1
|
Osumili B, Sapin H, Yang Z, Ranta K, Paik JS, Blüher M. Efficacy and Safety of Tirzepatide Compared with GLP-1 RAs in Patients with Type 2 Diabetes Treated with Basal Insulin: A Network Meta-analysis. Diabetes Ther 2025; 16:1279-1311. [PMID: 40214900 PMCID: PMC12085526 DOI: 10.1007/s13300-025-01728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/12/2025] [Indexed: 05/18/2025] Open
Abstract
INTRODUCTION The relative efficacy and safety of tirzepatide was compared with glucagon-like peptide 1 receptor agonists (GLP-1 RAs) in patients with type 2 diabetes mellitus (T2DM) treated with basal insulin using a network meta-analysis (NMA). METHODS A systematic literature review was performed to identify randomized controlled trials of GLP-1 RAs in patients with T2DM treated with insulin and an antihyperglycaemic drug. For the NMA, studies included trials with 100% of patients treated with basal insulin background therapy with a titration scheme comparable to the SURPASS-5 trial. The following data were extracted for efficacy and safety assessment at the primary endpoint of each study: changes from baseline in glycated haemoglobin (HbA1c) and body weight and the incidence of nausea, vomiting or diarrhoea, hypoglycaemia, and patients discontinuing treatment because of adverse events. In this study, a comparative analysis of tirzepatide was performed with the GLP-1 RAs dulaglutide, exenatide, and lixisenatide in addition to placebo. RESULTS A total of six studies were included across the analyses. Tirzepatide 5, 10, and 15 mg showed statistically significant, greater reductions in HbA1c and body weight at the primary endpoint versus all GLP-1 RA comparators and placebo. Tirzepatide 5, 10, and 15 mg showed a statistically significant, higher likelihood of experiencing nausea compared with those who received placebo or exenatide 2 mg; no statistically significant differences were observed when compared with all other GLP-1 RA comparators. No statistically significant differences were observed in the proportions of patients who discontinued treatment because of adverse events when tirzepatide 5, 10, and 15 mg were compared with GLP-1 RA comparators, apart from tirzepatide 10 and 15 mg versus placebo. CONCLUSION Tirzepatide demonstrated statistically significantly greater reductions in HbA1c and body weight when compared with selected GLP-1 RAs and placebo in patients with T2DM treated with basal insulin. Overall, the safety profile of tirzepatide was similar to that of GLP-1RAs.
Collapse
Affiliation(s)
- Beatrice Osumili
- Health Economics and Outcomes Research, Eli Lilly and Company Limited, Bracknell, UK
| | - Hélène Sapin
- Research and Development Statistics, Lilly France SAS, Neuilly-Sur-Seine, France
| | | | - Kari Ranta
- Medical Affairs, Eli Lilly Finland, Helsinki, Finland.
| | - Jim S Paik
- Medical Affairs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Al Refaie A, Baldassini L, Mondillo C, Gonnelli S, Ceccarelli E, Tarquini R, Gonnelli S, Gennari L, Caffarelli C. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) for the treatment of type 2 diabetes mellitus: friends or foes to bone health? a narrative review of clinical studies. Endocrine 2025:10.1007/s12020-025-04253-4. [PMID: 40342008 DOI: 10.1007/s12020-025-04253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a relatively new class of drugs for treatment of Type 2 Diabetes mellitus (T2DM). They have proven to be excellent drugs not only for the results on glycemic control but also for weight loss, cardiovascular protection and several other potential metabolic effects. In contrast, the effects of GLP-1RAs drugs on bone metabolism and bone mineral density (BMD) remain less clearly defined. This narrative review aimed to explore the relationship between GLP-1RAs and bone in T2DM patients by reviewing clinical studies which assessed the effects of GLP-1RAs on BMD, markers of bone turnover and fragility fractures. In vitro and animal studies have demonstrated that GLP-1RAs treatment promotes bone formation and inhibits bone resorption. However, in humans, GLP-1RAs therapy has been shown to primarily stimulate bone resorption, as evidenced by a significant increase in type I collagen C-terminal cross-linked telopeptide levels, while promoting new bone formation to a lesser extent. Clinical studies indicate that GLP-1RAs therapy, in both diabetic and non-diabetic patients, results in a reduction in BMD, which is more pronounced at skeletal sites subjected to higher mechanical loading, such as the femur and tibia, and appears to correlate with the degree of weight loss. Furthermore, in the studies reviewed, parameters related to bone quality and strength, such as Trabecular bone score (TBS), microindentation, High-resolution peripheral Quantitative Computed Tomography (HR-pQCT), and Radiofrequency Echographic Multi Spectrometry (REMS) remain unaffected by GLP-1RAs. Additionally, the incidence of fragility fractures does not increase.
Collapse
Affiliation(s)
- Antonella Al Refaie
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Division of Internal Medicine I, San Giuseppe Hospital, Empoli, Italy
| | - Leonardo Baldassini
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Caterina Mondillo
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Sara Gonnelli
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Department of Geriatrics, University Hospital of Nice, Nice, France
| | - Elena Ceccarelli
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Roberto Tarquini
- Division of Internal Medicine I, San Giuseppe Hospital, Empoli, Italy
| | - Stefano Gonnelli
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Luigi Gennari
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Carla Caffarelli
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| |
Collapse
|
3
|
Aleksova J, Ebeling P, Elder G. The effects of type 1 and type 2 diabetes mellitus on bone health in chronic kidney disease. Nat Rev Endocrinol 2025; 21:301-313. [PMID: 39820573 DOI: 10.1038/s41574-024-01083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Fracture is an under-recognized but common complication of diabetes mellitus, with an incidence approaching twofold in type 2 diabetes mellitus (T2DM) and up to sevenfold in type 1 diabetes mellitus (T1DM) compared with that in the general population. Both T1DM and T2DM induce chronic hyperglycaemia, leading to the accumulation of advanced glycosylation end products that affect osteoblast function, increased collagen crosslinking and a senescence phenotype promoting inflammation. Together with an increased incidence of microvascular disease and an increased risk of vitamin D deficiency, these factors reduce bone quality, thereby increasing bone fragility. In T1DM, reduced anabolic stimuli as well as the presence of autoimmune conditions might also contribute to reduced bone mass and increased fragility. Diabetes mellitus is the most common cause of kidney failure, and fracture risk is exacerbated when chronic kidney disease (CKD)-related mineral and bone disorders are superimposed on diabetic changes. Microvascular pathology, cortical thinning and trabecular deterioration are particularly prominent in patients with T1DM and CKD, who suffer more fragility fractures than do other patients with CKD. This Review explores the pathophysiology of bone fragility in patients with diabetes mellitus and CKD and discusses techniques to predict fracture and pharmacotherapy that might reduce fracture risk.
Collapse
MESH Headings
- Humans
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 1/metabolism
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/metabolism
- Fractures, Bone/etiology
- Bone and Bones/metabolism
- Bone and Bones/physiopathology
- Bone Density/physiology
Collapse
Affiliation(s)
- Jasna Aleksova
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia.
- Hudson Institute for Medical Research, Clayton, Victoria, Australia.
- Department of Endocrinology, Monash Health, Clayton, Victoria, Australia.
| | - Peter Ebeling
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Endocrinology, Monash Health, Clayton, Victoria, Australia
| | - Grahame Elder
- Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| |
Collapse
|
4
|
Picoli CDC, Tsibulnikov S, Ho M, DeMambro V, Feng T, Eltahir M, Le PT, Chlebek C, Rosen CJ, Ryzhov S, Li Z. Vertical sleeve gastrectomy and semaglutide have distinct effects on skeletal health and heart function in obese male mice. Am J Physiol Endocrinol Metab 2025; 328:E555-E566. [PMID: 40072928 PMCID: PMC12121371 DOI: 10.1152/ajpendo.00521.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Obesity is a global health challenge associated with significant metabolic and cardiovascular risks. Bariatric surgery and glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) are effective interventions for weight loss and metabolic improvement, yet their comparative effects on systemic metabolism-particularly energy metabolism, bone health, and heart function-remain unclear. In this study, obese male mice underwent vertical sleeve gastrectomy (VSG), 6 wk of GLP-1RA (semaglutide) treatment, or sham procedure with saline injection as controls. Dynamic changes in body weight, food intake, fat mass, lean mass, and bone mineral density were monitored. Energy metabolism was assessed using indirect calorimetry. Bone parameters and heart function were evaluated by microcomputed tomography or echocardiography, respectively. Compared with obese controls, VSG and semaglutide treatment comparably reduced body weight and improved glucose metabolism. However, VSG decreased energy expenditure, whereas both treatments similarly promoted lipid utilization. Semaglutide treatment increased ambulatory activity during nighttime. VSG led to significant bone loss, although 6 wk of semaglutide treatment had no significant effects on the skeleton. Cardiovascular outcomes also differed: VSG increased stroke volume without altering heart mass, whereas semaglutide reduced heart mass and transiently elevated heart rate. These findings underscore the importance of carefully weighing the benefits and potential risks of different weight loss treatments when addressing obesity and its systemic complications.NEW & NOTEWORTHY Comparative studies of surgical and pharmaceutical approaches to weight loss offer critical insights that can guide clinical decision-making for managing obesity. VSG and semaglutide exhibit comparable efficacy in promoting weight reduction and improving glucose metabolism. VSG reduces energy expenditure, whereas semaglutide increases animal activity during nighttime. VSG leads to significant bone loss, whereas semaglutide preserves bone mass independent of weight loss. VSG improves cardiac outcomes, whereas semaglutide transiently affects heart function.
Collapse
Affiliation(s)
| | - Sergey Tsibulnikov
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Mavy Ho
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Victoria DeMambro
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Tiange Feng
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - May Eltahir
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Phuong T Le
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Carolyn Chlebek
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Clifford J Rosen
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Sergey Ryzhov
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Ziru Li
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, Maine, United States
| |
Collapse
|
5
|
Psachna S, Chondrogianni ME, Stathopoulos K, Polymeris A, Chatzigeorgiou A, Chronopoulos E, Tournis S, Kassi E. The effect of antidiabetic drugs on bone metabolism: a concise review. Endocrine 2025; 87:907-919. [PMID: 39402366 DOI: 10.1007/s12020-024-04070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/06/2024] [Indexed: 01/06/2025]
Abstract
Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia, which derives from either insufficient insulin production [type 1 diabetes mellitus (T1DM)] or both impaired insulin sensitivity along with inadequate insulin production [type 2 diabetes mellitus (T2DM)] and affects millions of people worldwide. In addition to the adverse effects of DM on classical target organs and tissues, skeletal health can also be adversely affected. There is considerable evidence linking DM with osteoporosis. The fracture risk in patients with DM differs upon the type of diabetes, and it appears to be related to the type of anti-diabetic treatment. Antidiabetic drugs may have various effects on bone health. Most of them have neutral or even favorable effects on bone metabolism with the exception of thiazolidinediones (TZDs). Some studies suggest that TZDs may have negative impact on bone health by decreasing bone formation and increasing the fracture risk. There are also limited studies linking the use of canagliflozin, a Sodium-glucose contransporter-2 inhibitor (SGLT2i), with increased fracture risk. On the other hand, therapies that are based on incretin effect, like Dipeptidyl peptidase-4 inhibitors (DPP-4i) and Glucagon-like peptide-1 receptor agonizts (GLP-1RAs) might have positive effects on bone health by promoting bone formation. Herein we review the impact of antidiabetic drugs on bone health, highlighting the potential benefits and risks associated with these medications in an attempt to contribute to the development of personalized treatment strategies for individuals with DM.
Collapse
Affiliation(s)
- Stavroula Psachna
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Endocrinology, Metabolism and Diabetes Mellitus, Attica General Hospital "Sismanoglio-Amalia Fleming", Athens, Greece
| | - Maria Eleni Chondrogianni
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, Medical Scool, National and Kapodistrian University of Athens, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stathopoulos
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonis Polymeris
- Department of Endocrinology, Metabolism and Diabetes Mellitus, Attica General Hospital "Sismanoglio-Amalia Fleming", Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Chronopoulos
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Symeon Tournis
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Laboratory for Research of the Musculoskeletal System, KAT Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, Medical Scool, National and Kapodistrian University of Athens, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
6
|
Kim MJ, Kim S, Jung HN, Jung CH, Lee WJ, Cho YK. Effects of Anti-Obesity Strategies on Bone Mineral Density: A Comprehensive Meta-Analysis of Randomized Controlled Trials. J Obes Metab Syndr 2025; 34:41-53. [PMID: 39800333 PMCID: PMC11799600 DOI: 10.7570/jomes24009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/28/2024] [Accepted: 09/19/2024] [Indexed: 01/25/2025] Open
Abstract
Background Although an appropriate weight management strategy is essential for obese individuals, weight loss can have adverse effects on bone mineral density (BMD). We conducted a systematic review of randomized controlled trials to evaluate changes in BMD after the implementation of various weight loss strategies. Methods The PubMed, Embase, Web of Science, and Cochrane Library databases were searched to find articles published from database inception until June 2023. Randomized controlled trials of various treatments for obese patients that reported changes in BMD were selected. The primary outcome was BMD of the whole body, lumbar spine, and total hip, measured using dual X-ray absorptiometry. Results Eighteen randomized controlled trials involving 2,510 participants with obesity were included in the analysis. At follow-up examination, the BMD of the lumbar spine decreased significantly after metabolic surgery (mean difference [MD]=-0.40 g/cm2; 95% confidence interval [CI], -0.73 to -0.07; I2=0%); lifestyle and pharmacological interventions did not result in a significant decrease in BMD at any location. Metabolic surgery also produced the most substantial difference in weight, with an MD of -3.14 (95% CI, -3.82 to -2.47). Conclusion This meta-analysis is the first to examine the effects of all categories of anti-obesity strategies, including the use of anti-obesity medications, on BMD. Bariatric metabolic surgery can have adverse effects on BMD. Moreover, medications can be used as a treatment for weight loss without compromising bone quality.
Collapse
Affiliation(s)
- Myung Jin Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
| | - Seonok Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Han Na Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
| | - Woo Je Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
| | - Yun Kyung Cho
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Asan Diabetes Center, Asan Medical Center, Seoul, Korea
| |
Collapse
|
7
|
Lv F, Cai X, Lin C, Yang W, Ji L. Effects of Semaglutide and Tirzepatide on Bone Metabolism in Type 2 Diabetic Mice. Pharmaceuticals (Basel) 2024; 17:1655. [PMID: 39770498 PMCID: PMC11728704 DOI: 10.3390/ph17121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Type 2 diabetes and weight loss are associated with detrimental skeletal health. Incretin-based therapies (GLP-1 receptor agonists, and dual GIP/GLP-1 receptor agonists) are used clinically to treat diabetes and obesity. The potential effects of semaglutide and tirzepatide on bone metabolism in type 2 diabetic mice remain uncertain. Methods: Combined streptozotocin and high fat feeding were employed in female C57BL/6J mice to promote hyperglycemia. Mice were administered for 4 weeks with a saline vehicle (sc., once-daily), semaglutide (40 μg/kg/d, sc., every three days), or tirzepatide (10 nmol/kg, sc., once-daily). Bone strength was assessed by three-point bending. Femur microarchitecture was determined by micro-CT, and bone formation and resorption parameters were measured by histomorphometric analysis. Serum was collected to measure bone resorption (C-telopeptide fragments of type I collagen, CTX) and formation (procollagen type 1 N-terminal propeptide, P1NP) biomarkers, respectively. The expression of bone metabolism-related genes was evaluated in the bone using RT-PCR. Results: Glucose levels significantly reduced after 4 weeks of semaglutide and tirzepatide treatment (both p < 0.05) compared with vehicle treatment. Tirzepatide led to more weight loss than semaglutide. Compared to saline-treated diabetic mice, the mean femur length was shorter in the tirzepatide group. After treatment with tirzepatide or semaglutide, cortical bone and trabecular bone parameters did not change significantly compared to saline-treated diabetic mice, except that cortical thickness was lower in the semaglutide group compared to the saline group (p = 0.032). Though CTX and P1NP levels decreased, however, the change in CTX and P1NP levels did not differ among the four groups during the 4 weeks of treatment (all p > 0.05). Semaglutide affected RANKL and OPG mRNA expression and increased the ratio of OPG/RANKL. No significant difference was found in the quantity of Col1a1, RANKL, OPG, and RUNX2 between tirzepatide- and saline-treated diabetic mice. Conclusions: The 4-week treatment with semaglutide and tirzepatide had a neutral effect on bone mass compared with the controls, and most of the bone microarchitecture parameters were also comparable between groups in diabetic mice. A better understanding of incretin-based therapies on bone metabolism in patients with diabetes requires further evaluation in large clinical trials.
Collapse
Affiliation(s)
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, China; (F.L.); (C.L.); (W.Y.)
| | | | | | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, China; (F.L.); (C.L.); (W.Y.)
| |
Collapse
|
8
|
Stefanakis K, Kokkorakis M, Mantzoros CS. The impact of weight loss on fat-free mass, muscle, bone and hematopoiesis health: Implications for emerging pharmacotherapies aiming at fat reduction and lean mass preservation. Metabolism 2024; 161:156057. [PMID: 39481534 DOI: 10.1016/j.metabol.2024.156057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Similar to bariatric surgery, incretin receptor agonists have revolutionized the treatment of obesity, achieving up to 15-25 % weight loss in many patients, i.e., at a rate approaching that achieved with bariatric surgery. However, over 25 % of total weight lost from both surgery and pharmacotherapy typically comes from fat-free mass, including skeletal muscle mass, which is often overlooked and can impair metabolic health and increase the risk of subsequent sarcopenic obesity. Loss of muscle and bone as well as anemia can compromise physical function, metabolic rate, and overall health, especially in older adults. The myostatin-activin-follistatin-inhibin system, originally implicated in reproductive function and subsequently muscle regulation, appears to be crucial for muscle and bone maintenance during weight loss. Activins and myostatin promote muscle degradation, while follistatins inhibit their activity in states of negative energy balance, thereby preserving lean mass. Novel compounds in the pipeline, such as Bimagrumab, Trevogrumab, and Garetosmab-which inhibit activin and myostatin signaling-have demonstrated promise in preventing muscle loss while promoting fat loss. Either alone or combined with incretin receptor agonists, these medications may enhance fat loss while preserving or even increasing muscle and bone mass, offering a potential solution for improving body composition and metabolic health during significant weight loss. Since this dual therapeutic approach could help address the challenges of muscle and bone loss during weight loss, well-designed studies are needed to optimize these strategies and assess long-term benefits. For the time being, considerations like advanced age and prefrailty may affect the choice of suitable candidates in clinical practice for current and emerging anti-obesity medications due to the associated risk of sarcopenia.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Xiao Y, Zhou M, Xiao W. Fracture events associated with GLP-1 receptor agonists in FDA adverse events reporting system. Acta Diabetol 2024:10.1007/s00592-024-02415-w. [PMID: 39556224 DOI: 10.1007/s00592-024-02415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
AIMS Diabetes patients are at a higher risk of fractures, and glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been suggested to positively impact on bone metabolism. We aim to provide a comprehensive assessment of fracture events associated with GLP-1RAs based on pharmacovigilance data. METHODS In this study, fracture-related adverse events (AEs) associated with GLP-1RAs and other commonly used glucose-lowering drugs were identified from Food and Drug Administration Adverse Event Reporting System (FAERS) database (2004-2022). The reporting odds ratio (ROR) and adjusted ROR (adj. ROR) were used to compare the reporting of fracture-related AEs associated with insulin, GLP-1RAs, and Non GLP-1RAs, in patients with diabetes through two scenarios. This involved separately comparing each glucose-lowering drug to all other medications used in diabetic patients and reiterating after excluding insulin cases. RESULTS A total of 490,107 AE reports for patients with diabetes were identified and 98, 625 of them were for GLP-1RAs. Among all diabetes drugs, GLP-1RAs had the lowest reporting of any fracture-related AEs [adj. ROR = 0.44 (0.40-0.47)], consistent across osteoporotic fracture [adj. ROR = 0.39 (0.34-0.45)] and hip fracture [adj. ROR = 0.34 (0.28-0.41)]. Among GLP-1RA agents, albiglutide was associated with the lowest adj. ROR [0.11 (0.05-0.21)] for any fracture-related AEs. After excluded all insulin reports, GLP-1RAs retained a significantly lower adj. ROR towards any fracture [adj. ROR = 0.45 (0.40-0.50)], osteoporotic fracture [adj. ROR = 0.44 (0.37-0.52)], and hip fracture [adj. ROR = 0.43 (0.33-0.54)]. CONCLUSION In a real-world pharmacovigilance setting, GLP-1RAs were associated with lower reporting of fracture-related AEs, indicating the protective effect of GLP-1RAs against fractures.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, China.
| |
Collapse
|
10
|
Paccou J, Compston JE. Bone health in adults with obesity before and after interventions to promote weight loss. Lancet Diabetes Endocrinol 2024; 12:748-760. [PMID: 39053479 DOI: 10.1016/s2213-8587(24)00163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024]
Abstract
Obesity and its associated comorbidities constitute a serious and growing public health burden. Fractures affect a substantial proportion of people with obesity and result from reduced bone strength relative to increased mechanical loading, together with an increased risk of falls. Factors contributing to fractures in people with obesity include adverse effects of adipose tissue on bone and muscle and, in many people, the coexistence of type 2 diabetes. Strategies to reduce weight include calorie-restricted diets, exercise, bariatric surgery, and pharmacological interventions with GLP-1 receptor agonists. However, although weight loss in people with obesity has many health benefits, it can also have adverse skeletal effects, with increased bone loss and fracture risk. Priorities for future research include the development of effective approaches to reduce fracture risk in people with obesity and the investigation of the effects of GLP-1 receptor agonists on bone loss resulting from weight reduction.
Collapse
Affiliation(s)
- Julien Paccou
- Department of Rheumatology, Université de Lille, Centre Hospitalier Universitaire de Lille, Lille, France
| | | |
Collapse
|
11
|
Li X, Li Y, Lei C. Effects of Glucagon-Like Peptide-1 Receptor Agonists on Bone Metabolism in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Int J Endocrinol 2024; 2024:1785321. [PMID: 39309475 PMCID: PMC11416174 DOI: 10.1155/2024/1785321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Background Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are an intriguing class of antihyperglycemic drugs for type 2 diabetes mellitus (T2DM). Such drugs not only play a primary role in regulating blood glucose levels but also exhibit additional pleiotropic effects, including potential impacts on bone metabolism and fracture risk. However, the mechanism of such drugs is unclear. The purpose of this study was to evaluate the effect of GLP-1 RAs on bone metabolism in T2DM. Methods From database inception to May 1, 2023, the searches were conducted on multiple databases such as Web of Science, Embase, PubMed, CNKI, the Cochrane Library, Wanfang, and VIP. We systematically collected all randomized controlled trials of bone metabolism in patients with T2DM treated with GLP-1 RAs. The quality evaluation was performed according to the Cochrane Handbook for Systematic Reviews of Interventions. Data extraction was analyzed using Review Manager 5.4 software, and funnel plots were drawn to evaluate publication bias. Results Twenty-six randomized controlled trials that met the inclusion criteria were included, involving a total of 2268 participants. In this study, compared to other antidiabetic drugs or placebo, GLP-1 RAs were found to significantly increase serum calcium (mean difference (MD) = 0.05, 95% confidence interval (CI) (0.01, 0.09), P = 0.002], bone alkaline phosphatase [standardized MD (SMD) = 0.76, 95% CI (0.29, 1.24), and P = 0.001), and osteocalcin (SMD = 2.04, 95% CI (0.99, 3.08), and P = 0.0001) in T2DM. Specifically, liraglutide increased procollagen type 1 N-terminal propeptide (SMD = 0.45, 95% CI (0.01, 0.89), and P = 0.04). GLP-1 RAs were also associated with a reduction in cross-linked C-terminal telopeptides of type I collagen (SMD = -0.36, 95% CI (-0.70, -0.03), and P = 0.03). In additionally, GLP-1 RAs increased lumbar spine bone mineral density (BMD) (SMD = 1.04, 95% CI (0.60, 1.48), and P < 0.00001) and femoral neck BMD (SMD = 1.29, 95% CI (0.36, 2.23), and P = 0.007). Conclusions GLP-1 RAs can not only improve BMD in the lumbar spine and femoral neck of patients with T2DM but also protect bone health by inhibiting bone resorption and promoting bone formation. Systematic Review Registration. PROSPERO, identifier CRD42023418166.
Collapse
Affiliation(s)
- Xin Li
- Department of NutritionGeneral Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yang Li
- Department of Geriatrics and Special NeedsGeneral Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Chen Lei
- Department of Geriatrics and Special NeedsGeneral Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| |
Collapse
|
12
|
Kim HJ, Choi SA, Gu MS, Ko SY, Kwon JH, Han JY, Kim JH, Kim MG. Effects of Glucagon-Like Peptide-1 Receptor Agonist on Bone Mineral Density and Bone Turnover Markers: A Meta-Analysis. Diabetes Metab Res Rev 2024; 40:e3843. [PMID: 39311048 DOI: 10.1002/dmrr.3843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024]
Abstract
AIMS Glucagon-like peptide-1 receptor agonist (GLP-1RA) may promote bone formation, but conversely, they could also weaken bones due to the reduction in mechanical load associated with weight loss. However, the clinical effects in humans have not been clearly demonstrated. This meta-analysis aimed to evaluate whether GLP-1RAs affect BMD and bone turnover markers. MATERIAL AND METHODS PubMed, Embase, and Scopus were searched on June 13, 2024. The eligibility criteria were: (1) human studies, (2) receiving a GLP-1RA for more than 4 weeks, (3) an untreated control group or a placebo group, (4) reporting of at least one BMD or bone turnover marker, and (5) an RCT design. The risk of bias was assessed using the Cochrane risk of bias 2 tool. Fixed- or random-effects meta-analysis was performed according to heterogeneity. RESULTS Seven studies were included in the meta-analysis. GLP-1RAs did not significantly change BMD in the femoral neck (mean difference [MD], 0.01 g/cm2; 95% CI, -0.01-0.04 g/cm2), in the total hip (MD, -0.01 g/cm2; 95% CI, -0.02-0.01 g/cm2), and in the lumbar spine (MD, 0 g/cm2; 95% CI, -0.02-0.02 g/cm2). C-terminal telopeptide of type 1 collagen (CTX), a bone resorption marker, significantly increased after GLP-1RA treatment (MD, 0.04 μg/L; 95% CI, 0.01-0.07 μg/L). GLP-1RAs did not significantly change bone formation markers such as procollagen type 1 N-terminal propeptide, bone-specific alkaline phosphatase, osteocalcin. CONCLUSIONS GLP-1RA did not affect BMD and bone formation markers. However, GLP-1RAs led to a significant increase in CTX.
Collapse
Affiliation(s)
- Hee-Ju Kim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Seo-A Choi
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Min-Sun Gu
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Seo-Yeong Ko
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Jae-Hee Kwon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Ja-Young Han
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jae Hyun Kim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, Republic of Korea
| | - Myeong Gyu Kim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Al Refaie A, Baldassini L, Mondillo C, Ceccarelli E, Tarquini R, Gennari L, Gonnelli S, Caffarelli C. Glucagon-like Peptide-1 Receptor Agonists and Diabetic Osteopathy: Another Positive Effect of Incretines? A 12 Months Longitudinal Study. Calcif Tissue Int 2024; 115:160-168. [PMID: 38864922 PMCID: PMC11246279 DOI: 10.1007/s00223-024-01240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
Diabetic osteopathy is a frequent complication in patients with type 2 diabetes mellitus (T2DM). The association between T2DM and increased fracture risk has led to study the impact of new antidiabetic drugs on bone metabolism. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin mimetic drugs which have many pleiotropic properties. The relationship between GLP-1RAs and bone is very complex: while in vitro and animal studies have demonstrated a protective effect on bone, human studies are scarce. We led a 12 months longitudinal study evaluating bone changes in 65 patients withT2DM for whom a therapy with GLP-1RAs had been planned. Fifty-four T2DM patients completed the 12-month study period; of them, 30 had been treated with weekly dulaglutide and 24 with weekly semaglutide. One-year therapy with GLP-1RAs resulted in a significant reduction in weight and BMI. Bone mineral density (BMD), bone metabolism, trabecular bone score (TBS), adiponectin, and myostatin were evaluated before and after 12 months of GLP-1RAs therapy. After 12 months of therapy bone turnover markers and adiponectin showed a significant increase, while myostatin values showed a modest but significant reduction. BMD-LS by DXA presented a significant reduction while the reduction in BMD-LS by REMS was not significant and TBS values showed a marginal increase. Both DXA and REMS techniques showed a modest but significant reduction in femoral BMD. In conclusion, the use of GLP-1RAs for 12 months preserves bone quality and reactivates bone turnover. Further studies are needed to confirm whether GLP-1RAs could represent a useful therapeutic option for patients with T2DM and osteoporosis.
Collapse
Affiliation(s)
- Antonella Al Refaie
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
- Division of Internal Medicine I, San Giuseppe Hospital, 50053, Empoli, Italy
| | - Leonardo Baldassini
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Caterina Mondillo
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Elena Ceccarelli
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Roberto Tarquini
- Division of Internal Medicine I, San Giuseppe Hospital, 50053, Empoli, Italy
| | - Luigi Gennari
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Stefano Gonnelli
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Carla Caffarelli
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy.
| |
Collapse
|
14
|
Saadi MSS, Das R, Mullath Ullas A, Powell DE, Wilson E, Myrtziou I, Rakieh C, Kanakis I. Impact of Different Anti-Hyperglycaemic Treatments on Bone Turnover Markers and Bone Mineral Density in Type 2 Diabetes Mellitus Patients: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:7988. [PMID: 39063229 PMCID: PMC11277066 DOI: 10.3390/ijms25147988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic bone disease (DBD) is a frequent complication in patients with type 2 diabetes mellitus (T2DM), characterised by altered bone mineral density (BMD) and bone turnover marker (BTMs) levels. The impact of different anti-diabetic medications on the skeleton remains unclear, and studies have reported conflicting results; thus, the need for a comprehensive systematic review is of paramount importance. A systematic search was conducted in PubMed and the Cochrane Library. The primary outcomes assessed were changes in BMD in relation to different anatomical sites and BTMs, including mainly P1NP and CTX as well as OPG, OCN, B-ALP and RANK-L. Risk of bias was evaluated using the JADAD score. The meta-analysis of 19 randomised controlled trials comprising 4914 patients showed that anti-diabetic medications overall increased BMD at the lumbar spine (SMD: 0.93, 95% CI [0.13, 1.73], p = 0.02), femoral neck (SMD: 1.10, 95% CI [0.47, 1.74], p = 0.0007) and in total hip (SMD: 0.33, 95% CI [-0.25, 0.92], p = 0.27) in comparison with placebo, but when compared with metformin, the overall effect favoured metformin over other treatments (SMD: -0.23, 95% CI [-0.39, -0.07], p = 0.004). GLP-1 receptor agonists and insulin analogues seem to improve BMD compared to placebo, while SGLT2 inhibitors and thiazolidinediones (TZDs) showed no significant effect, although studies' number cannot lead to safe conclusions. For BTMs, TZDs significantly increased P1NP levels compared to placebo. However, no significant differences were observed for CTX, B-ALP, OCN, OPG, and RANK-L between anti-diabetic drugs and metformin or placebo. High heterogeneity and diverse follow-up durations among studies were evident, which obscures the validity of the results. This review highlights the variable effects of anti-diabetic drugs on DBD in T2DM patients, emphasising the need for long-term trials with robust designs to better understand these relationships and inform clinical decisions.
Collapse
Affiliation(s)
- Md Sadman Sakib Saadi
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK; (M.S.S.S.); (R.D.); (A.M.U.); (E.W.); (I.M.)
| | - Rajib Das
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK; (M.S.S.S.); (R.D.); (A.M.U.); (E.W.); (I.M.)
| | - Adhithya Mullath Ullas
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK; (M.S.S.S.); (R.D.); (A.M.U.); (E.W.); (I.M.)
| | - Diane E. Powell
- Metabolic Bone Service, Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry SY10 7AG, UK; (D.E.P.); (C.R.)
- The Metabolic Bone Research Group (MBRG), Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Emma Wilson
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK; (M.S.S.S.); (R.D.); (A.M.U.); (E.W.); (I.M.)
- The Metabolic Bone Research Group (MBRG), Chester Medical School, Chester CH1 4BJ, UK
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK; (M.S.S.S.); (R.D.); (A.M.U.); (E.W.); (I.M.)
- The Metabolic Bone Research Group (MBRG), Chester Medical School, Chester CH1 4BJ, UK
| | - Chadi Rakieh
- Metabolic Bone Service, Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry SY10 7AG, UK; (D.E.P.); (C.R.)
- The Metabolic Bone Research Group (MBRG), Robert Jones & Agnes Hunt Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Ioannis Kanakis
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK; (M.S.S.S.); (R.D.); (A.M.U.); (E.W.); (I.M.)
- The Metabolic Bone Research Group (MBRG), Chester Medical School, Chester CH1 4BJ, UK
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (IL-CaMS), University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
15
|
Bouvard B, Mabilleau G. Gut hormones and bone homeostasis: potential therapeutic implications. Nat Rev Endocrinol 2024:10.1038/s41574-024-01000-z. [PMID: 38858581 DOI: 10.1038/s41574-024-01000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Bone resorption follows a circadian rhythm, with a marked reduction in circulating markers of resorption (such as carboxy-terminal telopeptide region of collagen type I in serum) in the postprandial period. Several gut hormones, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1) and GLP2, have been linked to this effect in humans and rodent models. These hormones are secreted from enteroendocrine cells in the gastrointestinal tract in response to a variety of stimuli and effect a wide range of physiological processes within and outside the gut. Single GLP1, dual GLP1-GIP or GLP1-glucagon and triple GLP1-GIP-glucagon receptor agonists have been developed for the treatment of type 2 diabetes mellitus and obesity. In addition, single GIP, GLP1 and GLP2 analogues have been investigated in preclinical studies as novel therapeutics to improve bone strength in bone fragility disorders. Dual GIP-GLP2 analogues have been developed that show therapeutic promise for bone fragility in preclinical studies and seem to exert considerable activity at the bone material level. This Review summarizes the evidence of the action of gut hormones on bone homeostasis and physiology.
Collapse
Affiliation(s)
- Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France
- CHU Angers, Service de Rhumatologie, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France.
- CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France.
| |
Collapse
|
16
|
Jensen SBK, Sørensen V, Sandsdal RM, Lehmann EW, Lundgren JR, Juhl CR, Janus C, Ternhamar T, Stallknecht BM, Holst JJ, Jørgensen NR, Jensen JEB, Madsbad S, Torekov SS. Bone Health After Exercise Alone, GLP-1 Receptor Agonist Treatment, or Combination Treatment: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2416775. [PMID: 38916894 PMCID: PMC11200146 DOI: 10.1001/jamanetworkopen.2024.16775] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/15/2024] [Indexed: 06/26/2024] Open
Abstract
Importance A major concern with weight loss is concomitant bone loss. Exercise and glucagon-like peptide-1 receptor agonists (GLP-1RAs) represent weight loss strategies that may protect bone mass despite weight loss. Objective To investigate bone health at clinically relevant sites (hip, spine, and forearm) after diet-induced weight loss followed by a 1-year intervention with exercise, liraglutide, or both combined. Design, Setting, and Participants This study was a predefined secondary analysis of a randomized clinical trial conducted between August 2016 and November 2019 at the University of Copenhagen and Hvidovre Hospital in Denmark. Eligible participants included adults aged 18 to 65 years with obesity (body mass index of 32-43) and without diabetes. Data analysis was conducted from March to April 2023, with additional analysis in February 2024 during revision. Interventions After an 8-week low-calorie diet (800 kcal/day), participants were randomized to 1 of 4 groups for 52 weeks: a moderate- to vigorous-intensity exercise program (exercise alone), 3.0 mg daily of the GLP-1 RA liraglutide (liraglutide alone), the combination, or placebo. Main Outcomes and Measures The primary outcome was change in site-specific bone mineral density (BMD) at the hip, lumbar spine, and distal forearm from before the low-calorie diet to the end of treatment, measured by dual-energy x-ray absorptiometry in the intention-to-treat population. Results In total, 195 participants (mean [SD] age, 42.84 [11.87] years; 124 female [64%] and 71 male [36%]; mean [SD] BMI, 37.00 [2.92]) were randomized, with 48 participants in the exercise group, 49 participants in the liraglutide group, 49 participants in the combination group, and 49 participants in the placebo group. The total estimated mean change in weight losses during the study was 7.03 kg (95% CI, 4.25-9.80 kg) in the placebo group, 11.19 kg (95% CI, 8.40-13.99 kg) in the exercise group, 13.74 kg (95% CI, 11.04-16.44 kg) in the liraglutide group, and 16.88 kg (95% CI, 14.23-19.54 kg) in the combination group. In the combination group, BMD was unchanged compared with the placebo group at the hip (mean change, -0.006 g/cm2; 95% CI, -0.017 to 0.004 g/cm2; P = .24) and lumbar spine (-0.010 g/cm2; 95% CI, -0.025 to 0.005 g/cm2; P = .20). Compared with the exercise group, BMD decreased for the liraglutide group at the hip (mean change, -0.013 g/cm2; 95% CI, -0.024 to -0.001 g/cm2; P = .03) and spine (mean change, -0.016 g/cm2; 95% CI, -0.032 to -0.001 g/cm2; P = .04). Conclusions and Relevance In this randomized clinical trial, the combination of exercise and GLP-1RA (liraglutide) was the most effective weight loss strategy while preserving bone health. Liraglutide treatment alone reduced BMD at clinically relevant sites more than exercise alone despite similar weight loss. Trial Registration EudraCT: 2015-005585-32.
Collapse
Affiliation(s)
- Simon Birk Kjær Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Victor Sørensen
- Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Rasmus Michael Sandsdal
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva Winning Lehmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie Rehné Lundgren
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Rimer Juhl
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Janus
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tummas Ternhamar
- Department of Endocrinology, Hvidovre University Hospital, Copenhagen, Denmark
| | - Bente Merete Stallknecht
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens-Erik Beck Jensen
- Department of Endocrinology, Hvidovre University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Copenhagen, Denmark
| | - Signe Sørensen Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Hansen MS, Wölfel EM, Jeromdesella S, Møller JJK, Ejersted C, Jørgensen NR, Eastell R, Hansen SG, Frost M. Once-weekly semaglutide versus placebo in adults with increased fracture risk: a randomised, double-blinded, two-centre, phase 2 trial. EClinicalMedicine 2024; 72:102624. [PMID: 38737002 PMCID: PMC11087719 DOI: 10.1016/j.eclinm.2024.102624] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Background Previous studies have indicated that glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) may enhance bone formation and have neutral or beneficial effects on fracture risk. We evaluated the effect of the GLP-1RA semaglutide on the bone formation marker Procollagen type I N-terminal propeptide (PINP) in adults with increased fracture risk. Methods This randomised, placebo-controlled, double-blinded, phase 2 clinical trial was conducted at two public hospitals in Denmark. We enrolled 64 men and women with increased fracture risk based on a T-score < -1.0 at the total hip or lumbar spine and/or low-energy fracture within three years of recruitment. Participants were randomised (1:1) to receive once-weekly subcutaneous semaglutide 1.0 mg or placebo. The primary outcome was changes in plasma (P)-PINP from baseline to week 52. Primary and safety outcomes were assessed and evaluated for all participants. This trial is complete and registered with ClinicalTrials.gov, NCT04702516. Findings Between March 24 and December 8, 2021, 55 (86%) postmenopausal women and nine men with a mean age of 63 years (SD 5.5) and BMI of 27.5 kg/m2 (SD 4.5) were enrolled. There was no effect on changes in P-PINP from baseline to week 52 between the two groups (estimated treatment difference (ETD) semaglutide versus placebo 3.8 μg/L [95% CI -5.6 to 13.3]; p = 0.418), and no difference in P-PINP levels between groups at week 52 (semaglutide 64.3 μg/L versus placebo 62.3 μg/L [95% CI -10.8 to 15.0]; p = 0.749). The secondary outcomes showed higher plasma levels of bone resorption marker Collagen type I cross-linked C-terminal telopeptide (P-CTX) in the semaglutide group than in the placebo group (ETD 166.4 ng/L [95% CI 25.5-307.3]; p = 0.021). Compared to placebo, lumbar spine and total hip areal bone mineral densities (aBMD) were lower in the semaglutide group after 52 weeks ((ETD lumbar spine -0.018 g/cm3 [95% CI -0.031 to -0.005]; p = 0.007); ETD total hip -0.020 g/cm2 ([95% CI -0.032 to -0.008]; p = 0.001). Treatment differences in femoral neck aBMD were not observed ([95% CI [-0.017 to 0.006]; p = 0.328). Further, body weight was lower in the semaglutide group than in the placebo group after 52 weeks (ETD -6.8 kg [95% CI -8.8 to -4.7]; p < 0.001). Thirty-one [97%] in the semaglutide group and 18 [56%] in the placebo group experienced at least one adverse event, including four serious events (two in each group). No episodes of hypoglycaemia or deaths were reported. Interpretation In adults with increased fracture risk, semaglutide once weekly did not increase bone formation based on the bone formation marker P-PINP. The observed increase in bone resorption in the semaglutide group may be explained by the accompanying weight loss. Funding Region of Southern Denmark, Novo Nordisk Foundation, and Gangsted Foundation. Novo Nordisk provided the investigational drug and placebo.
Collapse
Affiliation(s)
- Morten S. Hansen
- Department of Endocrinology, Odense University Hospital, Denmark
- Clinical Institute, Faculty of Health Sciences, University of Southern Denmark, Denmark
| | - Eva M. Wölfel
- Clinical Institute, Faculty of Health Sciences, University of Southern Denmark, Denmark
| | - Shakespeare Jeromdesella
- Department of Endocrinology, Odense University Hospital, Denmark
- Clinical Institute, Faculty of Health Sciences, University of Southern Denmark, Denmark
| | - Jens-Jakob K. Møller
- Open Patient Data Explorative Network (OPEN), Odense University Hospital, Denmark
| | | | - Niklas R. Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Richard Eastell
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Stinus G. Hansen
- Department of Diabetes and Endocrinology, Esbjerg Hospital, University Hospital of Southern Denmark, Denmark
| | - Morten Frost
- Department of Endocrinology, Odense University Hospital, Denmark
- Clinical Institute, Faculty of Health Sciences, University of Southern Denmark, Denmark
- Steno Diabetes Centre Odense, Odense University Hospital, Denmark
| |
Collapse
|
18
|
Brandt IAG, Starup-Linde J, Andersen SS, Viggers R. Diagnosing Osteoporosis in Diabetes-A Systematic Review on BMD and Fractures. Curr Osteoporos Rep 2024; 22:223-244. [PMID: 38509440 DOI: 10.1007/s11914-024-00867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE OF REVIEW Recently, the American Diabetes Association updated the 2024 guidelines for Standards of Care in Diabetes and recommend that a T-score of - 2.0 in patients with diabetes should be interpreted as equivalent to - 2.5 in people without diabetes. We aimed to evaluate the most recent findings concerning the bone mineral density (BMD)-derived T-score and risk of fractures related to osteoporosis in subjects with diabetes. RECENT FINDINGS The dual-energy X-ray absorptiometry (DXA) scan is the golden standard for evaluating BMD. The BMD-derived T-score is central to fracture prediction and signifies both diagnosis and treatment for osteoporosis. However, the increased fracture risk in diabetes is not sufficiently explained by the T-score, complicating the identification and management of fracture risk in these patients. Recent findings agree that subjects with type 2 diabetes (T2D) have a higher T-score and higher fracture risk compared with subjects without diabetes. However, the actual number of studies evaluating the direct association of higher fracture risk at higher T-score levels is scant. Some studies support the adjustment based on the 0.5 BMD T-score difference between subjects with T2D and subjects without diabetes. However, further data from longitudinal studies is warranted to validate if the T-score treatment threshold necessitates modification to prevent fractures in subjects with diabetes.
Collapse
Affiliation(s)
- Inge Agnete Gerlach Brandt
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark.
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark.
| | - Jakob Starup-Linde
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Sally Søgaard Andersen
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Rikke Viggers
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
19
|
Drucker DJ. Prevention of cardiorenal complications in people with type 2 diabetes and obesity. Cell Metab 2024; 36:338-353. [PMID: 38198966 DOI: 10.1016/j.cmet.2023.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Traditional approaches to prevention of the complications of type 2 diabetes (T2D) and obesity have focused on reduction of blood glucose and body weight. The development of new classes of medications, together with evidence from dietary weight loss and bariatric surgery trials, provides new options for prevention of heart failure, chronic kidney disease, myocardial infarction, stroke, metabolic liver disease, cancer, T2D, and neurodegenerative disorders. Here I review evidence for use of lifestyle modification, SGLT-2 inhibitors, GLP-1 receptor agonists, selective mineralocorticoid receptor antagonists, and bariatric surgery, for prevention of cardiorenal and metabolic complications in people with T2D or obesity, highlighting the contributions of weight loss, as well as weight loss-independent mechanisms of action. Collectively, the evidence supports a tailored approach to selection of therapeutic interventions for T2D and obesity based on the likelihood of developing specific complications, rather than a stepwise approach focused exclusively on glycemic or weight control.
Collapse
Affiliation(s)
- Daniel Joshua Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G1X5, Canada.
| |
Collapse
|
20
|
Herrou J, Mabilleau G, Lecerf JM, Thomas T, Biver E, Paccou J. Narrative Review of Effects of Glucagon-Like Peptide-1 Receptor Agonists on Bone Health in People Living with Obesity. Calcif Tissue Int 2024; 114:86-97. [PMID: 37999750 DOI: 10.1007/s00223-023-01150-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/14/2023] [Indexed: 11/25/2023]
Abstract
Glucagon-like peptide-1 Receptor agonists (GLP-1Ras) such as liraglutide and semaglutide have been recently approved as medications for chronic weight management in people living with obesity (PwO); GLP-1 may enhance bone metabolism and improve bone quality. However, the effects of GLP-1Ras on skeletal health remain to be determined and that's the purpose of this narrative review. Nevertheless, bone consequences of intentional weight loss interventions in PwO are well known: (i) significant weight loss induced by caloric restriction and bariatric surgery results in accelerated bone turnover and bone loss, and (ii) unlike caloric restriction interventions, PwO experience a substantial deterioration in bone microarchitecture and strength associated with an increased risk of fracture after bariatric surgery especially malabsorptive procedures. Liraglutide seems to have a positive effect on bone material properties despite significant weight loss in several rodent models. However, most of positive effects on bone mineral density and microarchitecture were observed at concentration much higher than approved for obesity care in humans. No data have been reported in preclinical models with semaglutide. The current evidence of the effects of GLP-1Ra on bone health in PwO is limited. Indeed, studies on the use of GLP-1Ra mostly included patients with diabetes who were administered a dose used in this condition, did not have adequate bone parameters as primary endpoints, and had short follow-up periods. Further studies are needed to investigate the bone impact of GLP-1Ra, dual- and triple-receptor agonists for GLP-1, glucose-dependent insulin releasing polypeptide (GIP), and glucagon in PwO.
Collapse
Affiliation(s)
- Julia Herrou
- Service de Rhumatologie, Inserm U 1153, AP-HP Centre, Hôpital Cochin, Université de Paris, Paris, France
| | - Guillaume Mabilleau
- ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Univ Angers, Nantes Université, Angers, France
| | - Jean-Michel Lecerf
- Department of Nutrition and Physical Activity, Institut Pasteur de Lille, Lille, France
| | - Thierry Thomas
- Department of Rheumatology, Hôpital Nord, Centre Hospitalier Universitaire (CHU) Saint-Etienne, Inserm U1059, Lyon University, Saint-Etienne, France
| | - Emmanuel Biver
- Service of Bone Diseases, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Julien Paccou
- Department of Rheumatology, CHU Lille, MABlab ULR 4490, Univ. Lille, 59000, Lille, France.
| |
Collapse
|
21
|
Qiao Y, Yu L, Yang P, Chen M, Sun H, Wang L, Wu B, Oh C, Yang H, Bai J, Geng D. Spatiotemporal Immunomodulation and Biphasic Osteo-Vascular Aligned Electrospun Membrane for Diabetic Periosteum Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302874. [PMID: 37973554 PMCID: PMC10754081 DOI: 10.1002/advs.202302874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Indexed: 11/19/2023]
Abstract
Under diabetic conditions, blood glucose fluctuations and exacerbated immunopathological inflammatory environments pose significant challenges to periosteal regenerative repair strategies. Responsive immune regulation in damaged tissues is critical for the immune microenvironment, osteogenesis, and angiogenesis stabilization. Considering the high-glucose microenvironment of such acute injury sites, a functional glucose-responsive immunomodulation-assisted periosteal regeneration composite material-PLA(Polylactic Acid)/COLI(Collagen I)/Lipo(Liposome)-APY29 (PCLA)-is constructed. Aside from stimulating osteogenic differentiation, owing to the presence of surface self-assembled type I collagen in the scaffolds, PCLA can directly respond to focal area high-glucose microenvironments. The PCLA scaffolds trigger the release of APY29-loaded liposomes, shifting the macrophages toward the M2 phenotype, inhibiting the release of inflammatory cytokines, improving the bone immune microenvironment, and promoting osteogenic differentiation and angiogenesis. Bioinformatics analyses show that PCLA enhances bone repair by inhibiting the inflammatory signal pathway regulating the polarization direction and promoting osteogenic and angiogenic gene expression. In the calvarial periosteal defect model of diabetic rats, PCLA scaffolds induce M2 macrophage polarization and improve the inflammatory microenvironment, significantly accelerating periosteal repair. Overall, the PCLA scaffold material regulates immunity in fluctuating high-glucose inflammatory microenvironments, achieves relatively stable and favorable osteogenic microenvironments, and facilitates the effective design of functionalized biomaterials for bone regeneration therapy in patients with diabetes.
Collapse
Affiliation(s)
- Yusen Qiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIL60612USA
| | - Lei Yu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Peng Yang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Miao Chen
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Haifu Sun
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Lingjie Wang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Bangzhao Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Chun‐do Oh
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIL60612USA
| | - Huilin Yang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Jiaxiang Bai
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
- National Center for Translational Medicine (Shanghai) SHU BranchShanghai UniversityShanghaiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| |
Collapse
|
22
|
Mascolo A, Rafaniello C, di Mauro G, Ruggiero D, Campitiello MR, Donniacuo M, Berrino PM, Rossi F, Paolisso G, Capuano A. Sodium-glucose cotransporter-2 (SGLT2) inhibitors and the reporting of falls and fractures: an european pharmacovigilance analysis. Front Pharmacol 2023; 14:1245642. [PMID: 38027019 PMCID: PMC10657831 DOI: 10.3389/fphar.2023.1245642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background: The risk of falls and bone fractures with sodium-glucose co-transporter-2 (SGLT2) inhibitors has been characterized by conflicting evidence. Therefore, we decided to investigate the reporting probability of falls and fractures by comparing SGLT2 inhibitors with DPP4 inhibitors. Methods A retrospective, pharmacovigilance study of the European database of Individual Case Safety Reports (ICSRs) was conducted. Disproportionality analyses (Reporting Odds Ratio, ROR) were conducted to compare the reporting probability of falls or fracture between treatments. Results A total of 507 ICSRs reporting at least one fall or fracture with SGLT2 inhibitors were identified. The most reported SGLT2 inhibitor was canagliflozin (N = 188; 36.9%), followed by empagliflozin (N = 176; 34.5%), and dapagliflozin (N = 143; 28.0%). A total of 653 events related to fall or bone fracture were reported. Fall was the most reported event (N = 333; 51.0%). Among fractures (N = 320; 49.0%), the most reported were foot fractures (N = 40; 6.1%) and hip fractures (N = 32; 4.9%). SGLT2 inhibitors were associated with a lower reporting probability of fall than DPP4 inhibitors (ROR, 0.66; 95%CI, 0.57-0.78). The lower reporting probability of fall was also observed when the single SGLT2 inhibitor was compared to DPP4 inhibitors: dapagliflozin (ROR, 0.67; 95%CI, 0.53-0.83), canagliflozin (ROR, 0.56; 95%CI, 0.45-0.70), and empagliflozin (ROR, 0.77; 95%CI, 0.63-0.94). For fractures, canagliflozin showed a slightly significant increased reporting when compared with DPP4 inhibitors (not confirmed in the sensitivity analysis), whereas all other comparison showed no statistically significant difference. Conclusion SGLT2 inhibitors were associated with a lower reporting probability of fall than DPP4 inhibitors, in accordance with the reassuring evidence about the safety profile of these drugs. Future researches will help to confirm their long-term safety profile.
Collapse
Affiliation(s)
- Annamaria Mascolo
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
- Department of Experimental Medicine–Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Concetta Rafaniello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
- Department of Experimental Medicine–Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gabriella di Mauro
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
- Department of Experimental Medicine–Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
- UOC Pharmacy, AORN Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Donatella Ruggiero
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
- Department of Experimental Medicine–Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Rosaria Campitiello
- Department of obstetrics and gynaecology and physiopathology of human reproduction, ASL Salerno, Salerno, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine–Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Pasquale Maria Berrino
- Department of Specialized Medicine, Diagnostic and Experimental, University of Bologna “Alma Mater Studiorum”, Bologna, Italy
| | - Francesco Rossi
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
- Department of Experimental Medicine–Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
- Department of Experimental Medicine–Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
23
|
Viggers R, Rasmussen NH, Vestergaard P. Effects of Incretin Therapy on Skeletal Health in Type 2 Diabetes-A Systematic Review. JBMR Plus 2023; 7:e10817. [PMID: 38025038 PMCID: PMC10652182 DOI: 10.1002/jbm4.10817] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes poses a significant risk to bone health, with Type 1 diabetes (T1D) having a more detrimental impact than Type 2 diabetes (T2D). The group of hormones known as incretins, which includes gastric inhibitory peptide (GIP) and glucagon-like peptide 1 (GLP-1), play a role in regulating bowel function and insulin secretion during feeding. GLP-1 receptor agonists (GLP-1 RAs) are emerging as the primary treatment choice in T2D, particularly when atherosclerotic cardiovascular disease is present. Dipeptidyl peptidase 4 inhibitors (DPP-4is), although less potent than GLP-1 RAs, can also be used. Additionally, GLP-1 RAs, either alone or in combination with GIP, may be employed to address overweight and obesity. Since feeding influences bone turnover, a relationship has been established between incretins and bone health. To explore this relationship, we conducted a systematic literature review following the PRISMA guidelines. While some studies on cells and animals have suggested positive effects of incretins on bone cells, turnover, and bone density, human studies have yielded either no or limited and conflicting results regarding their impact on bone mineral density (BMD) and fracture risk. The effect on fracture risk may vary depending on the choice of comparison drug and the duration of follow-up, which was often limited in several studies. Nevertheless, GLP-1 RAs may hold promise for people with T2D who have multiple fracture risk factors and poor metabolic control. Furthermore, a potential new area of interest is the use of GLP-1 RAs in fracture prevention among overweight and obese people. Based on this systematic review, existing evidence remains insufficient to support a positive or a superior effect on bone health to reduce fracture risk in people with T2D. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Rikke Viggers
- Steno Diabetes Center North DenmarkAalborgDenmark
- Department of EndocrinologyAalborg University HospitalAalborgDenmark
| | | | - Peter Vestergaard
- Steno Diabetes Center North DenmarkAalborgDenmark
- Department of EndocrinologyAalborg University HospitalAalborgDenmark
| |
Collapse
|
24
|
Akyay OZ, Canturk Z, Selek A, Cetinarslan B, Tarkun İ, Cakmak Y, Baydemir C. The effects of exenatide and insulin glargine treatments on bone turnover markers and bone mineral density in postmenopausal patients with type 2 diabetes mellitus. Medicine (Baltimore) 2023; 102:e35394. [PMID: 37773814 PMCID: PMC10545322 DOI: 10.1097/md.0000000000035394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) related bone fracture. The effects of glucagon-like peptide-1 receptor analogs for the treatment of T2DM on bone are controversial in human studies. This study aimed to compare the effects of GLP-1 receptor analogs exenatide and insulin glargine treatment on bone turnover marker levels and bone mineral density (BMD) in postmenopausal female patients with T2DM. Thirty female patients with T2DM who were naive to insulin and incretin-based treatments, with spontaneous postmenopause, were randomized to exenatide or insulin glargine arms and were followed up for 24 weeks. BMD was evaluated using dual-energy X-ray absorptiometry and bone turnover markers by serum enzyme-linked immunosorbent assay. The body mass index significantly decreased in the exenatide group compared to the glargine group (P < .001). Receptor activator of nuclear factor kappa-B (RANK) and RANK ligand (RANKL) levels were significantly decreased with exenatide treatment (P = .009 and P = .015, respectively). Osteoprotegerin (OPG) level significantly increased with exenatide treatment (P = .02). OPG, RANK, RANKL levels did not change with insulin glargine treatment. No statistically significant difference was found between the pre- and posttreatment BMD, alkaline phosphatase, bone-specific alkaline phosphatase, and type 1 crosslinked N-telopeptide levels in both treatment arms. Despite significant weight loss with exenatide treatment, BMD did not decrease, OPG increased, and the resorption markers of RANK and RANKL decreased, which may reflect early antiresorptive effects of exenatide via the OPG/RANK/RANKL pathway.
Collapse
Affiliation(s)
- Ozlem Zeynep Akyay
- University of Health Sciences Sanliurfa Mehmet Akif İnan Education and Research Hospital, Department of Endocrinology and Metabolism, Sanliurfa, Turkey
| | - Zeynep Canturk
- Kocaeli University School of Medicine, Department of Endocrinology and Metabolism, Kocaeli, Turkey
| | - Alev Selek
- Kocaeli University School of Medicine, Department of Endocrinology and Metabolism, Kocaeli, Turkey
| | - Berrin Cetinarslan
- Kocaeli University School of Medicine, Department of Endocrinology and Metabolism, Kocaeli, Turkey
| | - İlhan Tarkun
- Anadolu Medical Center, Department of Endocrinology and Metabolism, Kocaeli, Turkey
| | - Yagmur Cakmak
- Kocaeli University School of Medicine, Department of Oncology, Kocaeli, Turkey
| | - Canan Baydemir
- Kocaeli University School of Medicine, Department of Biostatistics and Medical Informatics, Kocaeli, Turkey
| |
Collapse
|
25
|
Meier C, Eastell R, Pierroz DD, Lane NE, Al-Daghri N, Suzuki A, Napoli N, Mithal A, Chakhtoura M, Fuleihan GEH, Ferrari S. Biochemical Markers of Bone Fragility in Patients with Diabetes. A Narrative Review by the IOF and the ECTS. J Clin Endocrinol Metab 2023; 108:dgad255. [PMID: 37155585 PMCID: PMC10505554 DOI: 10.1210/clinem/dgad255] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
CONTEXT The risk of fragility fractures is increased in both type 1 and type 2 diabetes. Numerous biochemical markers reflecting bone and/or glucose metabolism have been evaluated in this context. This review summarizes current data on biochemical markers in relation to bone fragility and fracture risk in diabetes. METHODS Literature review by a group of experts from the International Osteoporosis Foundation (IOF) and European Calcified Tissue Society (ECTS) focusing on biochemical markers, diabetes, diabetes treatments and bone in adults. RESULTS Although bone resorption and bone formation markers are low and poorly predictive of fracture risk in diabetes, osteoporosis drugs seem to change bone turnover markers in diabetics similarly to non-diabetics, with similar reductions in fracture risk. Several other biochemical markers related to bone and glucose metabolism have been correlated with BMD and/or fracture risk in diabetes, including osteocyte-related markers such as sclerostin, HbA1c and advanced glycation end products (AGEs), inflammatory markers and adipokines, as well as IGF-1 and calciotropic hormones. CONCLUSION Several biochemical markers and hormonal levels related to bone and/or glucose metabolism have been associated with skeletal parameters in diabetes. Currently, only HbA1c levels seem to provide a reliable estimate of fracture risk, while bone turnover markers could be used to monitor the effects of anti-osteoporosis therapy.
Collapse
Affiliation(s)
- Christian Meier
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
| | - Richard Eastell
- Academic Unit of Bone Metabolism, Mellanby Centre for Bone Research, University of Sheffield, S57AU Sheffield, UK
| | | | - Nancy E Lane
- Department of Medicine and Rheumatology, Davis School of Medicine, University of California, Sacramento, CA 95817, USA
| | - Nasser Al-Daghri
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Ambrish Mithal
- Institute of Diabetes and Endocrinology, Max Healthcare, Saket, New Delhi 110017, India
| | - Marlene Chakhtoura
- Department of Internal Medicine, Division of Endocrinology, Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, American University of Beirut Medical Center, Riad El Solh, Beirut 6044, Lebanon
| | - Ghada El-Hajj Fuleihan
- Department of Internal Medicine, Division of Endocrinology, Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, American University of Beirut Medical Center, Riad El Solh, Beirut 6044, Lebanon
| | - Serge Ferrari
- Service and Laboratory of Bone Diseases, Geneva University Hospital and Faculty of Medicine, 1205 Geneva, Switzerland
| |
Collapse
|
26
|
Maagensen H, Helsted MM, Gasbjerg LS, Vilsbøll T, Knop FK. The Gut-Bone Axis in Diabetes. Curr Osteoporos Rep 2023; 21:21-31. [PMID: 36441432 DOI: 10.1007/s11914-022-00767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW To describe recent advances in the understanding of how gut-derived hormones regulate bone homeostasis in humans with emphasis on pathophysiological and therapeutic perspectives in diabetes. RECENT FINDINGS The gut-derived incretin hormone glucose-dependent insulinotropic polypeptide (GIP) is important for postprandial suppression of bone resorption. The other incretin hormone, glucagon-like peptide 1 (GLP-1), as well as the intestinotrophic glucagon-like peptide 2 (GLP-2) has been shown to suppress bone resorption in pharmacological concentrations, but the role of the endogenous hormones in bone homeostasis is uncertain. For ambiguous reasons, both patients with type 1 and type 2 diabetes have increased fracture risk. In diabetes, the suppressive effect of endogenous GIP on bone resorption seems preserved, while the effect of GLP-2 remains unexplored both pharmacologically and physiologically. GLP-1 receptor agonists, used for the treatment of type 2 diabetes and obesity, may reduce bone loss, but results are inconsistent. GIP is an important physiological suppressor of postprandial bone resorption, while GLP-1 and GLP-2 may also exert bone-preserving effects when used pharmacologically. A better understanding of the actions of these gut hormones on bone homeostasis in patients with diabetes may lead to new strategies for the prevention and treatment of skeletal frailty related to diabetes.
Collapse
Affiliation(s)
- Henrik Maagensen
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
| | - Mads M Helsted
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital-Herlev and Gentofte, Gentofte Hospitalsvej 7, 3rd floor, DK-2900, Hellerup, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Bone fragility is a complication of type 2 diabetes (T2D), and insulin resistance is suspected to contribute to diabetes-related bone deficits. This article provides an overview of emerging clinical research involving insulin resistance and bone health by summarizing recent publications, identifying existing knowledge gaps, and suggesting 'next steps' for this evolving field of research. RECENT FINDINGS Clinical studies in children and adults report greater bone density in people with increased insulin resistance, but these associations are often attenuated when adjusting for body size. Advancements in bone imaging methods allow for assessment of nuanced characteristics of bone quality and strength that extend beyond standard bone mineral density assessment methods. For example, several recent studies focusing on lumbar spine trabecular bone score, a relatively new measure of trabecular bone quality from dual-energy X-ray absorptiometry, have reported generally consistent inverse associations with insulin resistance. Longitudinal studies using advanced imaging methods capable of evaluating trabecular bone microstructure and strength, such as high-resolution peripheral quantitative computed tomography, are lacking. Studies in younger individuals are sparse, but emerging data suggest that peak bone mass attainment might be threatened by diabetes progression, and increased visceral fat, suppressed muscle-bone unit, advanced glycation end-products, sedentary lifestyle, and poor diet quality might contribute to diabetes effects on bone. Prospective studies during the transition from adolescence to young adulthood are required. SUMMARY Insulin resistance is a main feature of T2D, which is suspected to contribute to subclinical diabetes-related threats to bone health. Future clinical studies should focus on the critical years surrounding peak bone mass and peak bone strength attainment using contemporary imaging techniques.
Collapse
Affiliation(s)
- Wang Shin Lei
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA
| | | |
Collapse
|
28
|
Hu X, Gong H, Hou A, Wu X, Shi P, Zhang Y. Effects of continuous subcutaneous insulin infusion on the microstructures, mechanical properties and bone mineral compositions of lumbar spines in type 2 diabetic rats. BMC Musculoskelet Disord 2022; 23:511. [PMID: 35637472 PMCID: PMC9150354 DOI: 10.1186/s12891-022-05452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Continuous subcutaneous insulin infusion (CSII) for the treatment of type 2 diabetes (T2D) can improve the structure and strength of femur of rats, but the effect of CSII treatment on the lumbar spine of T2D rats is unknown. The purpose of this study is to investigate the effects of CSII on the microstructure, multi-scale mechanical properties and bone mineral composition of the lumbar spine in T2D rats. METHODS Seventy 6-week-old male Sprague-Dawley (SD) rats were divided into two batches, each including Control, T2D, CSII and Placebo groups, and the duration of insulin treatment was 4-week and 8-week, respectively. At the end of the experiment, the rats were sacrificed to take their lumbar spine. Microstructure, bone mineral composition and nanoscopic-mesoscopic-apparentand-macroscopic mechanical properties were evaluated through micro-computed tomography (micro-CT), Raman spectroscopy, nanoindentation test, nonlinear finite element analysis and compression test. RESULTS It was found that 4 weeks later, T2D significantly decreased trabecular thickness (Tb.Th), nanoscopic-apparent and partial mesoscopic mechanical parameters of lumbar spine (P < 0.05), and significantly increased bone mineral composition parameters of cortical bone (P < 0.05). It was shown that CSII significantly improved nanoscopic-apparent mechanical parameters (P < 0.05). In addition, 8 weeks later, T2D significantly decreased bone mineral density (BMD), bone volume fraction (BV/TV) and macroscopic mechanical parameters (P < 0.05), and significantly increased bone mineral composition parameters of cancellous bone (P < 0.05). CSII treatment significantly improved partial mesoscopic-macroscopic mechanical parameters and some cortical bone mineral composition parameters (P < 0.05). CONCLUSIONS CSII treatment can significantly improve the nanoscopic-mesoscopic-apparent-macroscopic mechanical properties of the lumbar spine in T2D rats, as well as the bone structure and bone mineral composition of the lumbar vertebrae, but it will take longer treatment time to restore the normal level. In addition, T2D and CSII treatment affected bone mineral composition of cortical bone earlier than cancellous bone of lumbar spine in rat. Our study can provide evidence for clinical prevention and treatment of T2D-related bone diseases.
Collapse
Affiliation(s)
- Xiaorong Hu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - He Gong
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Aiqi Hou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaodan Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Peipei Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.
| |
Collapse
|
29
|
Johansen NJ, Dejgaard TF, Lund A, Schlüntz C, Hartmann B, Holst JJ, Vilsbøll T, Andersen HU, Knop FK. Effects of short-acting exenatide added three times daily to insulin therapy on bone metabolism in type 1 diabetes. Diabetes Obes Metab 2022; 24:221-227. [PMID: 34617375 DOI: 10.1111/dom.14568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
AIM To evaluate the efficacy of the short-acting glucagon-like peptide-1 receptor agonist, exenatide, added to insulin therapy in type 1 diabetes on bone mineral density and bone turnover markers. MATERIALS AND METHODS In a randomized, double-blinded, parallel-group trial, 108 individuals with type 1 diabetes aged 18 years or older on basal-bolus therapy with HbA1c 59-88 mmol/mol (7.5%-10.0%) and body mass index of more than 22.0 kg/m2 were randomized (1:1) to preprandial subcutaneous injection of 10 μg exenatide (Byetta) before breakfast, lunch, and dinner over 26 weeks as add-on treatment to insulin therapy. RESULTS Exenatide elicited a body weight reduction of 4.4 kg compared with placebo, but no between-group differences in bone mineral density, as assessed by whole-body, hip, lumbar, and forearm dual-energy X-ray absorptiometry following 26 weeks of treatment, were observed. Fasting plasma levels of C-terminal telopeptides of type I collagen, a marker of bone resorption, and amino-terminal propeptide of type I procollagen, a marker of bone formation, were unchanged by exenatide compared with placebo after 26 weeks. CONCLUSIONS Despite an exenatide-induced body weight reduction, no changes in bone metabolism were observed with exenatide added to insulin therapy in type 1 diabetes after 26 weeks.
Collapse
Affiliation(s)
- Nicklas J Johansen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Thomas F Dejgaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Camilla Schlüntz
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Laurindo LF, Barbalho SM, Guiguer EL, da Silva Soares de Souza M, de Souza GA, Fidalgo TM, Araújo AC, de Souza Gonzaga HF, de Bortoli Teixeira D, de Oliveira Silva Ullmann T, Sloan KP, Sloan LA. GLP-1a: Going beyond Traditional Use. Int J Mol Sci 2022; 23:739. [PMID: 35054924 PMCID: PMC8775408 DOI: 10.3390/ijms23020739] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a human incretin hormone derived from the proglucagon molecule. GLP-1 receptor agonists are frequently used to treat type 2 diabetes mellitus and obesity. However, the hormone affects the liver, pancreas, brain, fat cells, heart, and gastrointestinal tract. The objective of this study was to perform a systematic review on the use of GLP-1 other than in treating diabetes. PubMed, Cochrane, and Embase were searched, and the PRISMA guidelines were followed. Nineteen clinical studies were selected. The results showed that GLP-1 agonists can benefit defined off-medication motor scores in Parkinson's Disease and improve emotional well-being. In Alzheimer's disease, GLP-1 analogs can improve the brain's glucose metabolism by improving glucose transport across the blood-brain barrier. In depression, the analogs can improve quality of life and depression scales. GLP-1 analogs can also have a role in treating chemical dependency, inhibiting dopaminergic release in the brain's reward centers, decreasing withdrawal effects and relapses. These medications can also improve lipotoxicity by reducing visceral adiposity and decreasing liver fat deposition, reducing insulin resistance and the development of non-alcoholic fatty liver diseases. The adverse effects are primarily gastrointestinal. Therefore, GLP-1 analogs can benefit other conditions besides traditional diabetes and obesity uses.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marilia (FATEC), Marília 17500-000, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marilia (FATEC), Marília 17500-000, SP, Brazil
| | - Maricelma da Silva Soares de Souza
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Gabriela Achete de Souza
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Thiago Marques Fidalgo
- Department of Psychiatry, Federal University of São Paulo, R. Sena Madureira 04021-001, SP, Brazil;
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Heron F. de Souza Gonzaga
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Daniel de Bortoli Teixeira
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia, Marília 17525-902, SP, Brazil;
| | - Thais de Oliveira Silva Ullmann
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Avenida Higino Muzzi Filho, Marília 17525-902, SP, Brazil; (L.F.L.); (E.L.G.); (M.d.S.S.d.S.); (G.A.d.S.); (A.C.A.); (H.F.d.S.G.); (T.d.O.S.U.)
| | - Katia Portero Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, TX 75904, USA; (K.P.S.); (L.A.S.)
| | - Lance Alan Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, TX 75904, USA; (K.P.S.); (L.A.S.)
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
31
|
Al-Mashhadi ZK, Viggers R, Fuglsang-Nielsen R, Vestergaard P, Gregersen S, Starup-Linde J. The risk of major osteoporotic fractures with GLP-1 receptor agonists when compared to DPP-4 inhibitors: A Danish nationwide cohort study. Front Endocrinol (Lausanne) 2022; 13:882998. [PMID: 36299454 PMCID: PMC9589410 DOI: 10.3389/fendo.2022.882998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2D) is associated with an increased fracture risk. There is little evidence for the effects of glucagon-like peptide 1 receptor agonists (GLP-1RA) on fracture risk in T2D. We aimed to investigate the risk of major osteoporotic fractures (MOF) for treatment with GLP-1RA compared to dipeptidyl peptidase 4 inhibitors (DPP-4i) as add-on therapies to metformin. METHODS We conducted a population-based cohort study using Danish national health registries. Diagnoses were obtained from discharge diagnosis codes (ICD-10 and ICD-8-system) from the Danish National Patient Registry, and all redeemed drug prescriptions were obtained from the Danish National Prescription Registry (ATC classification system). Subjects treated with metformin in combination with either GLP-1RA or DPP-4i were enrolled from 2007 to 2018. Subjects were propensity-score matched 1:1 based on age, sex, and index date. MOF were defined as hip, vertebral, humerus, or forearm fractures. A Cox proportional hazards model was utilized to estimate hazard rate ratios (HR) for MOF, and survival curves were plotted using the Kaplan-Meier estimator. In addition, Aalen's Additive Hazards model was applied to examine additive rather than relative hazard effects while allowing time-varying effects. RESULTS In total, 42,816 individuals treated with either combination were identified and included. After matching, 32,266 individuals were included in the main analysis (16,133 in each group). Median follow-up times were 642 days and 529 days in the GLP-1RA and DPP-4i group, respectively. We found a crude HR of 0.89 [0.76-1.05] for MOF with GLP-1RA compared to DPP-4i. In the fully adjusted model, we obtained an unaltered HR of 0.86 [0.73-1.03]. For the case of hip fracture, we found a crude HR of 0.68 [0.49-0.96] and a similar adjusted HR. Fracture risk was lower in the GLP-1RA group when examining higher daily doses of the medications, when allowing follow-up to continue after medication change, and when examining hip fractures, specifically. Additional subgroup- and sensitivity analyses yielded results similar to the main analysis. CONCLUSION In our primary analysis, we did not observe a significantly different risk of MOF between treatment with GLP-1RA and DPP-4i. We conclude that GLP-1RA are safe in terms of fracture.
Collapse
Affiliation(s)
- Zheer Kejlberg Al-Mashhadi
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- *Correspondence: Zheer Kejlberg Al-Mashhadi,
| | - Rikke Viggers
- Steno Diabetes Center North Jutland, Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Rasmus Fuglsang-Nielsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Vestergaard
- Steno Diabetes Center North Jutland, Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Søren Gregersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Starup-Linde
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
32
|
Starup-Linde J, Ornstrup MJ, Kjær TN, Lykkeboe S, Handberg A, Gregersen S, Harsløf T, Pedersen SB, Vestergaard P, Langdahl BL. Bone Density and Structure in Overweight Men With and Without Diabetes. Front Endocrinol (Lausanne) 2022; 13:837084. [PMID: 35360074 PMCID: PMC8960162 DOI: 10.3389/fendo.2022.837084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/10/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE Metabolic syndrome (MetS), type 1 diabetes (T1D), and type 2 diabetes, are associated with an increased risk of fractures; however, the impact of obesity on bone deficits in diabetes is unknown. We aimed to compare markers of bone structure, bone density, and bone turnover in non-diabetic overweight men with MetS and overweight men with T1D or T2D. METHODS AND RESEARCH DESIGN In this cross-sectional study we included participants from two previously described study cohorts consisting of participants with diabetes and participants with MetS. Participants underwent dual-energy X-ray absorptiometry measuring areal bone mineral density (aBMD) at the hip and lumbar spine, High Resolution peripheral Quantitative (HRpQCT) scan of the tibia and radius and measurement of circulating bone turnover markers. We compared groups with unpaired t test and performed multiple linear regression with adjustment for age, body mass index, and smoking. RESULTS We included 33 participants with T1D, 25 participants with T2D, and 34 participants with MetS. Bone turnover markers levels were comparable between T1D and MetS. aBMD at the hip was lower in T1D compared to MetS, also after adjustment. P1NP and Osteocalcin levels were lower among individuals with T2D compared to MetS, whereas aBMD were similar between the groups after multiple adjustments. We observed no difference in volumetric BMD at the tibia or radius between MetS and T1D and T2D, respectively. Participants with T2D had a higher trabecular number and lower trabecular separation compared to individuals with MetS at the tibia, which remained signficant after multiple adjustments. CONCLUSION In conclusion, we observed no clinically important differences in bone density or structure between men with T2D, T1D, or MetS. However, men with T2D displayed lower bone turnover compared to MetS highlighting that T2D per se and not obesity, is associated with low bone turnover.
Collapse
Affiliation(s)
- Jakob Starup-Linde
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center North Jutland, Aalborg University Hospital, Aalborg, Denmark
- *Correspondence: Jakob Starup-Linde,
| | - Marie Juul Ornstrup
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Nordstrøm Kjær
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Lykkeboe
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Søren Gregersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Torben Harsløf
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Steen Bønløkke Pedersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Vestergaard
- Steno Diabetes Center North Jutland, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Bente Lomholt Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
33
|
Xie Z, Yang S, Deng W, Li J, Chen J. Efficacy and Safety of Liraglutide and Semaglutide on Weight Loss in People with Obesity or Overweight: A Systematic Review. Clin Epidemiol 2022; 14:1463-1476. [PMID: 36510488 PMCID: PMC9738168 DOI: 10.2147/clep.s391819] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The effect and safety of Semaglutide and Liraglutide on weight loss in people with obesity or overweight were evaluated by a Network Meta-Analysis system to provide an evidence-based reference for clinical treatment. METHODS Computer searched PubMed, Embase, and Cochrane Library databases to collect Liraglutide and Semaglutide injection monotherapy RCTs until April 2022, using Stata 16 software for Network Meta-Analysis. RESULTS Twenty-three RCTs study with 11,545 patients and 4 interventions (semaglutide 2.4mg, semaglutide 1.0mg, liraglutide 3.0mg and liraglutide 1.8 mg) were finally included. In terms of efficacy, semaglutide 2.4mg (-12.47 kg) had the best weight loss, followed by liraglutide 3.0mg (-5.24 kg), semaglutide 1.0mg (-3.74 kg) and liraglutide 1.8mg (-3.29 kg). In terms of decreased HbA1c, semaglutide 2.4mg (MD=-1.48%, 95% CI [-1.93, -1.04]), semaglutide 1.0mg (MD=-1.36%, 95% CI [-1.72, -1.01]), liraglutide 1.8mg (MD=-1.23%, 95%Cl [-1.66, -0.80]) more effective than placebo. In terms of safety, the total incidence of adverse events was semaglutide 2.4mg > liraglutide 3.0mg > liraglutide 1.8mg > semaglutide 1.0mg compare to placebo, the incidence of serious adverse events was liraglutide 3.0mg > liraglutide 1.8mg > semaglutide 2.4mg > semaglutide 1.0mg, the incidence of hypoglycemic events was semaglutide 2.4mg > liraglutide 3.0mg > semaglutide 1.0mg > liraglutide 1.8mg. CONCLUSION This meta-analysis indicates that all GLP-1RAs were more efficacious than placebo in people with obesity or overweight on efficacy. Semaglutide 2.4mg has an absolute advantage in weight loss and decreased HbA1c, but the incidence of total adverse events is also the highest and can cause hypoglycemia. In addition, although liraglutide 3.0mg was less effective than semaglutide 2.4mg, serious adverse events were still the most elevated.
Collapse
Affiliation(s)
- Zeyu Xie
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Sensen Yang
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Weishang Deng
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Jinjian Li
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Jisheng Chen
- Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Correspondence: Jisheng Chen, Key Specialty of Clinical Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People’s Republic of China, Tel +86+20-87622305, Fax +86+20-61321967, Email
| |
Collapse
|
34
|
Abildgaard J, Johansen MY, Skov-Jeppesen K, Andersen LB, Karstoft K, Hansen KB, Hartmann B, Holst JJ, Pedersen BK, Ried-Larsen M. Effects of a Lifestyle Intervention on Bone Turnover in Persons with Type 2 Diabetes: A Post Hoc Analysis of the U-TURN Trial. Med Sci Sports Exerc 2022; 54:38-46. [PMID: 34431828 DOI: 10.1249/mss.0000000000002776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION/PURPOSE The increased risk of fractures with type 2 diabetes (T2D) is suggested to be caused by decreased bone turnover. Current international guidelines recommend lifestyle modifications, including exercise, as first-line treatment for T2D. The aim of this study was to investigate the effects of an exercise-based lifestyle intervention on bone turnover and bone mineral density (BMD) in persons with T2D. METHODS Persons with T2D were randomized to either a 12-month lifestyle intervention (n = 64) or standard care (n = 34). The lifestyle intervention included five to six weekly aerobic training sessions, half of them combined with resistance training. Serum markers of bone turnover (osteocalcin, N-terminal propeptide of type-I procollagen, reflecting bone formation, and carboxyterminal collagen I crosslinks, reflecting bone resorption) and BMD (by DXA) were measured before the intervention and at follow-up. RESULTS From baseline to follow-up, s-propeptide of type-I procollagen increased by 34% (95% confidence interval [CI], 17%-50%), serum-carboxyterminal collagen I crosslink by 36% (95% CI, 1%-71%), and s-osteocalcin by 31% (95% CI, 11-51%) more in the lifestyle intervention group compared with standard care. Loss of weight and fat mass were the strongest mediators of the increased bone turnover. Bone mineral density was unaffected by the intervention (ΔBMD, 0.1%; 95% CI, -1.1% to 1.2%). CONCLUSIONS A 12-month intensive exercise-based lifestyle intervention led to a substantial but balanced increase in bone turnover in persons with T2D. The increased bone turnover combined with a preserved BMD, despite a considerable weight loss, is likely to reflect improved bone health and warrants further studies addressing the impact of exercise on risk of fractures in persons with T2D.
Collapse
Affiliation(s)
| | - Mette Yun Johansen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, DENMARK
| | | | - Lars Bo Andersen
- Department of Sport, Food and Natural Sciences, Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Campus Sogndal, Sogndal, NORWAY
| | | | | | | | | | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, DENMARK
| | - Mathias Ried-Larsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, DENMARK
| |
Collapse
|
35
|
Chen Y, Zhou Y, Lin J, Zhang S. Challenges to Improve Bone Healing Under Diabetic Conditions. Front Endocrinol (Lausanne) 2022; 13:861878. [PMID: 35418946 PMCID: PMC8996179 DOI: 10.3389/fendo.2022.861878] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) can affect bone metabolism and the bone microenvironment, resulting in impaired bone healing. The mechanisms include oxidative stress, inflammation, the production of advanced glycation end products (AGEs), etc. Improving bone healing in diabetic patients has important clinical significance in promoting fracture healing and improving bone integration. In this paper, we reviewed the methods of improving bone healing under diabetic conditions, including drug therapy, biochemical cues, hyperbaric oxygen, ultrasound, laser and pulsed electromagnetic fields, although most studies are in preclinical stages. Meanwhile, we also pointed out some shortcomings and challenges, hoping to provide a potential therapeutic strategy for accelerating bone healing in patients with diabetes.
Collapse
Affiliation(s)
- Yiling Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Lin, ; Shiwen Zhang,
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Lin, ; Shiwen Zhang,
| |
Collapse
|
36
|
Paccou J, Tsourdi E, Meier C, Palermo A, Pepe J, Body JJ, Zillikens MC. Bariatric surgery and skeletal health: A narrative review and position statement for management by the European Calcified Tissue Society (ECTS). Bone 2022; 154:116236. [PMID: 34688942 DOI: 10.1016/j.bone.2021.116236] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/02/2021] [Accepted: 10/16/2021] [Indexed: 12/14/2022]
Abstract
CONTEXT Numerous studies have demonstrated detrimental skeletal consequences following bariatric surgery. METHODS A working group of the European Calcified Tissue Society (ECTS) performed an updated review of existing literature on changes of bone turnover markers (BTMs), bone mineral density (BMD), and fracture risk following bariatric surgery and provided advice on management based on expert opinion. LITERATURE REVIEW Based on observational studies, bariatric surgery is associated with a 21-44% higher risk of all fractures. Fracture risk is time-dependent and increases approximately 3 years after bariatric surgery. The bariatric procedures that have a malabsorptive component (including Roux-en-Y Gastric bypass (RYGB) and biliopancreatic diversion (BPD)) have clearly been associated with the highest risk of fracture. The extent of high-turnover bone loss suggests a severe skeletal insult. This is associated with diminished bone strength and compromised microarchitecture. RYGB was the most performed bariatric procedure worldwide until very recently, when sleeve gastrectomy (SG) became more prominent. There is growing evidence that RYGB is associated with greater reduction in BMD, greater increase in BTMs, and higher risk of fractures compared with SG but RCTs on optimal management are still lacking. EXPERT OPINION In all patients, it is mandatory to treat vitamin D deficiency, to achieve adequate daily calcium and protein intake and to promote physical activity before and following bariatric surgery. In post-menopausal women and men older than 50 years, osteoporosis treatment would be reasonable in the presence of any of the following criteria: i) history of recent fragility fracture after 40 years of age, ii) BMD T-score ≤ -2 at hip or spine, iii) FRAX score with femoral neck BMD exceeding 20% for the 10-year major osteoporotic fracture probability or exceeding 3% for hip fracture. Zoledronate as first choice should be preferred due to intolerance of oral formulations and malabsorption. Zoledronate should be used with caution due to hypocemia risk. It is recommended to ensure adequate 25-OH vitamin D level and calcium supplementation before administering zoledronate. CONCLUSIONS The bariatric procedures that have a malabsorptive component have been associated with the highest turnover bone loss and risk of fracture. There is a knowledge gap on osteoporosis treatment in patients undergoing bariatric surgery. More research is necessary to direct and support guidelines.
Collapse
Affiliation(s)
- Julien Paccou
- Univ. Lille, CHU Lille, MABLab ULR 4490, Department of Rheumatology, 59000 Lille, France.
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Christian Meier
- Division of Endocrinology, Diabetes and Metabolism, University Hospital and University of Basel, Switzerland
| | - Andrea Palermo
- Unit of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
| | - Jessica Pepe
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, "Sapienza" University of Rome, Italy
| | - Jean-Jacques Body
- Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - M Carola Zillikens
- Bone Center Erasmus MC, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
37
|
Vosoughi K, Atieh J, Khanna L, Khoshbin K, Prokop LJ, Davitkov P, Murad MH, Camilleri M. Association of Glucagon-like Peptide 1 Analogs and Agonists Administered for Obesity with Weight Loss and Adverse Events: A Systematic Review and Network Meta-analysis. EClinicalMedicine 2021; 42:101213. [PMID: 34877513 PMCID: PMC8633575 DOI: 10.1016/j.eclinm.2021.101213] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Comparative effectiveness of 7 glucagon-like peptide 1 (GLP-1) agents on weight loss (WL) in obesity remains unknown. METHODS We performed a systematic review, network meta-analysis (NMA) utilizing the following data sources: MEDLINE, EMBASE, Scopus, Cochrane Central and clinical trial registries, from inception to March 2, 2021. The prespecified criteria for study inclusion were randomized clinical trials (RCTs) of ≥12 weeks' duration. The data appraisal and extraction were performed by two investigators independently, using the published reports. The main outcomes and statistical methods were weight loss over placebo (WLOP) and adverse events (AEs) among GLP-1 agents using random-effects NMA (frequentist approach); relative ranking using surface under the cumulative ranking (SUCRA) method and certainty of evidence using grading of recommendations, assessment, development and evaluations (GRADE). FINDINGS 64 RCTs (from 2004 to 2021) included 27018 patients (median of age, 55.1 years old; 57.4% women; baseline weight 94.8kg and BMI 33.0kg/m2; trial duration 26 weeks). Direct meta-analysis showed significant WLOP with: -1.44kg (95% CI, -2.14 to -0.74) with dulaglutide ≥1.5 mg; -1.82kg (-2.42 to -1.23) with exenatide immediate release (IR); -2.20kg (-4.31 to -0.08) with exenatide extended release (ER); -3.20kg (-6.53 to 0.15) with efpeglenatide; -2.72kg (-3.35 to -2.09) with liraglutide ≤1.8mg; -4.49kg (-5.26 to -3.72) with liraglutide >1.8mg; -0.62kg (-1.22 to -0.02) with lixisenatide; -4.33kg (-5.71 to -3.00) with semaglutide SQ <2.4mg; -9.88kg (-13.17 to -6.59) with semaglutide SQ 2.4mg; -2.73kg (-4.81 to -0.65) with semaglutide oral; and -1.71kg (-2.64 to -0.78) with taspoglutide. Highest WLOP were with semaglutide SQ 2.4mg and <2.4mg, and liraglutide >1.8mg (SUCRAs 100, 86.1, 82.8 respectively). Highest SUCRAs for discontinuation due to AEs were with taspoglutide and liraglutide >1.8mg. Risk of bias was high or unclear for random sequence generation (29.7%), allocation concealment (26.6%), and incomplete outcome data (26.6%). Heterogeneity (I2 >50%) in WL and AEs reflected magnitude, not direction of effect.
Collapse
Affiliation(s)
- Kia Vosoughi
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Jessica Atieh
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Lehar Khanna
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Katayoun Khoshbin
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Larry J. Prokop
- Library-Public Service Department, Mayo Clinic, Rochester, MN
| | - Perica Davitkov
- Veterans Affairs Northeast Ohio Healthcare System and Case Western Reserve University, Cleveland, OH
| | - M. Hassan Murad
- Division of Preventive Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
38
|
Shi P, Hou A, Li C, Wu X, Jia S, Cen H, Hu X, Gong H. Continuous subcutaneous insulin infusion ameliorates bone structures and mechanical properties in type 2 diabetic rats by regulating bone remodeling. Bone 2021; 153:116101. [PMID: 34245934 DOI: 10.1016/j.bone.2021.116101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/21/2021] [Accepted: 07/01/2021] [Indexed: 12/29/2022]
Abstract
Continuous subcutaneous insulin infusion (CSII) is an intensive insulin therapy for patients with type 2 diabetes mellitus (T2DM) who have poor glycemic control, but its effect on T2DM-related bone disorder is unclear. This study described the possible mechanisms by which CSII affects bone remodeling, structures, and mechanical properties in T2DM rats. Herein, male rats (6-week-old) were assigned randomly to 4-week and 8-week administration groups, each of which included healthy control, T2DM, CSII, and Placebo groups. Then, metabolic markers, bone formation and resorption markers in serum and protein expressions of osteoclastogenesis regulators in tibias were detected. Meanwhile, microstructures, nanostructures, macro-mechanical properties, nano-mechanical properties, and mineral compositions in femurs were evaluated. 4-week later, CSII treatment restored circulatory metabolites, bone formation and resorption markers, and osteoclastogenesis regulators, improved certain bone microstructures, decreased matrix mineralization, and increased fracture toughness in T2DM rats. For 8-week group, CSII treatment restored bone formation and resorption markers, osteoclastogenesis regulators, and bone microstructures, besides improved bone mineral compositions and nanostructures, enhanced bone mechanical properties such as fracture toughness, maximum load, elastic modulus, indentation modulus and hardness. Collectively, 8-week CSII treatment is more conducive to ameliorating bone structures and mechanical properties in T2DM rats by regulating bone remodeling compared with 4-week CSII treatment, thus improving whole bone quality and providing valuable information for clinical prevention and treatment of T2DM-related bone disorders.
Collapse
Affiliation(s)
- Peipei Shi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Aiqi Hou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chenchen Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaodan Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Haipeng Cen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaorong Hu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
39
|
Zhuo M, Hawley CE, Paik JM, Bessette LG, Wexler DJ, Kim DH, Tong AY, Kim SC, Patorno E. Association of Sodium-Glucose Cotransporter-2 Inhibitors With Fracture Risk in Older Adults With Type 2 Diabetes. JAMA Netw Open 2021; 4:e2130762. [PMID: 34705014 PMCID: PMC8552056 DOI: 10.1001/jamanetworkopen.2021.30762] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IMPORTANCE Whether sodium-glucose cotransporter-2 inhibitors (SGLT-2i) are associated with an increased risk of fractures in older adults with type 2 diabetes (T2D) outside of clinical trials remains unknown. OBJECTIVE To examine the association of incident fracture among older adults with T2D with initiating an SGLT-2i compared with initiating a dipeptidyl peptidase 4 inhibitor (DPP-4i) or a glucagon-like peptide 1 receptor agonist (GLP-1RA). DESIGN, SETTING, AND PARTICIPANTS This is a population-based, new-user cohort study including older adults (aged ≥65 years) with T2D enrolled in Medicare fee-for-service from April 2013 to December 2017. Data analysis was performed from October 2020 to April 2021. EXPOSURES New users of an SGLT-2i, DPP-4i, or GLP-1RA without a previous fracture were matched in a 1:1:1 ratio using 3-way propensity score matching. MAIN OUTCOMES AND MEASURES The primary outcome was a composite end point of nontraumatic pelvic fracture, hip fracture requiring surgery, or humerus, radius, or ulna fracture requiring intervention within 30 days. After 3-way 1:1:1 propensity score matching, multivariable Cox proportional hazards regression models were used to generate hazard ratios (HRs) for SGLT-2i compared with DPP-4i and GLP-1RA and Kaplan-Meier curves to visualize fracture risk over time across groups. RESULTS Of 466 933 new initiators of study drugs, 62 454 patients were new SGLT-2i users. After 3-way matching, 45 889 (73%) new SGLT-2i users were matched to new users of DPP-4i and GLP-1RA, yielding a cohort of 137 667 patients (mean [SD] age, 72 [5] years; 64 126 men [47%]) matched 1:1:1 for analyses. There was no difference in the risk of fracture in SGLT-2i users compared with DPP-4i users (HR, 0.90; 95% CI, 0.73-1.11) or GLP-1RA users (HR, 1.00; 95% CI, 0.80-1.25). Results were consistent across categories of sex, frailty (nonfrail, prefrail, and frail), age (<75 and ≥75 years), and insulin use (baseline users and nonusers). CONCLUSIONS AND RELEVANCE In this nationwide Medicare cohort, initiating an SGLT-2i was not associated with an increased risk of fracture in older adults with T2D compared with initiating a DPP-4i or GLP-1RA, with consistent results across categories of frailty, age, and insulin use. These findings add to the evidence base evaluating the potential risks associated with SGLT-2i use for older adults outside of randomized clinical trials.
Collapse
Affiliation(s)
- Min Zhuo
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Chelsea E. Hawley
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- New England Geriatric Research, Education and Clinical Center, VA Bedford Healthcare System, Bedford, Massachusetts
| | - Julie M. Paik
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- New England Geriatric Research, Education and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts
| | - Lily G. Bessette
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Deborah J. Wexler
- Diabetes Center, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Dae H. Kim
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Marcus Institute for Aging Research, Hebrew Senior Life, Harvard Medical School, Boston, Massachusetts
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Angela Y. Tong
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seoyoung C. Kim
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elisabetta Patorno
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Chiodini I, Gaudio A, Palermo A, Napoli N, Vescini F, Falchetti A, Merlotti D, Eller-Vainicher C, Carnevale V, Scillitani A, Pugliese G, Rendina D, Salcuni A, Bertoldo F, Gonnelli S, Nuti R, Toscano V, Triggiani V, Cenci S, Gennari L. Management of bone fragility in type 2 diabetes: Perspective from an interdisciplinary expert panel. Nutr Metab Cardiovasc Dis 2021; 31:2210-2233. [PMID: 34059385 DOI: 10.1016/j.numecd.2021.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
AIM Bone fragility is increasingly recognized as a relevant complication of type 2 diabetes (T2D) and diabetic patients with fragility fractures have higher mortality rates than non diabetic individuals or diabetic patients without fractures. However, current diagnostic approaches for fracture risk stratification, such as bone mineral density measurement or the use of risk assessment algorithms, largely underestimate fracture risk in T2D patients. A multidisciplinary expert panel was established in order to in order to formulate clinical consensus recommendations on bone health assessment and management of fracture risk in patients with T2D. DATA SYNTHESIS The following key questions were addressed: a) which are the risk factors for bone fragility in T2D?, b) which diagnostic procedures can be currently used to stratify fracture risk in T2D patients?, c) which are the effects of antidiabetic treatments on bone?, and d) how to prevent and treat bone fragility in T2D patients? Based on the available data members of this panel suggest that the stratification of fracture risk in patients with diabetes should firstly rely on the presence of a previous fragility fracture and on the individual risk profile, with the inclusion of T2D-specific risk factors (namely T2D duration above 10 yrs, presence of chronic T2D complications, use of insulin or thiazolidinediones and persistent HbA1c levels above 8% for at least 1 year). Two independent diagnostic approaches were then suggested in the presence or the absence of a prevalent fragility fracture, respectively. CONCLUSIONS Clinical trials in T2D patients at risk for fragility fractures are needed to determine the efficacy and safety of available antiresorptive and anabolic agents in this specific setting.
Collapse
Affiliation(s)
- Iacopo Chiodini
- Unit for Bone Metabolism Diseases and Diabetes and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Medical Science and Community Health, University of Milan, Milan, Italy
| | - Agostino Gaudio
- Department of Clinical and Experimental Medicine, University of Catania, University Hospital "G. Rodolico" Catania, Italy
| | - Andrea Palermo
- Department of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
| | - Nicola Napoli
- Department of Endocrinology and Diabetes, University Campus Bio-Medico, Rome, Italy
| | - Fabio Vescini
- Endocrinology and Metabolism Unit, University-Hospital S. M. Misericordia of Udine, Italy
| | - Alberto Falchetti
- Unit for Bone Metabolism Diseases and Diabetes and Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy; EndOsMet, Villa Donatello Private Hospital, Florence, Italy
| | - Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Vincenzo Carnevale
- Unit of Internal Medicine, "Casa Sollievo della Sofferenza" Hospital, IRCCS, San Giovanni Rotondo, (FG), Italy
| | - Alfredo Scillitani
- Unit of Endocrinology, "Casa Sollievo della Sofferenza" Hospital, IRCCS, San Giovanni Rotondo, (FG), Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, and Diabetes Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Domenico Rendina
- Department of Clinical Medicine and Surgery, "Federico II" University of Naples, Naples, Italy
| | - Antonio Salcuni
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesco Bertoldo
- Department of Medicine, University of Verona, Policlinico GB Rossi, Verona, Italy
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Ranuccio Nuti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Vincenzo Toscano
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", Bari, Italy
| | - Simone Cenci
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy.
| |
Collapse
|
41
|
Hansen MS, Frost M. Alliances of the gut and bone axis. Semin Cell Dev Biol 2021; 123:74-81. [PMID: 34303607 DOI: 10.1016/j.semcdb.2021.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Gut hormones secreted from enteroendocrine cells following nutrient ingestion modulate metabolic processes including glucose homeostasis and food intake, and several of these gut hormones are involved in the regulation of the energy demanding process of bone remodelling. Here, we review the gut hormones considered or known to be involved in the gut-bone crosstalk and their role in orchestrating adaptions of bone formation and resorption as demonstrated in cellular and physiological experiments and clinical trials. Understanding the physiology and pathophysiology of the gut-bone axis may identify adverse effects of investigational drugs aimed to treat metabolic diseases such as type 2 diabetes and obesity and new therapeutic candidates for the treatment of bone diseases.
Collapse
Affiliation(s)
- Morten Steen Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark.
| |
Collapse
|
42
|
Kreitman A, Schneider SH, Hao L, Schlussel Y, Bello NT, Shapses SA. Reduced postprandial bone resorption and greater rise in GLP-1 in overweight and obese individuals after an α-glucosidase inhibitor: a double-blinded randomized crossover trial. Osteoporos Int 2021; 32:1379-1386. [PMID: 33432459 DOI: 10.1007/s00198-020-05791-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
UNLABELLED When taken with a meal, α-glucosidase inhibitors (α-GI) reduce the rise in postprandial glucose and increase glucagon-like peptide-1 (GLP-1), and this may lower bone turnover. In this study, a salacinol-type α-GI increased GLP-1 and markedly reduced postprandial bone resorption compared to placebo, suggesting it could have implications for bone health. INTRODUCTION Animal and clinical trials indicate that α-glucosidase inhibitors attenuate postprandial glycemic indices and increase secretion of GLP-1. In addition, GLP-1 acts on bone by inhibiting resorption. The goal in this study was to determine if a salacinol α-GI alters postprandial bone turnover and can be explained by changes in serum GLP-1. METHODS In this double-blind, placebo-controlled crossover study, healthy overweight/obese adults (body mass index 29.0 ± 3.8 kg/m2; 21-59 years; n = 21) received a fixed breakfast and, in random order, were administered Salacia chinensis (SC; 500 mg) or placebo. A fasting blood sample was taken before and at regular intervals for 3 h after the meal. Serum was measured for bone turnover markers, C-terminal telopeptide of type I collagen (CTX) and osteocalcin, and for glycemic indices and gut peptides. RESULTS Compared to placebo, SC attenuated the bone resorption marker, CTX, at 60, 90, and 120 min (p < 0.05) after the meal, and decreased osteocalcin, at 180 min (p < 0.05). As expected, SC attenuated the postprandial rise in glucose compared with placebo, whereas GLP-1 was increased at 60 min (p < 0.05) with SC. Serum GLP-1 explained 41% of the variance for change in postprandial CTX (p < 0.05). CONCLUSION This study indicates that attenuating postprandial glycemic indices, with an α-GI, markedly decreases postprandial bone resorption and can be explained by the rise in GLP-1. Future studies should determine whether longer term α-GI use benefits bone health.
Collapse
Affiliation(s)
- A Kreitman
- Department of Nutritional Sciences, Rutgers University, 59 Dudley RD, New Brunswick, NJ, 08901, USA
| | - S H Schneider
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Rutgers-Robert Wood Johnson University Hospital, New Brunswick, NJ, 08901, USA
- NJ-Institute of Food, Nutrition and Health, New Brunswick, NJ, 08901, USA
| | - L Hao
- Department of Nutritional Sciences, Rutgers University, 59 Dudley RD, New Brunswick, NJ, 08901, USA
- NJ-Institute of Food, Nutrition and Health, New Brunswick, NJ, 08901, USA
| | - Y Schlussel
- Department of Nutritional Sciences, Rutgers University, 59 Dudley RD, New Brunswick, NJ, 08901, USA
| | - N T Bello
- NJ-Institute of Food, Nutrition and Health, New Brunswick, NJ, 08901, USA
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - S A Shapses
- Department of Nutritional Sciences, Rutgers University, 59 Dudley RD, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Rutgers-Robert Wood Johnson University Hospital, New Brunswick, NJ, 08901, USA.
- NJ-Institute of Food, Nutrition and Health, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
43
|
Bjørnshave A, Lykkeboe S, Hartmann B, Holst JJ, Hermansen K, Starup-Linde J. Effects of a whey protein pre-meal on bone turnover in participants with and without type 2 diabetes-A post hoc analysis of a randomised, controlled, crossover trial. Diabet Med 2021; 38:e14471. [PMID: 33259643 DOI: 10.1111/dme.14471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/28/2022]
Abstract
AIMS Whey protein may improve bone turnover and have anti-osteoporotic effects. The aim of the present randomised, controlled, crossover trial was to evaluate the effects of a whey protein pre-meal on bone turnover in people with type 2 diabetes and controls. METHODS Two groups, matched on sex, age and body mass index, comprising 12 participants with and 12 participants without type 2 diabetes were randomly given a pre-meal of whey protein (20 g) or water, which was consumed 15 min before a fat-rich meal or a fat-rich meal supplemented with 20 g whey protein. During a 360-min period, postprandial responses in bone turnover were examined. RESULTS Osteocalcin, P-procollagen type 1 amino terminal propeptide (P1NP), C-terminal cross-linked telopeptide of type-I collagen (CTX) and parathyroid hormone (PTH) were lower at baseline and PTH, osteocalcin and P1NP were lower during the entire postprandial phase in participants with type 2 diabetes than in participants without type 2 diabetes. We observed similar postprandial responses in bone turnover markers between persons with and without type 2 diabetes. We observed no effect of the whey protein or the water pre-meal on bone turnover markers. The changes were unrelated to secretion of hormones of the gut-bone axis. CONCLUSION Osteocalcin, P1NP, CTX and PTH all decreased following meal ingestion. We observed no convincing effect of a whey protein pre-meal on bone turnover. However, these results confirm that people with type 2 diabetes have low bone turnover and that the decreased bone formation markers are also extend into the postprandial responses.
Collapse
Affiliation(s)
- Ann Bjørnshave
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Simon Lykkeboe
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Bolette Hartmann
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
| | - Jakob Starup-Linde
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
44
|
Koromani F, Ghatan S, van Hoek M, Zillikens MC, Oei EHG, Rivadeneira F, Oei L. Type 2 Diabetes Mellitus and Vertebral Fracture Risk. Curr Osteoporos Rep 2021; 19:50-57. [PMID: 33432548 PMCID: PMC7935814 DOI: 10.1007/s11914-020-00646-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the recently published evidence concerning vertebral fracture risk in individuals with diabetes mellitus. RECENT FINDINGS Vertebral fracture risk is increased in individuals with T2DM. The presence of vertebral fractures in T2DM is associated with increased non-vertebral fracture risk and mortality. TBS could be helpful to estimate vertebral fracture risk in individuals with T2DM. An increased amount of bone marrow fat has been implicated in bone fragility in T2DM. Results from two recent studies show that both teriparatide and denosumab are effective in reducing vertebral fracture risk also in individuals with T2DM. Individuals with T2DM could benefit from systematic screening in the clinic for presence of vertebral fractures.
Collapse
Affiliation(s)
- Fjorda Koromani
- Department of Internal Medicine, Erasmus University Medical Center, PO Box 2040-Na27-24, 3000 CA, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Samuel Ghatan
- Department of Internal Medicine, Erasmus University Medical Center, PO Box 2040-Na27-24, 3000 CA, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mandy van Hoek
- Department of Internal Medicine, Erasmus University Medical Center, PO Box 2040-Na27-24, 3000 CA, Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, PO Box 2040-Na27-24, 3000 CA, Rotterdam, The Netherlands
| | - Edwin H G Oei
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, PO Box 2040-Na27-24, 3000 CA, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ling Oei
- Department of Internal Medicine, Erasmus University Medical Center, PO Box 2040-Na27-24, 3000 CA, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
45
|
Al-Mashhadi Z, Viggers R, Fuglsang-Nielsen R, de Vries F, van den Bergh JP, Harsløf T, Langdahl B, Gregersen S, Starup-Linde J. Glucose-Lowering Drugs and Fracture Risk-a Systematic Review. Curr Osteoporos Rep 2020; 18:737-758. [PMID: 33165875 DOI: 10.1007/s11914-020-00638-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Diabetes mellitus (DM) is associated with increased fracture risk. The aim of this systematic review was to examine the effects of different classes of glucose-lowering drugs on fracture risk in patients with type 2 DM. The heterogeneity of the included studies did not allow formal statistical analyses. RECENT FINDINGS Sixty studies were included in the review. Metformin, dipeptidylpeptidase-IV inhibitors, glucagon-like peptide-1 receptor agonists, and sodium-glucose cotransporter 2-inhibitors do not appear to increase fracture risk. Results for insulin and sulphonylureas were more disparate, although there may be an increased fracture risk related to hypoglycemia and falls with these treatments. Glitazones were consistently associated with increased fracture risk in women, although the evidence was sparser in men. New glucose-lowering drugs are continuously being developed and better understanding of these is leading to changes in prescription patterns. Our findings warrant continued research on the effects of glucose-lowering drugs on fracture risk, elucidating the class-specific effects of these drugs.
Collapse
Affiliation(s)
- Z Al-Mashhadi
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - R Viggers
- Steno Diabetes Center North Jutland, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - R Fuglsang-Nielsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Internal Medicine, Regional Hospital Horsens, Horsens, Denmark
| | - F de Vries
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - J P van den Bergh
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Internal Medicine, VieCuri Medical Centre, Venlo, The Netherlands
- Faculty of Medicine and Life Sciences, University Hasselt, Hasselt, Belgium
| | - T Harsløf
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8220, Aarhus N, Denmark
| | - B Langdahl
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8220, Aarhus N, Denmark
| | - S Gregersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8220, Aarhus N, Denmark
| | - Jakob Starup-Linde
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8220, Aarhus N, Denmark.
| |
Collapse
|