1
|
Modeling the Phase Equilibria of Associating Polymers in Porous Media with Respect to Chromatographic Applications. Polymers (Basel) 2022; 14:polym14153182. [PMID: 35956697 PMCID: PMC9370872 DOI: 10.3390/polym14153182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022] Open
Abstract
Associating copolymers self-assemble during their passage through a liquid chromatography (LC) column, and the elution differs from that of common non-associating polymers. This computational study aims at elucidating the mechanism of their unique and intricate chromatographic behavior. We focused on amphiphilic diblock copolymers in selective solvents, performed the Monte Carlo (MC) simulations of their partitioning between a bulk solvent (mobile phase) and a cylindrical pore (stationary phase), and investigated the concentration dependences of the partition coefficient and of other functions describing the phase behavior. The observed abruptly changing concentration dependences of the effective partition coefficient demonstrate the significant impact of the association of copolymers with their partitioning between the two phases. The performed simulations reveal the intricate interplay of the entropy-driven and the enthalpy-driven processes, elucidate at the molecular level how the self-assembly affects the chromatographic behavior, and provide useful hints for the analysis of experimental elution curves of associating polymers.
Collapse
|
2
|
Liu Q, Shaukat A, Kyllönen D, Kostiainen MA. Polyelectrolyte Encapsulation and Confinement within Protein Cage-Inspired Nanocompartments. Pharmaceutics 2021; 13:1551. [PMID: 34683843 PMCID: PMC8537137 DOI: 10.3390/pharmaceutics13101551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Protein cages are nanocompartments with a well-defined structure and monodisperse size. They are composed of several individual subunits and can be categorized as viral and non-viral protein cages. Native viral cages often exhibit a cationic interior, which binds the anionic nucleic acid genome through electrostatic interactions leading to efficient encapsulation. Non-viral cages can carry various cargo, ranging from small molecules to inorganic nanoparticles. Both cage types can be functionalized at targeted locations through genetic engineering or chemical modification to entrap materials through interactions that are inaccessible to wild-type cages. Moreover, the limited number of constitutional subunits ease the modification efforts, because a single modification on the subunit can lead to multiple functional sites on the cage surface. Increasing efforts have also been dedicated to the assembly of protein cage-mimicking structures or templated protein coatings. This review focuses on native and modified protein cages that have been used to encapsulate and package polyelectrolyte cargos and on the electrostatic interactions that are the driving force for the assembly of such structures. Selective encapsulation can protect the payload from the surroundings, shield the potential toxicity or even enhance the intended performance of the payload, which is appealing in drug or gene delivery and imaging.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Daniella Kyllönen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
| | - Mauri A. Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland; (Q.L.); (A.S.); (D.K.)
- HYBER Center, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
3
|
Marchetti M, Kamsma D, Cazares Vargas E, Hernandez García A, van der Schoot P, de Vries R, Wuite GJL, Roos WH. Real-Time Assembly of Viruslike Nucleocapsids Elucidated at the Single-Particle Level. NANO LETTERS 2019; 19:5746-5753. [PMID: 31368710 PMCID: PMC6696885 DOI: 10.1021/acs.nanolett.9b02376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/24/2019] [Indexed: 05/20/2023]
Abstract
While the structure of a multitude of viral particles has been resolved to atomistic detail, their assembly pathways remain largely elusive. Key unresolved issues are particle nucleation, particle growth, and the mode of genome compaction. These issues are difficult to address in bulk approaches and are effectively only accessible by the real-time tracking of assembly dynamics of individual particles. This we do here by studying the assembly into rod-shaped viruslike particles (VLPs) of artificial capsid polypeptides. Using fluorescence optical tweezers, we establish that small oligomers perform one-dimensional diffusion along the DNA. Larger oligomers are immobile and nucleate VLP growth. A multiplexed acoustic force spectroscopy approach reveals that DNA is compacted in regular steps, suggesting packaging via helical wrapping into a nucleocapsid. By reporting how real-time assembly tracking elucidates viral nucleation and growth principles, our work opens the door to a fundamental understanding of the complex assembly pathways of both VLPs and naturally evolved viruses.
Collapse
Affiliation(s)
- Margherita Marchetti
- Department
of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, 9712 CP Groningen, The Netherlands
| | - Douwe Kamsma
- Department
of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ernesto Cazares Vargas
- Institute
of Chemistry, Department of Chemistry of Biomacromolecules, National Autonomous University of Mexico, 04510 Mexico City, Mexico
| | - Armando Hernandez García
- Institute
of Chemistry, Department of Chemistry of Biomacromolecules, National Autonomous University of Mexico, 04510 Mexico City, Mexico
| | - Paul van der Schoot
- Institute
for Theoretical Physics, Utrecht University, 3512 JE Utrecht, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Renko de Vries
- Laboratory
of Physical Chemistry and Colloid Science, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Gijs J. L. Wuite
- Department
of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- E-mail:
| | - Wouter H. Roos
- Moleculaire
Biofysica, Zernike Instituut, Rijksuniversiteit
Groningen, 9712 CP Groningen, The Netherlands
- E-mail:
| |
Collapse
|
4
|
Twarock R, Stockley PG. RNA-Mediated Virus Assembly: Mechanisms and Consequences for Viral Evolution and Therapy. Annu Rev Biophys 2019; 48:495-514. [PMID: 30951648 PMCID: PMC7612295 DOI: 10.1146/annurev-biophys-052118-115611] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses, entities composed of nucleic acids, proteins, and in some cases lipids lack the ability to replicate outside their target cells. Their components self-assemble at the nanoscale with exquisite precision-a key to their biological success in infection. Recent advances in structure determination and the development of biophysical tools such as single-molecule spectroscopy and noncovalent mass spectrometry allow unprecedented access to the detailed assembly mechanisms of simple virions. Coupling these techniques with mathematical modeling and bioinformatics has uncovered a previously unsuspected role for genomic RNA in regulating formation of viral capsids, revealing multiple, dispersed RNA sequence/structure motifs [packaging signals (PSs)] that bind cognate coat proteins cooperatively. The PS ensemble controls assembly efficiency and accounts for the packaging specificity seen in vivo. The precise modes of action of the PSs vary between viral families, but this common principle applies across many viral families, including major human pathogens. These insights open up the opportunity to block or repurpose PS function in assembly for both novel antiviral therapy and gene/drug/vaccine applications.
Collapse
Affiliation(s)
- Reidun Twarock
- Departments of Mathematics and Biology, and York Cross-disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, United Kingdom;
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom;
| |
Collapse
|
5
|
Chen J, Lansac Y, Tresset G. Interactions between the Molecular Components of the Cowpea Chlorotic Mottle Virus Investigated by Molecular Dynamics Simulations. J Phys Chem B 2018; 122:9490-9498. [DOI: 10.1021/acs.jpcb.8b08026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingzhi Chen
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Yves Lansac
- GREMAN, UMR 7347, CNRS, Université de Tours, 37200 Tours, France
| | - Guillaume Tresset
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| |
Collapse
|
6
|
Zeng C, Rodriguez Lázaro G, Tsvetkova IB, Hagan MF, Dragnea B. Defects and Chirality in the Nanoparticle-Directed Assembly of Spherocylindrical Shells of Virus Coat Proteins. ACS NANO 2018; 12:5323-5332. [PMID: 29694012 PMCID: PMC6202266 DOI: 10.1021/acsnano.8b00069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Virus coat proteins of small isometric plant viruses readily assemble into symmetric, icosahedral cages encapsulating noncognate cargo, provided the cargo meets a minimal set of chemical and physical requirements. While this capability has been intensely explored for certain virus-enabled nanotechnologies, additional applications require lower symmetry than that of an icosahedron. Here, we show that the coat proteins of an icosahedral virus can efficiently assemble around metal nanorods into spherocylindrical closed shells with hexagonally close-packed bodies and icosahedral caps. Comparison of chiral angles and packing defects observed by in situ atomic force microscopy with those obtained from molecular dynamics models offers insight into the mechanism of growth, and the influence of stresses associated with intrinsic curvature and assembly pathways.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | | | - Irina B Tsvetkova
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Michael F Hagan
- Department of Physics , Brandeis University , Waltham , Massachusetts 02453 , United States
| | - Bogdan Dragnea
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
7
|
Maassen SJ, de Ruiter MV, Lindhoud S, Cornelissen JJLM. Oligonucleotide Length-Dependent Formation of Virus-Like Particles. Chemistry 2018. [PMID: 29518273 DOI: 10.1002/chem.201800285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Understanding the assembly pathway of viruses can contribute to creating monodisperse virus-based materials. In this study, the cowpea chlorotic mottle virus (CCMV) is used to determine the interactions between the capsid proteins of viruses and their cargo. The assembly of the capsid proteins in the presence of different lengths of short, single-stranded (ss) DNA is studied at neutral pH, at which the protein-protein interactions are weak. Chromatography, electrophoresis, microscopy, and light scattering data show that the assembly efficiency and speed of the particles increase with increasing length of oligonucleotides. The minimal length required for assembly under the conditions used herein is 14 nucleotides. Assembly of particles containing such short strands of ssDNA can take almost a month. This slow assembly process enabled the study of intermediate states, which confirmed a low cooperative assembly for CCMV and allowed for further expansion of current assembly theories.
Collapse
Affiliation(s)
- Stan J Maassen
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Mark V de Ruiter
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Saskia Lindhoud
- Department of Nanobiophysics, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Jeroen J L M Cornelissen
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
8
|
Hernandez-Garcia A, Cohen Stuart MA, de Vries R. Templated co-assembly into nanorods of polyanions and artificial virus capsid proteins. SOFT MATTER 2017; 14:132-139. [PMID: 29218341 DOI: 10.1039/c7sm02012k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recombinant triblock polypeptides C-Sn-B, where C is a 400 amino acid long hydrophilic random coil block, Sn is a multimer of the silk-like octapeptide S = (GAGAGAGQ), and B = K12 is an oligolysine, have previously been shown to encapsulate double stranded DNA into rod-shaped, virus-like particles. In order to gain insight of the co-assembly process, and in order to be able to use these proteins for templating other types of nanorods, we here explore their co-assembly with a range of polyanionic templates: poly(acrylic acids) (PAA) of a wide range of lengths, poly(styrene sulphonate) (PSS) and the stiff anionic polysaccharide xanthan. The formation of the complexes was characterized using Dynamic Light Scattering (DLS), cryogenic Transmission Electronic Microscopy (Cryo-TEM) and Atomic Force Microscopy (AFM). Except at very high molar masses, we find that flexible anionic PAA and PSS lead to co-assembly of proteins with single polyanion chains into nanorods, with a packing factor as expected on the basis of charge stochiometry. Only for very long PAA templates (8 × 105 Da) we find evidence for heterogeneous complexes with thin and thick sections. For the very stiff xanthan chains, we find that its stiffness precludes co-assembly with the artificial viral capsid proteins into condensed and regular nanorods. Given the simple and robust formation of rod-like structures with a range of polyanionic templates, we anticipate that the artificial virus proteins will be useful for preparing high-aspect ratio nanoparticles and scaffolds of precise size and find applications in nanotechnology and materials science for which currently natural rod-like viruses are being explored.
Collapse
Affiliation(s)
- A Hernandez-Garcia
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | | | |
Collapse
|
9
|
Angelescu DG. Role of polyion length in the co-assembly of stoichiometric viral-like nanoparticles. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Tuttolomondo M, Casella C, Hansen PL, Polo E, Herda LM, Dawson KA, Ditzel HJ, Mollenhauer J. Human DMBT1-Derived Cell-Penetrating Peptides for Intracellular siRNA Delivery. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:264-276. [PMID: 28918028 PMCID: PMC5514624 DOI: 10.1016/j.omtn.2017.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 12/18/2022]
Abstract
Small interfering RNA (siRNA) is a promising molecule for gene therapy, but its therapeutic administration remains problematic. Among the recently proposed vectors, cell-penetrating peptides show great promise in in vivo trials for siRNA delivery. Human protein DMBT1 (deleted in malignant brain tumor 1) is a pattern recognition molecule that interacts with polyanions and recognizes and aggregates bacteria. Taking advantage of these properties, we investigated whether specific synthetic DMBT1-derived peptides could be used to formulate nanoparticles for siRNA administration. Using an electrophoretic mobility shift assay and UV spectra, we identified two DMBT1 peptides that could encapsulate the siRNA with a self- and co-assembly mechanism. The complexes were stable for at least 2 hr in the presence of either fetal bovine serum (FBS) or RNase A, with peptide-dependent time span protection. ζ-potential, circular dichroism, dynamic light scattering, and transmission electron microscopy revealed negatively charged nanoparticles with an average diameter of 10–800 nm, depending on the reaction conditions, and a spherical or rice-shaped morphology, depending on the peptide and β-helix conformation. We successfully transfected human MCF7 cells with fluorescein isothiocyanate (FITC)-DMBT1-peptide-Cy3-siRNA complexes. Finally, DMBT1 peptides encapsulating an siRNA targeting a fluorescent reporter gene showed efficient gene silencing in MCF7-recombinant cells. These results lay the foundation for a new research line to exploit DMBT1-peptide nanocomplexes for therapeutic siRNA delivery.
Collapse
Affiliation(s)
- Martina Tuttolomondo
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, 5000 Odense C, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark.
| | - Cinzia Casella
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, 5000 Odense C, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Pernille Lund Hansen
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, 5000 Odense C, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Ester Polo
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Luciana M Herda
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Henrik J Ditzel
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, 5000 Odense C, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark; Department of Oncology, Odense University Hospital, 5000 Odense C, Denmark.
| | - Jan Mollenhauer
- Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, 5000 Odense C, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
11
|
Li C, Kneller AR, Jacobson SC, Zlotnick A. Single Particle Observation of SV40 VP1 Polyanion-Induced Assembly Shows That Substrate Size and Structure Modulate Capsid Geometry. ACS Chem Biol 2017; 12:1327-1334. [PMID: 28323402 DOI: 10.1021/acschembio.6b01066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Simian virus 40 capsid protein (VP1) is a unique system for studying substrate-dependent assembly of a nanoparticle. Here, we investigate a simplest case of this system where 12 VP1 pentamers and a single polyanion, e.g., RNA, form a T = 1 particle. To test the roles of polyanion substrate length and structure during assembly, we characterized the assembly products with size exclusion chromatography, transmission electron microscopy, and single-particle resistive-pulse sensing. We found that 500 and 600 nt RNAs had the optimal length and structure for assembly of uniform T = 1 particles. Longer 800 nt RNA, shorter 300 nt RNA, and a linear 600 unit poly(styrene sulfonate) (PSS) polyelectrolyte produced heterogeneous populations of products. This result was surprising as the 600mer PSS and 500-600 nt RNA have similar mass and charge. Like ssRNA, PSS also has a short 4 nm persistence length, but unlike RNA, PSS lacks a compact tertiary structure. These data indicate that even for flexible substrates, shape as well as size affect assembly and are consistent with the hypothesis that work, derived from protein-protein and protein-substrate interactions, is used to compact the substrate.
Collapse
Affiliation(s)
- Chenglei Li
- Department
of Molecular and Cellular Biochemistry and ‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Andrew R. Kneller
- Department
of Molecular and Cellular Biochemistry and ‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Stephen C. Jacobson
- Department
of Molecular and Cellular Biochemistry and ‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Adam Zlotnick
- Department
of Molecular and Cellular Biochemistry and ‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
12
|
Angelescu DG. Assembled viral-like nanoparticles from elastic capsomers and polyion. J Chem Phys 2017; 146:134902. [DOI: 10.1063/1.4979496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
13
|
Mariani G, Schweins R, Gröhn F. Electrostatic Self-Assembly of Dendrimer Macroions and Multivalent Dye Counterions: The Role of Solution Ionic Strength. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Giacomo Mariani
- Department
of Chemistry and Pharmacy and Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
- Institut Laue-Langevin
DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Ralf Schweins
- Institut Laue-Langevin
DS/LSS, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Franziska Gröhn
- Department
of Chemistry and Pharmacy and Interdisciplinary Center for Molecular
Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| |
Collapse
|
14
|
Maassen SJ, van der Ham AM, Cornelissen JJLM. Combining Protein Cages and Polymers: from Understanding Self-Assembly to Functional Materials. ACS Macro Lett 2016; 5:987-994. [PMID: 35607217 DOI: 10.1021/acsmacrolett.6b00509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein cages, such as viruses, are well-defined biological nanostructures which are highly symmetrical and monodisperse. They are found in various shapes and sizes and can encapsulate or template non-native materials. Furthermore, the proteins can be chemically or genetically modified giving them new properties. For these reasons, these protein structures have received increasing attention in the field of polymer-protein hybrid materials over the past years, however, advances are still to be made. This Viewpoint highlights the different ways polymers and protein cages or their subunits have been combined to understand self-assembly and create functional materials.
Collapse
Affiliation(s)
- Stan J. Maassen
- Laboratory for Biomolecular
Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 207, 7500 AE Enschede, The Netherlands
| | - Anne M. van der Ham
- Laboratory for Biomolecular
Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 207, 7500 AE Enschede, The Netherlands
| | - Jeroen J. L. M. Cornelissen
- Laboratory for Biomolecular
Nanotechnology, MESA+ Institute, University of Twente, P.O. Box 207, 7500 AE Enschede, The Netherlands
| |
Collapse
|
15
|
Reddy T, Sansom MSP. Computational virology: From the inside out. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1610-8. [PMID: 26874202 PMCID: PMC4884666 DOI: 10.1016/j.bbamem.2016.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/23/2022]
Abstract
Viruses typically pack their genetic material within a protein capsid. Enveloped viruses also have an outer membrane made up of a lipid bilayer and membrane-spanning glycoproteins. X-ray diffraction and cryoelectron microscopy provide high resolution static views of viral structure. Molecular dynamics (MD) simulations may be used to provide dynamic insights into the structures of viruses and their components. There have been a number of simulations of viral capsids and (in some cases) of the inner core of RNA or DNA packaged within them. These simulations have generally focussed on the structural integrity and stability of the capsid and/or on the influence of the nucleic acid core on capsid stability. More recently there have been a number of simulation studies of enveloped viruses, including HIV-1, influenza A, and dengue virus. These have addressed the dynamic behaviour of the capsid, the matrix, and/or of the outer envelope. Analysis of the dynamics of the lipid bilayer components of the envelopes of influenza A and of dengue virus reveals a degree of biophysical robustness, which may contribute to the stability of virus particles in different environments. Significant computational challenges need to be addressed to aid simulation of complex viruses and their membranes, including the need to integrate structural data from a range of sources to enable us to move towards simulations of intact virions. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Tyler Reddy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
16
|
Perlmutter JD, Mohajerani F, Hagan MF. Many-molecule encapsulation by an icosahedral shell. eLife 2016; 5. [PMID: 27166515 PMCID: PMC4947392 DOI: 10.7554/elife.14078] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/10/2016] [Indexed: 12/31/2022] Open
Abstract
We computationally study how an icosahedral shell assembles around hundreds of molecules. Such a process occurs during the formation of the carboxysome, a bacterial microcompartment that assembles around many copies of the enzymes ribulose 1,5-bisphosphate carboxylase/ oxygenase and carbonic anhydrase to facilitate carbon fixation in cyanobacteria. Our simulations identify two classes of assembly pathways leading to encapsulation of many-molecule cargoes. In one, shell assembly proceeds concomitantly with cargo condensation. In the other, the cargo first forms a dense globule; then, shell proteins assemble around and bud from the condensed cargo complex. Although the model is simplified, the simulations predict intermediates and closure mechanisms not accessible in experiments, and show how assembly can be tuned between these two pathways by modulating protein interactions. In addition to elucidating assembly pathways and critical control parameters for microcompartment assembly, our results may guide the reengineering of viruses as nanoreactors that self-assemble around their reactants. DOI:http://dx.doi.org/10.7554/eLife.14078.001 Bacterial microcompartments are protein shells that are found inside bacteria and enclose enzymes and other chemicals required for certain biological reactions. For example, the carboxysome is a type of microcompartment that enables the bacteria to convert the products of photosynthesis into sugars. During the formation of a microcompartment, the outer protein shell assembles around hundreds of enzymes and chemicals. This formation process is tightly controlled and involves multiple interactions between the shell proteins and the cargo – the enzymes and other reaction ingredients – they will enclose. Understanding how to control which enzymes are encapsulated within microcompartments could help researchers to re-engineer the microcompartments so that they contain drugs or other useful products. Recent studies have used microscopy to visualize how microcompartments are assembled. However, most of the intermediate structures that form during assembly are too small and short-lived to be seen. It has therefore not been possible to explore in detail how shell proteins collect the necessary cargo and then assemble into an ordered shell with the cargo on the inside. Experiments alone are probably not enough to understand the process, especially since microcompartment assembly can currently only be studied within live cells or cellular extract. Within these complex environments it is difficult to determine the effect of any individual factor on the overall assembly process. Perlmutter, Mohajerani and Hagan have now taken a different approach by developing computational and theoretical models to explore how microcompartments assemble. Computer simulations showed that microcompartments could assemble by two pathways. In one pathway, the protein shell and cargo coalesce at the same time. In the other pathway, the cargo molecules first assemble into a large disordered complex, with the shell proteins attached on the outside. The shell proteins then assemble, carving out a piece of the cargo complex. The simulations showed that many factors affect how the shell assembles, such as the strengths of the interactions between the shell proteins and the cargo. They also identified a factor that controls how much cargo ends up inside the assembled shell. Perlmutter, Mohajerani and Hagan found that, in addition to revealing how microcompartments may assemble within their natural setting, the simulations provided guidance on how to re-engineer microcompartments to assemble around other components. This would enable researchers to create customizable compartments that self-assemble within bacteria or other host organisms, for example to carry out carbon fixation or make biofuels. A future challenge will be to investigate other aspects of microcompartment assembly, such as the factors that control the size of these compartments. DOI:http://dx.doi.org/10.7554/eLife.14078.002
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin Fisher School of Physics, Brandeis University, Waltham, United States
| | - Farzaneh Mohajerani
- Martin Fisher School of Physics, Brandeis University, Waltham, United States
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, United States
| |
Collapse
|
17
|
Rolfsson Ó, Middleton S, Manfield IW, White SJ, Fan B, Vaughan R, Ranson NA, Dykeman E, Twarock R, Ford J, Kao CC, Stockley PG. Direct Evidence for Packaging Signal-Mediated Assembly of Bacteriophage MS2. J Mol Biol 2016; 428:431-48. [PMID: 26608810 PMCID: PMC4751978 DOI: 10.1016/j.jmb.2015.11.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 01/20/2023]
Abstract
Using cross-linking coupled to matrix-assisted laser desorption/ionization mass spectrometry and CLIP-Seq sequencing, we determined the peptide and oligonucleotide sequences at the interfaces between the capsid proteins and the genomic RNA of bacteriophage MS2. The results suggest that the same coat protein (CP)-RNA and maturation protein (MP)-RNA interfaces are used in every viral particle. The portions of the viral RNA in contact with CP subunits span the genome, consistent with a large number of discrete and similar contacts within each particle. Many of these sites match previous predictions of the locations of multiple, dispersed and degenerate RNA sites with cognate CP affinity termed packaging signals (PSs). Chemical RNA footprinting was used to compare the secondary structures of protein-free genomic fragments and the RNA in the virion. Some PSs are partially present in protein-free RNA but others would need to refold from their dominant solution conformations to form the contacts identified in the virion. The RNA-binding peptides within the MP map to two sections of the N-terminal half of the protein. Comparison of MP sequences from related phages suggests a similar arrangement of RNA-binding sites, although these N-terminal regions have only limited sequence conservation. In contrast, the sequences of the C-termini are highly conserved, consistent with them encompassing pilin-binding domains required for initial contact with host cells. These results provide independent and unambiguous support for the assembly of MS2 virions via a PS-mediated mechanism involving a series of induced-fit viral protein interactions with RNA.
Collapse
Affiliation(s)
- Óttar Rolfsson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefani Middleton
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA; The Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Iain W Manfield
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Simon J White
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Baochang Fan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Robert Vaughan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Eric Dykeman
- Department of Biology and Mathematics and York Centre for Complex Systems Analysis, University of York, York YO10 5DD, United Kingdom
| | - Reidun Twarock
- Department of Biology and Mathematics and York Centre for Complex Systems Analysis, University of York, York YO10 5DD, United Kingdom
| | - James Ford
- The Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - C Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
18
|
The Role of Packaging Sites in Efficient and Specific Virus Assembly. J Mol Biol 2015; 427:2451-2467. [PMID: 25986309 DOI: 10.1016/j.jmb.2015.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/21/2015] [Accepted: 05/10/2015] [Indexed: 12/25/2022]
Abstract
During the life cycle of many single-stranded RNA viruses, including many human pathogens, a protein shell called the capsid spontaneously assembles around the viral genome. Understanding the mechanisms by which capsid proteins selectively assemble around the viral RNA amidst diverse host RNAs is a key question in virology. In one proposed mechanism, short sequences (packaging sites) within the genomic RNA promote rapid and efficient assembly through specific interactions with the capsid proteins. In this work, we develop a coarse-grained particle-based computational model for capsid proteins and RNA that represents protein-RNA interactions arising both from nonspecific electrostatics and from specific packaging site interactions. Using Brownian dynamics simulations, we explore how the efficiency and specificity of assembly depend on solution conditions (which control protein-protein and nonspecific protein-RNA interactions) and the strength and number of packaging sites. We identify distinct regions in parameter space in which packaging sites lead to highly specific assembly via different mechanisms and others in which packaging sites lead to kinetic traps. We relate these computational predictions to in vitro assays for specificity in which cognate viral RNAs compete against non-cognate RNAs for assembly by capsid proteins.
Collapse
|
19
|
Abstract
Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid and in some cases are surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assemble within their host cells and in vitro. We describe the thermodynamics and kinetics for the assembly of protein subunits into icosahedral capsid shells and how these are modified in cases in which the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques used to characterize capsid assembly, and we highlight aspects of virus assembly that are likely to receive significant attention in the near future.
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454;
| | | |
Collapse
|
20
|
Abstract
I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened.
Collapse
|
21
|
Ruiz-Herrero T, Hagan MF. Simulations show that virus assembly and budding are facilitated by membrane microdomains. Biophys J 2015; 108:585-95. [PMID: 25650926 PMCID: PMC4317536 DOI: 10.1016/j.bpj.2014.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 11/25/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023] Open
Abstract
For many viruses, assembly and budding occur simultaneously during virion formation. Understanding the mechanisms underlying this process could promote biomedical efforts to block viral propagation and enable use of capsids in nanomaterials applications. To this end, we have performed molecular dynamics simulations on a coarse-grained model that describes virus assembly on a fluctuating lipid membrane. Our simulations show that the membrane can promote association of adsorbed subunits through dimensional reduction, but it also introduces thermodynamic and kinetic effects that can inhibit complete assembly. We find several mechanisms by which membrane microdomains, such as lipid rafts, reduce these effects, and thus, enhance assembly. We show how these predicted mechanisms can be experimentally tested. Furthermore, the simulations demonstrate that assembly and budding depend crucially on the system dynamics via multiple timescales related to membrane deformation, protein diffusion, association, and adsorption onto the membrane.
Collapse
Affiliation(s)
- Teresa Ruiz-Herrero
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, España
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts.
| |
Collapse
|
22
|
Zhang L, Lua LHL, Middelberg APJ, Sun Y, Connors NK. Biomolecular engineering of virus-like particles aided by computational chemistry methods. Chem Soc Rev 2015; 44:8608-18. [DOI: 10.1039/c5cs00526d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multi-scale investigation of VLP self-assembly aided by computational methods is facilitating the design, redesign, and modification of functionalized VLPs.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, People's Republic of China
| | - Linda H. L. Lua
- Protein Expression Facility
- The University of Queensland
- Brisbane, Australia
| | - Anton P. J. Middelberg
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane, Australia
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, People's Republic of China
| | - Natalie K. Connors
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane, Australia
| |
Collapse
|
23
|
Perlmutter JD, Perkett MR, Hagan MF. Pathways for virus assembly around nucleic acids. J Mol Biol 2014; 426:3148-3165. [PMID: 25036288 DOI: 10.1016/j.jmb.2014.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/17/2014] [Accepted: 07/07/2014] [Indexed: 12/25/2022]
Abstract
Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work, we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single-molecule fluorescence correlation spectroscopy or bulk time-resolved small-angle X-ray scattering experiments.
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Matthew R Perkett
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
24
|
Solving a Levinthal's paradox for virus assembly identifies a unique antiviral strategy. Proc Natl Acad Sci U S A 2014; 111:5361-6. [PMID: 24706827 DOI: 10.1073/pnas.1319479111] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
One of the important puzzles in virology is how viruses assemble the protein containers that package their genomes rapidly and efficiently in vivo while avoiding triggering their hosts' antiviral defenses. Viral assembly appears directed toward a relatively small subset of the vast number of all possible assembly intermediates and pathways, akin to Levinthal's paradox for the folding of polypeptide chains. Using an in silico assembly model, we demonstrate that this reduction in complexity can be understood if aspects of in vivo assembly, which have mostly been neglected in in vitro experimental and theoretical modeling assembly studies, are included in the analysis. In particular, we show that the increasing viral coat protein concentration that occurs in infected cells plays unexpected and vital roles in avoiding potential kinetic assembly traps, significantly reducing the number of assembly pathways and assembly initiation sites, and resulting in enhanced assembly efficiency and genome packaging specificity. Because capsid assembly is a vital determinant of the overall fitness of a virus in the infection process, these insights have important consequences for our understanding of how selection impacts on the evolution of viral quasispecies. These results moreover suggest strategies for optimizing the production of protein nanocontainers for drug delivery and of virus-like particles for vaccination. We demonstrate here in silico that drugs targeting the specific RNA-capsid protein contacts can delay assembly, reduce viral load, and lead to an increase of misencapsidation of cellular RNAs, hence opening up unique avenues for antiviral therapy.
Collapse
|
25
|
Kler S, Wang JCY, Dhason M, Oppenheim A, Zlotnick A. Scaffold properties are a key determinant of the size and shape of self-assembled virus-derived particles. ACS Chem Biol 2013; 8:2753-61. [PMID: 24093474 DOI: 10.1021/cb4005518] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Controlling the geometry of self-assembly will enable a greater diversity of nanoparticles than now available. Viral capsid proteins, one starting point for investigating self-assembly, have evolved to form regular particles. The polyomavirus SV40 assembles from pentameric subunits and can encapsidate anionic cargos. On short ssRNA (≤814 nt), SV40 pentamers form 22 nm diameter capsids. On RNA too long to fit a T = 1 particle, pentamers forms strings of 22 nm particles and heterogeneous particles of 29-40 nm diameter. However, on dsDNA SV40 forms 50 nm particles composed of 72 pentamers. A 7.2-Å resolution cryo-EM image reconstruction of 22 nm particles shows that they are built of 12 pentamers arranged with T = 1 icosahedral symmetry. At 3-fold vertices, pentamers each contribute to a three-helix triangle. This geometry of interaction is not seen in crystal structures of T = 7 viruses and provides a structural basis for the smaller capsids. We propose that the heterogeneous particles are actually mosaics formed by combining different geometries of interaction from T = 1 capsids and virions. Assembly can be trapped in novel conformations because SV40 interpentamer contacts are relatively strong. The implication is that by virtue of their large catalog of interactions, SV40 pentamers have the ability to self-assemble on and conform to a broad range of shapes.
Collapse
Affiliation(s)
- Stanislav Kler
- Department
of Hematology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Joseph Che-Yen Wang
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Mary Dhason
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Ariella Oppenheim
- Department
of Hematology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Adam Zlotnick
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
26
|
Polles G, Indelicato G, Potestio R, Cermelli P, Twarock R, Micheletti C. Mechanical and assembly units of viral capsids identified via quasi-rigid domain decomposition. PLoS Comput Biol 2013; 9:e1003331. [PMID: 24244139 PMCID: PMC3828136 DOI: 10.1371/journal.pcbi.1003331] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/13/2013] [Indexed: 02/05/2023] Open
Abstract
Key steps in a viral life-cycle, such as self-assembly of a protective protein container or in some cases also subsequent maturation events, are governed by the interplay of physico-chemical mechanisms involving various spatial and temporal scales. These salient aspects of a viral life cycle are hence well described and rationalised from a mesoscopic perspective. Accordingly, various experimental and computational efforts have been directed towards identifying the fundamental building blocks that are instrumental for the mechanical response, or constitute the assembly units, of a few specific viral shells. Motivated by these earlier studies we introduce and apply a general and efficient computational scheme for identifying the stable domains of a given viral capsid. The method is based on elastic network models and quasi-rigid domain decomposition. It is first applied to a heterogeneous set of well-characterized viruses (CCMV, MS2, STNV, STMV) for which the known mechanical or assembly domains are correctly identified. The validated method is next applied to other viral particles such as L-A, Pariacoto and polyoma viruses, whose fundamental functional domains are still unknown or debated and for which we formulate verifiable predictions. The numerical code implementing the domain decomposition strategy is made freely available. The genetic material of viruses is packaged inside capsids constituted from a few tens to thousands of proteins. The latter can organize in multimers that serve as fundamental blocks for the viral shell assembly or that control the capsid conformational transitions and response to mechanical stress. In this work, we introduce and apply a computational scheme that identifies the fundamental protein blocks from the structural fluctuations of the capsids in thermal equilibrium. These can be derived from phenomenological elastic network models with minimal computational expenditure. Accordingly, the basic functional protein units of a capsid can be obtained from the sole input of the capsid crystal structure. The method is applied to a heterogeneous set of viruses of various size and geometries. These include well-characterised instances for validation purposes, as well as debated ones for which predictions are formulated.
Collapse
Affiliation(s)
- Guido Polles
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Giuliana Indelicato
- York Centre for Complex Systems Analysis, Department of Mathematics, University of York, York, United Kingdom
| | | | - Paolo Cermelli
- Dipartimento di Matematica, Università di Torino, Torino, Italy
| | - Reidun Twarock
- York Centre for Complex Systems Analysis, Department of Mathematics, University of York, York, United Kingdom
| | | |
Collapse
|
27
|
Zhang R, Linse P. Icosahedral capsid formation by capsomers and short polyions. J Chem Phys 2013; 138:154901. [PMID: 23614442 DOI: 10.1063/1.4799243] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Kinetical and structural aspects of the capsomer-polyion co-assembly into icosahedral viruses have been simulated by molecular dynamics using a coarse-grained model comprising cationic capsomers and short anionic polyions. Conditions were found at which the presence of polyions of a minimum length was necessary for capsomer formation. The largest yield of correctly formed capsids was obtained at which the driving force for capsid formation was relatively weak. Relatively stronger driving forces, i.e., stronger capsomer-capsomer short-range attraction and∕or stronger electrostatic interaction, lead to larger fraction of kinetically trapped structures and aberrant capsids. The intermediate formation was investigated and different evolving scenarios were found by just varying the polyion length.
Collapse
Affiliation(s)
- Ran Zhang
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | | |
Collapse
|
28
|
To build a virus on a nucleic acid substrate. Biophys J 2013; 104:1595-604. [PMID: 23561536 DOI: 10.1016/j.bpj.2013.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/10/2013] [Accepted: 02/08/2013] [Indexed: 11/21/2022] Open
Abstract
Many viruses package their genomes concomitant with assembly. Here, we show that this reaction can be described by three coefficients: association of capsid protein (CP) to nucleic acid (NA), KNA; CP-CP interaction, ω; and α, proportional to the work required to package NA. The value of α can vary as NA is packaged. A phase diagram of average lnα versus lnω identifies conditions where assembly is likely to fail or succeed. NA morphology can favor (lnα > 0) or impede (lnα < 0) assembly. As lnω becomes larger, capsids become more stable and assembly becomes more cooperative. Where (lnα + lnω) < 0, the CP is unable to contain the NA, so that assembly results in aberrant particles. This phase diagram is consistent with quantitative studies of cowpea chlorotic mottle virus, hepatitis B virus, and simian virus 40 assembling on ssRNA and dsDNA substrates. Thus, the formalism we develop is suitable for describing and predicting behavior of experimental studies of CP assembly on NA.
Collapse
|
29
|
Perlmutter JD, Qiao C, Hagan MF. Viral genome structures are optimal for capsid assembly. eLife 2013; 2:e00632. [PMID: 23795290 PMCID: PMC3683802 DOI: 10.7554/elife.00632] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022] Open
Abstract
Understanding how virus capsids assemble around their nucleic acid (NA) genomes could promote efforts to block viral propagation or to reengineer capsids for gene therapy applications. We develop a coarse-grained model of capsid proteins and NAs with which we investigate assembly dynamics and thermodynamics. In contrast to recent theoretical models, we find that capsids spontaneously ‘overcharge’; that is, the negative charge of the NA exceeds the positive charge on capsid. When applied to specific viruses, the optimal NA lengths closely correspond to the natural genome lengths. Calculations based on linear polyelectrolytes rather than base-paired NAs underpredict the optimal length, demonstrating the importance of NA structure to capsid assembly. These results suggest that electrostatics, excluded volume, and NA tertiary structure are sufficient to predict assembly thermodynamics and that the ability of viruses to selectively encapsidate their genomic NAs can be explained, at least in part, on a thermodynamic basis. DOI:http://dx.doi.org/10.7554/eLife.00632.001 Viruses are infectious agents made up of proteins and a genome made of DNA or RNA. Upon infecting a host cell, viruses hijack the cell’s gene expression machinery and force it to produce copies of the viral genome and proteins, which then assemble into new viruses that can eventually infect other host cells. Because assembly is an essential step in the viral life cycle, understanding how this process occurs could significantly advance the fight against viral diseases. In many viral families, a protein shell called a capsid forms around the viral genome during the assembly process. However, capsids can also assemble around nucleic acids in solution, indicating that a host cell is not required for their formation. Since capsid proteins are positively charged, and nucleic acids are negatively charged, electrostatic interactions between the two are thought to have an important role in capsid assembly. However, it is unclear how structural features of the viral genome affect assembly, and why the negative charge on viral genomes is actually far greater than the positive charge on capsids. These questions are difficult to address experimentally because most of the intermediates that form during virus assembly are too short-lived to be imaged. Here, Perlmutter et al. have used state of the art computational methods and advances in graphical processing units (GPUs) to produce the most realistic model of capsid assembly to date. They showed that the stability of the complex formed between the nucleic acid and the capsid depends on the length of the viral genome. Yield was highest for genomes within a certain range of lengths, and capsids that assembled around longer or shorter genomes tended to be malformed. Perlmutter et al. also explored how structural features of the virus—including base-pairing between viral nucleic acids, and the size and charge of the capsid—determine the optimal length of the viral genome. When they included structural data from real viruses in their simulations and predicted the optimal lengths for the viral genome, the results were very similar to those seen in existing viruses. This indicates that the structure of the viral genome has been optimized to promote packaging into capsids. Understanding this relationship between structure and packaging will make it easier to develop antiviral agents that thwart or misdirect virus assembly, and could aid the redesign of viruses for use in gene therapy and drug delivery. DOI:http://dx.doi.org/10.7554/eLife.00632.002
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin A Fisher School of Physics , Brandeis University , Waltham , United States
| | | | | |
Collapse
|
30
|
Dykeman EC, Stockley PG, Twarock R. Packaging signals in two single-stranded RNA viruses imply a conserved assembly mechanism and geometry of the packaged genome. J Mol Biol 2013; 425:3235-49. [PMID: 23763992 DOI: 10.1016/j.jmb.2013.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/22/2013] [Accepted: 06/03/2013] [Indexed: 11/29/2022]
Abstract
The current paradigm for assembly of single-stranded RNA viruses is based on a mechanism involving non-sequence-specific packaging of genomic RNA driven by electrostatic interactions. Recent experiments, however, provide compelling evidence for sequence specificity in this process both in vitro and in vivo. The existence of multiple RNA packaging signals (PSs) within viral genomes has been proposed, which facilitates assembly by binding coat proteins in such a way that they promote the protein-protein contacts needed to build the capsid. The binding energy from these interactions enables the confinement or compaction of the genomic RNAs. Identifying the nature of such PSs is crucial for a full understanding of assembly, which is an as yet untapped potential drug target for this important class of pathogens. Here, for two related bacterial viruses, we determine the sequences and locations of their PSs using Hamiltonian paths, a concept from graph theory, in combination with bioinformatics and structural studies. Their PSs have a common secondary structure motif but distinct consensus sequences and positions within the respective genomes. Despite these differences, the distributions of PSs in both viruses imply defined conformations for the packaged RNA genomes in contact with the protein shell in the capsid, consistent with a recent asymmetric structure determination of the MS2 virion. The PS distributions identified moreover imply a preferred, evolutionarily conserved assembly pathway with respect to the RNA sequence with potentially profound implications for other single-stranded RNA viruses known to have RNA PSs, including many animal and human pathogens.
Collapse
Affiliation(s)
- Eric C Dykeman
- Departments of Mathematics and Biology and York Centre for Complex Systems Analysis, University of York, York YO10 5DD, UK
| | | | | |
Collapse
|
31
|
Stockley PG, Ranson NA, Twarock R. A new paradigm for the roles of the genome in ssRNA viruses. Future Virol 2013. [DOI: 10.2217/fvl.12.84] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent work with RNA phages and an ssRNA plant satellite virus challenges the widely held view that the sequences and structures of genomic RNAs are unimportant for virion assembly. In the T=3 phages, RNA–coat protein interactions occur throughout the genome, defining the quasiconformers of their protein shells. In the plant virus, there are multiple packaging signals dispersed throughout the genome that overcome electrostatic barriers to protein self-assembly. Both viral coat proteins cause the solution structures of their cognate genomes to collapse into a form that is readily encapsidated in a two-stage assembly process. Such similar behavior in two structurally unrelated viral protein folds implies that this might be a conserved feature of many viral assembly reactions. These results suggest a highly defined structure for the RNA in the virions, consistent with recent structural studies. They also have implications both for subsequent genome release during infection and for the evolution of viral sequences.
Collapse
Affiliation(s)
- Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Reidun Twarock
- Departments of Biology & Mathematics, York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| |
Collapse
|
32
|
Dykeman EC, Stockley PG, Twarock R. Building a viral capsid in the presence of genomic RNA. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022717. [PMID: 23496558 DOI: 10.1103/physreve.87.022717] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/29/2012] [Indexed: 06/01/2023]
Abstract
Virus capsid assembly has traditionally been considered as a process that can be described primarily via self-assembly of the capsid proteins, neglecting interactions with other viral or cellular components. Our recent work on several ssRNA viruses, a major class of viral pathogens containing important human, animal, and plant viruses, has shown that this protein-centric view is too simplistic. Capsid assembly for these viruses relies strongly on a number of cooperative roles played by the genomic RNA. This realization requires a new theoretical framework for the modeling and prediction of the assembly behavior of these viruses. In a seminal paper Zlotnick [J. Mol. Biol. 241, 59 (1994)] laid the foundations for the modeling of capsid assembly as a protein-only self-assembly process, illustrating his approach using the example of a dodecahedral study system. We describe here a generalized framework for modeling assembly that incorporates the regulatory functions provided by cognate protein-nucleic-acid interactions between capsid proteins and segments of the genomic RNA, called packaging signals, into the model. Using the same dodecahedron system we demonstrate, using a Gillespie-type algorithm to deal with the enhanced complexity of the problem instead of a master equation approach, that assembly kinetics and yield strongly depend on the distribution and nature of the packaging signals, highlighting the importance of the crucial roles of the RNA in this process.
Collapse
Affiliation(s)
- Eric C Dykeman
- Department of Biology, York Centre for Complex Systems Analysis, University of York, York, YO10 5DD United Kingdom
| | | | | |
Collapse
|
33
|
Zhang R, Wernersson E, Linse P. Icosahedral capsid formation by capsomer subunits and a semiflexible polyion. RSC Adv 2013. [DOI: 10.1039/c3ra44533j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Mahalik JP, Muthukumar M. Langevin dynamics simulation of polymer-assisted virus-like assembly. J Chem Phys 2012; 136:135101. [PMID: 22482588 DOI: 10.1063/1.3698408] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Starting from a coarse grained representation of the building units of the minute virus of mice and a flexible polyelectrolyte molecule, we have explored the mechanism of assembly into icosahedral structures with the help of Langevin dynamics simulations and the parallel tempering technique. Regular icosahedra with appropriate symmetry form only in a narrow range of temperature and polymer length. Within this region of parameters where successful assembly would proceed, we have systematically investigated the growth kinetics. The assembly of icosahedra is found to follow the classical nucleation and growth mechanism in the absence of the polymer, with the three regimes of nucleation, linear growth, and slowing down in the later stage. The calculated average nucleation time obeys the laws expected from the classical nucleation theory. The linear growth rate is found to obey the laws of secondary nucleation as in the case of lamellar growth in polymer crystallization. The same mechanism is seen in the simulations of the assembly of icosahedra in the presence of the polymer as well. The polymer reduces the nucleation barrier significantly by enhancing the local concentration of subunits via adsorbing them on their backbone. The details of growth in the presence of the polymer are also found to be consistent with the classical nucleation theory, despite the smallness of the assembled structures.
Collapse
Affiliation(s)
- J P Mahalik
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
35
|
Jin Z, Wu J. Density functional theory for encapsidated polyelectrolytes: a comparison with Monte Carlo simulation. J Chem Phys 2012; 137:044905. [PMID: 22852653 DOI: 10.1063/1.4737931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Genome packaging inside viral capsids is strongly influenced by the molecular size and the backbone structure of RNA∕DNA chains and their electrostatic affinity with the capsid proteins. Coarse-grained models are able to capture the generic features of non-specific interactions and provide a useful testing ground for theoretical developments. In this work, we use the classical density functional theory (DFT) within the framework of an extended primitive model for electrolyte solutions to investigate the self-organization of flexible and semi-flexible linear polyelectrolytes in spherical capsids that are permeable to small ions but not polymer segments. We compare the DFT predictions with Monte Carlo (MC) simulation for the density distributions of polymer segments and small ions at different backbone flexibilities and several solution conditions. In general, the agreement between DFT and MC is near quantitative except when the simulation results are noticeably influenced by the boundary effects. The numerical efficiency of the DFT calculations makes it promising as a useful tool for quantification of the structural and thermodynamic properties of viral nucleocapsids in vivo and at conditions pertinent to experiments.
Collapse
Affiliation(s)
- Zhehui Jin
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
36
|
Kler S, Asor R, Li C, Ginsburg A, Harries D, Oppenheim A, Zlotnick A, Raviv U. RNA encapsidation by SV40-derived nanoparticles follows a rapid two-state mechanism. J Am Chem Soc 2012; 134:8823-30. [PMID: 22329660 PMCID: PMC3365646 DOI: 10.1021/ja2110703] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Remarkably, uniform virus-like particles self-assemble in a process that appears to follow a rapid kinetic mechanism. The mechanisms by which spherical viruses assemble from hundreds of capsid proteins around nucleic acid, however, are yet unresolved. Using time-resolved small-angle X-ray scattering (TR-SAXS), we have been able to directly visualize SV40 VP1 pentamers encapsidating short RNA molecules (500mers). This assembly process yields T = 1 icosahedral particles comprised of 12 pentamers and one RNA molecule. The reaction is nearly one-third complete within 35 ms, following a two-state kinetic process with no detectable intermediates. Theoretical analysis of kinetics, using a master equation, shows that the assembly process nucleates at the RNA and continues by a cascade of elongation reactions in which one VP1 pentamer is added at a time, with a rate of approximately 10(9) M(-1) s(-1). The reaction is highly robust and faster than the predicted diffusion limit. The emerging molecular mechanism, which appears to be general to viruses that assemble around nucleic acids, implicates long-ranged electrostatic interactions. The model proposes that the growing nucleo-protein complex acts as an electrostatic antenna that attracts other capsid subunits for the encapsidation process.
Collapse
Affiliation(s)
- Stanislav Kler
- Dept. of Hematology, Hebrew University-Hadassah Medical School, Jerusalem, Israel, 91120
| | - Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel, 91904
| | - Chenglei Li
- Dept. of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
| | - Avi Ginsburg
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel, 91904
- The School of Drug research, The Hebrew University of Jerusalem
| | - Daniel Harries
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel, 91904
- The Fritz Haber Research center, The Hebrew University of Jerusalem, Israel, 91904
| | - Ariella Oppenheim
- Dept. of Hematology, Hebrew University-Hadassah Medical School, Jerusalem, Israel, 91120
| | - Adam Zlotnick
- Dept. of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405
- Dept. of Biology, Indiana University, Bloomington, IN 47405
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel, 91904
| |
Collapse
|
37
|
Ni P, Wang Z, Ma X, Das NC, Sokol P, Chiu W, Dragnea B, Hagan M, Kao CC. An examination of the electrostatic interactions between the N-terminal tail of the Brome Mosaic Virus coat protein and encapsidated RNAs. J Mol Biol 2012; 419:284-300. [PMID: 22472420 DOI: 10.1016/j.jmb.2012.03.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 03/17/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
The coat protein of positive-stranded RNA viruses often contains a positively charged tail that extends toward the center of the capsid and interacts with the viral genome. Electrostatic interaction between the tail and the RNA has been postulated as a major force in virus assembly and stabilization. The goal of this work is to examine the correlation between electrostatic interaction and amount of RNA packaged in the tripartite Brome Mosaic Virus (BMV). Nanoindentation experiment using atomic force microscopy showed that the stiffness of BMV virions with different RNAs varied by a range that is 10-fold higher than that would be predicted by electrostatics. BMV mutants with decreased positive charges encapsidated lower amounts of RNA while mutants with increased positive charges packaged additional RNAs up to ∼900 nt. However, the extra RNAs included truncated BMV RNAs, an additional copy of RNA4, potential cellular RNAs, or a combination of the three, indicating that change in the charge of the capsid could result in several different outcomes in RNA encapsidation. In addition, mutant with specific arginines changed to lysines in the capsid also exhibited defects in the specific encapsidation of BMV RNA4. The experimental results indicate that electrostatics is a major component in RNA encapsidation but was unable to account for all of the observed effects on RNA encapsidation. Thermodynamic modeling incorporating the electrostatics was able to predict the approximate length of the RNA to be encapsidated for the majority of mutant virions, but not for a mutant with extreme clustered positive charges. Cryo-electron microscopy of virions that encapsidated an additional copy of RNA4 revealed that, despite the increase in RNA encapsidated, the capsid structure was minimally changed. These results experimentally demonstrated the impact of electrostatics and additional restraints in the encapsidation of BMV RNAs, which could be applicable to other viruses.
Collapse
Affiliation(s)
- Peng Ni
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Saunders MG, Voth GA. Coarse-graining of multiprotein assemblies. Curr Opin Struct Biol 2012; 22:144-50. [PMID: 22277168 DOI: 10.1016/j.sbi.2012.01.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 11/24/2022]
Abstract
Multiscale models are important tools to elucidate how small changes in local subunit conformations may propagate to affect the properties of macromolecular complexes. We review recent advances in coarse-graining methods for poly-protein assemblies, systems that are composed of many copies of relatively few components, with a particular focus on viral capsids and cytoskeletal filaments. These methods are grouped into two broad categories-mapping methods, which use information from one scale of representation to parameterize a lower resolution model, and bridging methods, which repeatedly connect different scales during simulation-and we provide examples of both classes at different levels of complexity. Collectively, these models illustrate the numerous approaches to information transfer between scales and demonstrate that the complexity required of the model depends in general on the nature of the information sought.
Collapse
Affiliation(s)
- Marissa G Saunders
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, and Computation Institute, University of Chicago, Chicago, IL 60637, United States
| | | |
Collapse
|
39
|
Chen B, Tycko R. Simulated self-assembly of the HIV-1 capsid: protein shape and native contacts are sufficient for two-dimensional lattice formation. Biophys J 2011; 100:3035-44. [PMID: 21689538 DOI: 10.1016/j.bpj.2011.05.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/09/2011] [Accepted: 05/12/2011] [Indexed: 11/16/2022] Open
Abstract
We report Monte Carlo simulations of the initial stages of self-assembly of the HIV-1 capsid protein (CA), using a coarse-grained representation that mimics the CA backbone structure and intermolecular contacts observed experimentally. A simple representation of N-terminal domain/N-terminal domain and N-terminal domain/C-terminal domain interactions, coupled with the correct protein shape, is sufficient to drive formation of an ordered lattice with the correct hexagonal symmetry in two dimensions. We derive an approximate concentration/temperature phase diagram for lattice formation, and we investigate the pathway by which the lattice develops from initially separated CA dimers. Within this model, lattice formation occurs in two stages: 1), condensation of CA dimers into disordered clusters; and 2), nucleation of the lattice by the appearance of one hexamer unit within a cluster. Trimers of CA dimers are important early intermediates, and pentamers are metastable within clusters. Introduction of a preformed hexamer at the beginning of a Monte Carlo run does not directly seed lattice formation, but does facilitate the formation of large clusters. We discuss possible connections between these simulations and experimental observations concerning CA assembly within HIV-1 and in vitro.
Collapse
Affiliation(s)
- Bo Chen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
40
|
On the origin of order in the genome organization of ssRNA viruses. Biophys J 2011; 101:774-80. [PMID: 21843467 DOI: 10.1016/j.bpj.2011.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 11/24/2022] Open
Abstract
Single-stranded RNA (ssRNA) viruses form a major class that includes important human, animal, and plant pathogens. While the principles underlying the structures of their protein capsids are generally well understood, much less is known about the organization of their encapsulated genomic RNAs. Cryo-electron microscopy and x-ray crystallography have revealed striking evidence of order in the packaged genomes of a number of ssRNA viruses. The physical determinants of such order, however, are largely unknown. We study here the relative effect of different energetic contributions, as well as the role of confinement, on the genome packaging of a representative ssRNA virus, the bacteriophage MS2, via a series of biomolecular simulations in which different energy terms are systematically switched off. We show that the bimodal radial density profile of the packaged genome is a consequence of RNA self-repulsion in confinement, suggesting that it should be similar for all ssRNA viruses with a comparable ratio of capsid size/genome length. In contrast, the detailed structure of the outer shell of the RNA density depends crucially on steric contributions from the capsid inner surface topography, implying that the various different polyhedral RNA cages observed in experiment are largely due to differences in the inner surface topography of the capsid.
Collapse
|
41
|
Thermodynamic basis for the genome to capsid charge relationship in viral encapsidation. Proc Natl Acad Sci U S A 2011; 108:16986-91. [PMID: 21969546 DOI: 10.1073/pnas.1109307108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We establish an appropriate thermodynamic framework for determining the optimal genome length in electrostatically driven viral encapsidation. Importantly, our analysis includes the electrostatic potential due to the Donnan equilibrium, which arises from the semipermeable nature of the viral capsid, i.e., permeable to small mobile ions but impermeable to charged macromolecules. Because most macromolecules in the cellular milieu are negatively charged, the Donnan potential provides an additional driving force for genome encapsidation. In contrast to previous theoretical studies, we find that the optimal genome length is the result of combined effects from the electrostatic interactions of all charged species, the excluded volume and, to a very significant degree, the Donnan potential. In particular, the Donnan potential is essential for obtaining negatively overcharged viruses. The prevalence of overcharged viruses in nature may suggest an evolutionary preference for viruses to increase the amount of genome packaged by utilizing the Donnan potential (through increases in the capsid radius), rather than high charges on the capsid, so that structural stability of the capsid is maintained.
Collapse
|
42
|
Uetrecht C, Heck AJR. Modern biomolecular mass spectrometry and its role in studying virus structure, dynamics, and assembly. Angew Chem Int Ed Engl 2011; 50:8248-62. [PMID: 21793131 PMCID: PMC7159578 DOI: 10.1002/anie.201008120] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Indexed: 01/04/2023]
Abstract
Over a century since its development, the analytical technique of mass spectrometry is blooming more than ever, and applied in nearly all aspects of the natural and life sciences. In the last two decades mass spectrometry has also become amenable to the analysis of proteins and even intact protein complexes, and thus begun to make a significant impact in the field of structural biology. In this Review, we describe the emerging role of mass spectrometry, with its different technical facets, in structural biology, focusing especially on structural virology. We describe how mass spectrometry has evolved into a tool that can provide unique structural and functional information about viral-protein and protein-complex structure, conformation, assembly, and topology, extending to the direct analysis of intact virus capsids of several million Dalton in mass. Mass spectrometry is now used to address important questions in virology ranging from how viruses assemble to how they interact with their host.
Collapse
Affiliation(s)
- Charlotte Uetrecht
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht (The Netherlands)
- Netherlands Proteomics Centre (The Netherlands)
- Present address: Molecular Biophysics, Uppsala University, Uppsala (Sweden)
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht (The Netherlands)
- Netherlands Proteomics Centre (The Netherlands)
| |
Collapse
|
43
|
Uetrecht C, Heck AJR. Moderne biomolekulare Massenspektrometrie und ihre Bedeutung für die Erforschung der Struktur, der Dynamik und des Aufbaus von Viren. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201008120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Bomble YJ, Beckham GT, Matthews JF, Nimlos MR, Himmel ME, Crowley MF. Modeling the self-assembly of the cellulosome enzyme complex. J Biol Chem 2011; 286:5614-23. [PMID: 21098021 PMCID: PMC3037675 DOI: 10.1074/jbc.m110.186031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/16/2010] [Indexed: 11/06/2022] Open
Abstract
Most bacteria use free enzymes to degrade plant cell walls in nature. However, some bacteria have adopted a different strategy wherein enzymes can either be free or tethered on a protein scaffold forming a complex called a cellulosome. The study of the structure and mechanism of these large macromolecular complexes is an active and ongoing research topic, with the goal of finding ways to improve biomass conversion using cellulosomes. Several mechanisms involved in cellulosome formation remain unknown, including how cellulosomal enzymes assemble on the scaffoldin and what governs the population of cellulosomes created during self-assembly. Here, we present a coarse-grained model to study the self-assembly of cellulosomes. The model captures most of the physical characteristics of three cellulosomal enzymes (Cel5B, CelS, and CbhA) and the scaffoldin (CipA) from Clostridium thermocellum. The protein structures are represented by beads connected by restraints to mimic the flexibility and shapes of these proteins. From a large simulation set, the assembly of cellulosomal enzyme complexes is shown to be dominated by their shape and modularity. The multimodular enzyme, CbhA, binds statistically more frequently to the scaffoldin than CelS or Cel5B. The enhanced binding is attributed to the flexible nature and multimodularity of this enzyme, providing a longer residence time around the scaffoldin. The characterization of the factors influencing the cellulosome assembly process may enable new strategies to create designers cellulosomes.
Collapse
Affiliation(s)
- Yannick J Bomble
- Biosciences Center, Colorado School of Mines, Golden, Colorado 80401, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Cherstvy AG. Electrostatic interactions in biological DNA-related systems. Phys Chem Chem Phys 2011; 13:9942-68. [DOI: 10.1039/c0cp02796k] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Abstract
The coat proteins of many viruses spontaneously form icosahedral capsids around nucleic acids or other polymers. Elucidating the role of the packaged polymer in capsid formation could promote biomedical efforts to block viral replication and enable use of capsids in nanomaterials applications. To this end, we perform Brownian dynamics on a coarse-grained model that describes the dynamics of icosahedral capsid assembly around a flexible polymer. We identify several mechanisms by which the polymer plays an active role in its encapsulation, including cooperative polymer-protein motions. These mechanisms are related to experimentally controllable parameters such as polymer length, protein concentration and solution conditions. Furthermore, the simulations demonstrate that assembly mechanisms are correlated with encapsulation efficiency, and we present a phase diagram that predicts assembly outcomes as a function of experimental parameters. We anticipate that our simulation results will provide a framework for designing in vitro assembly experiments on single-stranded RNA virus capsids.
Collapse
Affiliation(s)
- Oren M Elrad
- Department of Physics, Brandeis University, Waltham, MA, USA
| | | |
Collapse
|