1
|
Beeve AT, Hassan MG, Li A, Migotsky N, Silva MJ, Scheller EL. Spatial histomorphometry reveals that local peripheral nerves modulate but are not required for skeletal adaptation to applied load in mice. JBMR Plus 2025; 9:ziaf006. [PMID: 40040837 PMCID: PMC11878550 DOI: 10.1093/jbmrpl/ziaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/05/2025] [Accepted: 01/07/2024] [Indexed: 03/06/2025] Open
Abstract
Mechanical loading is required for bone health and results in skeletal adaptation to optimize strength. Local nerve axons, particularly within the periosteum, may respond to load-induced biomechanical and biochemical cues. However, their role in the bone anabolic response remains controversial. We hypothesized that spatial alignment of periosteal nerves with sites of load-induced bone formation would clarify this relationship. To achieve this, we developed RadialQuant, a custom tool for spatial histomorphometry. Tibiae of control and neurectomized (sciatic/femoral nerve cut) pan-neuronal Baf53b-tdTomato reporter mice were loaded for 5 days. Bone formation and periosteal nerve axon density were then quantified simultaneously in non-decalcified sections of the mid-diaphysis using RadialQuant. In control animals, anabolic loading induced maximal periosteal bone formation at the site of peak compression, as has been reported previously. By contrast, loading did not significantly change overall periosteal nerve density. Neurectomy depleted ~90% of all periosteal axons, with near-total depletion on load-responsive surfaces. Neurectomy alone also caused de novo bone formation on the lateral aspect of the mid-diaphysis. However, neurectomy did not inhibit load-induced increases in periosteal bone area, mineralizing surface, or bone formation rate. Rather, neurectomy spatially redistributed load-induced bone formation toward the lateral tibial surface with a reduction in periosteal bone formation at the posterolateral apex (-63%) and enhancement at the lateral surface (+1360%). Altogether, this contributed to comparable load-induced changes in cortical bone area fraction. Our results show that local skeletal innervation modulates but is not required for skeletal adaptation to applied load in our model. This supports the continued use of loading and weight-bearing exercise as an effective strategy to increase bone mass, even in settings of peripheral nerve damage or dysfunction.
Collapse
Affiliation(s)
- Alec T Beeve
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO 63110, United States
| | - Mohamed G Hassan
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO 63110, United States
| | - Anna Li
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO 63110, United States
| | - Nicole Migotsky
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
- Department of Orthopaedics, Washington University, St. Louis, MO 63110, United States
| | - Matthew J Silva
- Department of Orthopaedics, Washington University, St. Louis, MO 63110, United States
| | - Erica L Scheller
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, St. Louis, MO 63110, United States
| |
Collapse
|
2
|
Meslier QA, Duerr TJ, Guan W, Nguyen B, Monaghan JR, Shefelbine SJ. WISH-BONE: Whole-mount in situ histology, to label osteocyte mRNA and protein in 3D adult mouse bones. FASEB J 2024; 38:e70101. [PMID: 39387181 DOI: 10.1096/fj.202400635r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Bone is a three-dimensional (3D) highly dynamic tissue under constant remodeling. Commonly used tools to investigate bone biology require sample digestion for biomolecule extraction or provide only two-dimensional (2D) spatial information. There is a need for 3D tools to investigate spatially preserved biomarker expression in osteocytes. In this work, we present a new method, WISH-BONE, to label osteocyte messenger RNA (mRNA) and protein in whole-mount mouse bone. For mRNA labeling, we used hybridization chain reaction-fluorescence in situ hybridization (HCR-FISH) to label genes of interest in osteocytes. For protein labeling, samples were preserved using an epoxy-based solution that protects tissue structure and biomolecular components. Then an enzymatic matrix permeabilization step was performed to enable antibody penetration. Immunostaining was used to label various proteins involved in bone homeostasis. We also demonstrate the use of customized fluorescent nanobodies to target and label proteins in the cortical bone (CB). However, the relatively dim signal observed from nanobodies' staining limited detection. mRNA and protein labeling were performed in separate samples. In this study, we share protocols, highlight opportunities, and identify the challenges of this novel 3D labeling method. They are the first protocols for whole-mount osteocyte 3D labeling of mRNA and protein in mature mouse bones. WISH-BONE will allow the investigation of molecular signaling in bone cells in their 3D environment and could be applied to various bone-related fields of research.
Collapse
Affiliation(s)
- Quentin A Meslier
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- LifeCanvas Technologies, Cambridge, Massachusetts, USA
| | - Timothy J Duerr
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
- Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, Massachusetts, USA
| | - Webster Guan
- LifeCanvas Technologies, Cambridge, Massachusetts, USA
| | - Brian Nguyen
- LifeCanvas Technologies, Cambridge, Massachusetts, USA
| | - James R Monaghan
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
- Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, Massachusetts, USA
| | - Sandra J Shefelbine
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Institute for Chemical Imaging of Living Systems, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Chermside-Scabbo CJ, Shuster JT, Erdmann-Gilmore P, Tycksen E, Zhang Q, Townsend RR, Silva MJ. A proteomics approach to study mouse long bones: examining baseline differences and mechanical loading-induced bone formation in young-adult and old mice. Aging (Albany NY) 2024; 16:12726-12768. [PMID: 39400554 PMCID: PMC11501390 DOI: 10.18632/aging.206131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
With aging, bone mass declines and the anabolic effects of skeletal loading diminish. While much research has focused on gene transcription, how bone ages and loses its mechanoresponsiveness at the protein level remains unclear. We developed a novel proteomics approach and performed a paired mass spectrometry and RNA-seq analysis on tibias from young-adult (5-month) and old (22-month) mice. We report the first correlation estimate between the bone proteome and transcriptome (Spearman ρ = 0.40), which is in line with other tissues but indicates that a relatively low amount of variation in protein levels is explained by the variation in transcript levels. Of 71 shared targets that differed with age, eight were associated with bone mineral density in previous GWAS, including understudied targets Asrgl1 and Timp2. We used complementary RNA in situ hybridization to confirm that Asrgl1 and Timp2 had reduced expression in osteoblasts/osteocytes in old bones. We also found evidence for reduced TGF-beta signaling with aging, in particular Tgfb2. Next, we defined proteomic changes following mechanical loading. At the protein level, bone differed more with age than with loading, and aged bone had fewer loading-induced changes. Overall, our findings underscore the need for complementary protein-level assays in skeletal biology research.
Collapse
Affiliation(s)
- Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John T. Shuster
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Petra Erdmann-Gilmore
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Tycksen
- Department of Genetics, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Qiang Zhang
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - R. Reid Townsend
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
4
|
Zhang Y, Zhao X, Ge D, Huang Y, Yao Q. The impact and mechanism of nerve injury on bone metabolism. Biochem Biophys Res Commun 2024; 704:149699. [PMID: 38412668 DOI: 10.1016/j.bbrc.2024.149699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
With an increasing understanding of the mechanisms of fracture healing, it has been found that nerve injury plays a crucial role in the process, but the specific mechanism is yet to be completely revealed. To address this issue and provide novel insights for fracture treatment, we compiled this review. This review aims to study the impact of nerve injury on fracture healing, exploring the role of neurotrophic factors in the healing process. We first revisited the effects of the central nervous system (CNS) and the peripheral nervous system (PNS) on the skeletal system, and further explained the phenomenon of significantly accelerated fracture healing under nerve injury conditions. Then, from the perspective of neurotrophic factors, we delved into the physiological functions and mechanisms of neurotrophic factors, such as nerve growth factor (NGF), Neuropeptides (NPs), and Brain-derived neurotrophic factor (BDNF), in bone metabolism. These effects include direct actions on bone cells, improvement of local blood supply, regulation of bone growth factors, control of cellular signaling pathways, promotion of callus formation and bone regeneration, and synergistic or antagonistic effects with other endocrine factors, such as Sema3A and Transforming Growth Factor β (TGF-β). Finally, we discussed the treatments of fractures with nerve injuries and the future research directions in this review, suggesting that the relationship between nerve injury and fracture healing, as well as the role of nerve injury in other skeletal diseases.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Xiao Zhao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Dawei Ge
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Yang Huang
- International Innovation Center for Forest Chemicals & Materials and Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China.
| |
Collapse
|
5
|
Ahmad M, Haffner-Luntzer M, Schoppa A, Najafova Z, Lukic T, Yorgan TA, Amling M, Schinke T, Ignatius A. Mechanical induction of osteoanabolic Wnt1 promotes osteoblast differentiation via Plat. FASEB J 2024; 38:e23489. [PMID: 38407813 DOI: 10.1096/fj.202301424rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Physical activity-induced mechanical stimuli play a crucial role in preserving bone mass and structure by promoting bone formation. While the Wnt pathway is pivotal for mediating the osteoblast response to loading, the exact mechanisms are not fully understood. Here, we found that mechanical stimulation induces osteoblastic Wnt1 expression, resulting in an upregulation of key osteogenic marker genes, including Runx2 and Sp7, while Wnt1 knockdown using siRNA prevented these effects. RNAseq analysis identified Plat as a major target through which Wnt1 exerts its osteogenic influence. This was corroborated by Plat depletion using siRNA, confirming its positive role in osteogenic differentiation. Moreover, we demonstrated that mechanical stimulation enhances Plat expression, which, in turn leads to increased expression of osteogenic markers like Runx2 and Sp7. Notably, Plat depletion by siRNA prevented this effect. We have established that Wnt1 regulates Plat expression by activating β-Catenin. Silencing Wnt1 impairs mechanically induced β-Catenin activation, subsequently reducing Plat expression. Furthermore, our findings showed that Wnt1 is essential for osteoblasts to respond to mechanical stimulation and induce Runx2 and Sp7 expression, in part through the Wnt1/β-Catenin/Plat signaling pathway. Additionally, we observed significantly reduced Wnt1 and Plat expression in bones from ovariectomy (OVX)-induced and age-related osteoporotic mouse models compared with non-OVX and young mice, respectively. Overall, our data suggested that Wnt1 and Plat play significant roles in mechanically induced osteogenesis. Their decreased expression in bones from OVX and aged mice highlights their potential involvement in post-menopausal and age-related osteoporosis, respectively.
Collapse
Affiliation(s)
- Mubashir Ahmad
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | | | - Teodora Lukic
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
6
|
Wee NKY, Novak S, Ghosh D, Root SH, Dickerson IM, Kalajzic I. Inhibition of CGRP signaling impairs fracture healing in mice. J Orthop Res 2023; 41:1228-1239. [PMID: 36281531 PMCID: PMC10123175 DOI: 10.1002/jor.25474] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide produced by sensory nerves and functions as a pain sensor. It acts by binding to the calcitonin-like receptor (CLR, protein; Calcrl, gene). CGRP inhibition has been recently introduced as therapeutic treatment of migraine-associated pain. Previous studies have shown that CGRP stimulates bone formation. The aim of our study is to determine whether the inhibition of CGRP signaling negatively impacted fracture healing. Using α-smooth muscle actin (αSMA) Cre animals crossed with Ai9 reporter mice, we showed that CGRP-expressing nerves are near αSMA + cells in the periosteum. In vitro experiments revealed that periosteal cells express Calcrl and receptor activity modifying protein 1; and CGRP stimulation increased periosteal cell proliferation. Using a tamoxifen-inducible model αSMACre/CLRfl/fl , we targeted the deletion of CLR to periosteal progenitor cells and examined fracture healing. Microcomputed tomography of fractured femurs showed a reduction in bone mass in αSMACre+/CLRfl/fl female mice relative to controls and callus volume in males. Pharmacological CGRP-CLR inhibition was achieved by subcutaneous delivery of customized pellets with small molecule inhibitor olcegepant (BIBN-4096) at a dose of 10 μg/day. BIBN-4096-treated C57BL/6J mice had a higher latency toward thermal nociception than placebo-treated mice, indicating impaired sensory function through CGRP inhibition. CGRP inhibition also resulted in reduced callus volume, bone mass, and bone strength compared to placebo controls. These results indicate that inhibiting CGRP by deleting CLR or by using BIBN-4096, contributes to delayed bone healing.
Collapse
Affiliation(s)
- Natalie KY Wee
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Bone Cell Biology and Disease Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Sanja Novak
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Debolina Ghosh
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Sierra H Root
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ian M Dickerson
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
7
|
Xu X, Yang H, Bullock WA, Gallant MA, Ohlsson C, Bellido TM, Main RP. Osteocyte Estrogen Receptor β (Ot-ERβ) Regulates Bone Turnover and Skeletal Adaptive Response to Mechanical Loading Differently in Male and Female Growing and Adult Mice. J Bone Miner Res 2023; 38:186-197. [PMID: 36321245 PMCID: PMC10108310 DOI: 10.1002/jbmr.4731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Age-related bone loss is a failure of balanced bone turnover and diminished skeletal mechanoadaptation. Estrogen receptors, ERα and ERβ, play critical roles in osteoprotective regulation activated by estrogen and mechanical signals. Previous studies mainly focused on ERα and showed that osteocyte-ERα (Ot-ERα) regulated trabecular, but not cortical bone, and played a minor role in load-induced cortical adaptation. However, the role of Ot-ERβ in bone mass regulation remains unrevealed. To address this issue, we characterized bone (re)modeling and gene expression in male and female mice with Ot-ERβ deletion (ERβ-dOT) and littermate control (LC) at 10 weeks (young) or 28 weeks (adult) of age, as well as their responses to in vivo tibial compressive loading. Increased cancellous bone mass appeared in the L4 vertebral body of young male ERβ-dOT mice. At the same time, femoral cortical bone gene expression showed signs consistent with elevated osteoblast and osteoclast activities (type-I collagen, Cat K, RANKL). Upregulated androgen receptor (AR) expression was observed in young male ERβ-dOT mice relative to LC, suggesting a compensatory effect of testosterone on male bone protection. In contrast, bone mass in L4 decreased in adult male ERβ-dOT mice, attributed to potentially increased bone resorption activity (Cat K) with no change in bone formation. There was no effect of ERβ-dOT on bone mass or gene expression in female mice. Sex-dependent regulation of Ot-ERβ also appeared in load-induced cortical responsiveness. Young female ERβ-dOT mice showed an enhanced tibial cortical anabolic adaptation compared with LC. In contrast, an attenuated cortical anabolic response presented at the proximal tibia in male ERβ-dOT mice at both ages. For the first time, our findings suggest that Ot-ERβ regulates bone (re)modeling and the response to mechanical signals through different mechanisms in males and females. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xiaoyu Xu
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | | | - Maxim A. Gallant
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical NutritionInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Drug TreatmentSahlgrenska University HospitalGothenburgSweden
| | - Teresita M. Bellido
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Russell P. Main
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
8
|
Lawson LY, Migotsky N, Chermside-Scabbo CJ, Shuster JT, Joeng KS, Civitelli R, Lee B, Silva MJ. Loading-induced bone formation is mediated by Wnt1 induction in osteoblast-lineage cells. FASEB J 2022; 36:e22502. [PMID: 35969160 PMCID: PMC9430819 DOI: 10.1096/fj.202200591r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Mechanical loading on the skeleton stimulates bone formation. Although the exact mechanism underlying this process remains unknown, a growing body of evidence indicates that the Wnt signaling pathway is necessary for the skeletal response to loading. Recently, we showed that Wnts produced by osteoblast lineage cells mediate the osteo-anabolic response to tibial loading in adult mice. Here, we report that Wnt1 specifically plays a crucial role in mediating the mechano-adaptive response to loading. Independent of loading, short-term loss of Wnt1 in the Osx-lineage resulted in a decreased cortical bone area in the tibias of 5-month-old mice. In females, strain-matched loading enhanced periosteal bone formation in Wnt1F/F controls, but not in Wnt1F/F; OsxCreERT2 knockouts. In males, strain-matched loading increased periosteal bone formation in both control and knockout mice; however, the periosteal relative bone formation rate was 65% lower in Wnt1 knockouts versus controls. Together, these findings show that Wnt1 supports adult bone homeostasis and mediates the bone anabolic response to mechanical loading.
Collapse
Affiliation(s)
- Lisa Y. Lawson
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - John T. Shuster
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Kyu Sang Joeng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Roberto Civitelli
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, MO, United States
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Waco, TX, United States
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| |
Collapse
|
9
|
Wee NK, Sims NA, Morello R. The Osteocyte Transcriptome: Discovering Messages Buried Within Bone. Curr Osteoporos Rep 2021; 19:604-615. [PMID: 34757588 PMCID: PMC8720072 DOI: 10.1007/s11914-021-00708-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF THE REVIEW Osteocytes are cells embedded within the bone matrix, but their function and specific patterns of gene expression remain only partially defined; this is beginning to change with recent studies using transcriptomics. This unbiased approach can generate large amounts of data and is now being used to identify novel genes and signalling pathways within osteocytes both at baseline conditions and in response to stimuli. This review outlines the methods used to isolate cell populations containing osteocytes, and key recent transcriptomic studies that used osteocyte-containing preparations from bone tissue. RECENT FINDINGS Three common methods are used to prepare samples to examine osteocyte gene expression: digestion followed by sorting, laser capture microscopy, and the isolation of cortical bone shafts. All these methods present challenges in interpreting the data generated. Genes previously not known to be expressed by osteocytes have been identified and variations in osteocyte gene expression have been reported with age, sex, anatomical location, mechanical loading, and defects in bone strength. A substantial proportion of newly identified transcripts in osteocytes remain functionally undefined but several have been cross-referenced with functional data. Future work and improved methods (e.g. scRNAseq) likely provide useful resources for the study of osteocytes and important new information on the identity and functions of this unique cell type within the skeleton.
Collapse
Affiliation(s)
- Natalie Ky Wee
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, 3065, Australia
| | - Roy Morello
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
10
|
Biophysical Modulation of the Mitochondrial Metabolism and Redox in Bone Homeostasis and Osteoporosis: How Biophysics Converts into Bioenergetics. Antioxidants (Basel) 2021; 10:antiox10091394. [PMID: 34573026 PMCID: PMC8466850 DOI: 10.3390/antiox10091394] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/11/2023] Open
Abstract
Bone-forming cells build mineralized microstructure and couple with bone-resorbing cells, harmonizing bone mineral acquisition, and remodeling to maintain bone mass homeostasis. Mitochondrial glycolysis and oxidative phosphorylation pathways together with ROS generation meet the energy requirement for bone-forming cell growth and differentiation, respectively. Moderate mechanical stimulations, such as weight loading, physical activity, ultrasound, vibration, and electromagnetic field stimulation, etc., are advantageous to bone-forming cell activity, promoting bone anabolism to compromise osteoporosis development. A plethora of molecules, including ion channels, integrins, focal adhesion kinases, and myokines, are mechanosensitive and transduce mechanical stimuli into intercellular signaling, regulating growth, mineralized extracellular matrix biosynthesis, and resorption. Mechanical stimulation changes mitochondrial respiration, biogenesis, dynamics, calcium influx, and redox, whereas mechanical disuse induces mitochondrial dysfunction and oxidative stress, which aggravates bone-forming cell apoptosis, senescence, and dysfunction. The control of the mitochondrial biogenesis activator PGC-1α by NAD+-dependent deacetylase sirtuins or myokine FNDC/irisin or repression of oxidative stress by mitochondrial antioxidant Nrf2 modulates the biophysical stimulation for the promotion of bone integrity. This review sheds light onto the roles of mechanosensitive signaling, mitochondrial dynamics, and antioxidants in mediating the anabolic effects of biophysical stimulation to bone tissue and highlights the remedial potential of mitochondrial biogenesis regulators for osteoporosis.
Collapse
|