1
|
Foustoukos DI, Houghton JL. High-pressure continuous culturing: life at the extreme. Appl Environ Microbiol 2025; 91:e0201024. [PMID: 39840974 PMCID: PMC11837531 DOI: 10.1128/aem.02010-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Microorganisms adapted to high hydrostatic pressures at depth in the oceans and within the subsurface of Earth's crust represent a phylogenetically diverse community thriving under extreme pressure, temperature, and nutrient availability conditions. To better understand the microbial function, physiological responses, and metabolic strategies at in-situ conditions requires high-pressure (HP) continuous culturing techniques that, although commonly used in bioengineering and biotechnology applications, remain relatively rare in the study of the Earth's microbiomes. Here, we focus on recent developments in the design of HP chemostats, with particular emphasis on adaptations for delivery and sampling of dissolved gases. We present protocols for sterilization, inoculation, agitation, and sampling strategies that minimize cell lysis, applicable to a wide range of chemostat designs.
Collapse
Affiliation(s)
| | - Jennifer L. Houghton
- Department of Earth, Environmental and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Mackay SM, Sutherland B, Easingwood RA, Hopkins A, Bostina M, Tan EW. Evidence for phospholipid self-organisation in concentrated ammonia-water environments. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184391. [PMID: 39389227 DOI: 10.1016/j.bbamem.2024.184391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Titan, the largest moon of Saturn is thought to have the potential to support primordial life. The surface of Titan contains bodies of liquid hydrocarbons, and modelling suggests that an ammonia-water ocean resides deep beneath the surface, both of which have been speculated to support primordial chemistry. Here we present the first evidence that both preformed and self-organised phospholipid vesicles remain stable and can maintain concentration gradients in ammonia-water environments; a fundamental requirement for primordial chemistry and biology to originate. We further reveal the remarkable stability of a diether phospholipid, such as those found in extremophilic bacteria, under these conditions and demonstrate that electron microscopy and tomography are useful tools to investigate macromolecular structure under diverse physico-chemical environments.
Collapse
Affiliation(s)
- Sean M Mackay
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Now at Massey University, John Lyttleton Building, Dairy Farm Road, Palmerston North 4442, New Zealand.
| | - Ben Sutherland
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Richard A Easingwood
- Otago Micro and Nanoscale Imaging (EM), University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Andrew Hopkins
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Otago Micro and Nanoscale Imaging (EM), University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Eng Wui Tan
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
3
|
Larson AG, Chajwa R, Li H, Prakash M. Inflation-induced motility for long-distance vertical migration. Curr Biol 2024; 34:5149-5163.e3. [PMID: 39423814 DOI: 10.1016/j.cub.2024.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/26/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
The vertical migrations of pelagic organisms play a crucial role in shaping marine ecosystems and influencing global biogeochemical cycles. They also form the foundation of what might be the largest daily biomass movement on Earth. Surprisingly, among this diverse group of organisms, some single-cell protists can transit depths exceeding 50 m without employing flagella or cilia. How these non-motile cells perform large migrations remains unknown. It has been previously proposed that this capability might rely on the cell's ability to regulate its internal density relative to seawater. Here, using the dinoflagellate algae Pyrocystis noctiluca as a model system, we discover a rapid cell inflation event post cell division, during which a single plankton cell expands its volume 6-fold in less than 10 min. We demonstrate this rapid cellular inflation is the primary mechanism of density control. This self-regulated cellular inflation selectively imports fluid less dense than surrounding seawater and can thus effectively sling-shot a cell and reverse sedimentation within minutes. To accommodate its dramatic cellular expansion, Pyrocystis noctiluca possesses a unique reticulated cytoplasmic architecture that enables a rapid increase in overall cell volume without diluting its cytoplasmic content. We further present a generalized mathematical framework that unifies cell-cycle-driven density regulation, stratified ecology, and associated cell behavior in the open ocean. Our study unveils an ingenious strategy employed by a non-motile plankton to evade the gravitational sedimentation trap, highlighting how precise control of cell size and cell density can enable long-distance migration in the open ocean.
Collapse
Affiliation(s)
- Adam G Larson
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Rahul Chajwa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Hongquan Li
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Ocean, Stanford University, Stanford, CA 94305, USA; Woods Institute of the Environment, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Thweatt JL, Harman CE, Araújo MN, Marlow JJ, Oliver GC, Sabuda MC, Sevgen S, Wilpiszeki RL. Chapter 6: The Breadth and Limits of Life on Earth. ASTROBIOLOGY 2024; 24:S124-S142. [PMID: 38498824 DOI: 10.1089/ast.2021.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Scientific ideas about the potential existence of life elsewhere in the universe are predominantly informed by knowledge about life on Earth. Over the past ∼4 billion years, life on Earth has evolved into millions of unique species. Life now inhabits nearly every environmental niche on Earth that has been explored. Despite the wide variety of species and diverse biochemistry of modern life, many features, such as energy production mechanisms and nutrient requirements, are conserved across the Tree of Life. Such conserved features help define the operational parameters required by life and therefore help direct the exploration and evaluation of habitability in extraterrestrial environments. As new diversity in the Tree of Life continues to expand, so do the known limits of life on Earth and the range of environments considered habitable elsewhere. The metabolic processes used by organisms living on the edge of habitability provide insights into the types of environments that would be most suitable to hosting extraterrestrial life, crucial for planning and developing future astrobiology missions. This chapter will introduce readers to the breadth and limits of life on Earth and show how the study of life at the extremes can inform the broader field of astrobiology.
Collapse
Affiliation(s)
- Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA. (Former)
| | - C E Harman
- Planetary Systems Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Serhat Sevgen
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | |
Collapse
|
5
|
Schaible MJ, Szeinbaum N, Bozdag GO, Chou L, Grefenstette N, Colón-Santos S, Rodriguez LE, Styczinski MJ, Thweatt JL, Todd ZR, Vázquez-Salazar A, Adams A, Araújo MN, Altair T, Borges S, Burton D, Campillo-Balderas JA, Cangi EM, Caro T, Catalano E, Chen K, Conlin PL, Cooper ZS, Fisher TM, Fos SM, Garcia A, Glaser DM, Harman CE, Hermis NY, Hooks M, Johnson-Finn K, Lehmer O, Hernández-Morales R, Hughson KHG, Jácome R, Jia TZ, Marlow JJ, McKaig J, Mierzejewski V, Muñoz-Velasco I, Nural C, Oliver GC, Penev PI, Raj CG, Roche TP, Sabuda MC, Schaible GA, Sevgen S, Sinhadc P, Steller LH, Stelmach K, Tarnas J, Tavares F, Trubl G, Vidaurri M, Vincent L, Weber JM, Weng MM, Wilpiszeki RL, Young A. Chapter 1: The Astrobiology Primer 3.0. ASTROBIOLOGY 2024; 24:S4-S39. [PMID: 38498816 DOI: 10.1089/ast.2021.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The Astrobiology Primer 3.0 (ABP3.0) is a concise introduction to the field of astrobiology for students and others who are new to the field of astrobiology. It provides an entry into the broader materials in this supplementary issue of Astrobiology and an overview of the investigations and driving hypotheses that make up this interdisciplinary field. The content of this chapter was adapted from the other 10 articles in this supplementary issue and thus represents the contribution of all the authors who worked on these introductory articles. The content of this chapter is not exhaustive and represents the topics that the authors found to be the most important and compelling in a dynamic and changing field.
Collapse
Affiliation(s)
- Micah J Schaible
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nadia Szeinbaum
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Stephanie Colón-Santos
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
- Department of Botany, University of Wisconsin-Madison, Wisconsin, USA
| | - Laura E Rodriguez
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - M J Styczinski
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- University of Washington, Seattle, Washington, USA
| | - Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Alberto Vázquez-Salazar
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, California, USA
| | - Alyssa Adams
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA
| | | | - Dana Burton
- Department of Anthropology, George Washington University, Washington DC, USA
| | | | - Eryn M Cangi
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | - Kimberly Chen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Z S Cooper
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Theresa M Fisher
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Santiago Mestre Fos
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Amanda Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin, USA
| | - D M Glaser
- Arizona State University, Tempe, Arizona, USA
| | - Chester E Harman
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada, Spain
| | - M Hooks
- NASA Johnson Space Center, Houston, Texas, USA
| | - K Johnson-Finn
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Owen Lehmer
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Ricardo Hernández-Morales
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Kynan H G Hughson
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rodrigo Jácome
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jordan McKaig
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Veronica Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Israel Muñoz-Velasco
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ceren Nural
- Istanbul Technical University, Istanbul, Turkey
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Petar I Penev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chinmayee Govinda Raj
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - George A Schaible
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Serhat Sevgen
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
| | - Pritvik Sinhadc
- BEYOND: Center For Fundamental Concepts in Science, Arizona State University, Arizona, USA
- Dubai College, Dubai, United Arab Emirates
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Kamil Stelmach
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - J Tarnas
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Frank Tavares
- Space Enabled Research Group, MIT Media Lab, Cambridge, Massachusetts, USA
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Monica Vidaurri
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Department of Physics and Astronomy, Howard University, Washington DC, USA
| | - Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Wisconsin, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | | | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
6
|
Malas J, Russo DC, Bollengier O, Malaska MJ, Lopes RMC, Kenig F, Meyer-Dombard DR. Biological functions at high pressure: transcriptome response of Shewanella oneidensis MR-1 to hydrostatic pressure relevant to Titan and other icy ocean worlds. Front Microbiol 2024; 15:1293928. [PMID: 38414766 PMCID: PMC10896736 DOI: 10.3389/fmicb.2024.1293928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
High hydrostatic pressure (HHP) is a key driver of life's evolution and diversification on Earth. Icy moons such as Titan, Europa, and Enceladus harbor potentially habitable high-pressure environments within their subsurface oceans. Titan, in particular, is modeled to have subsurface ocean pressures ≥ 150 MPa, which are above the highest pressures known to support life on Earth in natural ecosystems. Piezophiles are organisms that grow optimally at pressures higher than atmospheric (0.1 MPa) pressure and have specialized adaptations to the physical constraints of high-pressure environments - up to ~110 MPa at Challenger Deep, the highest pressure deep-sea habitat explored. While non-piezophilic microorganisms have been shown to survive short exposures at Titan relevant pressures, the mechanisms of their survival under such conditions remain largely unelucidated. To better understand these mechanisms, we have conducted a study of gene expression for Shewanella oneidensis MR-1 using a high-pressure experimental culturing system. MR-1 was subjected to short-term (15 min) and long-term (2 h) HHP of 158 MPa, a value consistent with pressures expected near the top of Titan's subsurface ocean. We show that MR-1 is metabolically active in situ at HHP and is capable of viable growth following 2 h exposure to 158 MPa, with minimal pressure training beforehand. We further find that MR-1 regulates 264 genes in response to short-term HHP, the majority of which are upregulated. Adaptations include upregulation of the genes argA, argB, argC, and argF involved in arginine biosynthesis and regulation of genes involved in membrane reconfiguration. MR-1 also utilizes stress response adaptations common to other environmental extremes such as genes encoding for the cold-shock protein CspG and antioxidant defense related genes. This study suggests Titan's ocean pressures may not limit life, as microorganisms could employ adaptations akin to those demonstrated by terrestrial organisms.
Collapse
Affiliation(s)
- Judy Malas
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Daniel C. Russo
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - Olivier Bollengier
- Nantes Université, Univ Angers, Le Mans Université, CNRS, Laboratoire de Planétologie et Géosciences, LPG UMR 6112, Nantes, France
| | - Michael J. Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Rosaly M. C. Lopes
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Fabien Kenig
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| | - D'Arcy R. Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Xu J, Wang L, Lv W, Song X, Nie Y, Wu XL. Metabolic profiling of petroleum-degrading microbial communities incubated under high-pressure conditions. Front Microbiol 2023; 14:1305731. [PMID: 38188585 PMCID: PMC10766756 DOI: 10.3389/fmicb.2023.1305731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
While pressure is a significant characteristic of petroleum reservoirs, it is often overlooked in laboratory studies. To clarify the composition and metabolic properties of microbial communities under high-pressure conditions, we established methanogenic and sulfate-reducing enrichment cultures under high-pressure conditions using production water from the Jilin Oilfield in China. We utilized a metagenomics approach to analyze the microbial community after a 90-day incubation period. Under methanogenic conditions, Firmicutes, Deferribacteres, Ignavibacteriae, Thermotogae, and Nitrospirae, in association with the hydrogenotrophic methanogen Archaeoglobaceae and acetoclastic Methanosaeta, were highly represented. Genomes for Ca. Odinarchaeota and the hydrogen-dependent methylotrophic Ca. Methanosuratus were also recovered from the methanogenic culture. The sulfate-reducing community was dominated by Firmicutes, Thermotogae, Nitrospirae, Archaeoglobus, and several candidate taxa including Ca. Bipolaricaulota, Ca. Aminicenantes, and Candidate division WOR-3. These candidate taxa were key pantothenate producers for other community members. The study expands present knowledge of the metabolic roles of petroleum-degrading microbial communities under high-pressure conditions. Our results also indicate that microbial community interactions were shaped by syntrophic metabolism and the exchange of amino acids and cofactors among members. Furthermore, incubation under in situ pressure conditions has the potential to reveal the roles of microbial dark matter.
Collapse
Affiliation(s)
- Jinbo Xu
- School of Earth and Space Sciences, Peking University, Beijing, China
- State Key Laboratory of Enhanced Oil and Gas Recovery, Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Lu Wang
- State Key Laboratory of Enhanced Oil and Gas Recovery, Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Weifeng Lv
- State Key Laboratory of Enhanced Oil and Gas Recovery, Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Xinmin Song
- State Key Laboratory of Enhanced Oil and Gas Recovery, Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, China
- Institute of Ecology, Peking University, Beijing, China
| |
Collapse
|
8
|
Scheffer G, Gieg LM. The Mystery of Piezophiles: Understudied Microorganisms from the Deep, Dark Subsurface. Microorganisms 2023; 11:1629. [PMID: 37512802 PMCID: PMC10384521 DOI: 10.3390/microorganisms11071629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms that can withstand high pressure within an environment are termed piezophiles. These organisms are considered extremophiles and inhabit the deep marine or terrestrial subsurface. Because these microorganisms are not easily accessed and require expensive sampling methods and laboratory instruments, advancements in this field have been limited compared to other extremophiles. This review summarizes the current knowledge on piezophiles, notably the cellular and physiological adaptations that such microorganisms possess to withstand and grow in high-pressure environments. Based on existing studies, organisms from both the deep marine and terrestrial subsurface show similar adaptations to high pressure, including increased motility, an increase of unsaturated bonds within the cell membrane lipids, upregulation of heat shock proteins, and differential gene-regulation systems. Notably, more adaptations have been identified within the deep marine subsurface organisms due to the relative paucity of studies performed on deep terrestrial subsurface environments. Nevertheless, similar adaptations have been found within piezophiles from both systems, and therefore the microbial biogeography concepts used to assess microbial dispersal and explore if similar organisms can be found throughout deep terrestrial environments are also briefly discussed.
Collapse
Affiliation(s)
- Gabrielle Scheffer
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
9
|
Li J, Xiao X, Zhou M, Zhang Y. Strategy for the Adaptation to Stressful Conditions of the Novel Isolated Conditional Piezophilic Strain Halomonas titanicae ANRCS81. Appl Environ Microbiol 2023; 89:e0130422. [PMID: 36912687 PMCID: PMC10057041 DOI: 10.1128/aem.01304-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
Microorganisms have successfully predominated deep-sea ecosystems, while we know little about their adaptation strategy to multiple environmental stresses therein, including high hydrostatic pressure (HHP). Here, we focused on the genus Halomonas, one of the most widely distributed halophilic bacterial genera in marine ecosystems and isolated a piezophilic strain Halomonas titanicae ANRCS81 from Antarctic deep-sea sediment. The strain grew under a broad range of temperatures (2 to 45°C), pressures (0.1 to 55 MPa), salinities (NaCl, 0.5 to 17.5%, wt/vol), and chaotropic agent (Mg2+, 0 to 0.9 M) with either oxygen or nitrate as an electron acceptor. Genome annotation revealed that strain ANRCS81 expressed potential antioxidant genes/proteins and possessed versatile energy generation pathways. Based on the transcriptomic analysis, when the strain was incubated at 40 MPa, genes related to antioxidant defenses, anaerobic respiration, and fermentation were upregulated, indicating that HHP induced intracellular oxidative stress. Under HHP, superoxide dismutase (SOD) activity increased, glucose consumption increased with less CO2 generation, and nitrate/nitrite consumption increased with more ammonium generation. The cellular response to HHP represents the common adaptation developed by Halomonas to inhabit and drive geochemical cycling in deep-sea environments. IMPORTANCE Microbial growth and metabolic responses to environmental changes are core aspects of adaptation strategies developed during evolution. In particular, high hydrostatic pressure (HHP) is the most common but least examined environmental factor driving microbial adaptation in the deep sea. According to recent studies, microorganisms developed a common adaptation strategy to multiple stresses, including HHP, with antioxidant defenses and energy regulation as key components, but experimental data are lacking. Meanwhile, cellular SOD activity is elevated under HHP. The significance of this research lies in identifying the HHP adaptation strategy of a Halomonas strain at the genomic, transcriptomic, and metabolic activity levels, which will allow researchers to bridge environmental factors with the ecological function of marine microorganisms.
Collapse
Affiliation(s)
- Jiakang Li
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Meng Zhou
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhang
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Dohrmann AB, Krüger M. Microbial H 2 Consumption by a Formation Fluid from a Natural Gas Field at High-Pressure Conditions Relevant for Underground H 2 Storage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1092-1102. [PMID: 36599497 DOI: 10.1021/acs.est.2c07303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Underground hydrogen storage (UHS) has been proposed as one option for storage of excess energy from renewable sources. Depleted gas reservoirs appear suitable, but at the same time, they may be environments with potentially high microbial abundances and activities. Hydrogen (H2) is one of the most energetic substrates in such environments, and many microorganisms are able to oxidize H2, potentially leading to loss of H2 or other unwanted reactions like production of, e.g., H2S, clogging, or corrosion. This study addressed the potential of H2 consumption by naturally abundant microorganisms in formation fluid from a gas field at near in situ pressure and temperature conditions. Microbial H2 consumption was evident at ambient and 100 bar and tolerated pressure variations reflecting cycles of H2 storage. Temperature strongly influenced the activity with higher activity at 30 °C but lower activity at 60 °C. The activity was sulfate-dependent, and sulfide was produced. The microbial community composition changed during H2 consumption with an increase in sulfate-reducing prokaryotes (SRP). Thus, the presence of an SRP-containing, H2-consuming microbial community with activity at UHS-relevant pressure and temperature conditions was shown and should be taken into account when planning UHS at this and other sites.
Collapse
Affiliation(s)
- Anja B Dohrmann
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655Hannover, Germany
| | - Martin Krüger
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655Hannover, Germany
| |
Collapse
|
11
|
Miller KM, Tang F, Li S, Mullane KK, Shelton BR, Bui L, Bartlett DH, Nicholson WL. Carnobacterium Species Capable of Growth at Pressures Ranging Over 5 Orders of Magnitude, from the Surface of Mars (10 3 Pa) to Deep Oceans (10 7 Pa) in the Solar System. ASTROBIOLOGY 2023; 23:94-104. [PMID: 36450114 DOI: 10.1089/ast.2022.0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Several permanently cold solar system bodies are being investigated with regard to their potential habitability, including Mars and icy moons. In such locations, microbial life would have to cope with low temperatures and both high and low pressures, ranging from ∼102 to 103 Pa on the surface of Mars to upward of ∼108-109 Pa in the subsurface oceans of icy moons. The bacterial genus Carnobacterium consists of species that were previously shown to be capable of growth in the absence of oxygen at low temperatures and at either low pressure or high pressure, but to date the entire pressure range of the genus has not been explored. In the present study, we subjected 14 Carnobacterium strains representing 11 species to cultivation in a complex liquid medium under anaerobic conditions at 2°C and at a range of pressures spanning 5 orders of magnitude, from 103 to 107 Pa. Eleven of the 14 strains showed measurable growth rates at all pressures tested, representing the first demonstration of terrestrial life forms capable of growth under such a wide range of pressures. These findings expand the physical boundaries of the capabilities of life to occur in extreme extraterrestrial environments.
Collapse
Affiliation(s)
- Kathleen M Miller
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, USA
| | - Flora Tang
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Sixuan Li
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Kelli K Mullane
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Brontë R Shelton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Lam Bui
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, USA
| |
Collapse
|
12
|
Sun Y, Wang M, Chen H, Wang H, Zhong Z, Zhou L, Fu L, Li C, Sun S. Insights into symbiotic interactions from metatranscriptome analysis of deep-sea mussel Gigantidas platifrons under long-term laboratory maintenance. Mol Ecol 2023; 32:444-459. [PMID: 36326559 DOI: 10.1111/mec.16765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/23/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Symbioses between invertebrates and chemosynthetic bacteria are of fundamental importance in deep-sea ecosystems, but the mechanisms that enable their symbiont associations are still largely undescribed, owing to the culturable difficulties of deep-sea lives. Bathymodiolinae mussels are remarkable in their ability to overcome decompression and can be maintained successfully for an extended period under atmospheric pressure, thus providing a model for investigating the molecular basis of symbiotic interactions. Herein, we conducted metatranscriptome sequencing and gene co-expression network analysis of Gigantidas platifrons under laboratory maintenance with gradual loss of symbionts. The results revealed that one-day short-term maintenance triggered global transcriptional perturbation in symbionts, but little gene expression changes in mussel hosts, which were mainly involved in responses to environmental changes. Long-term maintenance with depleted symbionts induced a metabolic shift in the mussel host. The most notable changes were the suppression of sterol biosynthesis and the complementary activation of terpenoid backbone synthesis in response to the reduction of bacteria-derived terpenoid sources. In addition, we detected the upregulation of host proteasomes responsible for amino acid deprivation caused by symbiont depletion. Additionally, a significant correlation between host microtubule motor activity and symbiont abundance was revealed, suggesting the possible function of microtubule-based intracellular trafficking in the nutritional interaction of symbiosis. Overall, by analyzing the dynamic transcriptomic changes during the loss of symbionts, our study highlights the nutritional importance of symbionts in supplementing terpenoid compounds and essential amino acids and provides insight into the molecular mechanisms and strategies underlying the symbiotic interactions in deep-sea ecosystems.
Collapse
Affiliation(s)
- Yan Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hao Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhaoshan Zhong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lulu Fu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Song Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Amano C, Zhao Z, Sintes E, Reinthaler T, Stefanschitz J, Kisadur M, Utsumi M, Herndl GJ. Limited carbon cycling due to high-pressure effects on the deep-sea microbiome. NATURE GEOSCIENCE 2022; 15:1041-1047. [PMID: 36504693 PMCID: PMC9726642 DOI: 10.1038/s41561-022-01081-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Deep-sea microbial communities are exposed to high-pressure conditions, which has a variable impact on prokaryotes depending on whether they are piezophilic (that is, pressure-loving), piezotolerant or piezosensitive. While it has been suggested that elevated pressures lead to higher community-level metabolic rates, the response of these deep-sea microbial communities to the high-pressure conditions of the deep sea is poorly understood. Based on microbial activity measurements in the major oceanic basins using an in situ microbial incubator, we show that the bulk heterotrophic activity of prokaryotic communities becomes increasingly inhibited at higher hydrostatic pressure. At 4,000 m depth, the bulk heterotrophic prokaryotic activity under in situ hydrostatic pressure was about one-third of that measured in the same community at atmospheric pressure conditions. In the bathypelagic zone-between 1,000 and 4,000 m depth-~85% of the prokaryotic community was piezotolerant and ~5% of the prokaryotic community was piezophilic. Despite piezosensitive-like prokaryotes comprising only ~10% (mainly members of Bacteroidetes, Alteromonas) of the deep-sea prokaryotic community, the more than 100-fold metabolic activity increase of these piezosensitive prokaryotes upon depressurization leads to high apparent bulk metabolic activity. Overall, the heterotrophic prokaryotic activity in the deep sea is likely to be substantially lower than hitherto assumed, with major impacts on the oceanic carbon cycling.
Collapse
Affiliation(s)
- Chie Amano
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Eva Sintes
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Instituto Español de Oceanografía-CSIC, Centro Oceanográfico de Baleares, Palma de Mallorca, Spain
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Julia Stefanschitz
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Present Address: Marine Evolutionary Ecology, Deep-Sea Biology Group, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Murat Kisadur
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Motoo Utsumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Texel, The Netherlands
- Vienna Metabolomics & Proteomics Center, University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
McClain CR, Bryant SR, Hanks G, Bowles MW. Extremophiles in Earth's Deep Seas: A View Toward Life in Exo-Oceans. ASTROBIOLOGY 2022; 22:1009-1028. [PMID: 35549348 DOI: 10.1089/ast.2021.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Humanity's search for extraterrestrial life is a modern manifestation of the exploratory and curious nature that has led us through millennia of scientific discoveries. With the ongoing exploration of extraterrestrial bodies, the potential for discovery of extraterrestrial life has expanded. We may better inform this search through an understanding of how life persists and flourishes on Earth in a myriad of environmental extremes. A significant proportion of our knowledge of extremophiles on Earth comes from studies on deep ocean life. Here, we review and synthesize the range of environmental extremes observed in the deep sea, the life that persists in these extreme conditions, and the biological adaptations utilized by these remarkable life-forms. We also review confirmed and predicted extraterrestrial oceans in our solar system and propose deep-sea sites that may serve as planetary field analog environments. We show that the clever ingenuity of evolution under deep-sea conditions suggests that the plausibility of extraterrestrial life is much greater than previously thought.
Collapse
Affiliation(s)
- Craig R McClain
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - S River Bryant
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Granger Hanks
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | | |
Collapse
|
15
|
Qian Y, Han W, Zhou F, Ji B, Zhang H, Zhang K. Effects of Pressurized Aeration on the Biodegradation of Short-Chain Chlorinated Paraffins by Escherichia coli Strain 2. MEMBRANES 2022; 12:634. [PMID: 35736341 PMCID: PMC9227625 DOI: 10.3390/membranes12060634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Short-chain chlorinated paraffins (SCCPs) were defined as persistent organic pollutants in 2017, and they can migrate and transform in the environment, accumulate in organisms, and amplify through the food chain. Although they pose a serious threat to environmental safety and human health, there are few papers on their removal. The current SCCP removal methods are expensive, require severe operating conditions, involve time-consuming biological treatment, and have poor removal specificities. Therefore, it is important to seek efficient methods to remove SCCPs. In this paper, a pressurized reactor was introduced, and the removal performance of SCCPs by Escherichia coli strain 2 was investigated. The results indicated that moderate pure oxygen pressurization promoted bacterial growth, but when it exceeded 0.15 MPa, the bacterial growth was severely inhibited. When the concentration of SCCPs was 20 mg/L, the removal rate of SCCPs was 85.61% under 0.15 MPa pure oxygen pressurization for 7 days, which was 25% higher than at atmospheric pressure (68.83%). In contrast, the removal rate was only 69.28% under 0.15 MPa air pressure. As the pressure continued to increase, the removal rate of SCCPs decreased significantly. The total amount of extracellular polymeric substances (EPS) increased significantly upon increasing the pressure, and the amount of tightly bound EPS (TB-EPS) was higher than that of loosely bound EPS (LB-EPS). The pressure mainly promoted the secretion of proteins in LB-EPS. Furthermore, an appropriate pure oxygen pressure of 0.15 MPa improved the dehydrogenase activity. The gas chromatography-mass spectrometry (GC-MS) results indicated that the degradation pathway possibly involved the cleavage of the C-Cl bond in SCCPs, which produced Cl-, followed by C-C bond breaking. This process degraded long-chain alkanes into short-chain alkanes. Moreover, the main degradation products detected were 2,4-dimethylheptane (C9H20), 2,5-dimethylheptane (C9H20), and 3,3-dimethylhexane (C8H18).
Collapse
Affiliation(s)
- Yongxing Qian
- School of Civil Engineering and Architecture, NingboTech University, Ningbo 315000, China; (Y.Q.); (W.H.); (B.J.); (K.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wanling Han
- School of Civil Engineering and Architecture, NingboTech University, Ningbo 315000, China; (Y.Q.); (W.H.); (B.J.); (K.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Fuhai Zhou
- Zhejiang Haiyi Environmental Protection Equipment Engineering Co., Ltd., Quzhou 324000, China;
| | - Bixiao Ji
- School of Civil Engineering and Architecture, NingboTech University, Ningbo 315000, China; (Y.Q.); (W.H.); (B.J.); (K.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Huining Zhang
- School of Civil Engineering and Architecture, NingboTech University, Ningbo 315000, China; (Y.Q.); (W.H.); (B.J.); (K.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Kefeng Zhang
- School of Civil Engineering and Architecture, NingboTech University, Ningbo 315000, China; (Y.Q.); (W.H.); (B.J.); (K.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
16
|
Cario A, Larzillière M, Nguyen O, Alain K, Marre S. High-Pressure Microfluidics for Ultra-Fast Microbial Phenotyping. Front Microbiol 2022; 13:866681. [PMID: 35677901 PMCID: PMC9168469 DOI: 10.3389/fmicb.2022.866681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
Here, we present a novel methodology based on high-pressure microfluidics to rapidly perform temperature-based phenotyping of microbial strains from deep-sea environments. The main advantage concerns the multiple on-chip temperature conditions that can be achieved in a single experiment at pressures representative of the deep-sea, overcoming the conventional limitations of large-scale batch metal reactors to conduct fast screening investigations. We monitored the growth of the model strain Thermococcus barophilus over 40 temperature and pressure conditions, without any decompression, in only 1 week, whereas it takes weeks or months with conventional approaches. The results are later compared with data from the literature. An additional example is also shown for a hydrogenotrophic methanogen strain (Methanothermococcus thermolithotrophicus), demonstrating the robustness of the methodology. These microfluidic tools can be used in laboratories to accelerate characterizations of new isolated species, changing the widely accepted paradigm that high-pressure microbiology experiments are time-consuming.
Collapse
Affiliation(s)
- Anaïs Cario
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
- *Correspondence: Anaïs Cario,
| | - Marina Larzillière
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
- CNRS, Univ. Brest, Ifremer, IRP 1211 MicrobSea, Unité de Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Plouzané, France
| | - Olivier Nguyen
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
| | - Karine Alain
- CNRS, Univ. Brest, Ifremer, IRP 1211 MicrobSea, Unité de Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Plouzané, France
| | - Samuel Marre
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac, France
- Samuel Marre,
| |
Collapse
|
17
|
Cario A, Oliver GC, Rogers KL. Characterizing the Piezosphere: The Effects of Decompression on Microbial Growth Dynamics. Front Microbiol 2022; 13:867340. [PMID: 35663870 PMCID: PMC9157427 DOI: 10.3389/fmicb.2022.867340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
The extent to which the full diversity of the subsurface microbiome can be captured via cultivation is likely hindered by the inevitable loss of cellular viability from decompression during sampling, enrichment, and isolation. Furthermore, the pressure tolerance of previously isolated strains that span surface and subsurface ecosystems can shed light into microbial activity and pressure adaptation in these transition zones. However, assessments of the effects of elevated pressure on the physiology of piezotolerant and piezosensitive species may be biased by high-pressure enrichment techniques. Here, we compared two high-pressure cultivation techniques-one that requires decompression of the whole cultures during sampling and one that employs the previously described isobaric PUSH devices-to explore the effects of repeated decompression during incubations performed to characterize isolates from deep environments. Two model sulfate-reducing prokaryotes were used to test the effects of decompression/repressurization cycles on growth rates, cell yields, and pressure tolerance. The mesophilic bacterium Desulfovibrio salexigens was cultivated from 0.1 to 50 MPa, and the hyperthermophilic archaeon Archaeoglobus fulgidus was tested from 0.1 to 98 MPa. For both cultivation methods, D. salexigens showed exponential growth up to 20 MPa, but faster growth rates were observed for isobaric cultivation. Furthermore, at 30 MPa minor growth was observed in D. salexigens cultures only for isobaric conditions. Isobaric conditions also extended exponential growth of A. fulgidus to 60 MPa, compared to 50 MPa when cultures were decompressed during subsampling. For both strains, growth rates and cell yields decreased with increasing pressures, and the most pronounced effects of decompression were observed at the higher end of the pressure ranges. These results highlight that repeated decompression can have a significant negative impact on cell viability, suggesting that decompression tolerance may depend on habitat depth. Furthermore, sampling, enrichment, and cultivation in isobaric devices is critical not only to explore the portion of the deep biosphere that is sensitive to decompression, but also to better characterize the pressure limits and growth characteristics of piezotolerant and piezosensitive species that span surface and subsurface ecosystems.
Collapse
Affiliation(s)
- Anaïs Cario
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Gina C. Oliver
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Karyn L. Rogers
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
18
|
Moalic Y, Hartunians J, Dalmasso C, Courtine D, Georges M, Oger P, Shao Z, Jebbar M, Alain K. The Piezo-Hyperthermophilic Archaeon Thermococcus piezophilus Regulates Its Energy Efficiency System to Cope With Large Hydrostatic Pressure Variations. Front Microbiol 2021; 12:730231. [PMID: 34803948 PMCID: PMC8595942 DOI: 10.3389/fmicb.2021.730231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Deep-sea ecosystems share a common physical parameter, namely high hydrostatic pressure (HHP). Some of the microorganisms isolated at great depths have a high physiological plasticity to face pressure variations. The adaptive strategies by which deep-sea microorganisms cope with HHP variations remain to be elucidated, especially considering the extent of their biotopes on Earth. Herein, we investigated the gene expression patterns of Thermococcus piezophilus, a piezohyperthermophilic archaeon isolated from the deepest hydrothermal vent known to date, under sub-optimal, optimal and supra-optimal pressures (0.1, 50, and 90 MPa, respectively). At stressful pressures [sub-optimal (0.1 MPa) and supra-optimal (90 MPa) conditions], no classical stress response was observed. Instead, we observed an unexpected transcriptional modulation of more than a hundred gene clusters, under the putative control of the master transcriptional regulator SurR, some of which are described as being involved in energy metabolism. This suggests a fine-tuning effect of HHP on the SurR regulon. Pressure could act on gene regulation, in addition to modulating their expression.
Collapse
Affiliation(s)
- Yann Moalic
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Jordan Hartunians
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Cécile Dalmasso
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Damien Courtine
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Myriam Georges
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Philippe Oger
- Université de Lyon, INSA Lyon, CNRS UMR 5240, Villeurbanne, France
| | - Zongze Shao
- IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France.,Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography SOA, Xiamen, China
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| |
Collapse
|
19
|
Stief P, Elvert M, Glud RN. Respiration by "marine snow" at high hydrostatic pressure: Insights from continuous oxygen measurements in a rotating pressure tank. LIMNOLOGY AND OCEANOGRAPHY 2021; 66:2797-2809. [PMID: 34413544 PMCID: PMC8359982 DOI: 10.1002/lno.11791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/07/2021] [Accepted: 04/25/2021] [Indexed: 06/13/2023]
Abstract
It is generally anticipated that particulate organic carbon (POC) for most part is degraded by attached microorganisms during the descent of "marine snow" aggregates toward the deep sea. There is, however, increasing evidence that fresh aggregates can reach great depth and sustain relatively high biological activity in the deep sea. Using a novel high-pressure setup, we tested the hypothesis that increasing levels of hydrostatic pressure inhibit POC degradation in aggregates rapidly sinking to the ocean interior. Respiration activity, a proxy for POC degradation, was measured directly and continuously at up to 100 MPa (corresponding to 10 km water depth) in a rotating pressure tank that keeps the aggregates in a sinking mode. Model diatom-bacteria aggregates, cultures of the aggregate-forming diatom Skeletonema marinoi, and seawater microbial communities devoid of diatoms showed incomplete and complete inhibition of respiration activity when exposed to pressure levels of 10-50 and 60-100 MPa, respectively. This implies reduced POC degradation and hence enhanced POC export to hadal trenches through fast-sinking, pressure-exposed aggregates. Notably, continuous respiration measurements at ≥50 MPa revealed curved instead of linear oxygen time series whenever S. marinoi was present, which was not captured by discrete respiration measurements. These curvatures correspond to alternating phases of high and low respiration activity likely connected to pressure effects on unidentified metabolic processes in S. marinoi.
Collapse
Affiliation(s)
- Peter Stief
- HADAL & Nordcee, Department of BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Marcus Elvert
- MARUM—Center for Marine Environmental SciencesUniversity of BremenBremenGermany
- Faculty of GeosciencesUniversity of BremenBremenGermany
| | - Ronnie N. Glud
- HADAL & Nordcee, Department of BiologyUniversity of Southern DenmarkOdenseDenmark
- Danish Institute for Advanced Study (DIAS)University of Southern DenmarkOdenseDenmark
- Department of Ocean and Environmental SciencesTokyo University of Marine Science and TechnologyTokyoJapan
| |
Collapse
|
20
|
Kim SY, Lopez-Vazquez CM, Curko J, Matosic M, Svetec IK, Štafa A, Milligan C, Herrera A, Maestre JP, Kinney KA, Brdjanovic D, Garcia HA. Supersaturated-oxygen aeration effects on a high-loaded membrane bioreactor (HL-MBR): Biological performance and microbial population dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144847. [PMID: 33548701 DOI: 10.1016/j.scitotenv.2020.144847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Conventional diffused aeration systems (such as fine-bubble diffusers) exhibit a poor oxygen transfer in wastewater treatment plants (WWTPs), particularly when operating at sludge concentrations higher than 15 g L-1. The supersaturated dissolved oxygen (SDOX) system has been proposed as an alternative for supplying dissolved oxygen (DO) at high mixed liquor suspended solids (MLSS) concentrations. The advantages introduced by such technology include the possibility of operating WWTPs at much higher than usual MLSS concentrations, increasing the treatment capacity of WWTPs. Recent studies have demonstrated that the SDOX system has higher oxygen transfer rates (OTRs) and oxygen transfer efficiencies (OTEs) relative to fine-bubble diffusers. However, it is unknown if the high-pressure conditions introduced by SDOX may possibly impact the biological performance of WWTPs. In this study, the effects of SDOX technology on the biological performance of a membrane bioreactor (MBR) were evaluated. The MBR was operated at an MLSS concentration of approximately 15 g L-1 in four phases as follows: (P1) with bubble diffusers, (P2) with an SDOX unit, (P3) with the bubble diffusers, and (P4) with the SDOX unit. The performance of the MBR was assessed by monitoring the sludge concentration, as well as changes in the particle size distribution (PSD), sludge activity, organic matter removal and nitrification performance, and changes in the microbial community within the MBR. The operational conditions exerted by the SDOX technology did not affect the concentration of active biomass during the study period. The biological performance of the MBR was not affected by the introduction of the SDOX technology. Finally, the microbial community was relatively stable although some variations at the family and genus level were evident during each of the study phases. Therefore, the SDOX system can be proposed as an alternative technology for DO supply in WWTPs increasing the overall treatment capacity.
Collapse
Affiliation(s)
- Sang Yeob Kim
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Carlos M Lopez-Vazquez
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands
| | - Josip Curko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Marin Matosic
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ivan K Svetec
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Anamarija Štafa
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Chris Milligan
- BlueInGreen, LLC, 700 W. Research Center Blvd. Suite 1208, Fayetteville, AR 72701, United States
| | - Aridai Herrera
- HAC Group, LLC, 8111 Hicckma Mills Dr, Kansas City, MO 64132, United States
| | - Juan Pedro Maestre
- Civil, Architectural and Environmental Engineering Department, University of Texas at Austin, Austin, TX, United States
| | - Kerry A Kinney
- Civil, Architectural and Environmental Engineering Department, University of Texas at Austin, Austin, TX, United States
| | - Damir Brdjanovic
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Hector A Garcia
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, the Netherlands.
| |
Collapse
|
21
|
Chen H, Wang M, Li M, Lian C, Zhou L, Zhang X, Zhang H, Zhong Z, Wang H, Cao L, Li C. A glimpse of deep-sea adaptation in chemosynthetic holobionts: Depressurization causes DNA fragmentation and cell death of methanotrophic endosymbionts rather than their deep-sea Bathymodiolinae host. Mol Ecol 2021; 30:2298-2312. [PMID: 33774874 DOI: 10.1111/mec.15904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/27/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Bathymodiolinae mussels are typical species in deep-sea cold seeps and hydrothermal vents and an ideal model for investigating chemosynthetic symbiosis and the influence of high hydrostatic pressure on deep-sea organisms. Herein, the potential influence of depressurization on DNA fragmentation and cell death in Bathymodiolinae hosts and their methanotrophic symbionts were surveyed using isobaric and unpressurized samples. As a hallmark of cell death, massive DNA fragmentation was observed in methanotrophic symbionts from unpressurized Bathymodiolinae while several endonucleases and restriction enzymes were upregulated. Additionally, genes involved in DNA repair, glucose/methane metabolism as well as two-component regulatory system were also differentially expressed in depressurized symbionts. DNA fragmentation and programmed cell death, however, were rarely detected in the host bacteriocytes owing to the orchestrated upregulation of inhibitor of apoptosis genes and downregulation of caspase genes. Meanwhile, diverse host immune recognition receptors were promoted during depressurization, probably enabling the regain of symbionts. When the holobionts were subjected to a prolonged acclimation at atmospheric pressure, alternations in both the DNA fragmentation and the expression atlas of aforesaid genes were continuously observed in symbionts, demonstrating the persistent influence of depressurization. Contrarily, the host cells demonstrated certain tolerance against depressurization stress as expression level of some immune-related genes returned to the basal level in isobaric samples. Altogether, the present study illustrates the distinct stress responses of Bathymodiolinae hosts and their methanotrophic symbionts against depressurization, which could provide further insight into the deep-sea adaptation of Bathymodiolinae holobionts while highlighting the necessity of using isobaric sampling methods in deep-sea research.
Collapse
Affiliation(s)
- Hao Chen
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Mengna Li
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Lian
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Zhou
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xin Zhang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hao Wang
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lei Cao
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research, CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Xiao X, Zhang Y, Wang F. Hydrostatic pressure is the universal key driver of microbial evolution in the deep ocean and beyond. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:68-72. [PMID: 33398931 DOI: 10.1111/1758-2229.12915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Yu Zhang
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, China
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai, 200030, China
| | - Fengping Wang
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai, 200030, China
| |
Collapse
|
23
|
Roumagnac M, Pradel N, Bartoli M, Garel M, Jones AA, Armougom F, Fenouil R, Tamburini C, Ollivier B, Summers ZM, Dolla A. Responses to the Hydrostatic Pressure of Surface and Subsurface Strains of Pseudothermotoga elfii Revealing the Piezophilic Nature of the Strain Originating From an Oil-Producing Well. Front Microbiol 2020; 11:588771. [PMID: 33343528 PMCID: PMC7746679 DOI: 10.3389/fmicb.2020.588771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Microorganisms living in deep-oil reservoirs face extreme conditions of elevated temperature and hydrostatic pressure. Within these microbial communities, members of the order Thermotogales are predominant. Among them, the genus Pseudothermotoga is widespread in oilfield-produced waters. The growth and cell phenotypes under hydrostatic pressures ranging from 0.1 to 50 MPa of two strains from the same species originating from subsurface, Pseudothermotoga elfii DSM9442 isolated from a deep African oil-producing well, and surface, P. elfii subsp. lettingae isolated from a thermophilic sulfate-reducing bioreactor, environments are reported for the first time. The data support evidence for the piezophilic nature of P. elfii DSM9442, with an optimal hydrostatic pressure for growth of 20 MPa and an upper limit of 40 MPa, and the piezotolerance of P. elfii subsp. lettingae with growth occurring up to 20 MPa only. Under the experimental conditions, both strains produce mostly acetate and propionate as volatile fatty acids with slight variations with respect to the hydrostatic pressure for P. elfii DSM9442. The data show that the metabolism of P. elfii DSM9442 is optimized when grown at 20 MPa, in agreement with its piezophilic nature. Both Pseudothermotoga strains form chained cells when the hydrostatic pressure increases, especially P. elfii DSM9442 for which 44% of cells is chained when grown at 40 MPa. The viability of the chained cells increases with the increase in the hydrostatic pressure, indicating that chain formation is a protective mechanism for P. elfii DSM9442.
Collapse
Affiliation(s)
- Marie Roumagnac
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Nathalie Pradel
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Manon Bartoli
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Marc Garel
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Aaron A Jones
- ExxonMobil Research and Engineering Company, Annandale, NJ, United States
| | - Fabrice Armougom
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Romain Fenouil
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Christian Tamburini
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Bernard Ollivier
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Zarath M Summers
- ExxonMobil Research and Engineering Company, Annandale, NJ, United States
| | - Alain Dolla
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
24
|
Oliver GC, Cario A, Rogers KL. Rate and Extent of Growth of a Model Extremophile, Archaeoglobus fulgidus, Under High Hydrostatic Pressures. Front Microbiol 2020; 11:1023. [PMID: 32595611 PMCID: PMC7303961 DOI: 10.3389/fmicb.2020.01023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022] Open
Abstract
High hydrostatic pressure (HHP) batch cultivation of a model extremophile, Archaeoglobus fulgidus type strain VC-16, was performed to explore how elevated pressures might affect microbial growth and physiology in the deep marine biosphere. Though commonly identified in high-temperature and high-pressure marine environments (up to 2-5 km below sea level, 20-50 MPa pressures), A. fulgidus growth at elevated pressure has not been characterized previously. Here, exponential growth of A. fulgidus was observed up to 60 MPa when supported by the heterotrophic metabolism of lactate oxidation coupled to sulfate reduction, and up to 40 MPa for autotrophic CO2 fixation coupled to thiosulfate reduction via H2. Maximum growth rates for this heterotrophic metabolism were observed at 20 MPa, suggesting that A. fulgidus is a moderate piezophile under these conditions. However, only piezotolerance was observed for autotrophy, as growth rates remained nearly constant from 0.3 to 40 MPa. Experiments described below show that A. fulgidus continues both heterotrophic sulfate reduction and autotrophic thiosulfate reduction nearly unaffected by increasing pressure up to 30 MPa and 40 MPa, respectively. As these pressures encompass a variety of subsurface marine environments, A. fulgidus serves as a model extremophile for exploring the effects of elevated pressure on microbial metabolisms in the deep subsurface. Further, these results exemplify the need for high-pressure cultivation of deep-sea and subsurface microorganisms to better reflect in situ physiological conditions.
Collapse
Affiliation(s)
- Gina C. Oliver
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Anaïs Cario
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Karyn L. Rogers
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
25
|
Morais S, Cario A, Liu N, Bernard D, Lecoutre C, Garrabos Y, Ranchou-Peyruse A, Dupraz S, Azaroual M, Hartman RL, Marre S. Studying key processes related to CO 2 underground storage at the pore scale using high pressure micromodels. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00023j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Micromodels experimentation for studying and understanding CO2 geological storage mechanisms at the pore scale.
Collapse
Affiliation(s)
| | - Anaïs Cario
- CNRS
- Univ. Bordeaux
- Bordeaux INP
- ICMCB
- Pessac Cedex
| | - Na Liu
- CNRS
- Univ. Bordeaux
- Bordeaux INP
- ICMCB
- Pessac Cedex
| | | | | | | | | | | | | | - Ryan L. Hartman
- Department of Chemical and Biomolecular Engineering
- New York University
- Brooklyn
- USA
| | | |
Collapse
|
26
|
Liu P, Ding W, Lai Q, Liu R, Wei Y, Wang L, Xie Z, Cao J, Fang J. Physiological and genomic features of Paraoceanicella profunda gen. nov., sp. nov., a novel piezophile isolated from deep seawater of the Mariana Trench. Microbiologyopen 2019; 9:e966. [PMID: 31743595 PMCID: PMC7002103 DOI: 10.1002/mbo3.966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/27/2019] [Accepted: 10/30/2019] [Indexed: 01/11/2023] Open
Abstract
A novel piezophilic alphaproteobacterium, strain D4M1T, was isolated from deep seawater of the Mariana Trench. 16S rRNA gene analysis showed that strain D4M1T was most closely related to Oceanicella actignis PRQ‐67T (94.2%), Oceanibium sediminis O448T (94.2%), and Thioclava electrotropha ElOx9T (94.1%). Phylogenetic analyses based on both 16S rRNA gene and genome sequences showed that strain D4M1T formed an independent monophyletic branch paralleled with the genus Oceanicella in the family Rhodobacteraceae. Cells were Gram‐stain‐negative, aerobic short rods, and grew optimally at 37°C, pH 6.5, and 3.0% (w/v) NaCl. Strain D4M1T was piezophilic with the optimum pressure of 10 MPa. The principal fatty acids were C18:1ω7c/C18:1ω6c and C16:0, major respiratory quinone was ubiquinone‐10, and predominant polar lipids were phosphatidylglycerol, phosphatidylethanolamine, and an unidentified aminophospholipid. The complete genome contained 5,468,583‐bp with a G + C content of 70.2 mol% and contained 4,855 protein‐coding genes and 78 RNA genes. Genomic analysis revealed abundant clues on bacterial high‐pressure adaptation and piezophilic lifestyle. The combined evidence shows that strain D4M1T represents a novel species of a novel genus in the family Rhodobacteraceae, for which the name Paraoceanicella profunda gen. nov., sp. nov. is proposed (type strain D4M1T = MCCC 1K03820T = KCTC 72285T).
Collapse
Affiliation(s)
- Ping Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Wanzhen Ding
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources of PR China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Xiamen, China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Yuli Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Li Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Zhe Xie
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI, USA
| |
Collapse
|
27
|
Tyler AII, Greenfield JL, Seddon JM, Brooks NJ, Purushothaman S. Coupling Phase Behavior of Fatty Acid Containing Membranes to Membrane Bio-Mechanics. Front Cell Dev Biol 2019; 7:187. [PMID: 31616666 PMCID: PMC6763698 DOI: 10.3389/fcell.2019.00187] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
Biological membranes constantly modulate their fluidity for proper functioning of the cell. Modulation of membrane properties via regulation of fatty acid composition has gained a renewed interest owing to its relevance in endocytosis, endoplasmic reticulum membrane homeostasis, and adaptation mechanisms in the deep sea. Endowed with significant degrees of freedom, the presence of free fatty acids can alter the curvature of membranes which in turn can alter the response of curvature sensing proteins, thus defining adaptive ways to reconfigure membranes. Most significantly, recent experiments demonstrated that polyunsaturated lipids facilitate membrane bending and fission by endocytic proteins – the first step in the biogenesis of synaptic vesicles. Despite the vital roles of fatty acids, a systematic study relating the interactions between fatty acids and membrane and the consequent effect on the bio-mechanics of membranes under the influence of fatty acids has been sparse. Of specific interest is the vast disparity in the properties of cis and trans fatty acids, that only differ in the orientation of the double bond and yet have entirely unique and opposing chemical properties. Here we demonstrate a combined X-ray diffraction and membrane fluctuation analysis method to couple the structural properties to the biophysical properties of fatty acid-laden membranes to address current gaps in our understanding. By systematically doping pure dioleoyl phosphatidylcholine (DOPC) membranes with cis fatty acid and trans fatty acid we demonstrate that the presence of fatty acids doesn’t always fluidize the membrane. Rather, an intricate balance between the curvature, molecular interactions, as well as the amount of specific fatty acid dictates the fluidity of membranes. Lower concentrations are dominated by the nature of interactions between the phospholipid and the fatty acids. Trans fatty acid increases the rigidity while decreasing the area per lipid similar to the properties depicted by the addition of saturated fatty acids to lipidic membranes. Cis fatty acid however displays the accepted view of having a fluidizing effect at small concentrations. At higher concentrations curvature frustration dominates, leading to increased rigidity irrespective of the type of fatty acid. These results are consistent with theoretical predictions as detailed in the manuscript.
Collapse
Affiliation(s)
- Arwen I I Tyler
- Department of Chemistry, Imperial College London, London, United Kingdom.,School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Jake L Greenfield
- Department of Chemistry, Imperial College London, London, United Kingdom.,Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - John M Seddon
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Sowmya Purushothaman
- Department of Material Science, University of California, Davis, Davis, CA, United States.,Cavendish Laboratory, Cambridge, United Kingdom
| |
Collapse
|
28
|
Gao ZM, Huang JM, Cui GJ, Li WL, Li J, Wei ZF, Chen J, Xin YZ, Cai DS, Zhang AQ, Wang Y. In situ meta-omic insights into the community compositions and ecological roles of hadal microbes in the Mariana Trench. Environ Microbiol 2019; 21:4092-4108. [PMID: 31344308 DOI: 10.1111/1462-2920.14759] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/06/2019] [Accepted: 07/22/2019] [Indexed: 01/25/2023]
Abstract
The low temperature and elevated hydrostatic pressure in hadal trenches at water depths below 6000 m render sample collection difficult. Here, in situ hadal water microbial samples were collected from the Mariana Trench and analysed. The hadal microbial communities at different depths were revealed to be consistent and were dominated by heterotrophic Marinimicrobia. Thirty high-quality metagenome-assembled genomes (MAGs) were retrieved to represent the major hadal microbes affiliated with 12 prokaryotic phyla. Most of the MAGs were newly reported and probably derived from novel hadal inhabitants as exemplified by a potentially new candidate archaeal phylum in the DPANN superphylum. Metabolic reconstruction indicated that a great number of the MAGs participated in nitrogen and sulfur cycling, in which the nitrification process was driven sequentially by Thaumarchaeota and Nitrospirae and sulfur oxidization by Rhodospirillales in the Alphaproteobacteria class. Moreover, several groups of hadal microbes were revealed to be potential carbon monoxide oxidizers. Metatranscriptomic result highlighted the contribution of Chloroflexi in degrading recalcitrant dissolved organic matter and Marinimicrobia in extracellular protein decomposition. The present work provides an in-depth view on the hadal microbial communities regarding their endemism and element cycles.
Collapse
Affiliation(s)
- Zhao-Ming Gao
- Deep-sea Microbial Genomics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hai Nan, People's Republic of China.,Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hai Nan, People's Republic of China
| | - Jiao-Mei Huang
- Deep-sea Microbial Genomics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hai Nan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Guo-Jie Cui
- Deep-sea Microbial Genomics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hai Nan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wen-Li Li
- Deep-sea Microbial Genomics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hai Nan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jun Li
- Deep-sea Microbial Genomics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hai Nan, People's Republic of China
| | - Zhan-Fei Wei
- Deep-sea Microbial Genomics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hai Nan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jun Chen
- Deep-sea Microbial Genomics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hai Nan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yong-Zhi Xin
- Deep-sea Microbial Genomics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hai Nan, People's Republic of China
| | - Du-Si Cai
- Deep-sea Microbial Genomics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hai Nan, People's Republic of China
| | - Ai-Qun Zhang
- Deep-sea Microbial Genomics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hai Nan, People's Republic of China
| | - Yong Wang
- Deep-sea Microbial Genomics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hai Nan, People's Republic of China.,Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hai Nan, People's Republic of China.,HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, Hai Nan, People's Republic of China
| |
Collapse
|
29
|
Quéméneur M, Erauso G, Frouin E, Zeghal E, Vandecasteele C, Ollivier B, Tamburini C, Garel M, Ménez B, Postec A. Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium From the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella atlantisensis gen. nov. sp. nov. Front Microbiol 2019; 10:1497. [PMID: 31379757 PMCID: PMC6647913 DOI: 10.3389/fmicb.2019.01497] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/14/2019] [Indexed: 01/03/2023] Open
Abstract
Rock-hosted subseafloor habitats are very challenging for life, and current knowledge about microorganisms inhabiting such lithic environments is still limited. This study explored the cultivable microbial diversity in anaerobic enrichment cultures from cores recovered during the International Ocean Discovery Program (IODP) Expedition 357 from the Atlantis Massif (Mid-Atlantic Ridge, 30°N). 16S rRNA gene survey of enrichment cultures grown at 10–25°C and pH 8.5 showed that Firmicutes and Proteobacteria were generally dominant. However, cultivable microbial diversity significantly differed depending on incubation at atmospheric pressure (0.1 MPa), or hydrostatic pressures (HP) mimicking the in situ pressure conditions (8.2 or 14.0 MPa). An original, strictly anaerobic bacterium designated 70B-AT was isolated from core M0070C-3R1 (1150 meter below sea level; 3.5 m below seafloor) only from cultures performed at 14.0 MPa. This strain named Petrocella atlantisensis is a novel species of a new genus within the newly described family Vallitaleaceae (order Clostridiales, phylum Firmicutes). It is a mesophilic, moderately halotolerant and piezophilic chemoorganotroph, able to grow by fermentation of carbohydrates and proteinaceous compounds. Its 3.5 Mb genome contains numerous genes for ABC transporters of sugars and amino acids, and pathways for fermentation of mono- and di-saccharides and amino acids were identified. Genes encoding multimeric [FeFe] hydrogenases and a Rnf complex form the basis to explain hydrogen and energy production in strain 70B-AT. This study outlines the importance of using hydrostatic pressure in culture experiments for isolation and characterization of autochthonous piezophilic microorganisms from subseafloor rocks.
Collapse
Affiliation(s)
- Marianne Quéméneur
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | - Gaël Erauso
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | - Eléonore Frouin
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | - Emna Zeghal
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | | | - Bernard Ollivier
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | - Christian Tamburini
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | - Marc Garel
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| | - Bénédicte Ménez
- Université de Paris, Institut de Physique du Globe de Paris, CNRS UMR 7154, Paris, France
| | - Anne Postec
- Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, Marseille, France
| |
Collapse
|
30
|
Abstract
In a multiverse context, determining the probability of being in our particular universe depends on estimating its overall habitability compared to other universes with different values of the fundamental constants. One of the most important factors in determining this is the fraction of planets that actually develop life, and how this depends on planetary conditions. Many proposed possibilities for this are incompatible with the multiverse: if the emergence of life depends on the lifetime of its host star, the size of the habitable planet, or the amount of material processed, the chances of being in our universe would be very low. If the emergence of life depends on the entropy absorbed by the planet, however, our position in this universe is very natural. Several proposed models for the subsequent development of life, including the hard step model and several planetary oxygenation models, are also shown to be incompatible with the multiverse. If any of these are observed to play a large role in determining the distribution of life throughout our universe, the multiverse hypothesis will be ruled out to high significance.
Collapse
|
31
|
Foglia F, Hazael R, Meersman F, Wilding MC, Sakai VG, Rogers S, Bove LE, Koza MM, Moulin M, Haertlein M, Forsyth VT, McMillan PF. In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure. Sci Rep 2019; 9:8716. [PMID: 31213614 PMCID: PMC6581952 DOI: 10.1038/s41598-019-44704-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/15/2019] [Indexed: 11/10/2022] Open
Abstract
Following observations of survival of microbes and other life forms in deep subsurface environments it is necessary to understand their biological functioning under high pressure conditions. Key aspects of biochemical reactions and transport processes within cells are determined by the intracellular water dynamics. We studied water diffusion and rotational relaxation in live Shewanella oneidensis bacteria at pressures up to 500 MPa using quasi-elastic neutron scattering (QENS). The intracellular diffusion exhibits a significantly greater slowdown (by −10–30%) and an increase in rotational relaxation times (+10–40%) compared with water dynamics in the aqueous solutions used to resuspend the bacterial samples. Those results indicate both a pressure-induced viscosity increase and slowdown in ionic/macromolecular transport properties within the cells affecting the rates of metabolic and other biological processes. Our new data support emerging models for intracellular organisation with nanoscale water channels threading between macromolecular regions within a dynamically organized structure rather than a homogenous gel-like cytoplasm.
Collapse
Affiliation(s)
- Fabrizia Foglia
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Rachael Hazael
- Survivability and Advanced Materials group, Centre for Defence Engineering, Cranfield University at the Defence Academy of the UK, Shrivenham, SN6 8LA, UK
| | - Filip Meersman
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Martin C Wilding
- Materials Engineering, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | | | - Sarah Rogers
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, OX11 0QX, UK
| | - Livia E Bove
- Dipartimento di Fisica, Università di Roma "La Sapienza", 00185, Roma, Italy.,Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS UMR 7590, Université Pierre et Marie Curie, F-75252, Paris, France
| | - Michael Marek Koza
- Institut Laue Langevin, 6 Rue Jules Horowitz, BP 156, 38042, Grenoble, Cedex, France
| | - Martine Moulin
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, cedex 9, France
| | - Michael Haertlein
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, cedex 9, France
| | - V Trevor Forsyth
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042, Grenoble, cedex 9, France.,Faculty of Natural Sciences/ISTM, Keele University, Staffordshire, ST5 5BG, UK
| | - Paul F McMillan
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
32
|
Booker AE, Hoyt DW, Meulia T, Eder E, Nicora CD, Purvine SO, Daly RA, Moore JD, Wunch K, Pfiffner SM, Lipton MS, Mouser PJ, Wrighton KC, Wilkins MJ. Deep-Subsurface Pressure Stimulates Metabolic Plasticity in Shale-Colonizing Halanaerobium spp. Appl Environ Microbiol 2019; 85:e00018-19. [PMID: 30979840 PMCID: PMC6544827 DOI: 10.1128/aem.00018-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/10/2019] [Indexed: 01/12/2023] Open
Abstract
Bacterial Halanaerobium strains become the dominant persisting microbial community member in produced fluids across geographically distinct hydraulically fractured shales. Halanaerobium is believed to be inadvertently introduced into this environment during the drilling and fracturing process and must therefore tolerate large changes in pressure, temperature, and salinity. Here, we used a Halanaerobium strain isolated from a natural gas well in the Utica Point Pleasant formation to investigate metabolic and physiological responses to growth under high-pressure subsurface conditions. Laboratory incubations confirmed the ability of Halanaerobium congolense strain WG8 to grow under pressures representative of deep shale formations (21 to 48 MPa). Under these conditions, broad metabolic and physiological shifts were identified, including higher abundances of proteins associated with the production of extracellular polymeric substances. Confocal laser scanning microscopy indicated that extracellular polymeric substance (EPS) production was associated with greater cell aggregation when biomass was cultured at high pressure. Changes in Halanaerobium central carbon metabolism under the same conditions were inferred from nuclear magnetic resonance (NMR) and gas chromatography measurements, revealing large per-cell increases in production of ethanol, acetate, and propanol and cessation of hydrogen production. These metabolic shifts were associated with carbon flux through 1,2-propanediol in response to slower fluxes of carbon through stage 3 of glycolysis. Together, these results reveal the potential for bioclogging and corrosion (via organic acid fermentation products) associated with persistent Halanaerobium growth in deep, hydraulically fractured shale ecosystems, and offer new insights into cellular mechanisms that enable these strains to dominate deep-shale microbiomes.IMPORTANCE The hydraulic fracturing of deep-shale formations for hydrocarbon recovery accounts for approximately 60% of U.S. natural gas production. Microbial activity associated with this process is generally considered deleterious due to issues associated with sulfide production, microbially induced corrosion, and bioclogging in the subsurface. Here we demonstrate that a representative Halanaerobium species, frequently the dominant microbial taxon in hydraulically fractured shales, responds to pressures characteristic of the deep subsurface by shifting its metabolism to generate more corrosive organic acids and produce more polymeric substances that cause "clumping" of biomass. While the potential for increased corrosion of steel infrastructure and clogging of pores and fractures in the subsurface may significantly impact hydrocarbon recovery, these data also offer new insights for microbial control in these ecosystems.
Collapse
Affiliation(s)
- Anne E Booker
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - David W Hoyt
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tea Meulia
- College of Food, Agricultural, and Environmental Sciences, Ohio State University, Columbus, Ohio, USA
| | - Elizabeth Eder
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Rebecca A Daly
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - Joseph D Moore
- DowDuPont Industrial Biosciences, Wilmington, Delaware, USA
| | - Kenneth Wunch
- DowDuPont Industrial Biosciences, Wilmington, Delaware, USA
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
| | - Mary S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
33
|
Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front Microbiol 2019; 10:780. [PMID: 31037068 PMCID: PMC6476344 DOI: 10.3389/fmicb.2019.00780] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/27/2019] [Indexed: 01/21/2023] Open
Abstract
Prokaryotic life has dominated most of the evolutionary history of our planet, evolving to occupy virtually all available environmental niches. Extremophiles, especially those thriving under multiple extremes, represent a key area of research for multiple disciplines, spanning from the study of adaptations to harsh conditions, to the biogeochemical cycling of elements. Extremophile research also has implications for origin of life studies and the search for life on other planetary and celestial bodies. In this article, we will review the current state of knowledge for the biospace in which life operates on Earth and will discuss it in a planetary context, highlighting knowledge gaps and areas of opportunity.
Collapse
Affiliation(s)
- Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, United States
| | - Heidi S Aronson
- Department of Biology, University of Southern California, Los Angeles, CA, United States
| | - Diana P Bojanova
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jayme Feyhl-Buska
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michael L Wong
- Department of Astronomy - Astrobiology Program, University of Washington, Seattle, WA, United States.,NASA Astrobiology Institute's Virtual Planetary Laboratory, University of Washington, Seattle, WA, United States
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, United States
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Biology, University of Naples "Federico II", Naples, Italy.,Department of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Institute for Biological Resources and Marine Biotechnology, National Research Council of Italy, Ancona, Italy
| |
Collapse
|
34
|
Schummel PH, Anders C, Jaworek MW, Winter R. Cosolvent and Crowding Effects on the Temperature- and Pressure-Dependent Dissociation Process of the α/β-Tubulin Heterodimer. Chemphyschem 2019; 20:1098-1109. [PMID: 30829441 DOI: 10.1002/cphc.201900115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/01/2019] [Indexed: 11/09/2022]
Abstract
Tubulin is one of the main components of the cytoskeleton of eukaryotic cells. The formation of microtubules depends strongly on environmental and solution conditions, and has been found to be among the most pressure sensitive processes in vivo. We explored the effects of different types of cosolvents, such as trimethylamine-N-oxide (TMAO), sucrose and urea, and crowding agents to mimic cell-like conditions, on the temperature and pressure stability of the building block of microtubules, i. e. the α/β-tubulin heterodimer. To this end, fluorescence and FTIR spectroscopy, differential scanning and pressure perturbation calorimetry as well as fluorescence anisotropy and correlation spectroscopies were applied. The pressure and temperature of dissociation of α/β-tubulin as well as the underlying thermodynamic parameters upon dissociation, such as volume and enthalpy changes, have been determined for the different solution conditions. The temperature and pressure of dissociation of the α/β-tubulin heterodimer and hence its stability increases dramatically in the presence of TMAO and the nanocrowder sucrose. We show that by adjusting the levels of compatible cosolutes and crowders, cells are able to withstand deteriorating effects of pressure even up to the kbar-range.
Collapse
Affiliation(s)
- Paul Hendrik Schummel
- Faculty of Chemistry and Chemical Biology, Physical Chemistry-Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Christian Anders
- Faculty of Chemistry and Chemical Biology, Physical Chemistry-Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Michel W Jaworek
- Faculty of Chemistry and Chemical Biology, Physical Chemistry-Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, Physical Chemistry-Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| |
Collapse
|
35
|
Abstract
The discovery of microbial communities in extreme conditions that would seem hostile to life leads to the question of how the molecules making up these microbes can maintain their structure and function. While microbes that live under extremes of temperature have been heavily studied, those that live under extremes of pressure, or "piezophiles", are now increasingly being studied because of advances in sample collection and high-pressure cells for biochemical and biophysical measurements. Here, adaptations of enzymes in piezophiles against the effects of pressure are discussed in light of recent experimental and computational studies. However, while concepts from studies of enzymes from temperature extremophiles can provide frameworks for understanding adaptations by piezophile enzymes, the effects of temperature and pressure on proteins differ in significant ways. Thus, the state of the knowledge of adaptation in piezophile enzymes is still in its infancy and many more experiments and computational studies on different enzymes from a variety of piezophiles are needed.
Collapse
Affiliation(s)
- Toshiko Ichiye
- Department of Chemistry, Georgetown University, Washington, DC, 20057, United States
| |
Collapse
|
36
|
Jing H, Zhu W, Liu H, Zheng L, Zhang Y. Particle-Attached and Free-Living Archaeal Communities in the Benthic Boundary Layer of the Mariana Trench. Front Microbiol 2018; 9:2821. [PMID: 30519228 PMCID: PMC6258811 DOI: 10.3389/fmicb.2018.02821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/02/2018] [Indexed: 01/29/2023] Open
Abstract
The benthic boundary layer (BBL) is the part of the water column that is situated near to the sediment surface, where active oceanic biogeochemical cycling occurs. Archaea play an important role in mediating this cycling, however, their composition and diversity in the BBL remain largely unknown. We investigated the community composition and abundance of both particle-attached (PA) and free-living (FL) archaea in the BBL on the slopes of the Mariana Trench using Illumina sequencing and quantitative PCR (qPCR), at both the DNA and RNA levels. Our results showed that Thaumarchaeota (>90%) and Woesearchaeota (1–10%) dominated in all the BBL samples, and that the former was composed mainly of Marine Group I (MGI). A clear separation of PA and FL samples was observed, and they showed a high level of similarity to the subsurface sediments and the water column, respectively. No significant differences were detected in the archaeal communities located in the southern and northern slopes of the Mariana Trench, or between the levels of DNA and RNA. However, lower RNA/DNA ratios (estimated by qPCR) were found in the PA samples than in the FL samples, indicating higher transcriptional activities in the FL fractions. A distinct archaeal community structure was found in the middle of the trench when compared with samples collected at the same depth at other stations along the trench slopes. This indicates that a dynamic deep current might affect the distribution of organic matter on the slopes. Our study provides direct information regarding the archaeal communities in the BBL of the Mariana Trench. We suggest that this might promote further exploration of the ecological roles and microbial processes of such communities located in deep-sea ecosystems.
Collapse
Affiliation(s)
- Hongmei Jing
- CAS Key Lab for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Wenda Zhu
- CAS Key Lab for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, China
| | - Liping Zheng
- CAS Key Lab for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yu Zhang
- State Key Laboratory of Ocean Engineering, Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Brown A, Thatje S, Morris JP, Oliphant A, Morgan EA, Hauton C, Jones DOB, Pond DW. Metabolic costs imposed by hydrostatic pressure constrain bathymetric range in the lithodid crab Lithodes maja. ACTA ACUST UNITED AC 2018; 220:3916-3926. [PMID: 29093188 DOI: 10.1242/jeb.158543] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/05/2017] [Indexed: 01/16/2023]
Abstract
The changing climate is shifting the distributions of marine species, yet the potential for shifts in depth distributions is virtually unexplored. Hydrostatic pressure is proposed to contribute to a physiological bottleneck constraining depth range extension in shallow-water taxa. However, bathymetric limitation by hydrostatic pressure remains undemonstrated, and the mechanism limiting hyperbaric tolerance remains hypothetical. Here, we assess the effects of hydrostatic pressure in the lithodid crab Lithodes maja (bathymetric range 4-790 m depth, approximately equivalent to 0.1 to 7.9 MPa hydrostatic pressure). Heart rate decreased with increasing hydrostatic pressure, and was significantly lower at ≥10.0 MPa than at 0.1 MPa. Oxygen consumption increased with increasing hydrostatic pressure to 12.5 MPa, before decreasing as hydrostatic pressure increased to 20.0 MPa; oxygen consumption was significantly higher at 7.5-17.5 MPa than at 0.1 MPa. Increases in expression of genes associated with neurotransmission, metabolism and stress were observed between 7.5 and 12.5 MPa. We suggest that hyperbaric tolerance in Lmaja may be oxygen-limited by hyperbaric effects on heart rate and metabolic rate, but that Lmaja's bathymetric range is limited by metabolic costs imposed by the effects of high hydrostatic pressure. These results advocate including hydrostatic pressure in a complex model of environmental tolerance, where energy limitation constrains biogeographic range, and facilitate the incorporation of hydrostatic pressure into the broader metabolic framework for ecology and evolution. Such an approach is crucial for accurately projecting biogeographic responses to changing climate, and for understanding the ecology and evolution of life at depth.
Collapse
Affiliation(s)
- Alastair Brown
- University of Southampton, Ocean and Earth Science, European Way, Southampton SO14 3ZH, UK
| | - Sven Thatje
- University of Southampton, Ocean and Earth Science, European Way, Southampton SO14 3ZH, UK
| | - James P Morris
- University of Southampton, Ocean and Earth Science, European Way, Southampton SO14 3ZH, UK
| | - Andrew Oliphant
- University of Southampton, Ocean and Earth Science, European Way, Southampton SO14 3ZH, UK
| | - Elizabeth A Morgan
- University of Southampton, Ocean and Earth Science, European Way, Southampton SO14 3ZH, UK
| | - Chris Hauton
- University of Southampton, Ocean and Earth Science, European Way, Southampton SO14 3ZH, UK
| | - Daniel O B Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - David W Pond
- Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK
| |
Collapse
|
38
|
Wei S, Guo Y. Comparative study of reactor performance and microbial community in psychrophilic and mesophilic biogas digesters under solid state condition. J Biosci Bioeng 2018; 125:543-551. [PMID: 29305269 DOI: 10.1016/j.jbiosc.2017.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/27/2017] [Accepted: 12/03/2017] [Indexed: 10/18/2022]
Abstract
Psychrophilic (15°C) and mesophilic (35°C) reactor performance and microbial community dynamics were compared when the biogas fermenters were performed at high altitude and solid state condition using animal manure and highland barley straw as substrate. Longer biogas fermentation time, higher peak methane content and lower volatile fatty acids (VFA) accumulation were found at psychrophilic condition compared to that of at mesophilic condition although the biogas production in both temperature conditions was similar. The cumulative biogas production at 35°C and 15°C were 246 (±5) and 225 (±7) ml/g volatile solids, respectively. The highest total VFA concentration under 35°C was 10,796 (±310) mg/kg total solid, while it only reached to 2346 (±87) mg/kg total solid at the condition of 15°C. Additionally, the variation of pH, soluble chemical oxygen demand and total ammonia nitrogen during the anaerobic digestion under psychrophilic condition were much smaller than that of under mesophilic condition. Polymerase chain reaction and denaturing gradient gel electrophoresis analysis followed by 16S rDNA sequencing showed that bacteria of genera Bacillus and Clostridium and archaea of genera Methanosarcina and Methanosaeta played a pivotal role during the biogas production.
Collapse
Affiliation(s)
- Suzhen Wei
- Department of Resource and Environment, Tibet Agricultural and Animal Husbandry College, Tibet, Linzhi 860000, China.
| | - Yanfei Guo
- Department of Resource and Environment, Tibet Agricultural and Animal Husbandry College, Tibet, Linzhi 860000, China
| |
Collapse
|
39
|
Ding W, Palaiokostas M, Shahane G, Wang W, Orsi M. Effects of High Pressure on Phospholipid Bilayers. J Phys Chem B 2017; 121:9597-9606. [PMID: 28926699 DOI: 10.1021/acs.jpcb.7b07119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The response of lipid membranes to changes in external pressure is important for many biological processes, and it can also be exploited for technological applications. In this work, we employ all-atom molecular dynamics simulations to characterize the changes in the physical properties of phospholipid bilayers brought about by high pressure (1000 bar). In particular, we study how the response differs, in relation to different chain unsaturation levels, by comparing monounsaturated 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and biunsaturated dioleoyl-phosphatidylcholine (DOPC) bilayers. Various structural, mechanical, and dynamical features are found to be altered by the pressure increase in both bilayers. Notably, for most properties, including bilayer area and thickness, lipid order parameters, lateral pressure profile, and curvature frustration energy, we observe significantly more pronounced effects for monounsaturated POPC than biunsaturated DOPC. Possible biological implications of the results obtained are discussed, especially in relation to how different lipids can control the structure and function of membrane proteins.
Collapse
Affiliation(s)
- Wei Ding
- School of Engineering & Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, U.K
| | - Michail Palaiokostas
- School of Engineering & Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, U.K
| | - Ganesh Shahane
- School of Engineering & Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, U.K
| | - Wen Wang
- School of Engineering & Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, U.K
| | - Mario Orsi
- Department of Applied Sciences, University of the West of England , Coldharbour Lane, Bristol BS16 1QY, U.K
| |
Collapse
|
40
|
Shimizu S, Smith PE. How Osmolytes Counteract Pressure Denaturation on a Molecular Scale. Chemphyschem 2017; 18:2243-2249. [PMID: 28678423 PMCID: PMC5626881 DOI: 10.1002/cphc.201700503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/30/2017] [Indexed: 11/08/2022]
Abstract
Life in the deep sea exposes enzymes to high hydrostatic pressure, which decreases their stability. For survival, deep sea organisms tend to accumulate various osmolytes, most notably trimethylamine N-oxide used by fish, to counteract pressure denaturation. However, exactly how these osmolytes work remains unclear. Here, a rigorous statistical thermodynamics approach is used to clarify the mechanism of osmoprotection. It is shown that the weak, nonspecific, and dynamic interactions of water and osmolytes with proteins can be characterized only statistically, and that the competition between protein-osmolyte and protein-water interactions is crucial in determining conformational stability. Osmoprotection is driven by a stronger exclusion of osmolytes from the denatured protein than from the native conformation, and water distribution has no significant effect on these changes at low osmolyte concentrations.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Paul E Smith
- Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas, 66506-0401, USA
| |
Collapse
|
41
|
Nixon SL, Walker L, Streets MDT, Eden B, Boothman C, Taylor KG, Lloyd JR. Guar Gum Stimulates Biogenic Sulfide Production at Elevated Pressures: Implications for Shale Gas Extraction. Front Microbiol 2017; 8:679. [PMID: 28469616 PMCID: PMC5395621 DOI: 10.3389/fmicb.2017.00679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/03/2017] [Indexed: 02/04/2023] Open
Abstract
Biogenic sulfide production is a common problem in the oil industry, and can lead to costly hydrocarbon processing and corrosion of extraction infrastructure. The same phenomenon has recently been identified in shale gas extraction by hydraulic fracturing, and organic additives in fracturing fluid have been hypothesized to stimulate this process. Constraining the relative effects of the numerous organic additives on microbial metabolism in situ is, however, extremely challenging. Using a bespoke bioreactor system we sought to assess the potential for guar gum, the most commonly used gelling agent in fracturing fluids, to stimulate biogenic sulfide production by sulfate-reducing microorganisms at elevated pressure. Two pressurized bioreactors were fed with either sulfate-amended freshwater medium, or low-sulfate natural surface water, in addition to guar gum (0.05 w/v%) and an inoculum of sulfate-reducing bacteria for a period of 77 days. Sulfide production was observed in both bioreactors, even when the sulfate concentration was low. Analysis of 16S rRNA gene sequences indicate that heterotrophic bacteria closely associated with the genera Brevundimonas and Acinetobacter became enriched early in the bioreactor experiments, followed by an increase in relative abundance of 16S rRNA genes associated with sulfate-reducing bacteria (Desulfosporosinus and Desulfobacteraceae) at later time points. Results demonstrate that guar gum can stimulate acid- and sulfide-producing microorganisms at elevated pressure, and may have implications for the potential role in microbially induced corrosion during hydraulic fracturing operations. Key differences between experimental and in situ conditions are discussed, as well as additional sources of carbon and energy for biogenic sulfide production during shale gas extraction. Our laboratory approach can be tailored to better simulate deep subsurface conditions in order to probe the role of other fracturing fluid additives and downhole parameters on microbial metabolisms observed in these systems. Such baseline studies will prove essential for effective future development of shale gas worldwide.
Collapse
Affiliation(s)
- Sophie L Nixon
- School of Earth and Environmental Sciences, University of ManchesterManchester, UK
| | | | | | - Bob Eden
- Rawwater Engineering Company LimitedCulcheth, UK
| | - Christopher Boothman
- School of Earth and Environmental Sciences, University of ManchesterManchester, UK
| | - Kevin G Taylor
- School of Earth and Environmental Sciences, University of ManchesterManchester, UK
| | - Jonathan R Lloyd
- School of Earth and Environmental Sciences, University of ManchesterManchester, UK
| |
Collapse
|
42
|
Hoffmann K, Hassenrück C, Salman-Carvalho V, Holtappels M, Bienhold C. Response of Bacterial Communities to Different Detritus Compositions in Arctic Deep-Sea Sediments. Front Microbiol 2017; 8:266. [PMID: 28286496 PMCID: PMC5323390 DOI: 10.3389/fmicb.2017.00266] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
Benthic deep-sea communities are largely dependent on particle flux from surface waters. In the Arctic Ocean, environmental changes occur more rapidly than in other ocean regions, and have major effects on the export of organic matter to the deep sea. Because bacteria constitute the majority of deep-sea benthic biomass and influence global element cycles, it is important to better understand how changes in organic matter input will affect bacterial communities at the Arctic seafloor. In a multidisciplinary ex situ experiment, benthic bacterial deep-sea communities from the Long-Term Ecological Research Observatory HAUSGARTEN were supplemented with different types of habitat-related detritus (chitin, Arctic algae) and incubated for 23 days under in situ conditions. Chitin addition caused strong changes in community activity, while community structure remained similar to unfed control incubations. In contrast, the addition of phytodetritus resulted in strong changes in community composition, accompanied by increased community activity, indicating the need for adaptation in these treatments. High-throughput sequencing of the 16S rRNA gene and 16S rRNA revealed distinct taxonomic groups of potentially fast-growing, opportunistic bacteria in the different detritus treatments. Compared to the unfed control, Colwelliaceae, Psychromonadaceae, and Oceanospirillaceae increased in relative abundance in the chitin treatment, whereas Flavobacteriaceae, Marinilabiaceae, and Pseudoalteromonadaceae increased in the phytodetritus treatments. Hence, these groups may constitute indicator taxa for the different organic matter sources at this study site. In summary, differences in community structure and in the uptake and remineralization of carbon in the different treatments suggest an effect of organic matter quality on bacterial diversity as well as on carbon turnover at the seafloor, an important feedback mechanism to be considered in future climate change scenarios.
Collapse
Affiliation(s)
- Katy Hoffmann
- HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany; Biosciences, HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und MeeresforschungBremerhaven, Germany
| | - Christiane Hassenrück
- HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Verena Salman-Carvalho
- HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany; Biosciences, HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und MeeresforschungBremerhaven, Germany
| | - Moritz Holtappels
- Biosciences, Bentho-Pelagic Processes, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung Bremerhaven, Germany
| | - Christina Bienhold
- HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany; Biosciences, HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und MeeresforschungBremerhaven, Germany
| |
Collapse
|
43
|
Mouser PJ, Borton M, Darrah TH, Hartsock A, Wrighton KC. Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface. FEMS Microbiol Ecol 2016; 92:fiw166. [DOI: 10.1093/femsec/fiw166] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 11/12/2022] Open
|
44
|
Montgomery W, Bromiley GD, Sephton MA. The nature of organic records in impact excavated rocks on Mars. Sci Rep 2016; 6:30947. [PMID: 27492071 PMCID: PMC4974657 DOI: 10.1038/srep30947] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/11/2016] [Indexed: 11/09/2022] Open
Abstract
Impact ejected rocks are targets for life detection missions to Mars. The Martian subsurface is more favourable to organic preservation than the surface owing to an attenuation of radiation and physical separation from oxidising materials with increasing depth. Impact events bring materials to the surface where they may be accessed without complicated drilling procedures. On Earth, different assemblages of organic matter types are derived from varying depositional environments. Here we assess whether these different types of organic materials can survive impact events without corruption. We subjected four terrestrial organic matter types to elevated pressures and temperatures in piston-cylinder experiments followed by chemical characterisation using whole-rock pyrolysis-gas chromatography-mass spectrometry. Our data reveal that long chain hydrocarbon-dominated organic matter (types I and II; mainly microbial or algal) are unresistant to pressure whereas aromatic hydrocarbon-dominated organic matter types (types III and IV; mainly land plant, metamorphosed or degraded, displaying some superficial chemical similarities to abiotic meteoritic organic matter) are relatively resistant. This suggests that the impact excavated record of potential biology on Mars will be unavoidably biased, with microbial organic matter underrepresented while metamorphosed, degraded or abiotic meteoritic organic matter types will be selectively preserved.
Collapse
Affiliation(s)
- W Montgomery
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, SW7 2AZ, UK
| | - G D Bromiley
- School of GeoSciences, University of Edinburgh, Grant Institute, West Main Road, Edinburgh EH9 3JW, UK
| | - M A Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
45
|
Schummel PH, Haag A, Kremer W, Kalbitzer HR, Winter R. Cosolvent and Crowding Effects on the Temperature and Pressure Dependent Conformational Dynamics and Stability of Globular Actin. J Phys Chem B 2016; 120:6575-86. [DOI: 10.1021/acs.jpcb.6b04738] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Paul Hendrik Schummel
- Physical
Chemistry I − Biophysical Chemistry, Faculty of Chemistry and
Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Andreas Haag
- Institute
of Biophysics and Physical Biochemistry, Centre of Magnetic Resonance
in Chemistry and Biomedicine (CMRCB), University of Regensburg, Universitätsstrasse
31, D-93047 Regensburg, Germany
| | - Werner Kremer
- Institute
of Biophysics and Physical Biochemistry, Centre of Magnetic Resonance
in Chemistry and Biomedicine (CMRCB), University of Regensburg, Universitätsstrasse
31, D-93047 Regensburg, Germany
| | - Hans Robert Kalbitzer
- Institute
of Biophysics and Physical Biochemistry, Centre of Magnetic Resonance
in Chemistry and Biomedicine (CMRCB), University of Regensburg, Universitätsstrasse
31, D-93047 Regensburg, Germany
| | - Roland Winter
- Physical
Chemistry I − Biophysical Chemistry, Faculty of Chemistry and
Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| |
Collapse
|
46
|
LaRowe DE, Amend JP. The energetics of anabolism in natural settings. THE ISME JOURNAL 2016; 10:1285-95. [PMID: 26859771 PMCID: PMC5029197 DOI: 10.1038/ismej.2015.227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 11/09/2022]
Abstract
The environmental conditions that describe an ecosystem define the amount of energy available to the resident organisms and the amount of energy required to build biomass. Here, we quantify the amount of energy required to make biomass as a function of temperature, pressure, redox state, the sources of C, N and S, cell mass and the time that an organism requires to double or replace its biomass. Specifically, these energetics are calculated from 0 to 125 °C, 0.1 to 500 MPa and -0.38 to +0.86 V using CO2, acetate or CH4 for C, NO3(-) or NH4(+) for N and SO4(2-) or HS(-) for S. The amounts of energy associated with synthesizing the biomolecules that make up a cell, which varies over 39 kJ (g cell)(-1), are then used to compute energy-based yield coefficients for a vast range of environmental conditions. Taken together, environmental variables and the range of cell sizes leads to a ~4 orders of magnitude difference between the number of microbial cells that can be made from a Joule of Gibbs energy under the most (5.06 × 10(11) cells J(-1)) and least (5.21 × 10(7) cells J(-1)) ideal conditions. When doubling/replacement time is taken into account, the range of anabolism energies can expand even further.
Collapse
Affiliation(s)
- Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
47
|
Hadadi N, Ataman M, Hatzimanikatis V, Panayiotou C. Molecular thermodynamics of metabolism: quantum thermochemical calculations for key metabolites. Phys Chem Chem Phys 2016; 17:10438-53. [PMID: 25799954 DOI: 10.1039/c4cp05825a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work is the first of a series of papers aiming at a coherent and unified development of the thermodynamics of metabolism and the rationalization of feasibility analysis of metabolic pathways. The focus in this part is on high-level quantum chemical calculations of the thermochemical quantities of relatively heavy metabolites such as amino acids/oligopeptides, nucleosides, saccharides and their derivatives in the ideal gas state. The results of this study will be combined with the corresponding hydration/solvation results in subsequent parts of this work in order to derive the desired thermochemical quantities in aqueous solutions. The above metabolites exist in a vast conformational/isomerization space including rotational conformers, tautomers or anomers exhibiting often multiple or cooperative intramolecular hydrogen bonding. We examine the challenges posed by these features for the reliable estimation of thermochemical quantities. We discuss conformer search, conformer distribution and averaging processes. We further consider neutral metabolites as well as protonated and deprotonated metabolites. In addition to the traditional presentation of gas-phase acidities, basicities and proton affinities, we also examine heats and free energies of ionic species. We obtain simple linear relations between the thermochemical quantities of ions and the formation quantities of their neutral counterparts. Furthermore, we compare our calculations with reliable experimental measurements and predictive calculations from the literature, when available. Finally, we discuss the next steps and perspectives for this work.
Collapse
Affiliation(s)
- N Hadadi
- Laboratory of Computational Systems Biotechnology (LCSB), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
48
|
McCarthy NLC, Ces O, Law RV, Seddon JM, Brooks NJ. Separation of liquid domains in model membranes induced with high hydrostatic pressure. Chem Commun (Camb) 2016; 51:8675-8. [PMID: 25907808 DOI: 10.1039/c5cc02134k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have imaged the formation of membrane microdomains immediately after their induction using a novel technology platform coupling high hydrostatic pressure to fluorescence microscopy. After formation, the ordered domains are small and highly dynamic. This will enhance links between model lipid assemblies and dynamic processes in cellular membranes.
Collapse
Affiliation(s)
- Nicola L C McCarthy
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
49
|
Foglia F, Hazael R, Simeoni GG, Appavou MS, Moulin M, Haertlein M, Trevor Forsyth V, Seydel T, Daniel I, Meersman F, McMillan PF. Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering. Sci Rep 2016; 6:18862. [PMID: 26738409 PMCID: PMC4703977 DOI: 10.1038/srep18862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/27/2015] [Indexed: 01/22/2023] Open
Abstract
Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth's deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7-1.1 Å(-1) corresponding to real space dimensions of 6-9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures.
Collapse
Affiliation(s)
- Fabrizia Foglia
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, UK
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rachael Hazael
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Giovanna G. Simeoni
- Heinz Maier-Leibnitz Zentrum (MLZ) and Physics Department, Technisches Universität München, Lichtenbergstrasse 1, D-85748 Garching, Germany
| | - Marie-Sousai Appavou
- Jülich Center for Neutron Sciences at MLZ, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, D-85748 Garching, Germany
| | - Martine Moulin
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - Michael Haertlein
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - V. Trevor Forsyth
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble cedex 9, France
- Faculty of Natural Sciences/ISTM, Keele University, Staffordshire ST5 5BG, UK
| | - Tilo Seydel
- Science Division, Institut Laue-Langevin, CS 20156, 71 avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - Isabelle Daniel
- Laboratoire de Géologie de Lyon, UMR 5276, Université Lyon 1-ENS de Lyon-CNRS, 2 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Filip Meersman
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, UK
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Paul F. McMillan
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| |
Collapse
|
50
|
A Continuous Culture System for Assessing Microbial Activities in the Piezosphere. Appl Environ Microbiol 2015. [PMID: 26209666 DOI: 10.1128/aem.01215-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Continuous culture under elevated pressures is an important technique for expanding the exploration of microbial growth and survival in extreme environments associated with the deep biosphere. Here we present a benchtop stirred continuous culture bioreactor capable of withstanding temperatures ranging from 25 to 120°C and pressures as high as 69 MPa. The system is configured to allow the employment of media enriched in dissolved gases, under oxic or anoxic conditions, while permitting periodic sampling of the incubated organisms with minimal physical/chemical disturbance inside the reactor. In a pilot experiment, the fermentative growth of the thermopiezophilic bacterium Marinitoga piezophila was investigated continuously for 382 h at 65°C and at pressures ranging from 0.1 to 40 MPa while the medium flow rate was varied from 2 to 0.025 ml/min. The enhanced growth observed at 30 and 40 MPa and 0.025 ml/min supports the pressure preferences of M. piezophila when grown fermentatively. This assay successfully demonstrates the capabilities of the bioreactor for continuous culturing at a variety of dilution rates, pressures, and temperatures. We anticipate that this technology will accelerate our understanding of the physiological and metabolic status of microorganisms under temperature, pressure, and energy regimes resembling those of the Earth's piezosphere.
Collapse
|