1
|
Ouchi T, Ando M, Kurashima R, Kimura M, Saito N, Iwasaki A, Sekiya H, Nakajima K, Hasegawa T, Mizoguchi T, Shibukawa Y. Pericytes Are Odontoblast Progenitor Cells Depending on ER Stress. J Dent Res 2025; 104:656-667. [PMID: 39905276 PMCID: PMC12075889 DOI: 10.1177/00220345241307944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Odontoblasts are terminally differentiated cells that exhibit mechanosensitivity and mineralization capacity. Mechanosensitive ion channels such as Piezo1 are present in odontoblasts and are associated with their physiological functions via Ca2+ signaling. Both Ca2+ signals via Ca2+ influx from mechanosensitive ion channels and Ca2+ release from Ca2+ stores function as secondary messenger systems for various biological phenomena. The endoplasmic reticulum (ER) serves as an intracellular Ca2+ store that mobilizes intracellular Ca2+. Changes in Ca2+ concentration inside the ER are among the factors that cause ER stress. Perivascular cells are located around odontoblasts in the dental pulp. Although such formation indicates that perivascular cells interact with odontoblasts, their detailed profiles under developmental and pathological conditions remain unclear. In this study, we revealed that pericyte marker, neural/glial antigen 2 (NG2)-positive cells, in cell-rich zones (CZs) can differentiate into Piezo1-positive odontoblasts following genetic odontoblast depletion in mice, and modeled as odontoblast death after severe dentin injury and as reparative dentin formation. NG2-positive pericytes differentiated into odontoblasts faster than glial cells. To determine how NG2-positive cells differentiate into Piezo1-positive odontoblasts, we focused on the ER-stress sensor protein, activating transcription factor 6a (ATF6a). After genetic odontoblast depletion, NG2-positive cells regenerated in the odontoblast layer and were capable of acting as functional odontoblasts. In the presence of extracellular Ca2+, the application of a sarco/ER Ca2+-ATPase (SERCA) inhibitor, thapsigargin, known as an ER-stress inducer, increased the intracellular Ca2+ concentration in the odontoblast lineage cells (OLCs). The increase was significantly inhibited by the application of a pharmacologic Piezo1 inhibitor, indicating that ER stress by SERCA inhibition augmented Piezo1-induced responses in odontoblast progenitor cells. However, the physiological activation of Gq-coupled receptors by adenosine diphosphate did not induce Piezo1 activation. Gene silencing of ATF6a and/or NG2 impaired the mineralization of OLCs. Overall, ATF6a orchestrates the differentiation of NG2-positive pericytes into functional odontoblasts that act as sensory receptor cells and dentin-forming cells.
Collapse
Affiliation(s)
- T. Ouchi
- Department of Physiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - M. Ando
- Department of Physiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - R. Kurashima
- Department of Physiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - M. Kimura
- Department of Physiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - N. Saito
- Department of Dental Anesthesiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - A. Iwasaki
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - H. Sekiya
- Department of Endodontics, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - K. Nakajima
- Department of Endodontics, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - T. Hasegawa
- Department of Physiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Oral Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - T. Mizoguchi
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| | - Y. Shibukawa
- Department of Physiology, Tokyo Dental College, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
2
|
Wu Y, Zhu W, Wang L, Zhang W, Zhang K, Sun M, Guan J, Liu S, Liu Y. Vdr mediates Wnt signaling pathway to regulate odontoblasts differentiation during dentin apposition. Eur J Pharmacol 2025; 991:177333. [PMID: 39894431 DOI: 10.1016/j.ejphar.2025.177333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Dentin, a complex, living, and porous mineral substance, is produced by the mineralization of predentin, which is secreted by odontoblasts. This substance is crucial for maintaining the health of teeth. However, the specific function of the vitamin D receptor (Vdr) in the mineralization of odontoblasts, dentin homeostasis, and its interaction with Wnt signaling pathway during dentin apposition is not well understood. In this study, we employed Vdr transgenic knockout mice to study the dental effects and observed enlarged pulp cavities, diminished dentin, and increased predentin thickness in Vdr-/- mice. We further reduced Vdr expression in odontoblasts and analyzed the changes in mineralization and Wnt signaling pathway. Our results showed decreased levels of mineralization and its markers Dspp, Alpl, Opn, Col-1, and Bsp in Vdr-knockdown odontoblasts. Additionally, the Wnt signaling pathway was downregulated, as indicated by lower levels of β-catenin, Lef1, and Axin2, and higher levels of Dkk1. We then attempted to rescue these effects by treating them with lithium chloride (LiCl) which activated the Wnt signaling pathway and appeared to restore the mineralization capacity of odontoblasts. Overall, our findings suggest that Vdr can mediate the Wnt signaling pathway to regulate odontoblasts differentiation during dentin apposition, presenting new potential approaches for improving dental health.
Collapse
Affiliation(s)
- Yinlin Wu
- Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Wenyan Zhu
- Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Liang Wang
- Department of Prosthodontics, West China Hospital of Stomatology of Sichuan University, 14 Section 3 South Peoples Road, Chengdu, 610041, China
| | - Weihao Zhang
- Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Kai Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, 287 Chuang Huai Road, Bengbu, 233004, China
| | - Meiqun Sun
- Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China; Department of Histology and Embryology, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Junchang Guan
- Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China; Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Shanshan Liu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China; Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, 287 Chuang Huai Road, Bengbu, 233004, China
| | - Yudong Liu
- Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China; Department of Histology and Embryology, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China; Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, 2600 Dong Hai Avenue, Bengbu, 233030, China.
| |
Collapse
|
3
|
Mizoguchi T. In vivo dynamics of hard tissue-forming cell origins: Insights from Cre/loxP-based cell lineage tracing studies. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:109-119. [PMID: 38406212 PMCID: PMC10885318 DOI: 10.1016/j.jdsr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Bone tissue provides structural support for our bodies, with the inner bone marrow (BM) acting as a hematopoietic organ. Within the BM tissue, two types of stem cells play crucial roles: mesenchymal stem cells (MSCs) (or skeletal stem cells) and hematopoietic stem cells (HSCs). These stem cells are intricately connected, where BM-MSCs give rise to bone-forming osteoblasts and serve as essential components in the BM microenvironment for sustaining HSCs. Despite the mid-20th century proposal of BM-MSCs, their in vivo identification remained elusive owing to a lack of tools for analyzing stemness, specifically self-renewal and multipotency. To address this challenge, Cre/loxP-based cell lineage tracing analyses are being employed. This technology facilitated the in vivo labeling of specific cells, enabling the tracking of their lineage, determining their stemness, and providing a deeper understanding of the in vivo dynamics governing stem cell populations responsible for maintaining hard tissues. This review delves into cell lineage tracing studies conducted using commonly employed genetically modified mice expressing Cre under the influence of LepR, Gli1, and Axin2 genes. These studies focus on research fields spanning long bones and oral/maxillofacial hard tissues, offering insights into the in vivo dynamics of stem cell populations crucial for hard tissue homeostasis.
Collapse
|
4
|
Hosoya A, Takebe H, Seki-Kishimoto Y, Noguchi Y, Ninomiya T, Yukita A, Yoshiba N, Washio A, Iijima M, Morotomi T, Kitamura C, Nakamura H. Polycomb protein Bmi1 promotes odontoblast differentiation by accelerating Wnt and BMP signaling pathways. Histochem Cell Biol 2024; 163:11. [PMID: 39589557 DOI: 10.1007/s00418-024-02337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2024] [Indexed: 11/27/2024]
Abstract
Bmi1 is a polycomb protein localized in stem cells and maintains their stemness. This protein is also reported to regulate the expression of various differentiation genes. In this study, to analyze the role of Bmi1 during dentinogenesis, we examined the immunohistochemical localization of Bmi1 during rat tooth development as well as after cavity preparation. Bmi1 localization was hardly detected in the dental mesenchyme at the bud and cap stages. After the bell stage, however, this protein became detectable in preodontoblasts and early odontoblasts just beginning dentin matrix secretion. As dentin formation progressed, Bmi1 immunoreactivity in the odontoblasts decreased in intensity. After cavity preparation, cells lining the dentin and some pulp cells under the cavity were immunopositive for Bmi1 at 4 days. Odontoblast-like cells forming reparative dentin were immunopositive for Bmi1 at 1 week, whereas their immunoreactivity was not detected after 8 weeks. We further analyzed the function of Bmi1 using KN-3 cells, a dental mesenchymal cell line. Overexpression of Bmi1 in KN-3 cells promoted mineralized tissue formation. In contrast, siRNA knockdown of Bmi1 in KN-3 cells reduced alkaline phosphatase activity and the expression of odontoblast differentiation marker genes such as Runx2, osterix, and osteocalcin. Additionally, KN-3 cells transfected with siRNA against Bmi1 showed reduced nuclear transition of β-catenin and expression of phosphorylated-Smad1/5/8. Taken together, these findings suggest that Bmi1 was localized in the odontoblast-lineage cells in their early differentiation stages. Bmi1 might positively regulate their differentiation by accelerating Wnt and BMP signaling pathways.
Collapse
Affiliation(s)
- Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan.
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Yuri Seki-Kishimoto
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293, Japan
| | - Yukiko Noguchi
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Tadashi Ninomiya
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
| | - Akira Yukita
- Faculty of Education, Shizuoka University, Shizuoka, Japan
| | - Nagako Yoshiba
- Department of Oral Health Science, Course for Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, Fukuoka, Japan
| | - Masahiro Iijima
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Takahiko Morotomi
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Aichi, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, Fukuoka, Japan
| | - Hiroaki Nakamura
- Institute for Oral Science, Matsumoto Dental University, Nagano, Japan
| |
Collapse
|
5
|
Yang D, Jeong Y, Ortinau L, Solidum J, Park D. Mx1 -labeled pulp progenitor cells are main contributors to postnatal odontoblasts and pulp cells in murine molars. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586156. [PMID: 38585950 PMCID: PMC10996506 DOI: 10.1101/2024.03.21.586156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Regeneration of dentin and odontoblasts from dental pulp stem cells (DPSCs) is essential for permanent tooth maintenance. However, the in vivo identity and role of endogenous DPSCs in reparative dentinogenesis are elusive. Here, using pulp single-cell analysis before and after molar eruption, we revealed that endogenous DPSCs are enriched in Cxcl12- GFP + coronal papilla-like cells with Mx1- Cre labeling. These Mx1 + Cxcl12- GFP + cells are long-term repopulating cells that contribute to the majority of pulp cells and new odontoblasts after eruption. Upon molar injury, Mx1 + DPSCs localize into the injury site and differentiate into new odontoblasts, forming scleraxis -GFP + and osteocalcin -GFP + dentinal tubules and reparative dentin. Single-cell and FACS analysis showed that Mx1 + Cxcl12- GFP + DPSCs are the most primitive cells with stem cell marker expression and odontoblast differentiation. Taken together, our findings demonstrate that Mx1 labels postnatal DSPCs, which are the main source of pulp cells and new odontoblasts with reparative dentinogenesis in vivo .
Collapse
|
6
|
Fujino S, Hamano S, Tomokiyo A, Sugiura R, Yamashita D, Hasegawa D, Sugii H, Fujii S, Itoyama T, Miyaji H, Maeda H. Dopamine is involved in reparative dentin formation through odontoblastic differentiation of dental pulp stem cells. Sci Rep 2023; 13:5668. [PMID: 37024514 PMCID: PMC10079685 DOI: 10.1038/s41598-023-32126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Conventional direct pulp-capping materials induce pulp cells to secrete various biomolecules in pulp tissues that promote reparative dentin formation through induction of odontoblastic differentiation of dental pulp stem cells (DPSCs). However, these biomolecules sometimes induce bone-like dentin with poor sealing properties. Therefore, exploration of biomolecules that allow tight sealing by tubular reparative dentin is required. We recently reported that dopamine (DA) is involved in dentinogenesis. Hence, we investigated the effect of DA on odontoblastic differentiation of DPSCs and reparative dentin formation. Both tyrosine hydroxylase (TH), a DA synthetase, and DA were expressed in odontoblast-like cells in vivo. In vitro, their expression was increased during odontoblastic differentiation of DPSCs. Furthermore, TH-overexpressing DPSCs had promoted odontoblastic differentiation and DA production. Moreover, DA stimulation promoted their differentiation and induced tubular reparative dentin. These results suggest that DA produced by TH is involved in odontoblastic differentiation of DPSCs and has an inductive capacity for reparative dentin formation similar to primary dentin. This study may lead to the development of therapy to preserve vital pulp tissues.
Collapse
Affiliation(s)
- Shoko Fujino
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Atsushi Tomokiyo
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Risa Sugiura
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daiki Yamashita
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiro Itoyama
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, 7 Kita13-jonishi Kita-ku, Sapporo, 060-8586, Japan
| | - Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
7
|
Ohyama S, Ouchi T, Kimura M, Kurashima R, Yasumatsu K, Nishida D, Hitomi S, Ubaidus S, Kuroda H, Ito S, Takano M, Ono K, Mizoguchi T, Katakura A, Shibukawa Y. Piezo1-pannexin-1-P2X 3 axis in odontoblasts and neurons mediates sensory transduction in dentinal sensitivity. Front Physiol 2022; 13:891759. [PMID: 36589456 PMCID: PMC9795215 DOI: 10.3389/fphys.2022.891759] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
According to the "hydrodynamic theory," dentinal pain or sensitivity is caused by dentinal fluid movement following the application of various stimuli to the dentin surface. Recent convergent evidence in Vitro has shown that plasma membrane deformation, mimicking dentinal fluid movement, activates mechanosensitive transient receptor potential (TRP)/Piezo channels in odontoblasts, with the Ca2+ signal eliciting the release of ATP from pannexin-1 (PANX-1). The released ATP activates the P2X3 receptor, which generates and propagates action potentials in the intradental Aδ afferent neurons. Thus, odontoblasts act as sensory receptor cells, and odontoblast-neuron signal communication established by the TRP/Piezo channel-PANX-1-P2X3 receptor complex may describe the mechanism of the sensory transduction sequence for dentinal sensitivity. To determine whether odontoblast-neuron communication and odontoblasts acting as sensory receptors are essential for generating dentinal pain, we evaluated nociceptive scores by analyzing behaviors evoked by dentinal sensitivity in conscious Wistar rats and Cre-mediated transgenic mouse models. In the dentin-exposed group, treatment with a bonding agent on the dentin surface, as well as systemic administration of A-317491 (P2X3 receptor antagonist), mefloquine and 10PANX (non-selective and selective PANX-1 antagonists), GsMTx-4 (selective Piezo1 channel antagonist), and HC-030031 (selective TRPA1 channel antagonist), but not HC-070 (selective TRPC5 channel antagonist), significantly reduced nociceptive scores following cold water (0.1 ml) stimulation of the exposed dentin surface of the incisors compared to the scores of rats without local or systemic treatment. When we applied cold water stimulation to the exposed dentin surface of the lower first molar, nociceptive scores in the rats with systemic administration of A-317491, 10PANX, and GsMTx-4 were significantly reduced compared to those in the rats without systemic treatment. Dentin-exposed mice, with somatic odontoblast-specific depletion, also showed significant reduction in the nociceptive scores compared to those of Cre-mediated transgenic mice, which did not show any type of cell deletion, including odontoblasts. In the odontoblast-eliminated mice, P2X3 receptor-positive A-neurons were morphologically intact. These results indicate that neurotransmission between odontoblasts and neurons mediated by the Piezo1/TRPA1-pannexin-1-P2X3 receptor axis is necessary for the development of dentinal pain. In addition, odontoblasts are necessary for sensory transduction to generate dentinal sensitivity as mechanosensory receptor cells.
Collapse
Affiliation(s)
- Sadao Ohyama
- Department of Physiology, Tokyo Dental College, Tokyo, Japan,Oral Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Ryuya Kurashima
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | | - Daisuke Nishida
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan,Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - Sobhan Ubaidus
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Hidetaka Kuroda
- Department of Physiology, Tokyo Dental College, Tokyo, Japan,Department of Dental Anesthesiology, Kanagawa Dental University, Yokosuka, Japan
| | - Shinichirou Ito
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Masayuki Takano
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | | | - Akira Katakura
- Department of Oral Pathological Science and Surgery, Tokyo Dental College, Tokyo, Japan
| | - Yoshiyuki Shibukawa
- Department of Physiology, Tokyo Dental College, Tokyo, Japan,*Correspondence: Yoshiyuki Shibukawa,
| |
Collapse
|
8
|
Matsunaga M, Kimura M, Ouchi T, Nakamura T, Ohyama S, Ando M, Nomura S, Azuma T, Ichinohe T, Shibukawa Y. Mechanical Stimulation-Induced Calcium Signaling by Piezo1 Channel Activation in Human Odontoblast Reduces Dentin Mineralization. Front Physiol 2021; 12:704518. [PMID: 34504437 PMCID: PMC8421527 DOI: 10.3389/fphys.2021.704518] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Odontoblasts play critical roles in dentin formation and sensory transduction following stimuli on the dentin surface. Exogenous stimuli to the dentin surface elicit dentinal sensitivity through the movement of fluids in dentinal tubules, resulting in cellular deformation. Recently, Piezo1 channels have been implicated in mechanosensitive processes, as well as Ca2+ signals in odontoblasts. However, in human odontoblasts, the cellular responses induced by mechanical stimulation, Piezo1 channel expression, and its pharmacological properties remain unclear. In the present study, we examined functional expression of the Piezo1 channel by recording direct mechanical stimulation-induced Ca2+ signaling in dentin matrix protein 1 (DMP-1)-, nestin-, and dentin sialophosphoprotein (DSPP)-immunopositive human odontoblasts. Mechanical stimulation of human odontoblasts transiently increased intracellular free calcium concentration ([Ca2+]i). Application of repeated mechanical stimulation to human odontoblasts resulted in repeated transient [Ca2+]i increases, but did not show any desensitizing effects on [Ca2+]i increases. We also observed a transient [Ca2+]i increase in the neighboring odontoblasts to the stimulated cells during mechanical stimulation, showing a decrease in [Ca2+]i with an increasing distance from the mechanically stimulated cells. Application of Yoda1 transiently increased [Ca2+]i. This increase was inhibited by application of Gd3+ and Dooku1, respectively. Mechanical stimulation-induced [Ca2+]i increase was also inhibited by application of Gd3+ or Dooku1. When Piezo1 channels in human odontoblasts were knocked down by gene silencing with short hairpin RNA (shRNA), mechanical stimulation-induced [Ca2+]i responses were almost completely abolished. Piezo1 channel knockdown attenuated the number of Piezo1-immunopositive cells in the immunofluorescence analysis, while no effects were observed in Piezo2-immunopositive cells. Alizarin red staining distinctly showed that pharmacological activation of Piezo1 channels by Yoda1 significantly suppressed mineralization, and shRNA-mediated knockdown of Piezo1 also significantly enhanced mineralization. These results suggest that mechanical stimulation predominantly activates intracellular Ca2+ signaling via Piezo1 channel opening, rather than Piezo2 channels, and the Ca2+ signal establishes intercellular odontoblast-odontoblast communication. In addition, Piezo1 channel activation participates in the reduction of dentinogenesis. Thus, the intracellular Ca2+ signaling pathway mediated by Piezo1 channels could contribute to cellular function in human odontoblasts in two ways: (1) generating dentinal sensitivity and (2) suppressing physiological/reactional dentinogenesis, following cellular deformation induced by hydrodynamic forces inside dentinal tubules.
Collapse
Affiliation(s)
- Mayumi Matsunaga
- Department of Physiology, Tokyo Dental College, Tokyo, Japan.,Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | | - Sadao Ohyama
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Masayuki Ando
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Sachie Nomura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|