1
|
Faraj M, Schwartz AV, Burghardt AJ, Black D, Orwoll E, Strotmeyer ES, Vittinghoff E, Fogolari M, Angeletti S, Banfi G, Lombardi G, Woods G, Lui LY, Bouxsein M, Napoli N. Risk Factors for Bone Microarchitecture Impairments in Older Men With Type 2 Diabetes-The MrOS Study. J Clin Endocrinol Metab 2025; 110:e1660-e1669. [PMID: 38994585 PMCID: PMC12012815 DOI: 10.1210/clinem/dgae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
CONTEXT Impaired bone microarchitecture, assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT), may contribute to bone fragility in type 2 diabetes (T2DM) but data on men are lacking. OBJECTIVE To investigate the association between T2DM and HR-pQCT parameters in older men. METHODS HR-pQCT scans were acquired on 1794 participants in the Osteoporotic Fractures in Men study. T2DM was ascertained by self-report or medication use. Linear regression models, adjusted for age, race, body mass index, limb length, clinic site, and oral corticosteroid use, were used to compare HR-pQCT parameters by diabetes status. RESULTS Among 1777 men, 290 had T2DM (mean age, 84.4 years). T2DM men had smaller total cross-sectional area at the distal tibia (P = .028) and diaphyseal tibia (P = .025), and smaller cortical area at the distal (P = .009) and diaphyseal tibia (P = .023). Trabecular indices and cortical porosity were similar between T2DM and non-T2DM. Among men with T2DM, in a model including HbA1c, diabetes duration, and insulin use, diabetes duration ≥ 10 years, compared with <10 years, was significantly associated with higher cortical porosity but with higher trabecular thickness at the distal radius. Insulin use was significantly associated with lower cortical area and thickness at the distal radius and diaphyseal tibia and lower failure load at all 3 scan sites. Lower cortical area, cortical thickness, total bone mineral density, cortical bone mineral density, and failure load of the distal sites were associated with increased risk of incident nonvertebral fracture in T2DM. CONCLUSION Older men with T2DM have smaller bone size compared to those without T2DM, which may contribute to diabetic skeletal fragility. Longer diabetes duration was associated with higher cortical porosity and insulin use with cortical bone deficits and lower failure load.
Collapse
Affiliation(s)
- Malak Faraj
- Research Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Andrew J Burghardt
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Dennis Black
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Eric Orwoll
- Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elsa S Strotmeyer
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marta Fogolari
- Unit of Clinical Laboratory Science, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Silvia Angeletti
- Laboratory Unit of Fondazione, Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20161 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Ospedale Galeazzi-Sant’Ambrogio, 20161 Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland
| | - Gina Woods
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Li-Yung Lui
- Research Institute, California Pacific Medical Center, San Francisco, CA 94158, USA
| | - Mary Bouxsein
- Center for Advanced Orthopedic Studies, BIDMC, Harvard Medical School, Boston, MA 02215, USA
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Nicola Napoli
- Research Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, 00128 Rome, Italy
- Operative Research Unit of Osteometabolic and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| |
Collapse
|
2
|
Andreasen CM, Wölfel EM, Ejersted C, Andersen TL, Frost M. Type 2 diabetes patients exhibit delayed but coupled bone remodelling, maintaining cortical porosity comparable to healthy controls: A histomorphometric analysis of trans-iliac bone biopsies. Bone 2025; 193:117412. [PMID: 39884487 DOI: 10.1016/j.bone.2025.117412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/06/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
OBJECTIVE Fracture risk is increased in longstanding type 2 diabetes (T2D). High-resolution peripheral quantitative CT scans have demonstrated higher cortical porosity in T2D complicated by microvascular disease (MVD). We investigated if cortical bone resorption is followed by inadequate bone formation in individuals with T2D complicated by MVD. METHODS Thirty-five adult men and women with T2D were recruited from outpatient clinics and through public advertisement. All participants had at least one previous measure of c-peptide >700, a negative GAD antibody test, and 13 had known microvascular disease status. Trans iliac crest bone biopsies were collected for histomorphometric analysis. Glucose control was assessed using HbA1c. Additionally, trans iliac bone specimens from 10 individuals without T2D were included as controls. RESULTS Following quality assessment, samples from 30 T2D and 10 controls were used for histomorphometric analyses of cortical bone remodelling. The final study population included 23 men and 7 postmenopausal women with a mean age of 65.8 years for the T2D-MVD group (CI95% 61.2-70.3) and 65.2 years in the T2D + MVD group (CI95% 59.6-70.9), and a mean T2D disease duration of 16.9 years. Seventeen had MVD (57 %). The controls included 5 men and 5 women with a mean age of 64.7 years (CI95% 58.5-70.9). The area, diameter, and density of cortical pores were the same in cases with and without MVD, but the pore diameter was lower than controls. While T2D had significantly more eroded-formative pores compared to controls, there were no significant differences in the proportion of eroded and formative pores between the groups. In quiescent pores/osteons, the osteon diameter and wall thickness were larger in T2D groups than controls. CONCLUSION Cortical bone porosity was not increased in individuals with T2D complicated by MVD. However, an enhanced prevalence of eroded-formative pores and increased osteon diameter concur with a slightly prolonged reversal-resorption phase in T2D irrespective of the presence of MVD.
Collapse
Affiliation(s)
- C M Andreasen
- Molecular Bone Histology Laboratory (MBH lab), Research Unit of Pathology, Dept. of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; Department of Pathology, Odense University Hospital, DK-5000 Odense C, Denmark.
| | - E M Wölfel
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - C Ejersted
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - T L Andersen
- Molecular Bone Histology Laboratory (MBH lab), Research Unit of Pathology, Dept. of Clinical Research, University of Southern Denmark, DK-5000 Odense C, Denmark; Department of Pathology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - M Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense C, Denmark; Steno Diabetes Centre Odense, Odense University Hospital, DK-5000 Odense C, Denmark
| |
Collapse
|
3
|
Brossfield AV, McMahon DJ, Fernando J, Omeragic B, Majeed R, Agarwal S, Sroga GE, Wang B, Vashishth D, Rubin MR. The Effects of the AGE Inhibitor Pyridoxamine on Bone in Older Women With Type 2 Diabetes: A Randomized Clinical Trial. J Clin Endocrinol Metab 2025; 110:961-972. [PMID: 39376018 DOI: 10.1210/clinem/dgae700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/03/2024] [Accepted: 10/06/2024] [Indexed: 10/09/2024]
Abstract
CONTEXT Patients with type 2 diabetes (T2D) have reduced bone turnover and increased fractures. Advanced glycation end products (AGEs) impair osteoblasts and are implicated in diabetic fractures. Pyridoxamine (PM) is a vitamin B6 metabolite that inhibits formation of AGEs. OBJECTIVE We hypothesized that PM treatment in older patients with T2D, by inhibiting AGEs, would increase bone formation. METHODS This was a double-blind randomized controlled trial at an academic center. Older women with T2D were included (n = 55). Oral PM 200 mg twice daily for 1 year was given. The primary outcome was the change in the bone formation marker P1NP. Other outcomes were changes in bone resorption, bone mineral density (BMD), HbA1c, and skin autofluorescence (SAF), and in a bone biopsy subgroup, the correlation between bone fluorescent AGEs (fAGEs) and SAF. RESULTS P1NP increased 23.0% with PM (95% CI 9, 37; within group P = .028) vs 4.1% with placebo (-9, 17; within group P = .576; between groups P = .056). BMD increased at the femoral neck (PM 2.6 ± 5% vs placebo -0.9 ± 4%; between groups P = .007). Bone resorption markers and SAF did not change. HbA1c decreased (PM -0.38 ± 0.7% vs placebo 0.05 ± 1.7%; between groups P = .04). Within the PM group, the HbA1c change correlated inversely with the % P1NP change (r = -0.50, P = .034). Cortical bone biopsy fAGEs correlated with SAF (r = 0.86, P = .001). Adverse events were similar between groups. CONCLUSION PM tended to increase P1NP in older women with T2D, as well as increasing bone density and reducing HbA1c. Further studies are needed to investigate the potential of PM as a disease mechanism-directed approach to reduce fractures in T2D.
Collapse
Affiliation(s)
- Aiden V Brossfield
- Metabolic Bone Disease Unit, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donald J McMahon
- Metabolic Bone Disease Unit, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jason Fernando
- Metabolic Bone Disease Unit, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Beatriz Omeragic
- Metabolic Bone Disease Unit, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rukshana Majeed
- Metabolic Bone Disease Unit, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sanchita Agarwal
- Metabolic Bone Disease Unit, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Grazyna E Sroga
- Department of Biomedical Engineering, Shirley Ann Jackson, PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Bowen Wang
- Department of Biomedical Engineering, Shirley Ann Jackson, PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Shirley Ann Jackson, PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Rensselaer-Icahn School of Medicine Center for Engineering and Precision Medicine, New York, NY 10029, USA
| | - Mishaela R Rubin
- Metabolic Bone Disease Unit, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
4
|
Sihota P, Kumar S, Dhaliwal R, Uniyal P, Yadav RN, Dhiman V, Neradi D, Karn S, Sapara M, Sharma S, Aggarwal S, Goni VG, Mehandia V, Busse B, Vashishth D, Bhadada SK, Kumar N. Multi-scale inferomedial femoral neck bone quality in type 2 diabetes patients with fragility fracture. Bone 2025; 192:117375. [PMID: 39694129 DOI: 10.1016/j.bone.2024.117375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Both trabecular and cortical bone undergo changes at multiple scales. We previously demonstrated the multi-scale changes in trabecular bone quality that contribute to bone fragility in type 2 diabetes (T2D). The link between increased fragility in T2D and multi-scale changes in cortical bone and their interaction with glycation remains unclear. This study presents, first-ever, multi-scale cortical bone quality parameters in T2D patients after their first hip fracture. The study objective was to determine the association between cortical porosity (Ct.Po.), mechanical, material, and bone compositional properties in T2D. Inferomedial femoral neck (FN) bone tissue specimens were collected from patients (n = 10 with T2D, n = 25 age- and sex-matched non-diabetes controls) who underwent hip replacement surgery following the first hip fragility fracture. Bone mineral density at FN was found to be similar between groups. In T2D, Ct.Po was higher (p = 0.038), while ultimate stress (p = 0.021), ultimate strain (p = 0.040), post-yield strain (p = 0.011), toughness (p = 0.005), yield energy (p = 0.003), and post-yield energy (p = 0.004) were notably lower. Tissue compositional differences included lower gravimetric mineral/matrix (p = 0.017), higher non-enzymatic collagen cross-link ratio (NE-xLR) (p = 0.049) and higher sugar/matrix ratio (p = 0.042) in T2D. Fluorescent advanced glycation end-products (fAGEs) content was higher in T2D bone (p = 0.043). At the mesoscale, the fAGEs in the bone matrix are inversely related to the yield- and ultimate strain of T2D bone, and NE-xLR is negatively correlated with yield- and ultimate- stress in the T2D group. In conclusion, study findings demonstrate that elevated glycation weakens the mechanical integrity of cortical bone by reducing its ability to absorb energy and resist deformation, thereby contributing to bone fragility in T2D. The strong association of fAGEs with lower yield strain, along with the association of NE-xLR with lower yield- and ultimate stress, establishes a causal link between AGEs and the deterioration of cortical bone mechanical properties. These findings underscore the need for strategies targeting glycation and collagen quality to mitigate fracture risk in T2D patients.
Collapse
Affiliation(s)
- Praveer Sihota
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 22529, Germany
| | - Saroj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Ruban Dhaliwal
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Piyush Uniyal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Ram Naresh Yadav
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Vandana Dhiman
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deepak Neradi
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Shailesh Karn
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Mohin Sapara
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sidhartha Sharma
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sameer Aggarwal
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vijay G Goni
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vishwajeet Mehandia
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg 22529, Germany
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India; Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
5
|
Vashishth D, Dhaliwal R, Rubin M. AGEs (Advanced Glycation End-products) in bone come of age. Bone 2025; 190:117301. [PMID: 39442854 DOI: 10.1016/j.bone.2024.117301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Advanced Glycation End-products (AGEs) are seen in long-lived proteins and were not expected to accumulate in the bone that turnovers and renews itself. Here, we provide a commentary on the contrary, highlighting the Special Issue of AGEs in Bone. An outcome of hyperglycemia and increased oxidative stress, AGEs form and accumulate by altering the bone resorption and formation processes. Accumulation of various AGEs species in bone increases bone fragility through the stiffening of the collagen network and, potentially, through the changes in collagen-mineral interactions. Evidence from both preclinical and clinical studies is leading to new translational approaches wherein measurement, inhibition, or removal of AGEs show the potential to diagnose, manage, and treat bone fragility associated with multiple conditions and diseases.
Collapse
Affiliation(s)
- Deepak Vashishth
- Shirley Ann Jackson PhD. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Rensselaer - Icahn School of Medicine at Mount Sinai Center for Engineering and Precision Medicine, New York, NY, United States of America.
| | - Ruban Dhaliwal
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Mishaela Rubin
- Department of Medicine, Columbia Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States of America
| |
Collapse
|
6
|
Sroga GE, Vashishth D. In vivo glycation-interplay between oxidant and carbonyl stress in bone. JBMR Plus 2024; 8:ziae110. [PMID: 39386996 PMCID: PMC11458925 DOI: 10.1093/jbmrpl/ziae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/18/2024] [Accepted: 07/28/2024] [Indexed: 10/12/2024] Open
Abstract
Metabolic syndromes (eg, obesity, type 2 diabetes (T2D), atherosclerosis, and neurodegenerative diseases) and aging, they all have a strong component of carbonyl and reductive-oxidative (redox) stress. Reactive carbonyl (RCS) and oxidant (ROS) stress species are commonly generated as products or byproducts of cellular metabolism or are derived from the environment. RCS and ROS can play a dual role in living organisms. Some RCS and ROS function as signaling molecules, which control cellular defenses against biological and environmental assaults. However, due to their high reactivity, RCS and ROS inadvertently interact with different cellular and extracellular components, which can lead to the formation of undesired posttranslational modifications of bone matrix proteins. These are advanced glycation (AGEs) and glycoxidation (AGOEs) end products generated in vivo by non-enzymatic amino-carbonyl reactions. In this review, metabolic processes involved in generation of AGEs and AGOEs within and on protein surfaces including extracellular bone matrix are discussed from the perspective of cellular metabolism and biochemistry of certain metabolic syndromes. The impact of AGEs and AGOEs on some characteristics of mineral is also discussed. Different therapeutic approaches with the potential to prevent the formation of RCS, ROS, and the resulting formation of AGEs and AGOEs driven by these chemicals are also briefly reviewed. These are antioxidants, scavenging agents of reactive species, and newly emerging technologies for the development of synthetic detoxifying systems. Further research in the area of in vivo glycation and glycoxidation should lead to the development of diverse new strategies for halting the progression of metabolic complications before irreversible damage to body tissues materializes.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Shirley Ann Jackson PhD Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Engineering and Precision Medicine, Rensselaer-Icahn School of Medicine at Mount Sinai, 619 West 54th Street, New York, NY 10019, United States
| |
Collapse
|
7
|
Leungsuwan DS, Chandran M. Bone Fragility in Diabetes and its Management: A Narrative Review. Drugs 2024; 84:1111-1134. [PMID: 39103693 DOI: 10.1007/s40265-024-02078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Bone fragility is a serious yet under-recognised complication of diabetes mellitus (DM) that is associated with significant morbidity and mortality. Multiple complex pathophysiological mechanisms mediating bone fragility amongst DM patients have been proposed and identified. Fracture risk in both type 1 diabetes (T1D) and type 2 diabetes (T2D) continues to be understated and underestimated by conventional risk assessment tools, posing an additional challenge to the identification of at-risk patients who may benefit from earlier intervention or preventive strategies. Over the years, an increasing body of evidence has demonstrated the efficacy of osteo-pharmacological agents in managing skeletal fragility in DM. This review seeks to elaborate on the risk of bone fragility in DM, the underlying pathogenesis and skeletal alterations, the approach to fracture risk assessment in DM, management strategies and therapeutic options.
Collapse
Affiliation(s)
| | - Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, 20 College Road, ACADEMIA, Singapore, 169856, Singapore.
- DUKE NUS Medical School, Singapore, Singapore.
| |
Collapse
|
8
|
Koh NYY, Miszkiewicz JJ, Fac ML, Wee NKY, Sims NA. Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone. Endocr Rev 2024; 45:493-520. [PMID: 38315213 PMCID: PMC11244217 DOI: 10.1210/endrev/bnae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Preclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting. We describe here how trabecular and cortical bone structure develop, are maintained, and degenerate with aging in mice, rats, and humans, and how cortical bone structure is changed in some preclinical models of endocrine conditions (eg, postmenopausal osteoporosis, chronic kidney disease, hyperparathyroidism, diabetes). We provide examples of preclinical models used to identify and test current therapies for osteoporosis, and discuss common concerns raised when comparing rodent preclinical models to the human skeleton. We focus especially on cortical bone, because it differs between small and larger mammals in its organizational structure. We discuss mechanisms common to mouse and human controlling cortical bone strength and structure, including recent examples revealing genetic contributors to cortical porosity and osteocyte network configurations during growth, maturity, and aging. We conclude with guidelines for clear reporting on mouse models with a goal for better consistency in the use and interpretation of these models.
Collapse
Affiliation(s)
- Natalie Y Y Koh
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Justyna J Miszkiewicz
- School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Vertebrate Evolution Development and Ecology, Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Mary Louise Fac
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie K Y Wee
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
9
|
Löffler MT, Wu PH, Pirmoazen AM, Joseph GB, Stewart JM, Saeed I, Liu J, Schafer AL, Schwartz AV, Link TM, Kazakia GJ. Microvascular disease not type 2 diabetes is associated with increased cortical porosity: A study of cortical bone microstructure and intracortical vessel characteristics. Bone Rep 2024; 20:101745. [PMID: 38444830 PMCID: PMC10912053 DOI: 10.1016/j.bonr.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/05/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Fracture risk is elevated in type 2 diabetes (T2D) despite normal or even high bone mineral density (BMD). Microvascular disease (MVD) is a diabetic complication, but also associated with other diseases, for example chronic kidney disease. We hypothesize that increased fracture risk in T2D could be due to increased cortical porosity (Ct.Po) driven by expansion of the vascular network in MVD. The purpose of this study was to investigate associations of T2D and MVD with cortical microstructure and intracortical vessel parameters. Methods The study group consisted of 75 participants (38 with T2D and 37 without T2D). High-resolution peripheral quantitative CT (HR-pQCT) and dynamic contrast-enhanced MRI (DCE-MRI) of the ultra-distal tibia were performed to assess cortical bone and intracortical vessels (outcomes). MVD was defined as ≥1 manifestation including neuropathy, nephropathy, or retinopathy based on clinical exams in all participants. Adjusted means of outcomes were compared between groups with/without T2D or between participants with/without MVD in both groups using linear regression models adjusting for age, sex, BMI, and T2D as applicable. Results MVD was found in 21 (55 %) participants with T2D and in 9 (24 %) participants without T2D. In T2D, cortical pore diameter (Ct.Po.Dm) and diameter distribution (Ct.Po.Dm.SD) were significantly higher by 14.6 μm (3.6 %, 95 % confidence interval [CI]: 2.70, 26.5 μm, p = 0.017) and by 8.73 μm (4.8 %, CI: 0.79, 16.7 μm, p = 0.032), respectively. In MVD, but not in T2D, cortical porosity was significantly higher by 2.25 % (relative increase = 12.9 %, CI: 0.53, 3.97 %, p = 0.011) and cortical BMD (Ct.BMD) was significantly lower by -43.6 mg/cm3 (2.6 %, CI: -77.4, -9.81 mg/cm3, p = 0.012). In T2D, vessel volume and vessel diameter were significantly higher by 0.02 mm3 (13.3 %, CI: 0.004, 0.04 mm3, p = 0.017) and 15.4 μm (2.9 %, CI: 0.42, 30.4 μm, p = 0.044), respectively. In MVD, vessel density was significantly higher by 0.11 mm-3 (17.8 %, CI: 0.01, 0.21 mm-3, p = 0.033) and vessel volume and diameter were significantly lower by -0.02 mm3 (13.7 %, CI: -0.04, -0.004 mm3, p = 0.015) and - 14.6 μm (2.8 %, CI: -29.1, -0.11 μm, p = 0.048), respectively. Conclusions The presence of MVD, rather than T2D, was associated with increased cortical porosity. Increased porosity in MVD was coupled with a larger number of smaller vessels, which could indicate upregulation of neovascularization triggered by ischemia. It is unclear why higher variability and average diameters of pores in T2D were accompanied by larger vessels.
Collapse
Affiliation(s)
- Maximilian T. Löffler
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Po-hung Wu
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Amir M. Pirmoazen
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Gabby B. Joseph
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Jay M. Stewart
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Isra Saeed
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Jing Liu
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Anne L. Schafer
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Ann V. Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| | - Galateia J. Kazakia
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St, Suite 350, San Francisco, CA 94107, USA
| |
Collapse
|
10
|
Cirovic A, Schmidt FN, Vujacic M, Sihota P, Petrovic B, Zivkovic V, Bascarevic Z, Nikolic S, Djonic D, Djuric M, Busse B, Milovanovic P. Lower microhardness along with less heterogeneous mineralization in the femoral neck of individuals with type 2 diabetes mellitus indicates higher fracture risk. JBMR Plus 2024; 8:ziae005. [PMID: 38741606 PMCID: PMC11090112 DOI: 10.1093/jbmrpl/ziae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/02/2024] [Accepted: 01/08/2024] [Indexed: 05/16/2024] Open
Abstract
There is still limited understanding of the microstructural reasons for the higher susceptibility to fractures in individuals with type 2 diabetes mellitus (T2DM). In this study, we examined bone mineralization, osteocyte lacunar parameters, and microhardness of the femoral neck trabeculae in 18 individuals with T2DM who sustained low-energy fracture (T2DMFx: 78 ± 7 years, 15 women and 3 men) and 20 controls (74 ± 7 years, 16 women and 4 men). Femoral necks of the T2DMFx subjects were obtained at a tertiary orthopedic hospital, while those of the controls were collected at autopsy. T2DMFx individuals had lower trabecular microhardness (P = .023) and mineralization heterogeneity (P = .001), and a tendency to a lower bone area with mineralization above 95th percentile (P = .058) than the controls. There were no significant intergroup differences in the numbers of osteocyte lacunae per bone area, mineralized lacunae per bone area, and total lacunae per bone area (each P > .05). After dividing the T2DMFx group based on the presence of vascular complications (VD) to T2DMFxVD (VD present) and T2DMFxNVD (VD absent), we observed that microhardness was particularly reduced in the T2DMFxVD group (vs. control group, P = .02), while mineralization heterogeneity was significantly reduced in both T2DMFx subgroups (T2DMFxNVD vs. control, P = .002; T2DMFxVD vs. control, P = .038). The observed changes in mineralization and microhardness may contribute to the increased hip fracture susceptibility in individuals with T2DM.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), 20246 Hamburg, Germany
| | - Marko Vujacic
- Institute for Orthopedic Surgery “Banjica”; University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Praveer Sihota
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Bojan Petrovic
- Institute for Orthopedic Surgery “Banjica”; University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Vladimir Zivkovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
- Institute of Forensic Medicine, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Zoran Bascarevic
- Institute for Orthopedic Surgery “Banjica”; University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Slobodan Nikolic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
- Institute of Forensic Medicine, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Danijela Djonic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Marija Djuric
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), 20246 Hamburg, Germany
| | - Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Wölfel EM, Bartsch B, Koldehoff J, Fiedler IAK, Dragoun‐Kolibova S, Schmidt FN, Krug J, Lin M, Püschel K, Ondruschka B, Zimmermann EA, Jelitto H, Schneider G, Gludovatz B, Busse B. When Cortical Bone Matrix Properties Are Indiscernible between Elderly Men with and without Type 2 Diabetes, Fracture Resistance Follows Suit. JBMR Plus 2023; 7:e10839. [PMID: 38130774 PMCID: PMC10731113 DOI: 10.1002/jbm4.10839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease affecting bone tissue and leading to increased fracture risk in men and women, independent of bone mineral density (BMD). Thus, bone material quality (i.e., properties that contribute to bone toughness but are not attributed to bone mass or quantity) is suggested to contribute to higher fracture risk in diabetic patients and has been shown to be altered. Fracture toughness properties are assumed to decline with aging and age-related disease, while toughness of human T2DM bone is mostly determined from compression testing of trabecular bone. In this case-control study, we determined fracture resistance in T2DM cortical bone tissue from male individuals in combination with a multiscale approach to assess bone material quality indices. All cortical bone samples stem from male nonosteoporotic individuals and show no significant differences in microstructure in both groups, control and T2DM. Bone material quality analyses reveal that both control and T2DM groups exhibit no significant differences in bone matrix composition assessed with Raman spectroscopy, in BMD distribution determined with quantitative back-scattered electron imaging, and in nanoscale local biomechanical properties assessed via nanoindentation. Finally, notched three-point bending tests revealed that the fracture resistance (measured from the total, elastic, and plastic J-integral) does not significantly differ in T2DM and control group, when both groups exhibit no significant differences in bone microstructure and material quality. This supports recent studies suggesting that not all T2DM patients are affected by a higher fracture risk but that individual risk profiles contribute to fracture susceptibility, which should spur further research on improving bone material quality assessment in vivo and identifying risk factors that increase bone fragility in T2DM. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eva M. Wölfel
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Benjamin Bartsch
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jasmin Koldehoff
- Institute of Advanced CeramicsHamburg University of TechnologyHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Imke A. K. Fiedler
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sofie Dragoun‐Kolibova
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Felix N. Schmidt
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Johannes Krug
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Mei‐Chun Lin
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Klaus Püschel
- Institute of Legal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Benjamin Ondruschka
- Institute of Legal MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Hans Jelitto
- Institute of Advanced CeramicsHamburg University of TechnologyHamburgGermany
| | - Gerold Schneider
- Institute of Advanced CeramicsHamburg University of TechnologyHamburgGermany
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing EngineeringUniversity of New South Wales, Sydney (UNSW Sydney)SydneyAustralia
| | - Björn Busse
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
12
|
Milovanovic P, Busse B. Micropetrosis: Osteocyte Lacunar Mineralization in Aging and Disease. Curr Osteoporos Rep 2023; 21:750-757. [PMID: 37917286 DOI: 10.1007/s11914-023-00832-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE OF REVIEW As the importance of osteocytes for bone mineral homeostasis is increasingly recognized, there is growing interest in osteocyte cell death as a relevant indicator in various physiological and pathological conditions. Micropetrosis is an established term used to describe osteocyte lacunae that are filled with minerals following osteocyte death. While the early reports of micropetrosis were purely descriptive, there is now an increasing body of literature showing quantitative data on micropetrosis in various conditions such as aging, osteoporosis, immobilization, and diabetes, and in osteoporosis treatment (denosumab and bisphosphonates). This review summarizes quantitative findings on micropetrosis, with a particular emphasis on the recent advances in the field. RECENT FINDINGS There is growing evidence that micropetrosis is more common in older, osteoporotic, and immobilized individuals, as well as in individuals with type 1 or type 2 diabetes. Denosumab and bisphosphonates seem to affect lacunar mineralization differently, where specifically bisphosphonates have been shown to prolong osteocyte viability and reduce micropetrosis. Despite continuous proceedings in the field of osteocyte-lacunar-network characteristics, more studies are necessary to further clarify the mechanisms of lacunar mineralization, the inter-site variability of micropetrosis accumulation, the relevance of micropetrosis in various diseases and conditions, and whether micropetrosis could be an indicator of bone fragility or a target for treatment.
Collapse
Affiliation(s)
- Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Emini L, Salbach‐Hirsch J, Krug J, Jähn‐Rickert K, Busse B, Rauner M, Hofbauer LC. Utility and Limitations of TALLYHO/JngJ as a Model for Type 2 Diabetes-Induced Bone Disease. JBMR Plus 2023; 7:e10843. [PMID: 38130754 PMCID: PMC10731141 DOI: 10.1002/jbm4.10843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) increases risk of fractures due to bone microstructural and material deficits, though the mechanisms remain unclear. Preclinical models mimicking diabetic bone disease are required to further understand its pathogenesis. The TALLYHO/JngJ (TH) mouse is a polygenic model recapitulating adolescent-onset T2DM in humans. Due to incomplete penetrance of the phenotype ~25% of male TH mice never develop hyperglycemia, providing a strain-matched nondiabetic control. We performed a comprehensive characterization of the metabolic and skeletal phenotype of diabetic TH mice and compared them to either their nondiabetic TH controls or the recommended SWR/J controls to evaluate their suitability to study diabetic bone disease in humans. Compared to both controls, male TH mice with T2DM exhibited higher blood glucose levels, weight along with impaired glucose tolerance and insulin sensitivity. TH mice with/without T2DM displayed higher cortical bone parameters and lower trabecular bone parameters in the femurs and vertebrae compared to SWR/J. The mechanical properties remained unchanged for all three groups except for a low-energy failure in TH mice with T2DM only compared to SWR/J. Histomorphometry analyses only revealed higher number of osteoclasts and osteocytes for SWR/J compared to both groups of TH. Bone turnover markers procollagen type 1 N-terminal propeptide (P1NP) and tartrate-resistant acid phosphatase (TRAP) were low for both groups of TH mice compared to SWR/J. Silver nitrate staining of the femurs revealed low number of osteocyte lacunar and dendrites in TH mice with T2DM. Three-dimensional assessment showed reduced lacunar parameters in trabecular and cortical bone. Notably, osteocyte morphology changed in TH mice with T2DM compared to SWR/J. In summary, our study highlights the utility of the TH mouse to study T2DM, but not necessarily T2DM-induced bone disease, as there were no differences in bone strength and bone cell parameters between diabetic and non-diabetic TH mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lejla Emini
- Department of Medicine III and Center for Healthy AgingTechnische Universität Dresden Medical CenterDresdenGermany
| | - Juliane Salbach‐Hirsch
- Department of Medicine III and Center for Healthy AgingTechnische Universität Dresden Medical CenterDresdenGermany
| | - Johannes Krug
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Katharina Jähn‐Rickert
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Mildred Scheel Cancer Career Center HamburgUniversity Cancer Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Björn Busse
- Department of Osteology and BiomechanicsUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Mildred Scheel Cancer Career Center HamburgUniversity Cancer Center Hamburg, University Medical Center Hamburg‐EppendorfHamburgGermany
- Interdisciplinary Competence Center for Interface Research (ICCIR)University Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy AgingTechnische Universität Dresden Medical CenterDresdenGermany
| | - Lorenz C. Hofbauer
- Department of Medicine III and Center for Healthy AgingTechnische Universität Dresden Medical CenterDresdenGermany
| |
Collapse
|
14
|
Wang B, Vashishth D. Advanced glycation and glycoxidation end products in bone. Bone 2023; 176:116880. [PMID: 37579812 PMCID: PMC10529863 DOI: 10.1016/j.bone.2023.116880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Hyperglycemia and oxidative stress, enhanced in diabetes and aging, result in excessive accumulation of advanced glycation and glycoxidation end products (AGEs/AGOEs) in bone. AGEs/AGOES are considered to be "the missing link" in explaining increased skeletal fragility with diabetes, aging, and osteoporosis where increased fracture risk cannot be solely explained by bone mass and/or fall incidences. AGEs/AGOEs disrupt bone turnover and deteriorate bone quality through alterations of organic matrix (collagen and non-collagenous proteins), mineral, and water content. AGEs and AGOEs are also associated with bone fragility in other conditions such as Alzheimer's disease, circadian rhythm disruption, and cancer. This review explains how AGEs and AGOEs accumulate in bone and impact bone quality and bone fracture, and how AGES/AGOEs are being targeted in preclinical and clinical investigations for inhibition or removal, and for prediction and management of diabetic, osteoporotic and insufficiency fractures.
Collapse
Affiliation(s)
- Bowen Wang
- Shirley Ann Jackson Ph.D. Center of Biotechnology and Interdisciplinary Studies, Troy, NY 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Deepak Vashishth
- Shirley Ann Jackson Ph.D. Center of Biotechnology and Interdisciplinary Studies, Troy, NY 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Rensselaer - Icahn School of Medicine at Mount Sinai Center for Engineering and Precision Medicine, New York, NY 10019, USA.
| |
Collapse
|
15
|
Mehta D, Sihota P, Tikoo K, Kumar S, Kumar N. Type 2 diabetes alters the viscoelastic behavior and macromolecular composition of vertebra. Bone Rep 2023; 18:101680. [PMID: 37187573 PMCID: PMC10176031 DOI: 10.1016/j.bonr.2023.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Type 2 diabetes (T2D) affects the functional behavior of vertebra bone by altering its structural and mechanical properties. The vertebral bones are responsible to carry the body weight and it remains under prolonged constant load which results to viscoelastic deformation. The effect of T2D on the viscoelastic behavior of vertebral bone is not well explored yet. In this study, the effects of T2D on the creep and stress relaxation behavior of vertebral bone are investigated. Also, this study established a correlation between T2D associated alteration in macromolecular structure and viscoelastic behavior of vertebra. In this study T2D female rat SD model was used. The obtained results demonstrated a significant reduction in the amount of creep strain (p ≤ 0.05) and stress relaxation (p ≤ 0.01) in T2D specimens than the control. Also, the creep rate was found significantly lower in T2D specimens. On the other hand, molecular structural parameters such as mineral-to-matrix ratio (control vs T2D: 2.93 ± 0.78 vs 3.72 ± 0.53; p = 0.02), and non-enzymatic cross link ratio (NE-xL) (control vs T2D: 1.53 ± 0.07 vs 3.84 ± 0.20; p = 0.01) were found significantly altered in T2D specimens. Pearson linear correlation tests show a significant correlation; between creep rate and NE-xL (r = -0.94, p < 0.01), and between stress relaxation and NE-xL (r = -0.946, p < 0.01). Overall this study explored the understanding about the disease associated alteration in viscoelastic response of vertebra and its correlation with macromolecular composition which can help to understand the disease related impaired functioning of the vertebrae body.
Collapse
Affiliation(s)
- Deepak Mehta
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| | - Praveer Sihota
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Mohali, India
| | - Sachin Kumar
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| | - Navin Kumar
- Department of Mechanical Engineering Indian Institute of Technology Ropar, India
| |
Collapse
|
16
|
Lekkala S, Sacher SE, Taylor EA, Williams RM, Moseley KF, Donnelly E. Increased Advanced Glycation Endproducts, Stiffness, and Hardness in Iliac Crest Bone From Postmenopausal Women With Type 2 Diabetes Mellitus on Insulin. J Bone Miner Res 2023; 38:261-277. [PMID: 36478472 PMCID: PMC9898222 DOI: 10.1002/jbmr.4757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Individuals with type 2 diabetes mellitus (T2DM) have a greater risk of bone fracture compared with those with normal glucose tolerance (NGT). In contrast, individuals with impaired glucose tolerance (IGT) have a lower or similar risk of fracture. Our objective was to understand how progressive glycemic derangement affects advanced glycation endproduct (AGE) content, composition, and mechanical properties of iliac bone from postmenopausal women with NGT (n = 35, age = 65 ± 7 years, HbA1c = 5.8% ± 0.3%), IGT (n = 26, age = 64 ± 5 years, HbA1c = 6.0% ± 0.4%), and T2DM on insulin (n = 25, age = 64 ± 6 years, HbA1c = 9.1% ± 2.2%). AGEs were assessed in all samples using high-performance liquid chromatography to measure pentosidine and in NGT/T2DM samples using multiphoton microscopy to spatially resolve the density of fluorescent AGEs (fAGEs). A subset of samples (n = 14 NGT, n = 14 T2DM) was analyzed with nanoindentation and Raman microscopy. Bone tissue from the T2DM group had greater concentrations of (i) pentosidine versus IGT (cortical +24%, p = 0.087; trabecular +35%, p = 0.007) and versus NGT (cortical +40%, p = 0.003; trabecular +35%, p = 0.004) and (ii) fAGE cross-link density versus NGT (cortical +71%, p < 0.001; trabecular +44%, p < 0.001). Bone pentosidine content in the IGT group was lower than in the T2DM group and did not differ from the NGT group, indicating that the greater AGE content observed in T2DM occurs with progressive diabetes. Individuals with T2DM on metformin had lower cortical bone pentosidine compared with individuals not on metformin (-35%, p = 0.017). Cortical bone from the T2DM group was stiffer (+9%, p = 0.021) and harder (+8%, p = 0.039) versus the NGT group. Bone tissue AGEs, which embrittle bone, increased with worsening glycemic control assessed by HbA1c (Pen: R2 = 0.28, p < 0.001; fAGE density: R2 = 0.30, p < 0.001). These relationships suggest a potential mechanism by which bone fragility may increase despite greater tissue stiffness and hardness in individuals with T2DM; our results suggest that it occurs in the transition from IGT to overt T2DM. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sashank Lekkala
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | - Sara E. Sacher
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | - Erik A. Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | | | - Kendall F. Moseley
- Division of Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
- Research Division, Hospital for Special Surgery, New York, NY
| |
Collapse
|
17
|
Bermudez B, Ishii T, Wu YH, Carpenter RD, Sherk VD. Energy Balance and Bone Health: a Nutrient Availability Perspective. Curr Osteoporos Rep 2023; 21:77-84. [PMID: 36542294 DOI: 10.1007/s11914-022-00765-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Obesity is highly prevalent and is associated with bone fragility and fracture. The changing nutrient availability to bone in obesity is an important facet of bone health. The goal of this article is to summarize current knowledge on the effects of carbohydrate and dietary fat availability on bone, particularly in the context of other tissues. RECENT FINDINGS The skeleton is a primary site for fatty acid and glucose uptake. The trafficking of carbohydrates and fats into tissues changes with weight loss and periods of weight gain. Exercise acutely influences nutrient uptake into bone and may affect nutrient partitioning to bone. Bone cells secrete hormones that signal to the brain and other tissues information about its energetic state, which may alter whole-body nutrient trafficking. There is a critical need for studies to address the changes that metabolic perturbations have on nutrient availability in bone.
Collapse
Affiliation(s)
- Beatriz Bermudez
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, USA
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Toru Ishii
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yuan-Haw Wu
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - R Dana Carpenter
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, USA
| | - Vanessa D Sherk
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Division of Translational and Clinical Sciences, Center for Scientific Review, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Welsh H, Brickley MB. Pathology or expected morphology? Investigating patterns of cortical porosity and trabecularization during infancy and early childhood. Anat Rec (Hoboken) 2023; 306:354-365. [PMID: 36116138 DOI: 10.1002/ar.25081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 01/25/2023]
Abstract
Increased cortical porosity is associated with a heightened risk of skeletal fragility due to bone loss and structural decay in adults. However, few studies have examined the etiology of cortical porosity in infants and children. This study examines whether age-related changes in femoral growth and locomotor development influence femoral midshaft cortical porosity in a sample of 48 individuals (fetal to 3.99 years) from the 10th-13th century cemetery of St. Étienne de Toulouse, France. Histological sections were prepared and imaged using light microscopy. Midshaft geometric variables such as total area, cortical area, and pore area were calculated using BoneJ. Increased porosity and cortical trabecularization were found to be significantly associated with age, being almost exclusively present in individuals aged 0.5-1.99 years. At approximately 6 months of age infants typically begin engaging in regular femoral loading and experience an acceleration in growth. The observed increase in midshaft porosity and trabecularization, therefore, likely results from the reorganization and redistribution of cortical bone, stimulated by increased growth velocity and the onset of weight-bearing activities. The reduction in cortical porosity and trabecularization in individuals aged 2.0-3.99 years indicates that children are approaching some sort of homeostasis as growth velocity slows and their femora adapt to consistent loading. Understanding what expected skeletal development looks like is necessary when conducting bioarcheological studies and this study provides evidence for a pattern of transient midshaft porosity during infancy and early childhood.
Collapse
Affiliation(s)
- Hayley Welsh
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Megan B Brickley
- Department of Anthropology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Jadzic J, Tomanovic N, Djukic D, Zivkovic V, Nikolic S, Djuric M, Milovanovic P, Djonic D. Micro-scale assessment of bone quality changes in adult cadaveric men with congestive hepatopathy. Histochem Cell Biol 2022; 158:583-593. [PMID: 35849203 DOI: 10.1007/s00418-022-02128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/13/2022]
Abstract
Congestive hepatopathy (CH) is a chronic liver disease (CLD) caused by impaired hepatic venous blood outflow, most frequently resulting from congestive heart failure. Although it is known that heart failure and CLDs contribute to increased risk for age-related fractures, an assessment of CH-induced skeletal alterations has not been made to date. The aim of our study was to characterize changes in bone quality in adult male cadavers with pathohistologically confirmed CH compared with controls without liver disease. The anterior mid-transverse part of the fifth lumbar vertebral body was collected from 33 adult male cadavers (age range 43-89 years), divided into the CH group (n = 15) and the control group (n = 18). We evaluated trabecular and cortical micro-architecture and bone mineral content (using micro-computed tomography), bone mechanical competence (using Vickers micro-hardness tester), vertebral cellular indices (osteocyte lacunar network and bone marrow adiposity), and osteocytic sclerostin and connexin 43 expression levels (using immunohistochemistry staining and analysis). Deterioration in trabecular micro-architecture, reduced trabecular and cortical mineral content, and decreased Vickers microhardness were noted in the CH group (p < 0.05). Reduced total number of osteocytes and declined connexin 43 expression levels (p < 0.05) implied that harmed mechanotransduction throughout the osteocyte network might be present in CH. Moreover, elevated expression levels of sclerostin by osteocytes could indicate the role of sclerostin in mediating low bone formation in individuals with CH. Taken together, these micro-scale bone alterations suggest that vertebral strength could be compromised in men with CH, implying that vertebral fracture risk assessment and subsequent therapy may need to be considered in these patients. However, further research is required to confirm the clinical relevance of our findings.
Collapse
Affiliation(s)
- Jelena Jadzic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica no. 4/II, 11000, Belgrade, Serbia
| | - Nada Tomanovic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Dr. Subotica no. 1, Belgrade, Serbia
| | - Danica Djukic
- Institute of Forensic Medicine, Faculty of Medicine , University of Belgrade, Deligradska no. 31a, Belgrade, Serbia
| | - Vladimir Zivkovic
- Institute of Forensic Medicine, Faculty of Medicine , University of Belgrade, Deligradska no. 31a, Belgrade, Serbia
| | - Slobodan Nikolic
- Institute of Forensic Medicine, Faculty of Medicine , University of Belgrade, Deligradska no. 31a, Belgrade, Serbia
| | - Marija Djuric
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica no. 4/II, 11000, Belgrade, Serbia
| | - Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica no. 4/II, 11000, Belgrade, Serbia
| | - Danijela Djonic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica no. 4/II, 11000, Belgrade, Serbia.
| |
Collapse
|
20
|
Wölfel EM, Fiedler IAK, Dragoun Kolibova S, Krug J, Lin MC, Yazigi B, Siebels AK, Mushumba H, Wulff B, Ondruschka B, Püschel K, Glüer CC, Jähn-Rickert K, Busse B. Human tibial cortical bone with high porosity in type 2 diabetes mellitus is accompanied by distinctive bone material properties. Bone 2022; 165:116546. [PMID: 36113843 DOI: 10.1016/j.bone.2022.116546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022]
Abstract
Diabetes mellitus is a metabolic disease affecting bone tissue at different length-scales. Higher fracture risk in diabetic patients is difficult to detect with common clinical fracture risk assessment due to normal or high bone mineral density in diabetic patients. The observed higher fracture risk despite normal to high areal bone mineral density in diabetic patients points towards impaired bone material quality. Here, we analyze tibial bone from individuals with type 2 diabetes mellitus using a multiscale-approach, which includes clinical and laboratory-based bone quality measures. Tibial cortical bone tissue from individuals with type 2 diabetes mellitus (T2DM) and age-matched healthy controls (n = 15 each) was analyzed with in situ impact indentation, dual energy X-ray absorptiometry (DXA), high resolution peripheral microcomputed tomography (HR-pQCT), micro-computed tomography (microCT), cyclic indentation, quantitative backscattered electron microscopy (qBEI), vibrational spectroscopy (Raman), nanoindentation, and fluorescence spectroscopy. With this approach, a high cortical porosity subgroup of individuals with T2DM was discriminated from two study groups: individuals with T2DM and individuals without T2DM, while both groups were associated with similar cortical porosity quantified by means of microCT. The high porosity T2DM group, but not the T2DM group, showed compromised bone quality expressed by altered cyclic indentation properties (transversal direction) in combination with a higher carbonate-to-amide I ratio in endocortical bone. In addition, in the T2DM group with high cortical porosity group, greater cortical pore diameter was identified with HR-pQCT and lower tissue mineral density using microCT, both compared to T2DM group. Micromechanical analyses of cross-sectioned osteons (longitudinal direction) with cyclic indentation, qBEI, and nanoindentation showed no differences between the three groups. High tibial cortical porosity in T2DM can be linked to locally altered bone material composition. As the tibia is an accessible skeletal site for fracture risk assessment in the clinics (CT, indentation), our findings may contribute to further understanding the site-specific structural and compositional factors forming the basis of bone quality in diabetes mellitus. Refined diagnostic strategies are needed for a comprehensive fracture risk assessment in diabetic bone disease.
Collapse
Affiliation(s)
- Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Sofie Dragoun Kolibova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Johannes Krug
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Mei-Chun Lin
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Bashar Yazigi
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Anna K Siebels
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Herbert Mushumba
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Birgit Wulff
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Claus C Glüer
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-Universitat zu Kiel, MOIN CC, 24118 Kiel, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany.
| |
Collapse
|
21
|
Zhang M, Li Y, Liu L, Huang M, Wang M, Zou J. The effects on type 2 diabetes mellitus mouse femoral bone achieved by anti-osteoporosis exercise interventions. Front Endocrinol (Lausanne) 2022; 13:914872. [PMID: 36465647 PMCID: PMC9715737 DOI: 10.3389/fendo.2022.914872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/24/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose Exercise therapy and key regulators of bone quality exert anti-hyperglycemic effects on type 2 diabetes mellitus (T2DM) mice. A number of programs have been reported to have an effect on bone disease in T2DM. Major unanswered questions concern the potential correlation of exercise with the improvement of bone quality in T2DM mice and how the nonlinear optical properties of bone are correlated with changes to its crystal structure. Methods Subjects were randomly divided into six groups: 1) control (C) group, which was fed a normal diet (n = 8); 2) T2DM quiet group, which was given a high-fat diet and quiet (n = 8); 3) T2DM plus swimming (T2DM+S) group, which received T2DM and swim training (n = 8); 4) T2DM plus resistance exercise (T2DM+RE) group, which was given T2DM and resistance exercise (n = 8); 5) T2DM plus aerobic exercise (T2DM+AE) group, with T2DM and medium-intensity treadmill exercise (n = 8); and 6) T2DM plus high-intensity interval training (T2DM+HIIT), with T2DM and high-intensity variable-speed intervention (n = 8). The levels of runt-related transcription factor 2 (RUNX2), osterix (OSX), and alkaline phosphatase (ALP), as well as the bone microstructure and morphometry, were measured at the end of the 8-week exercise intervention. Results Compared with the C group, the bone microstructure indexes [bone mineral density (BMD), bone volume/tissue volume (BV/TV), cortical thickness (Ct.Th), and connectivity density (Conn.D)], the bone biomechanical properties (maximum load, fracture load, yield stress, and elastic modulus), and the osteogenic differentiation factors (RUNX2, OSX, and BMP2) of the T2DM group were significantly decreased (all p < 0.05). Compared with the T2DM group, there were obvious improvements in the osteogenic differentiation factor (OSX) and Th.N, while the separation of trabecular bone (Tb.Sp) decreased in the T2DM+AE and T2DM+HIIT groups (all p < 0.05). In addition, the bone microstructure indicators BV/TV, tissue mineral density (TMD), Conn.D, and degree of anisotropy (DA) also increased in the T2DM+HIIT group, but the yield stress and Ct.Th deteriorated compared with the T2DM group (all p < 0.05). Compared with the T2DM+S and T2DM+RE groups, the BV/TV, trabecular number (Tb.N), Tb.Sp, and Conn.D in the T2DM+AE and T2DM+HIIT groups were significantly improved, but no significant changes in the above indicators were found between the T2DM+S and T2DM+RE groups (all p < 0.05). In addition, the BMD and the expression of ALP in the T2DM+AE group were significantly higher than those in the T2DM+HIIT group (all p < 0.05). Conclusion There was a significant deterioration in femur bone mass, trabecular bone microarchitecture, cortical bone geometry, and bone mechanical strength in diabetic mice. However, such deterioration was obviously attenuated in diabetic mice given aerobic and high-intensity interval training, which would be induced mainly by suppressing the development of T2DM. Regular physical exercise may be an effective strategy for the prevention of not only the development of diabetes but also the deterioration of bone properties in patients with chronic T2DM.
Collapse
Affiliation(s)
- Miao Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuexuan Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lifei Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Mei Huang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Miao Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
22
|
Wölfel EM, Schmidt FN, Vom Scheidt A, Siebels AK, Wulff B, Mushumba H, Ondruschka B, Püschel K, Scheijen J, Schalkwijk CG, Vettorazzi E, Jähn-Rickert K, Gludovatz B, Schaible E, Amling M, Rauner M, Hofbauer LC, Zimmermann EA, Busse B. Dimorphic Mechanisms of Fragility in Diabetes Mellitus: the Role of Reduced Collagen Fibril Deformation. J Bone Miner Res 2022; 37:2259-2276. [PMID: 36112316 DOI: 10.1002/jbmr.4706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
Abstract
Diabetes mellitus (DM) is an emerging metabolic disease, and the management of diabetic bone disease poses a serious challenge worldwide. Understanding the underlying mechanisms leading to high fracture risk in DM is hence of particular interest and urgently needed to allow for diagnosis and treatment optimization. In a case-control postmortem study, the whole 12th thoracic vertebra and cortical bone from the mid-diaphysis of the femur from male individuals with type 1 diabetes mellitus (T1DM) (n = 6; 61.3 ± 14.6 years), type 2 diabetes mellitus (T2DM) (n = 11; 74.3 ± 7.9 years), and nondiabetic controls (n = 18; 69.3 ± 11.5) were analyzed with clinical and ex situ imaging techniques to explore various bone quality indices. Cortical collagen fibril deformation was measured in a synchrotron setup to assess changes at the nanoscale during tensile testing until failure. In addition, matrix composition was analyzed including determination of cross-linking and non-crosslinking advanced glycation end-products like pentosidine and carboxymethyl-lysine. In T1DM, lower fibril deformation was accompanied by lower mineralization and more mature crystalline apatite. In T2DM, lower fibril deformation concurred with a lower elastic modulus and tendency to higher accumulation of non-crosslinking advanced glycation end-products. The observed lower collagen fibril deformation in diabetic bone may be linked to altered patterns mineral characteristics in T1DM and higher advanced glycation end-product accumulation in T2DM. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Vom Scheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Anna K Siebels
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Wulff
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Mushumba
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean Scheijen
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Eik Vettorazzi
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Eric Schaible
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Elizabeth A Zimmermann
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Cirovic A, Jadzic J, Djukic D, Djonic D, Zivkovic V, Nikolic S, Djuric M, Milovanovic P. Increased Cortical Porosity, Reduced Cortical Thickness, and Reduced Trabecular and Cortical Microhardness of the Superolateral Femoral Neck Confer the Increased Hip Fracture Risk in Individuals with Type 2 Diabetes. Calcif Tissue Int 2022; 111:457-465. [PMID: 35871240 PMCID: PMC9308472 DOI: 10.1007/s00223-022-01007-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022]
Abstract
Individuals with diabetes mellitus type 2 (T2DM) have approximately 30% increased risk of hip fracture; however, the main cause of the elevated fracture risk in those subjects remains unclear. Moreover, micromechanical and microarchitectural properties of the superolateral femoral neck-the common fracture-initiating site-are still unknown. We collected proximal femora of 16 men (eight with T2DM and eight controls; age: 61 ± 10 years) at autopsy. After performing post-mortem bone densitometry (DXA), the superolateral neck was excised and scanned with microcomputed tomography (microCT). We also conducted Vickers microindentation testing. T2DM and control subjects did not differ in age (p = 0.605), body mass index (p = 0.114), and femoral neck bone mineral density (BMD) (p = 0.841). Cortical porosity (Ct.Po) was higher and cortical thickness (Ct.Th) was lower in T2DM (p = 0.044, p = 0.007, respectively). Of trabecular microarchitectural parameters, only structure model index (p = 0.022) was significantly different between T2DM subjects and controls. Control group showed higher cortical (p = 0.002) and trabecular bone microhardness (p = 0.005). Increased Ct.Po and decreased Ct.Th in T2DM subjects increase the propensity to femoral neck fracture. Apart from the deteriorated cortical microarchitecture, decreased cortical and trabecular microhardness suggests altered bone composition of the superolateral femoral neck cortex and trabeculae in T2DM. Significantly deteriorated cortical microarchitecture of the superolateral femoral neck is not recognized by standard DXA measurement of the femoral neck.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Jelena Jadzic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Danica Djukic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Danijela Djonic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Vladimir Zivkovic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Slobodan Nikolic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Marija Djuric
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Petar Milovanovic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia.
| |
Collapse
|
24
|
Stephen SJ, Bailey S, D'Erminio DN, Krishnamoorthy D, Iatridis JC, Vashishth D. Bone matrix quality in a developing high-fat diet mouse model is altered by RAGE deletion. Bone 2022; 162:116470. [PMID: 35718325 PMCID: PMC9296598 DOI: 10.1016/j.bone.2022.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
Abstract
Overweightness and obesity in adolescents are epidemics linked to chronic low-grade inflammation and elevated fracture risk. The increased fracture risk observed in overweight/obese adolescence contrasts the traditional concept that high body mass is protective against fracture, and thus highlights the need to determine why weight gain becomes detrimental to fracture during growth and maturity. The Receptor for Advanced Glycation End products (RAGE) is a central inflammatory regulator that can influence bone metabolism. It remains unknown how RAGE removal impacts skeletal fragility in overweightness/obesity, and whether increased fracture risk in adolescents could result from low-grade inflammation deteriorating bone quality. We characterized the multiscale structural, mechanical, and chemical properties of tibiae extracted from adolescent C57BL/6J (WT) and RAGE null (KO) mice fed either low-fat (LF) or high-fat (HF) diet for 12 weeks starting at 6 weeks of age using micro-computed tomography, strength, Raman spectroscopy, and nanoindentation. Overweight/obese WT HF mice possessed degraded mineral-crystal quality and increased matrix glycoxidation in the form of pentosidine and carboxymethyl-lysine, with HF diet in females only showing reduced cortical surface expansion and TMD independently of RAGE ablation. Furthermore, in contrast to males, HF diet in females led to more material damage and plastic deformation. RAGE KO mitigated glycoxidative matrix accumulation, preserved mineral quantity, and led to increased E/H ratio in females. Taken together, these results highlight the complex, multi-scale and sex-dependent relationships between bone quality and function under overweightness, and identifies RAGE-controlled glycoxidation as a target to potentially preserve matrix quality and mechanical integrity.
Collapse
Affiliation(s)
- Samuel J Stephen
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Stacyann Bailey
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Danielle N D'Erminio
- Leni and Peter W. May Department of Orthopaedics, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Krishnamoorthy
- Leni and Peter W. May Department of Orthopaedics, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
25
|
Jadzic J, Milovanovic PD, Cvetkovic D, Zivkovic V, Nikolic S, Tomanovic N, Djuric MP, Djonic D. The altered osteocytic expression of connexin 43 and sclerostin in human cadaveric donors with alcoholic liver cirrhosis: Potential treatment targets. J Anat 2022; 240:1162-1173. [PMID: 34978341 PMCID: PMC9119608 DOI: 10.1111/joa.13621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/30/2023] Open
Abstract
Previous studies suggested that osteocyte lacunar network disruption could play a role in the complex pathophysiology of bone changes in aging and disease. Considering that particular research interest is lacking, we aimed to assess alcoholic liver cirrhosis (ALC)-induced changes in osteocyte lacunar network and bone marrow adiposity. Immunohistochemistry was conducted to assess changes in the micro-morphology of osteocyte lacunar network and bone marrow adiposity, and expression of connexin 43 and sclerostin in vertebral and femoral samples collected from 40 cadaveric men (age range between 44 and 70 years) divided into ALC group (n = 20) and control group (n = 20). Furthermore, the assessment of the potential association between bone changes and the severity of the hepatic disorder (given by Knodell's pathohistologic scoring) was conducted. Our data revealed fewer connexin 43-positive osteocytes per vertebral and femoral bone area (p < 0.01), suggesting defective signal transduction among osteocytes in ALC individuals. Moreover, we found an ALC-induced increase in the number of adipocytes in the vertebral bone marrow (p = 0.038). Considering significant associations between the severity of liver tissue disturbances and impaired functionality of osteocyte lacunar network (Pearson's correlation analyses, p < 0.05), we may assume that timely treatment of the liver disease may delay bone impairment. ALC induced an increase in osteocytic sclerostin expression (p < 0.001), suggesting its role in mediating low bone formation among ALC individuals. Hence, medicaments targeting low bone formation may be beneficial to attenuate the bone changes among ALC patients. However, future clinical studies are required to verify the therapeutic utility of these findings.
Collapse
Affiliation(s)
- Jelena Jadzic
- Laboratory of Bone Biology and BioanthropologyFaculty of MedicineInstitute of AnatomyUniversity of BelgradeBelgradeSerbia
| | - Petar D. Milovanovic
- Laboratory of Bone Biology and BioanthropologyFaculty of MedicineInstitute of AnatomyUniversity of BelgradeBelgradeSerbia
| | - Danica Cvetkovic
- Faculty of MedicineInstitute of Forensic MedicineUniversity of BelgradeBelgradeSerbia
| | - Vladimir Zivkovic
- Faculty of MedicineInstitute of Forensic MedicineUniversity of BelgradeBelgradeSerbia
| | - Slobodan Nikolic
- Faculty of MedicineInstitute of Forensic MedicineUniversity of BelgradeBelgradeSerbia
| | - Nada Tomanovic
- Faculty of MedicineInstitute of PathologyUniversity of BelgradeBelgradeSerbia
| | - Marija P. Djuric
- Laboratory of Bone Biology and BioanthropologyFaculty of MedicineInstitute of AnatomyUniversity of BelgradeBelgradeSerbia
| | - Danijela Djonic
- Laboratory of Bone Biology and BioanthropologyFaculty of MedicineInstitute of AnatomyUniversity of BelgradeBelgradeSerbia
| |
Collapse
|
26
|
Martínez-Montoro JI, García-Fontana B, García-Fontana C, Muñoz-Torres M. Evaluation of Quality and Bone Microstructure Alterations in Patients with Type 2 Diabetes: A Narrative Review. J Clin Med 2022; 11:2206. [PMID: 35456299 PMCID: PMC9024806 DOI: 10.3390/jcm11082206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023] Open
Abstract
Bone fragility is a common complication in subjects with type 2 diabetes mellitus (T2DM). However, traditional techniques for the evaluation of bone fragility, such as dual-energy X-ray absorptiometry (DXA), do not perform well in this population. Moreover, the Fracture Risk Assessment Tool (FRAX) usually underestimates fracture risk in T2DM. Importantly, novel technologies for the assessment of one microarchitecture in patients with T2DM, such as the trabecular bone score (TBS), high-resolution peripheral quantitative computed tomography (HR-pQCT), and microindentation, are emerging. Furthermore, different serum and urine bone biomarkers may also be useful for the evaluation of bone quality in T2DM. Hence, in this article, we summarize the limitations of conventional tools for the evaluation of bone fragility and review the current evidence on novel approaches for the assessment of quality and bone microstructure alterations in patients with T2DM.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Malaga, 29010 Malaga, Spain;
| | - Beatriz García-Fontana
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina García-Fontana
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Muñoz-Torres
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
27
|
Teissier T, Temkin V, Pollak RD, Cox LS. Crosstalk Between Senescent Bone Cells and the Bone Tissue Microenvironment Influences Bone Fragility During Chronological Age and in Diabetes. Front Physiol 2022; 13:812157. [PMID: 35388291 PMCID: PMC8978545 DOI: 10.3389/fphys.2022.812157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/27/2022] [Indexed: 01/10/2023] Open
Abstract
Bone is a complex organ serving roles in skeletal support and movement, and is a source of blood cells including adaptive and innate immune cells. Structural and functional integrity is maintained through a balance between bone synthesis and bone degradation, dependent in part on mechanical loading but also on signaling and influences of the tissue microenvironment. Bone structure and the extracellular bone milieu change with age, predisposing to osteoporosis and increased fracture risk, and this is exacerbated in patients with diabetes. Such changes can include loss of bone mineral density, deterioration in micro-architecture, as well as decreased bone flexibility, through alteration of proteinaceous bone support structures, and accumulation of senescent cells. Senescence is a state of proliferation arrest accompanied by marked morphological and metabolic changes. It is driven by cellular stress and serves an important acute tumor suppressive mechanism when followed by immune-mediated senescent cell clearance. However, aging and pathological conditions including diabetes are associated with accumulation of senescent cells that generate a pro-inflammatory and tissue-destructive secretome (the SASP). The SASP impinges on the tissue microenvironment with detrimental local and systemic consequences; senescent cells are thought to contribute to the multimorbidity associated with advanced chronological age. Here, we assess factors that promote bone fragility, in the context both of chronological aging and accelerated aging in progeroid syndromes and in diabetes, including senescence-dependent alterations in the bone tissue microenvironment, and glycation changes to the tissue microenvironment that stimulate RAGE signaling, a process that is accelerated in diabetic patients. Finally, we discuss therapeutic interventions targeting RAGE signaling and cell senescence that show promise in improving bone health in older people and those living with diabetes.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Vladislav Temkin
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Dresner Pollak
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Hofbauer LC, Busse B, Eastell R, Ferrari S, Frost M, Müller R, Burden AM, Rivadeneira F, Napoli N, Rauner M. Bone fragility in diabetes: novel concepts and clinical implications. Lancet Diabetes Endocrinol 2022; 10:207-220. [PMID: 35101185 DOI: 10.1016/s2213-8587(21)00347-8] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Increased fracture risk represents an emerging and severe complication of diabetes. The resulting prolonged immobility and hospitalisations can lead to substantial morbidity and mortality. In type 1 diabetes, bone mass and bone strength are reduced, resulting in up to a five-times greater risk of fractures throughout life. In type 2 diabetes, fracture risk is increased despite a normal bone mass. Conventional dual-energy x-ray absorptiometry might underestimate fracture risk, but can be improved by applying specific adjustments. Bone fragility in diabetes can result from cellular abnormalities, matrix interactions, immune and vascular changes, and musculoskeletal maladaptation to chronic hyperglycaemia. This Review summarises how the bone microenvironment responds to type 1 and type 2 diabetes, and the mechanisms underlying fragility fractures. We describe the value of novel imaging technologies and the clinical utility of biomarkers, and discuss current and future therapeutic approaches that protect bone health in people with diabetes.
Collapse
Affiliation(s)
- Lorenz C Hofbauer
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, Technische Universität Dresden, Dresden, Germany.
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard Eastell
- Department of Oncology and Metabolism, Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| | - Serge Ferrari
- Service and Laboratory of Bone Diseases, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Morten Frost
- Molecular Endocrinology Laboratory and Steno Diabetes Centre Odense, Odense University Hospital, Odense, Denmark
| | - Ralph Müller
- Institute of Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Andrea M Burden
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | - Nicola Napoli
- RU of Endocrinology and Diabetes, Campus Bio-Medico University of Rome and Fondazione Policlinico Campus Bio-Medico, Rome, Italy; Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, MO, USA
| | - Martina Rauner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
29
|
Dhaliwal R, Ewing SK, Vashishth D, Semba RD, Schwartz AV. Greater Carboxy-Methyl-Lysine Is Associated With Increased Fracture Risk in Type 2 Diabetes. J Bone Miner Res 2022; 37:265-272. [PMID: 34820902 PMCID: PMC8828668 DOI: 10.1002/jbmr.4466] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/20/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023]
Abstract
Accumulation of advanced glycation end-products (AGE) in bone alters collagen structure and function. Fluorescent AGEs are associated with fractures but less is known regarding non-fluorescent AGEs. We examined associations of carboxy-methyl-lysine (CML), with incident clinical and prevalent vertebral fractures by type 2 diabetes (T2D) status, in the Health, Aging, and Body Composition cohort of older adults. Incident clinical fractures and baseline vertebral fractures were assessed. Cox regression was used to analyze the associations between serum CML and clinical fracture incidence, and logistic regression for vertebral fracture prevalence. At baseline, mean ± standard deviation (SD) age was 73.7 ± 2.8 and 73.6 ± 2.9 years in T2D (n = 712) and non-diabetes (n = 2332), respectively. Baseline CML levels were higher in T2D than non-diabetes (893 ± 332 versus 771 ± 270 ng/mL, p < 0.0001). In multivariate models, greater CML was associated with higher risk of incident clinical fracture in T2D (hazard ratio [HR] 1.49; 95% confidence interval [CI], 1.24-1.79 per 1-SD increase in log CML) but not in non-diabetes (HR 1.03; 95% CI, 0.94-1.13; p for interaction = 0.001). This association was independent of bone mineral density (BMD), glycated hemoglobin (hemoglobin A1c), weight, weight loss, smoking, cystatin-C, and medication use. CML was not significantly associated with the odds of prevalent vertebral fractures in either group. In conclusion, higher CML levels are associated with increased risk of incident clinical fractures in T2D, independent of BMD. These results implicate CML in the pathogenesis of bone fragility in diabetes. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Ruban Dhaliwal
- Metabolic Bone Disease Center, State University of New York Upstate Medical University, New York, NY, USA
| | - Susan K. Ewing
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, NY, USA
| | - Richard D. Semba
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ann V. Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
30
|
Cirovic A, Vujacic M, Petrovic B, Cirovic A, Zivkovic V, Nikolic S, Djonic D, Bascarevic Z, Djuric M, Milovanovic P. Vascular Complications in Individuals with Type 2 Diabetes Mellitus Additionally Increase the Risk of Femoral Neck Fractures Due to Deteriorated Trabecular Microarchitecture. Calcif Tissue Int 2022; 110:65-73. [PMID: 34302494 PMCID: PMC8302969 DOI: 10.1007/s00223-021-00894-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022]
Abstract
Individuals with diabetes mellitus type 2 (T2DM) have an increased risk of hip fracture, especially if vascular complications are present. However, microstructural origins of increased bone fragility in T2DM are still controversial. DXA measurement of the contralateral hip and three-dimensional microCT analyses of femoral neck trabecular microarchitecture were performed in 32 individuals (26 women and 6 men, 78 ± 7 years). The specimens were divided to two groups: T2DM individuals with hip fracture (DMFx, n = 18) and healthy controls (CTL, n = 14). DMFx group consisted of individuals with vascular complications (DMFx_VD, n = 8) and those without vascular complications (DMFx_NVD, n = 10). T-score was significantly lower in DMFx_VD and DMFx_NVD than in controls (p < 0.001). BV/TV, Tb.N, Tb.Sp, SMI, and FD varied among DMFx_NVD, DMFx_VD, and CTL groups (p = 0.023, p = 0.004, p = 0.008, p = 0.001, p = 0.007, respectively). Specifically, BV/TV of DMFx_VD was significantly lower than that of DMFx_NVD group (p = 0.020); DMFx_NVD group had higher Tb.N and lower Tb.Sp compared with DMFx_VD (p = 0.006, p = 0.012, respectively) and CTL (p = 0.026, p = 0.035, respectively). DMFx group and healthy controls showed similar BV/TV, Tb.Th, Tb.N, Tb.Sp, Conn.D, DA, and FD (p = 0.771, p = 0.503, p = 0.285, p = 0.266, p = 0.208, p = 0.235, p = 0.688, respectively), while SMI was significantly higher in controls (p = 0.005). Two distinct phenotypes of bone fragility were identified in T2DM patients: patients with vascular complications showed impaired trabecular microarchitecture, whereas bone fragility in the group without vascular complications was independent on trabecular microarchitecture pattern. Such heterogeneity among T2DM patients may explain contradicting literature data and may set a basis for further studies to evaluate fracture risk related to T2DM.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Laboratory of Bone Biology and Bioanthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Marko Vujacic
- Institute for Orthopedic Surgery "Banjica", Mihaila Avramovića 28, Belgrade, Serbia
| | - Bojan Petrovic
- Institute for Orthopedic Surgery "Banjica", Mihaila Avramovića 28, Belgrade, Serbia
| | - Ana Cirovic
- Laboratory of Bone Biology and Bioanthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Vladimir Zivkovic
- Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Slobodan Nikolic
- Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Danijela Djonic
- Laboratory of Bone Biology and Bioanthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Zoran Bascarevic
- Institute for Orthopedic Surgery "Banjica", Mihaila Avramovića 28, Belgrade, Serbia
| | - Marija Djuric
- Laboratory of Bone Biology and Bioanthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Petar Milovanovic
- Laboratory of Bone Biology and Bioanthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia.
| |
Collapse
|
31
|
Sroga GE, Vashishth D. Controlled Formation of Carboxymethyllysine in Bone Matrix through Designed Glycation Reaction. JBMR Plus 2021; 5:e10548. [PMID: 34761150 PMCID: PMC8567485 DOI: 10.1002/jbm4.10548] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 08/08/2021] [Accepted: 08/24/2021] [Indexed: 01/15/2023] Open
Abstract
It has been a challenge to establish a link between specific advanced glycation end products (AGEs) as causal agents of different pathologies and age‐related diseases, primarily because of the lack of suitable in vitro experimental strategies facilitating increased formation of a specific AGE, here carboxymethyllysine (CML), over other AGEs under controlled conditions. CML is of considerable importance to various oxidative stress–related diseases, because in vivo formation of this AGE is connected with cellular oxidative/carbonyl metabolism. The mechanistic implications of CML accumulation in bone remain to be elucidated. To facilitate such studies, we developed a new in vitro strategy that allows preferential generation of CML in bone matrix over other AGEs. Using bone samples from human donors of different age (young, middle‐age, and elderly), we show successful in vitro generation of the desired levels of CML and show that they mimic those observed in vivo in several bone disorders. Formation of such physiologically relevant CML levels was achieved by selecting two oxidative/carbonyl stress compounds naturally produced in the human body, glyoxal and glyoxylic acid. Kinetic studies using the two compounds revealed differences not only between their reaction rates but also in the progression and enhanced formation of CML over other AGEs (measured by their collective fluorescence as fluorescent AGEs [fAGEs]) Consequently, through the regulation of reaction time, the levels of CML and fAGEs could be controlled and separated. Given that the developed approach does not fully eliminate the formation of other uncharacterized glycation products, this could be considered as the study limitation. We expect that the concepts of our experimental approach can be used to develop diverse strategies facilitating production of the desired levels of selected AGEs in bone and other tissues, and thus, opens new avenues for investigating the role and mechanistic aspects of specific AGEs, here CML, in bone. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Grażyna E Sroga
- Department of Biomedical Engineering Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies Troy NY USA
| | - Deepak Vashishth
- Department of Biomedical Engineering Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies Troy NY USA
| |
Collapse
|
32
|
Moseley KF, Du Z, Sacher SE, Ferguson VL, Donnelly E. Advanced glycation endproducts and bone quality: practical implications for people with type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 2021; 28:360-370. [PMID: 34183538 DOI: 10.1097/med.0000000000000641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Individuals with type 2 diabetes (T2D) are at increased risk of fracture, often despite normal bone density. This observation suggests deficits in bone quality in the setting of abnormal glucose homeostasis. The goal of this article is to review recent developments in our understanding of how advanced glycation end products (AGEs) are incorporated into the skeleton with resultant deleterious effects on bone health and structural integrity in patients with T2D. RECENT FINDINGS The adverse effects of skeletal AGE accumulation on bone remodeling and the ability of the bone to deform and absorb energy prior to fracture have been demonstrated both at the bench as well as in small human studies; however, questions remain as to how these findings might be better explored in large, population-based investigations. SUMMARY Hyperglycemia drives systemic, circulating AGE formation with subsequent accumulation in the bone tissue. In those with T2D, studies suggest that AGEs diminish fracture resistance, though larger clinical studies are needed to better define the direct role of longstanding AGE accumulation on bone strength in humans as well as to motivate potential interventions to reverse or disrupt skeletal AGE deposition with the goal of fracture prevention.
Collapse
Affiliation(s)
- Kendall F Moseley
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Johns Hopkins University, Baltimore, Maryland
| | - Zexu Du
- Department of Materials Science and Engineering, Cornell University, Ithaca
| | - Sara E Sacher
- Department of Materials Science and Engineering, Cornell University, Ithaca
| | - Virginia L Ferguson
- Department of Mechanical Engineering, UCB 427
- Biomedical Engineering Program, UCB 422, University of Colorado, Boulder, Colorado, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca
- Research Division, Hospital for Special Surgery, New York, New York
| |
Collapse
|
33
|
Influence of non-enzymatic glycation on the mechanical properties of cortical bone. J Mech Behav Biomed Mater 2021; 119:104553. [PMID: 33930651 DOI: 10.1016/j.jmbbm.2021.104553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023]
Abstract
Poor bone quality induced by non-enzymatic glycation (NEG) of bone tissue in patients with type 2 diabetes mellitus (T2DM) is regarded as the major factor of bone fragility and affecting bone mechanical properties. A comprehensive and systemic mechanical investigation for evaluating the effect of NEG on bone was still lacking. In order to provide additional information for the bone quality of T2DM, the effects of NEG on mechanical properties of cortical bone were investigated in terms of elastoplasticity, fracture toughness and viscoelasticity. All samples of cortical bone, including the samples of strength test (n = 20), fracture toughness test (n = 40, quasi-static and fall-like conditions with displacement rates of 10-3 mm/s and 10 mm/s, respectively) and stress relaxation test (n = 20), were harvested from bovine tibiae. The samples of each test were equally divided into incubated-control group and ribose-incubated group. All mechanical tests were performed after incubating all samples for 15 days. Post-yield strain (p = 0.014), post-yield energy (p < 0.0001) and damage fraction (p = 0.040) of ribose-incubated group were significantly lower than those of incubated-control group, but secant modulus (p = 0.029) of ribose-incubated group was significantly higher than that of incubated-control group. In quasi-static condition, the plastic contribution Jpl of fracture toughness (p = 0.043) of ribose-incubated group was significantly lower than that of incubated-control group. In fall-like condition, there were no differences in Jpl, elastic contribution Jel and J-integral in both two groups. The quasi-static Jel (p < 0.0001, p < 0.0001) of incubated-control and ribose-incubated groups and J-integral (p = 0.007) of incubated-control group were all significantly higher than those of fall-like condition. In stress relaxation test, initial modulus E0 (p = 0.040) and equilibrium modulus (p = 0.029) of ribose-incubated group were significantly higher than those of incubated-control group. Reductions of relaxation modulus, which were the differences between two adjacent time points within 700 s-3000 s for ribose-incubated group, were significantly lower than those of incubated-control group. NEG could decrease the post-yield properties and quasi-static facture toughness of cortical bone, especially the plastic contribution of quasi-static fracture toughness. It could also decrease the viscoelasticity of cortical bone. The present study confirmed the negative effects of NEG on the mechanical properties of cortical bone in terms of elastoplasticity, fracture toughness and viscoelasticity, but NEG had no significant effect on the fracture toughness of cortical bone at fall-like loading. These results provided more evidence for increased fragility of cortical bone in patients with T2DM.
Collapse
|
34
|
Shitole P, Choubey A, Mondal P, Ghosh R. Influence of low dose naltrexone on Raman assisted bone quality, skeletal advanced glycation end-products and nano-mechanical properties in type 2 diabetic mice bone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112011. [PMID: 33812630 DOI: 10.1016/j.msec.2021.112011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) commonly affects the bone mineral phase and advanced glycation end-products (AGEs) which eventually led to changes in bone material properties on the nano and macro-scale. Several anti-diabetic compounds are widely used to control high blood sugar or glucose caused by T2DM. Low Dose Naltrexone (LDN), an opiate receptor antagonist, and a known TLR4 antagonist, treatment can improve glucose tolerance and insulin sensitivity in high-fat-diet (HFD) induced T2DM mice. However, the influences of LDN on the local bone quality, mineralization of the bone, and the skeletal AGEs levels have not been fully elucidated. The objective of this study is to understand the effect of LDN on Raman assisted bone quality, skeletal AGEs (determined by Raman spectroscopy), and nano-mechanical properties in HFD induced T2DM mice bone. In order to investigate these, mice and corresponding bones were divided into four groups (divided based on diet and treatment), (a) normal control diet treated with saline water, (b) normal control diet treated with LDN, (c) HFD treated with saline water, and (d) HFD treated with LDN. In T2DM condition (HFD treated with saline water), alteration of Raman-based compositional measures in bone quality including mineral-to-matrix ratios, carbonate substitution, mineral crystallinity, and collagen quality was observed. Our data also indicated that T2DM enhances the skeletal AGEs, and impairs the nano-mechanical properties. Interestingly, present results indicated that LDN controls the Raman-based compositional measures in bone quality in HFD induced T2DM mice bone. Additionally, LDN also protects the alteration of the skeletal AGEs levels and nano-mechanical properties in T2DM mice bone. This study concluded that LDN can control the HFD induced T2DM affected bone abnormalities at multiple hierarchical levels.
Collapse
Affiliation(s)
- Pankaj Shitole
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| | - Abhinav Choubey
- School of Basic Science, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| | - Prosenjit Mondal
- School of Basic Science, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India.
| | - Rajesh Ghosh
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India.
| |
Collapse
|