1
|
Marković V, Szczepańska A, Berlicki Ł. Antiviral Protein-Protein Interaction Inhibitors. J Med Chem 2024; 67:3205-3231. [PMID: 38394369 PMCID: PMC10945500 DOI: 10.1021/acs.jmedchem.3c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Continually repeating outbreaks of pathogenic viruses necessitate the construction of effective antiviral strategies. Therefore, the development of new specific antiviral drugs in a well-established and efficient manner is crucial. Taking into account the strong ability of viruses to change, therapies with diversified molecular targets must be sought. In addition to the widely explored viral enzyme inhibitor approach, inhibition of protein-protein interactions is a very valuable strategy. In this Perspective, protein-protein interaction inhibitors targeting HIV, SARS-CoV-2, HCV, Ebola, Dengue, and Chikungunya viruses are reviewed and discussed. Antibodies, peptides/peptidomimetics, and small molecules constitute three classes of compounds that have been explored, and each of them has some advantages and disadvantages for drug development.
Collapse
Affiliation(s)
- Violeta Marković
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- University
of Kragujevac, Faculty of Science,
Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Anna Szczepańska
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Berlicki
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
2
|
Roncato R, Angelini J, Pani A, Talotta R. Lipid rafts as viral entry routes and immune platforms: A double-edged sword in SARS-CoV-2 infection? Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159140. [PMID: 35248801 PMCID: PMC8894694 DOI: 10.1016/j.bbalip.2022.159140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Lipid rafts are nanoscopic compartments of cell membranes that serve a variety of biological functions. They play a crucial role in viral infections, as enveloped viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can exploit rafts to enter or quit target cells. On the other hand, lipid rafts contribute to the formation of immune synapses and their proper functioning is a prerequisite for adequate immune response and viral clearance. In this narrative review we dissect the panorama focusing on this singular aspect of cell biology in the context of SARS-CoV-2 infection and therapy. A lipid raft-mediated mechanism can be hypothesized for many drugs recommended or considered for the treatment of SARS-CoV-2 infection, such as glucocorticoids, antimalarials, immunosuppressants and antiviral agents. Furthermore, the additional use of lipid-lowering agents, like statins, may affect the lipid composition of membrane rafts and thus influence the processes occurring in these compartments. The combination of drugs acting on lipid rafts may be successful in the treatment of more severe forms of the disease and should be reserved for further investigation.
Collapse
Affiliation(s)
- Rossana Roncato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a carattere Scientifico (IRCCS), via Gallini, 33081 Aviano (PN), Italy
| | - Jacopo Angelini
- Clinical Pharmacology Institute, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), via Pozzuolo, 33100 Udine, Italy
| | - Arianna Pani
- Toxicology Department of Oncology and Hemato-Oncology, University of Milan, via Vanvitelli, 20133 Milan, Italy
| | - Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU "Gaetano Martino", University of Messina, 98100 Messina, Italy
| |
Collapse
|
3
|
Lipids in Pathophysiology and Development of the Membrane Lipid Therapy: New Bioactive Lipids. MEMBRANES 2021; 11:membranes11120919. [PMID: 34940418 PMCID: PMC8708953 DOI: 10.3390/membranes11120919] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).
Collapse
|
4
|
Das P, Dudley JP. How Viruses Use the VCP/p97 ATPase Molecular Machine. Viruses 2021; 13:1881. [PMID: 34578461 PMCID: PMC8473244 DOI: 10.3390/v13091881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Viruses are obligate intracellular parasites that are dependent on host factors for their replication. One such host protein, p97 or the valosin-containing protein (VCP), is a highly conserved AAA ATPase that facilitates replication of diverse RNA- and DNA-containing viruses. The wide range of cellular functions attributed to this ATPase is consistent with its participation in multiple steps of the virus life cycle from entry and uncoating to viral egress. Studies of VCP/p97 interactions with viruses will provide important information about host processes and cell biology, but also viral strategies that take advantage of these host functions. The critical role of p97 in viral replication might be exploited as a target for development of pan-antiviral drugs that exceed the capability of virus-specific vaccines or therapeutics.
Collapse
Affiliation(s)
- Poulami Das
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Jaquelin P. Dudley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA;
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
5
|
Moore N, Chevillet JR, Healey LJ, McBrine C, Doty D, Santos J, Teece B, Truslow J, Mott V, Hsi P, Tandon V, Borenstein JT, Balestrini J, Kotz K. A Microfluidic Device to Enhance Viral Transduction Efficiency During Manufacture of Engineered Cellular Therapies. Sci Rep 2019; 9:15101. [PMID: 31641163 PMCID: PMC6806008 DOI: 10.1038/s41598-019-50981-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023] Open
Abstract
The development and approval of engineered cellular therapies are revolutionizing approaches to treatment of diseases. However, these life-saving therapies require extensive use of inefficient bioprocessing equipment and specialized reagents that can drive up the price of treatment. Integration of new genetic material into the target cells, such as viral transduction, is one of the most costly and labor-intensive steps in the production of cellular therapies. Approaches to reducing the costs associated with gene delivery have been developed using microfluidic devices to increase overall efficiency. However, these microfluidic approaches either require large quantities of virus or pre-concentration of cells with high-titer viral particles. Here, we describe the development of a microfluidic transduction device (MTD) that combines microfluidic spatial confinement with advective flow through a membrane to efficiently colocalize target cells and virus particles. We demonstrate that the MTD can improve the efficiency of lentiviral transduction for both T-cell and hematopoietic stem-cell (HSC) targets by greater than two fold relative to static controls. Furthermore, transduction saturation in the MTD is reached with only half the virus required to reach saturation under static conditions. Moreover, we show that MTD transduction does not adversely affect cell viability or expansion potential.
Collapse
Affiliation(s)
- Nathan Moore
- Cell and Tissue Engineering, 555 Technology Square, Draper, Cambridge, MA, 02139, USA.
| | - John R Chevillet
- Cell and Tissue Engineering, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Laura J Healey
- Cell and Tissue Engineering, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Connor McBrine
- Synthetic Biology, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Daniel Doty
- Cell and Tissue Engineering, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Jose Santos
- Biological Microsystems, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Bryan Teece
- Biological Microsystems, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - James Truslow
- Biological Microsystems, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Vienna Mott
- Biological Microsystems, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Peter Hsi
- Cell and Tissue Engineering, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Vishal Tandon
- Biological Microsystems, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | | | - Jenna Balestrini
- Biological Microsystems, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| | - Kenneth Kotz
- Biological Microsystems, 555 Technology Square, Draper, Cambridge, MA, 02139, USA
| |
Collapse
|
6
|
Firrito C, Bertelli C, Vanzo T, Chande A, Pizzato M. SERINC5 as a New Restriction Factor for Human Immunodeficiency Virus and Murine Leukemia Virus. Annu Rev Virol 2019; 5:323-340. [PMID: 30265629 DOI: 10.1146/annurev-virology-092917-043308] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SERINC genes encode for homologous multipass transmembrane proteins with unknown cellular function, despite being highly conserved across eukaryotes. Among the five SERINC genes found in humans, SERINC5 was shown to act as a powerful inhibitor of retroviruses. It is efficiently incorporated into virions and blocks the penetration of the viral core into target cells, by impairing the fusion process with a yet unclear mechanism. SERINC5 was also found to promote human immunodeficiency virus 1 (HIV-1) virion neutralization by antibodies, indicating a pleiotropic activity, which remains mostly unexplored. Counteracting factors have emerged independently in at least three retrovirus lineages, underscoring their fundamental importance during retrovirus evolution. Nef and S2 of primate and equine lentiviruses, and glycoGag of gammaretroviruses, act similarly by targeting SERINC5 to endosomes and excluding it from virions. Here, we discuss the features that distinguish SERINC5 from other known restriction factors, delineating a yet unique class of antiviral inhibitors.
Collapse
Affiliation(s)
- Claudia Firrito
- Centre for Integrative Biology, University of Trento, 38123 Trento, Italy ; , , ,
| | - Cinzia Bertelli
- Centre for Integrative Biology, University of Trento, 38123 Trento, Italy ; , , ,
| | - Teresa Vanzo
- Centre for Integrative Biology, University of Trento, 38123 Trento, Italy ; , , ,
| | - Ajit Chande
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, Madhya Pradesh, India;
| | - Massimo Pizzato
- Centre for Integrative Biology, University of Trento, 38123 Trento, Italy ; , , ,
| |
Collapse
|
7
|
Mistry B, D'Orsogna MR, Webb NE, Lee B, Chou T. Quantifying the Sensitivity of HIV-1 Viral Entry to Receptor and Coreceptor Expression. J Phys Chem B 2016; 120:6189-99. [PMID: 27137677 DOI: 10.1021/acs.jpcb.6b02102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infection by many viruses begins with fusion of viral and cellular lipid membranes, followed by entry of viral contents into the target cell and ultimately, after many biochemical steps, integration of viral DNA into that of the host cell. The early steps of membrane fusion and viral capsid entry are mediated by adsorption to the cell surface, and receptor and coreceptor binding. HIV-1 specifically targets CD4+ helper T-cells of the human immune system and binds to the receptor CD4 and coreceptor CCR5 before fusion is initiated. Previous experiments have been performed using a cell line (293-Affinofile) in which the expressions of CD4 and CCR5 concentration were independently controlled. After exposure to HIV-1 of various strains, the resulting infectivity was measured through the fraction of infected cells. To design and evaluate the effectiveness of drug therapies that target the inhibition of the entry processes, an accurate functional relationship between the CD4/CCR5 concentrations and infectivity is desired in order to more quantitatively analyze experimental data. We propose three kinetic models describing the possible mechanistic processes involved in HIV entry and fit their predictions to infectivity measurements, contrasting and comparing different outcomes. Our approach allows interpretation of the clustering of infectivity of different strains of HIV-1 in the space of mechanistic kinetic parameters. Our model fitting also allows inference of nontrivial stoichiometries of receptor and coreceptor binding and provides a framework through which to quantitatively investigate the effectiveness of fusion inhibitors and neutralizing antibodies.
Collapse
Affiliation(s)
- Bhaven Mistry
- Department of Biomathematics, University of California , Los Angeles, California 90095, United States
| | - Maria R D'Orsogna
- Department of Biomathematics, University of California , Los Angeles, California 90095, United States.,Department of Mathematics, California State University , Northridge, California 91330, United States
| | - Nicholas E Webb
- Department of Infectious Disease, Children's Hospital Los Angeles , Los Angeles, California 90027, United States
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Tom Chou
- Department of Biomathematics, University of California , Los Angeles, California 90095, United States.,Department of Mathematics, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
8
|
|
9
|
Shcherbakov DN, Bakulina AY, Karpenko LI, Ilyichev AA. Broadly Neutralizing Antibodies against HIV-1 As a Novel Aspect of the Immune Response. Acta Naturae 2015; 7:11-21. [PMID: 26798488 PMCID: PMC4717246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) has the ability to evade the adaptive immune response due to high mutation rates. Soon after the discovery of HIV-1, it was originally proposed that neutralizing of antibodies to the virus occurs rarely or cannot be elicited at all. In the 1990s, there appeared reports that sera of select HIV-1-infected individuals contained antibodies capable of neutralizing different virus subtypes. Such antibodies were named broadly neutralizing antibodies (bNAbs). Since 2009, the development of new cell technologies has intensified research efforts directed at identifying new bNAbs with a neutralization potency of over 90% of primary HIV-1 isolates. These antibodies have unique characteristics which include high levels of somatic mutations and unusually long variable loops that penetrate through the glycan shield of HIV-1 Env to contact the protein surface. In this review, we will attempt to summarize the latest data on bNAbs against HIV-1 in terms of their interactions with the sites of vulnerability on HIV-1 glycoproteins.
Collapse
Affiliation(s)
- D. N. Shcherbakov
- State research center of virology and biotechnology “Vector”, Koltsovo, 630559, Novosibirsk region, Russia
- Altai State University, 61 Lenin St., 656049, Barnaul, Russia
| | - A. Y. Bakulina
- State research center of virology and biotechnology “Vector”, Koltsovo, 630559, Novosibirsk region, Russia
- Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - L. I. Karpenko
- State research center of virology and biotechnology “Vector”, Koltsovo, 630559, Novosibirsk region, Russia
| | - A. A. Ilyichev
- State research center of virology and biotechnology “Vector”, Koltsovo, 630559, Novosibirsk region, Russia
| |
Collapse
|
10
|
Nasir W, Bally M, Zhdanov VP, Larson G, Höök F. Interaction of Virus-Like Particles with Vesicles Containing Glycolipids: Kinetics of Detachment. J Phys Chem B 2015; 119:11466-72. [PMID: 26260011 DOI: 10.1021/acs.jpcb.5b04160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many viruses interact with their host cells via glycosphingolipids (GSLs) and/or glycoproteins present on the outer cell membrane. This highly specific interaction includes virion attachment and detachment. The residence time determined by the detachment is particularly interesting, since it is directly related to internalization and infection as well as to virion egress and spreading. In an attempt to deepen the understanding of virion detachment kinetics, we have used total internal reflection fluorescence (TIRF) microscopy to probe the interaction between individual fluorescently labeled GSL-containing lipid vesicles and surface-bound virus-like particles (VLPs) of a norovirus genotype II.4 strain. The distribution of the VLP-vesicle residence time was investigated for seven naturally occurring GSLs, all of which are candidates for the not yet identified receptor(s) mediating norovirus entry into host cells. As expected for interactions involving multiple GSL binding sites at a viral capsid, the detachment kinetics displayed features typical for a broad activation-energy distribution for all GSLs. Detailed inspection of these distributions revealed significant differences among the different GSLs. The results are discussed in terms of strength of the interaction, vesicle size, as well as spatial distribution and clustering of GSLs in the vesicle membrane.
Collapse
Affiliation(s)
- Waqas Nasir
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Marta Bally
- Department of Applied Physics, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden.,Institut Curie, Centre de Recherche, CNRS, UMR 168, Physico-Chimie Curie, F-75248 Paris, France
| | - Vladimir P Zhdanov
- Department of Applied Physics, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden.,Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk 630090, Russia
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Fredrik Höök
- Department of Applied Physics, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| |
Collapse
|
11
|
Zhdanov VP. Kinetics of virus entry by endocytosis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042715. [PMID: 25974535 DOI: 10.1103/physreve.91.042715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Indexed: 06/04/2023]
Abstract
Entry of virions into the host cells is either endocytotic or fusogenic. In both cases, it occurs via reversible formation of numerous relatively weak bonds resulting in wrapping of a virion by the host membrane with subsequent membrane rupture or scission. The corresponding kinetic models are customarily focused on the formation of bonds and do not pay attention to the energetics of the whole process, which is crucially dependent, especially in the case of endocytosis, on deformation of actin filaments forming the cytoskeleton of the host cell. The kinetic model of endocytosis, proposed by the author, takes this factor into account and shows that the whole process can be divided into a rapid initial transient stage and a long steady-state stage. The entry occurs during the latter stage and can be described as a first-order reaction. Depending on the details of the dependence of the grand canonical potential on the number of bonds, the entry can be limited either by the interplay of bond formation and membrane rupture (or scission) or by reaching a maximum of this potential.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Department of Applied Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden and Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
12
|
Zhdanov VP, Höök F. Diffusion-limited attachment of large spherical particles to flexible membrane-immobilized receptors. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:219-26. [PMID: 25783496 DOI: 10.1007/s00249-015-1016-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 01/06/2023]
Abstract
Relatively large (~100 nm) spherical particles, e.g., virions, vesicles, or metal nanoparticles, often interact with short (<10 nm) flexible receptors immobilized in a lipid membrane or on other biologically relevant surfaces. The attachment kinetics of such particles may be limited globally by their diffusion toward a membrane or locally by diffusion around receptors. The detachment kinetics, also, can be limited by diffusion. Focusing on local diffusion limitations and using suitable approximations, we present expressions for the corresponding rate constants and identify their dependence on particle size and receptor length. We also illustrate features likely to be observed in such kinetics for particles (e.g., vesicles) with a substantial size distribution. The results obtained are generic and can be used to interpret a variety of situations. For example, we estimate upper values of virion attachment rate constants and clarify the likely effect of vesicle size distribution on previously observed non-exponential kinetics of vesicle detachment.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Applied Physics, Chalmers University of Technology, 41296, Göteborg, Sweden,
| | | |
Collapse
|
13
|
Black AJ, Ross JV. Computation of epidemic final size distributions. J Theor Biol 2014; 367:159-165. [PMID: 25497476 DOI: 10.1016/j.jtbi.2014.11.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 11/17/2022]
Abstract
We develop a new methodology for the efficient computation of epidemic final size distributions for a broad class of Markovian models. We exploit a particular representation of the stochastic epidemic process to derive a method which is both computationally efficient and numerically stable. The algorithms we present are also physically transparent and so allow us to extend this method from the basic SIR model to a model with a phase-type infectious period and another with waning immunity. The underlying theory is applicable to many Markovian models where we wish to efficiently calculate hitting probabilities.
Collapse
Affiliation(s)
- Andrew J Black
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - J V Ross
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
14
|
Abstract
Virus-cell fusion is the primary means by which the human immunodeficiency virus-1 (HIV) delivers its genetic material into the human T-cell host. Fusion is mediated in large part by the viral glycoprotein 41 (gp41) which advances through four distinct conformational states: (i) native, (ii) pre-hairpin intermediate, (iii) fusion active (fusogenic), and (iv) post-fusion. The pre-hairpin intermediate is a particularly attractive step for therapeutic intervention given that gp41 N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR) domains are transiently exposed prior to the formation of a six-helix bundle required for fusion. Most peptide-based inhibitors, including the FDA-approved drug T20, target the intermediate and there are significant efforts to develop small molecule alternatives. Here, we review current approaches to studying interactions of inhibitors with gp41 with an emphasis on atomic-level computer modeling methods including molecular dynamics, free energy analysis, and docking. Atomistic modeling yields a unique level of structural and energetic detail, complementary to experimental approaches, which will be important for the design of improved next generation anti-HIV drugs.
Collapse
|
15
|
Zhdanov VP. Physical aspects of the initial phase of endocytosis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:064701. [PMID: 24483591 DOI: 10.1103/physreve.88.064701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Indexed: 06/03/2023]
Abstract
The endocytotic mechanism of entry of virions into cells includes wrapping of a virion by the host membrane with subsequent formation of a vesicle covering a virion. The energy along this pathway depends on the ligand-receptor interaction and deformation of the cell membrane and underlying actin cytoskeleton. The available models describe the cytoskeleton deformation by using the conventional continuum theory of elasticity and predict that this factor often controls the repulsive part of the virion-cell interaction. This approach is, however, debatable because the size of virions is smaller than or comparable to the length scale characterizing the cytoskeleton structure. The author shows that the continuum theory appreciably (up to one order of magnitude) overestimates the cytoskeleton-deformation energy and that the scale of this energy is comparable to that of cell membrane bending.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Division of Biological Physics, Department of Applied Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden and Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
16
|
Rusnati M, Chiodelli P, Bugatti A, Urbinati C. Bridging the past and the future of virology: surface plasmon resonance as a powerful tool to investigate virus/host interactions. Crit Rev Microbiol 2013; 41:238-60. [PMID: 24059853 DOI: 10.3109/1040841x.2013.826177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite decades of antiviral drug research and development, viruses still remain a top global healthcare problem. Compared to eukaryotic cells, viruses are composed by a limited numbers of proteins that, nevertheless, set up multiple interactions with cellular components, allowing the virus to take control of the infected cell. Each virus/host interaction can be considered as a therapeutical target for new antiviral drugs but, unfortunately, the systematic study of a so huge number of interactions is time-consuming and expensive, calling for models overcoming these drawbacks. Surface plasmon resonance (SPR) is a label-free optical technique to study biomolecular interactions in real time by detecting reflected light from a prism-gold film interface. Launched 20 years ago, SPR has become a nearly irreplaceable technology for the study of biomolecular interactions. Accordingly, SPR is increasingly used in the field of virology, spanning from the study of biological interactions to the identification of putative antiviral drugs. From the literature available, SPR emerges as an ideal link between conventional biological experimentation and system biology studies functional to the identification of highly connected viral or host proteins that act as nodal points in virus life cycle and thus considerable as therapeutical targets for the development of innovative antiviral strategies.
Collapse
Affiliation(s)
- Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia , Brescia , Italy
| | | | | | | |
Collapse
|
17
|
Stochastic model-assisted development of efficient low-dose viral transduction in microfluidics. Biophys J 2013; 104:934-42. [PMID: 23442972 DOI: 10.1016/j.bpj.2012.12.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 12/15/2012] [Accepted: 12/31/2012] [Indexed: 12/14/2022] Open
Abstract
Adenoviruses are commonly used in vitro as gene transfer vectors in multiple applications. Nevertheless, issues such as low infection efficiency and toxicity effects on host cells have not been resolved yet. This work aims at developing a new versatile tool to enhance the expression of transduced genes while working at low viral doses in a sequential manner. We developed a microfluidic platform with automatically controlled sequential perfusion stages, which includes 10 independent channels. In addition, we built a stochastic mathematical model, accounting for the discrete nature of cells and viruses, to predict not only the percentage of infected cells, but also the associated infecting-virus distribution in the cell population. Microfluidic system and mathematical model were coupled to define an efficient experimental strategy. We used human foreskin fibroblasts, infected by replication-incompetent adenoviruses carrying EGFP gene, as the testing system. Cell characterization was performed through fluorescence microscopy, followed by image analysis. We explored the effect of different aspects: perfusion, multiplicity of infection, and temporal patterns of infection. We demonstrated feasibility of performing efficient viral transduction at low doses, by repeated pulses of cell-virus contact. This procedure also enhanced the exogenous gene expression in the sequential microfluidic infection system compared to a single infection at a higher, nontoxic, viral dose.
Collapse
|
18
|
Bally M, Dimitrievski K, Larson G, Zhdanov VP, Höök F. Interaction of virions with membrane glycolipids. Phys Biol 2012; 9:026011. [PMID: 22475581 DOI: 10.1088/1478-3975/9/2/026011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cellular membranes contain various lipids including glycolipids (GLs). The hydrophilic head groups of GLs extend from the membrane into the aqueous environment outside the cell where they act as recognition sites for specific interactions. The first steps of interaction of virions with cells often include contacts with GLs. To clarify the details of such contacts, we have used the total internal reflection fluorescence microscopy to explore the interaction of individual unlabelled virus-like particles (or, more specifically, norovirus protein capsids), which are firmly bound to a lipid bilayer, and fluorescent vesicles containing glycosphingolipids (these lipids form a subclass of GLs). The corresponding binding kinetics were earlier found to be kinetically limited, while the detachment kinetics were logarithmic over a wide range of time. Here, the detachment rate is observed to dramatically decrease with increasing concentration of glycosphingolipids from 1% to 8%. This effect has been analytically explained by using a generic model describing the statistics of bonds in the contact area between a virion and a lipid membrane. Among other factors, the model takes the formation of GL domains into account. Our analysis indicates that in the system under consideration, such domains, if present, have a characteristic size smaller than the contact area between the vesicle and the virus-like particle.
Collapse
Affiliation(s)
- M Bally
- Department of Applied Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
19
|
Lagache T, Danos O, Holcman D. Modeling the step of endosomal escape during cell infection by a nonenveloped virus. Biophys J 2012; 102:980-9. [PMID: 22404920 DOI: 10.1016/j.bpj.2011.12.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 11/27/2022] Open
Abstract
Widely disparate viruses enter the host cell through an endocytic pathway and travel the cytoplasm inside an endosome. For the viral genetic material to be delivered into the cytoplasm, these viruses have to escape the endosomal compartment, an event triggered by the conformational changes of viral endosomolytic proteins. We focus here on small nonenveloped viruses such as adeno-associated viruses, which contain few penetration proteins. The first time a penetration protein changes conformation defines the slowest timescale responsible for the escape. To evaluate this time, we construct what to our knowledge is a novel biophysical model based on a stochastic approach that accounts for the small number of proteins, the endosomal maturation, and the protease activation dynamics. We show that the escape time increases with the endosomal size, whereas decreasing with the number of viral particles inside the endosome. We predict that the optimal escape probability is achieved when the number of proteases in the endosome is in the range of 250-350, achieved for three viral particles.
Collapse
Affiliation(s)
- Thibault Lagache
- Group of Computational Biology and Applied Mathematics, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | | | | |
Collapse
|
20
|
Chaudhuri A, Battaglia G, Golestanian R. The effect of interactions on the cellular uptake of nanoparticles. Phys Biol 2011; 8:046002. [DOI: 10.1088/1478-3975/8/4/046002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Gibbons MM, Chou T, D'Orsogna MR. Diffusion-dependent mechanisms of receptor engagement and viral entry. J Phys Chem B 2010; 114:15403-12. [PMID: 21038861 DOI: 10.1021/jp1080725] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enveloped viruses attach to host cells by binding to receptors on the cell surface. For many viruses, entry occurs via membrane fusion after a sufficient number of receptors have engaged ligand proteins on the virion. Under conditions where the cell surface receptor densities are low, recruitment of receptors may be limited by diffusion rather than by receptor-ligand interactions. We present a receptor-binding model that includes the effects of receptor availability at the viral binding site. The receptor binding and unbinding kinetics are coupled to receptor diffusion across the cell membrane. We find numerical solutions to our model and analyze the viral entry probabilities and the mean times to entry as functions of receptor concentration, receptor diffusivity, receptor binding stoichiometry, receptor detachment rates, and virus degradation/detachment rates. We also show how entry probabilities and times differ when receptors bind randomly or sequentially to the binding sites on the viral glycoprotein spikes. Our results provide general insight into the biophysical transport mechanisms that may arise in viral attachment and entry.
Collapse
Affiliation(s)
- Melissa M Gibbons
- Department of Biomathematics, University of California, Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
22
|
Abstract
Human herpesvirus-6 (HHV-6) belongs to the herpesvirus family and is categorized into variant A and B (HHV-6A and HHV-6B). Primary HHV-6 infection in children and its related diseases are almost exclusively caused by HHV-6B and no disease caused by HHV-6A has been identified. The cellular receptor of HHV-6 has been shown to be a human CD46, and its viral ligand is an envelope glycoprotein complex, gH/gL/gQ1/gQ2 in HHV-6A. Furthermore, both cellular and viral lipid rafts play an important role in the HHV-6 entry process, suggesting that HHV-6 may enter its target cells through a lipid raft-associated mechanism.
Collapse
Affiliation(s)
- Huamin Tang
- Laboratoy of Virology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | | |
Collapse
|
23
|
Abstract
For many viruses, the ability to infect eukaryotic cells depends on their transport through the cytoplasm and across the nuclear membrane of the host cell. During this journey, viral contents are biochemically processed into complexes capable of both nuclear penetration and genomic integration. We develop a stochastic model of viral entry that incorporates all relevant aspects of transport, including convection along microtubules, biochemical conversion, degradation, and nuclear entry. Analysis of the nuclear infection probabilities in terms of the transport velocity, degradation, and biochemical conversion rates shows how certain values of key parameters can maximize the nuclear entry probability of the viral material. The existence of such "optimal" infection scenarios depends on the details of the biochemical conversion process and implies potentially counterintuitive effects in viral infection, suggesting new avenues for antiviral treatment. Such optimal parameter values provide a plausible transport-based explanation of the action of restriction factors and of experimentally observed optimal capsid stability. Finally, we propose a new interpretation of how genetic mutations unrelated to the mechanism of drug action may nonetheless confer novel types of overall drug resistance.
Collapse
Affiliation(s)
- Maria R. D'Orsogna
- Department of Mathematics, California State University Northridge, Los Angeles, California, United States of America
| | - Tom Chou
- Department of Biomathematics and Department of Mathematics, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|