significantly improve prognosis prediction for LUAD patients.
Collapse
Affiliation(s)
- Rang Li
- Institute of Medical Systems Biology, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Kedong Han
- Department of Cardiology, Maoming People's Hospital, Maoming, China
| | - Dehua Xu
- Institute of Medical Systems Biology, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaolin Chen
- Institute of Medical Systems Biology, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shujin Lan
- Institute of Medical Systems Biology, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuanjun Liao
- Institute of Medical Systems Biology, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shengnan Sun
- Institute of Medical Systems Biology, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shaoqi Rao
- Institute of Medical Systems Biology, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
49
|
Intracellular and Extracellular Markers of Lethality in Osteogenesis Imperfecta: A Quantitative Proteomic Approach. Int J Mol Sci 2021; 22:ijms22010429. [PMID: 33406681 PMCID: PMC7795927 DOI: 10.3390/ijms22010429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable disorder that mainly affects the skeleton. The inheritance is mostly autosomal dominant and associated to mutations in one of the two genes, COL1A1 and COL1A2, encoding for the type I collagen α chains. According to more than 1500 described mutation sites and to outcome spanning from very mild cases to perinatal-lethality, OI is characterized by a wide genotype/phenotype heterogeneity. In order to identify common affected molecular-pathways and disease biomarkers in OI probands with different mutations and lethal or surviving phenotypes, primary fibroblasts from dominant OI patients, carrying COL1A1 or COL1A2 defects, were investigated by applying a Tandem Mass Tag labeling-Liquid Chromatography-Tandem Mass Spectrometry (TMT LC-MS/MS) proteomics approach and bioinformatic tools for comparative protein-abundance profiling. While no difference in α1 or α2 abundance was detected among lethal (type II) and not-lethal (type III) OI patients, 17 proteins, with key effects on matrix structure and organization, cell signaling, and cell and tissue development and differentiation, were significantly different between type II and type III OI patients. Among them, some non-collagenous extracellular matrix (ECM) proteins (e.g., decorin and fibrillin-1) and proteins modulating cytoskeleton (e.g., nestin and palladin) directly correlate to the severity of the disease. Their defective presence may define proband-failure in balancing aberrances related to mutant collagen.
Collapse
|
50
|
Gan K, Dong GH, Wang N, Zhu JF. miR-221-3p and miR-222-3p downregulation promoted osteogenic differentiation of bone marrow mesenchyme stem cells through IGF-1/ERK pathway under high glucose condition. Diabetes Res Clin Pract 2020; 167:108121. [PMID: 32194220 DOI: 10.1016/j.diabres.2020.108121] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This study aims to investigate the roles of miR-221-3p and miR-222-3p in the regulation of osteogenic differentiation of bone marrow mesenchyme stem cells (BMSCs) under high glucose condition. MATERIALS AND METHODS The expreesions of miR-221-3p, miR-222-3p and insulin-like growth factor 1 (IGF-1) were detected by qRT-PCR. The protein levels of osteoblast-related proteins (Osterix, Runx-2 and Osteopontin) were detected by western blot. Whether miR-221-3p and miR-222-3p can target IGF-1 was assessed by dual luciferase reporter gene assay. RESULTS miR-221-3p and miR-222-3p were up-regulated in the mandibles of diabetic rats and BMSCs cultured in high glucose condition. Silencing miR-221-3p or/ and miR-222-3p increased ALP activity and up-regulated osteoblast-related protein levels, and the simultaneous silence the two miRNAs showed stronger effects on ALP activity and osteoblast-related protein levels. Next, we confirmed that miR-221-3p and miR-222-3p both targeted IGF-1 and cooperatively regulated its expression. Besides, miR-221-3p and miR-222-3p regulated ERK activation through IGF-1. Silencing miR-221-3p and miR-222-3p promoted osteogenic differentiation of BMSCs through IGF-1 under high glucose condition. CONCLUSION miR-221-3p and miR-222-3p inhibited osteogenic differentiation of BMSCs via IGF-1/ERK pathway under high glucose condition.
Collapse
Affiliation(s)
- Kang Gan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Guan-Hua Dong
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Ning Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Juan-Fang Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| |
Collapse
|