1
|
Ma S, Breslmayr E, Zhou M, Mihovilovic M, Furtmüller PG, Wang L, Ludwig R. FAD binding and dissociation in GMC-oxidoreductases. Int J Biol Macromol 2025; 308:142470. [PMID: 40132288 DOI: 10.1016/j.ijbiomac.2025.142470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/22/2025] [Indexed: 03/27/2025]
Abstract
The glucose-methanol-choline (GMC)-oxidoreductase superfamily comprises a large group of flavoenzymes such as glucose oxidase, glucose dehydrogenase and cellobiose dehydrogenase, which have been extensively studied and applied in biocatalysis and biosensors. Since the applicability of recombinant flavoenzymes is compromised by divergent glycosylation patterns and substoichiometric FAD occupancy, this study employed experimental and computational methods to analyze the deflavination and reconstitution of three GMC-oxidoreductases from a structural perspective. The results demonstrated that the amount of glycosylation of flavoenzymes is critical for both processes. FAD dissociation constants for glucose oxidase, glucose dehydrogenase and cellobiose dehydrogenase were determined by three different methods, showing Kd values in the range of 10 to 47 nM. Both, the presence of FAD and N-glycosides increase the thermal stability of the flavoenzymes. Steered molecular dynamics simulations revealed differences in the FAD binding of the three enzymes and indicated an undiscovered route of the FAD to dissociate from GMC-oxidoreductases by movement of a loop-and-lid structure on the enzyme surface. This work provides new insights into the mechanism of FAD binding and dissociation in GMC-oxidoreductases and offers strategies for their recombinant production.
Collapse
Affiliation(s)
- Su Ma
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72/N2, 266237 Qingdao, China; Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Erik Breslmayr
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Mengqi Zhou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72/N2, 266237 Qingdao, China
| | - Marko Mihovilovic
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Paul G Furtmüller
- Institute of Biochemistry, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72/N2, 266237 Qingdao, China
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
2
|
Lee MJ, Shin JH, Jung SH, Oh BK. Recent Advances in Biosensors Using Enzyme-Stabilized Gold Nanoclusters. BIOSENSORS 2024; 15:2. [PMID: 39852053 PMCID: PMC11763740 DOI: 10.3390/bios15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Recently, gold nanoclusters (AuNCs) have been widely used in biological applications due to their ultrasmall size, ranging within a few nanometers; large specific surface area; easy functionalization; unique fluorescence properties; and excellent conductivity. However, because they are unstable in solution, AuNCs require stabilization by using ligands such as dendrimers, peptides, DNA, and proteins. As a result, the properties of AuNCs and their formation are determined by the ligand, so the selection of the ligand is important. Of the many ligands implemented, enzyme-stabilized gold nanoclusters (enzyme-AuNCs) have attracted increasing attention for biosensor applications because of the excellent optical/electrochemical properties of AuNCs and the highly target-specific reactions of enzymes. In this review, we explore how enzyme-AuNCs are prepared, their properties, and the various types of enzyme-AuNC-based biosensors that use optical and electrochemical detection techniques. Finally, we discuss the current challenges and prospects of enzyme-AuNCs in biosensing applications. We expect this review to provide interdisciplinary knowledge about the application of enzyme-AuNC-based materials within the biomedical and environmental fields.
Collapse
Affiliation(s)
| | | | | | - Byung-Keun Oh
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea; (M.-J.L.); (J.-H.S.); (S.-H.J.)
| |
Collapse
|
3
|
Nishitani S, Tran T, Puglise A, Yang S, Landry MP. Engineered Glucose Oxidase-Carbon Nanotube Conjugates for Tissue-Translatable Glucose Nanosensors. Angew Chem Int Ed Engl 2024; 63:e202311476. [PMID: 37990059 PMCID: PMC11003487 DOI: 10.1002/anie.202311476] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/22/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Continuous and non-invasive glucose monitoring and imaging is important for disease diagnosis, treatment, and management. However, glucose monitoring remains a technical challenge owing to the dearth of tissue-transparent glucose sensors. In this study, we present the development of near-infrared fluorescent single-walled carbon nanotube (SWCNT) based nanosensors directly functionalized with glucose oxidase (GOx) capable of immediate and reversible glucose imaging in biological fluids and tissues. We prepared GOx-SWCNT nanosensors by facile sonication of SWCNT with GOx in a manner that-surprisingly-does not compromise the ability of GOx to detect glucose. Importantly, we find by using denatured GOx that the fluorescence modulation of GOx-SWCNT is not associated with the catalytic oxidation of glucose but rather triggered by glucose-GOx binding. Leveraging the unique response mechanism of GOx-SWCNT nanosensors, we developed catalytically inactive apo-GOx-SWCNT that enables both sensitive and reversible glucose imaging, exhibiting a ΔF/F0 of up to 40 % within 1 s of exposure to glucose without consuming the glucose analyte. We finally demonstrate the potential applicability of apo-GOx-SWCNT in biomedical applications by glucose quantification in human plasma and glucose imaging in mouse brain slices.
Collapse
Affiliation(s)
- Shoichi Nishitani
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Tiffany Tran
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Andrew Puglise
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Sounghyun Yang
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, 94720, Berkeley, CA, USA
- Innovative Genomics Institute (IGI), 94720, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, QB3, University of California, 94720, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, 94158, San Francisco, CA, USA
| |
Collapse
|
4
|
Anigboro AA, Avwioroko OJ, Ohwokevwo OA, Pessu B, Tonukari NJ. Phytochemical profile, antioxidant, α-amylase inhibition, binding interaction and docking studies of Justicia carnea bioactive compounds with α-amylase. Biophys Chem 2021; 269:106529. [PMID: 33360111 DOI: 10.1016/j.bpc.2020.106529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
The present study investigated the antioxidant and invitro antidiabetic capacities of Justicia carnea aqueous leaf extract (JCAE) using α-amylase inhibition model. α-Amylase binding-interaction with JCAE was also investigated using fluorescence spectroscopy and molecular docking. Phytochemical screening and Gas Chromatography-Mass Spectrometry (GC-MS) analysis indicated presence of bioactive compounds. Phenolic (132 mg GAE/g) and flavonoid contents (31.08 mg CE/g) were high. JCAE exhibited high antioxidant capacity and effectively inhibited α-amylase activity (IC50, 671.43 ± 1.88 μg/mL), though lesser than acarbose effect (IC50, 108.91 ± 0.61 μg/mL). α-Amylase intrinsic fluorescence was quenched in the presence of JCAE. Ultraviolet-visible and FT-IR spectroscopies affirmed mild changes in α-amylase conformation. Synchronous fluorescence analysis indicated alterations in the microenvironments of tryptophan residues near α-amylase active site. Molecular docking affirmed non-polar interactions of compounds 6 and 7 in JCAE with Asp-197 and Trp-58 residues of α-amylase, respectively. Overall, JCAE indicated potential to prevent postprandial hyperglycemia by slowing down carbohydrate hydrolysis.
Collapse
Affiliation(s)
- Akpovwehwee A Anigboro
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria.
| | - Oghenetega J Avwioroko
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria; Center for Chemical and Biochemical Research (CCBR), Redeemer's University, Ede, Osun State, Nigeria.
| | - Oghenenyore A Ohwokevwo
- Department of Biochemistry, Faculty of Science, University of Port-Harcourt, Choba, Rivers State, Nigeria
| | - Beruoritse Pessu
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Nyerhovwo J Tonukari
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria
| |
Collapse
|
5
|
Exploiting the activity-stability trade-off of glucose oxidase from Aspergillus niger using a simple approach to calculate thermostability of mutants. Food Chem 2020; 342:128270. [PMID: 33069526 DOI: 10.1016/j.foodchem.2020.128270] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
Glucose oxidase (Gox) is a biocatalyst that is widely applied in the food industry, as well as other biotechnological industries. However, the industrial application of Gox is hampered by its low thermostability and activity. Here, we aimed to improve the thermostability of GoxM4 from Aspergillus niger without reducing its activity due to the activity-stability trade-off. A simple and effective approach combining enzyme activity and structure stability was adopted to evaluate the thermostability of GoxM4 and its mutants. After four rounds of computer-aided rational design, the best mutant, GoxM8, was obtained. The melting temperature (Tm) of GoxM8 was increased by 9 °C compared with GoxM4. The catalytic efficiency of GoxM8 was similar to GoxM4, suggesting that the enzyme activity-stability trade-off was counteracted. To explore its mechanism, we performed molecular dynamics simulations of GoxM4 and its mutants. Our findings provided a typical example for researching the enzyme activity-stability trade-off.
Collapse
|
6
|
Petrenčáková M, Varhač R, Kožár T, Nemergut M, Jancura D, Schwer MS, Sedlák E. Conformational properties of LOV2 domain and its C450A variant within broad pH region. Biophys Chem 2020; 259:106337. [PMID: 32126442 DOI: 10.1016/j.bpc.2020.106337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 11/28/2022]
Abstract
LOV2 (Light-Oxygen-Voltage) domain from Avena sativa phototropin 1 (AsLOV2) belongs to the superfamily of PAS (Per-Arnt-Sim) domains, members of which function as signaling sensors. AsLOV2 undergoes a conformational change upon blue-light absorption by its FMN cofactor. AsLOV2 wild type (wt) is intensively studied as a photo-switchable element in conjugation with various proteins. On the other hand, its variant AsLOV2 with replaced cysteinyl residue C450, which is critical for the forming a covalent adduct with FMN upon irradiation, forms a precursor for some recently developed genetically encoded photosensitizers. In the presented work, we investigated conformational properties of AsLOV2 wt and its variant C450A by circular dichroism, tryptophan and FMN fluorescence, and differential scanning calorimetry in dependence on pH and temperature. We show that both variants are similarly sensitive towards pH of solvent. On the other hand, the mutation C450A leads to a more stable AsLOV2 variant in comparison with the wild type. Thermal transitions of the AsLOV2 proteins monitored by circular dichroism indicate the presence of significant residual structure in thermally-denatured states of both proteins in the pH range from 4 to 9. Both pH- and thermal- transitions of AsLOV2 are accompanied by FMN leaching to solvent. Higher stability, reversibility of thermal transitions, and efficiency of FMN rebinding in the case of C450A variant suggest that the cofactor release may be modulated by suitable mutations in combination with a suitable physicochemical perturbation. These findings can have implications for a design of genetically encoded photosensitizers.
Collapse
Affiliation(s)
- Martina Petrenčáková
- Department of Biophysics, Faculty of Science, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Rastislav Varhač
- Department of Biochemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia
| | - Tibor Kožár
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Michal Nemergut
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia; Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Marc-Simon Schwer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Erik Sedlák
- Department of Biochemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia; Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia.
| |
Collapse
|
7
|
Agazzi ML, Herrera SE, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Insulin Delivery from Glucose‐Responsive, Self‐Assembled, Polyamine Nanoparticles: Smart “Sense‐and‐Treat” Nanocarriers Made Easy. Chemistry 2020; 26:2456-2463. [DOI: 10.1002/chem.201905075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Maximiliano L. Agazzi
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Santiago E. Herrera
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - M. Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Waldemar A. Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química FísicaINQUIMAE-CONICETFacultad de Ciencias Exactas y NaturalesCiudad Universitaria Pabellón 2 Buenos Aires C1428EHA Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y, Aplicadas Facultad de Ciencias ExactasUniversidad Nacional de La, Plata-CONICET Sucursal 4, Casilla de Correo 16 1900 La Plata Argentina
| |
Collapse
|
8
|
Sedlák E, Sedláková D, Marek J, Hančár J, Garajová K, Žoldák G. Ion-Specific Protein/Water Interface Determines the Hofmeister Effect on the Kinetic Stability of Glucose Oxidase. J Phys Chem B 2019; 123:7965-7973. [DOI: 10.1021/acs.jpcb.9b05195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park P.J. Šafárik University, Jesenna 5, 041 54 Košice, Slovakia
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04001 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia
| | - Jozef Marek
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia
| | - Jozef Hančár
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04001 Košice, Slovakia
| | - Katarína Garajová
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04001 Košice, Slovakia
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park P.J. Šafárik University, Jesenna 5, 041 54 Košice, Slovakia
| |
Collapse
|
9
|
Enhanced Thermostability of Glucose Oxidase through Computer-Aided Molecular Design. Int J Mol Sci 2018; 19:ijms19020425. [PMID: 29385094 PMCID: PMC5855647 DOI: 10.3390/ijms19020425] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/06/2017] [Accepted: 01/26/2018] [Indexed: 12/26/2022] Open
Abstract
Glucose oxidase (GOD, EC.1.1.3.4) specifically catalyzes the reaction of β-d-glucose to gluconic acid and hydrogen peroxide in the presence of oxygen, which has become widely used in the food industry, gluconic acid production and the feed industry. However, the poor thermostability of the current commercial GOD is a key limiting factor preventing its widespread application. In the present study, amino acids closely related to the thermostability of glucose oxidase from Penicillium notatum were predicted with a computer-aided molecular simulation analysis, and mutant libraries were established following a saturation mutagenesis strategy. Two mutants with significantly improved thermostabilities, S100A and D408W, were subsequently obtained. Their protein denaturing temperatures were enhanced by about 4.4 °C and 1.2 °C, respectively, compared with the wild-type enzyme. Treated at 55 °C for 3 h, the residual activities of the mutants were greater than 72%, while that of the wild-type enzyme was only 20%. The half-lives of S100A and D408W were 5.13- and 4.41-fold greater, respectively, than that of the wild-type enzyme at the same temperature. This work provides novel and efficient approaches for enhancing the thermostability of GOD by reducing the protein free unfolding energy or increasing the interaction of amino acids with the coenzyme.
Collapse
|