1
|
Mierke CT. Softness or Stiffness What Contributes to Cancer and Cancer Metastasis? Cells 2025; 14:584. [PMID: 40277910 PMCID: PMC12026216 DOI: 10.3390/cells14080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Beyond the genomic and proteomic analysis of bulk and single cancer cells, a new focus of cancer research is emerging that is based on the mechanical analysis of cancer cells. Therefore, several biophysical techniques have been developed and adapted. The characterization of cancer cells, like human cancer cell lines, started with their mechanical characterization at mostly a single timepoint. A universal hypothesis has been proposed that cancer cells need to be softer to migrate and invade tissues and subsequently metastasize in targeted organs. Thus, the softness of cancer cells has been suggested to serve as a universal physical marker for the malignancy of cancer types. However, it has turned out that there exists the opposite phenomenon, namely that stiffer cancer cells are more migratory and invasive and therefore lead to more metastases. These contradictory results question the universality of the role of softness of cancer cells in the malignant progression of cancers. Another problem is that the various biophysical techniques used can affect the mechanical properties of cancer cells, making it even more difficult to compare the results of different studies. Apart from the instrumentation, the culture and measurement conditions of the cancer cells can influence the mechanical measurements. The review highlights the main advances of the mechanical characterization of cancer cells, discusses the strength and weaknesses of the approaches, and questions whether the passive mechanical characterization of cancer cells is still state-of-the art. Besides the cell models, conditions and biophysical setups, the role of the microenvironment on the mechanical characteristics of cancer cells is presented and debated. Finally, combinatorial approaches to determine the malignant potential of tumors, such as the involvement of the ECM, the cells in a homogeneous or heterogeneous association, or biological multi-omics analyses, together with the dynamic-mechanical analysis of cancer cells, are highlighted as new frontiers of research.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Hallfors N, Lamprou C, Luo S, Alkhatib SA, Sapudom J, Aubry C, Alhammadi J, Chan V, Stefanini C, Teo J, Hadjileontiadis L, Pappa AM. Data-driven analysis for the evaluation of cortical mechanics of non-adherent cells. Sci Rep 2025; 15:9700. [PMID: 40113954 PMCID: PMC11926262 DOI: 10.1038/s41598-025-94315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
Atomic Force Microscopy (AFM) analysis of single cells, especially nonadherent, is inherently slow and analysis-heavy. To address the inherent difficulty of measuring individual cells, and to scale up toward a large number of cells, we take a two-fold approach; first, we introduce an easy-to-fabricate reusable poly(dimethylsiloxane)-based array that consists of micron-sized traps for single-cell trapping, second, we apply a deep-learning method directly on the extracted curves to facilitate and automate the analysis. Our approach is validated using suspended cells, and by applying a small compression with a tipless cantilever AFM probe, we investigate the effect of various cytoskeletal drugs on their deformability. We then apply deep learning models to extract the elasticity of the cell directly from the raw data (with a Coefficient of Determination of 0.47) as well as for binary (with an Area Under the Curve score of 0.91) and multi-class classification (with accuracy scores exceeding 0.9 for each drug). Overall, the versatility to fabricate the microwells in conjunction with the automated analysis and classification streamline the analysis process and demonstrate their ability to generalize to other tasks, such as drug detection.
Collapse
Affiliation(s)
- Nicholas Hallfors
- Department of Biomedical Engineering and Biotechnology, Khalifa University, 127788, Abu Dhabi, UAE
- Healthcare Engineering Innovation Group, Khalifa University, 127788, Abu Dhabi, UAE
- Biotechnology Research Center, Technology Innovation Institute, 9639, Abu Dhabi, UAE
| | - Charalampos Lamprou
- Department of Biomedical Engineering and Biotechnology, Khalifa University, 127788, Abu Dhabi, UAE
- Healthcare Engineering Innovation Group, Khalifa University, 127788, Abu Dhabi, UAE
| | - Shaohong Luo
- Department of Biomedical Engineering and Biotechnology, Khalifa University, 127788, Abu Dhabi, UAE
| | - Sara Awni Alkhatib
- Department of Biomedical Engineering and Biotechnology, Khalifa University, 127788, Abu Dhabi, UAE
- Center for Catalysis and Separations, Khalifa University, 127788, Abu Dhabi, UAE
| | - Jiranuwat Sapudom
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Cyril Aubry
- Research Laboratories, Khalifa University, 127788, Abu Dhabi, UAE
| | - Jawaher Alhammadi
- Department of Biomedical Engineering and Biotechnology, Khalifa University, 127788, Abu Dhabi, UAE
| | - Vincent Chan
- Department of Biomedical Engineering and Biotechnology, Khalifa University, 127788, Abu Dhabi, UAE
- Healthcare Engineering Innovation Group, Khalifa University, 127788, Abu Dhabi, UAE
| | | | - Jeremy Teo
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering and Biotechnology, Khalifa University, 127788, Abu Dhabi, UAE.
- Healthcare Engineering Innovation Group, Khalifa University, 127788, Abu Dhabi, UAE.
- Department of Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Anna-Maria Pappa
- Department of Biomedical Engineering and Biotechnology, Khalifa University, 127788, Abu Dhabi, UAE.
- Healthcare Engineering Innovation Group, Khalifa University, 127788, Abu Dhabi, UAE.
- Center for Catalysis and Separations, Khalifa University, 127788, Abu Dhabi, UAE.
| |
Collapse
|
3
|
Ravichandran A, Mahajan V, van de Kemp T, Taubenberger A, Bray LJ. Phenotypic analysis of complex bioengineered 3D models. Trends Cell Biol 2025:S0962-8924(24)00257-5. [PMID: 39794253 DOI: 10.1016/j.tcb.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025]
Abstract
With advances in underlying technologies such as complex multicellular systems, synthetic materials, and bioengineering techniques, we can now generate in vitro miniaturized human tissues that recapitulate the organotypic features of normal or diseased tissues. Importantly, these 3D culture models have increasingly provided experimental access to diverse and complex tissues architectures and their morphogenic assembly in vitro. This review presents an analytical toolbox for biological researchers using 3D modeling technologies through which they can find a collation of currently available methods to phenotypically assess their 3D models in their normal state as well as their response to therapeutic or pathological agents.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Vaibhav Mahajan
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Tom van de Kemp
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Anna Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Laura J Bray
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Mechanical, Medical, and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.
| |
Collapse
|
4
|
Liu X, Li J, He Y, Wang Z. Correlation between SWE parameters and histopathological features and immunohistochemical biomarkers in invasive breast cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1941-1952. [PMID: 40195667 PMCID: PMC11975528 DOI: 10.11817/j.issn.1672-7347.2024.240398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 04/09/2025]
Abstract
OBJECTIVES Shear wave elastography (SWE) is a novel quantitative elastography technique that can assess the hardness of different tissues. This study introduces a novel shear wave parameter-frequency of mass characteristic (fmass)-and investigates its correlation, along with other shear wave parameters, with the histopathological features and immunohistochemical (IHC) biomarkers of invasive breast cancer (IBC). The study aims to explore whether SWE can provide useful information for IBC treatment and prognosis. METHODS With the pathological results as the gold standard, 258 malignant breast lesions were collected, and all patients underwent conventional ultrasound and SWE examinations. The SWE parameters [maximum elastic value (Emax), minimum elastic value (Emin), mean elastic value (Emean), standard deviation of elastic value of the whole lesion (Esd)] and fmass] in the transverse and longitudinal orthogonal sections were measured, and their correlations with the prognostic factors of IBC [including tumor diameters, axillary lymph node (ALN) metastasis, lymphatic vessel invasion (LVI), calcification, histological type, histological grade, and IHC biomarkers (ER, PR, HER-2, Ki-67), and molecular subtypes] were analyzed. The correlations between the SWE parameters of the transverse and longitudinal sections of the tumors with different prognostic factors and the above indicators were analyzed. At the same time, the receiver operating characteristic (ROC) curve was used to analyze the efficacy of fmass in predicting ER and PR expression. RESULTS Emean, Emax, Esd, and fmass were correlated with tumor diameters; Emean, Emax and Esd were correlated with histological types and histological grades. Emax and Esd were correlated with ALN metastasis, LVI and pathological types. In the IHC biomarker-labeled masses, fmass was correlated with ER and PR (both P<0.05), and Emean, Emax, and Esd were correlated with HER-2 and Ki-67 (all P<0.05). Emean, Emax, and fmass were all correlated with breast cancer subtypes (all P<0.05), and Emean and Emax were higher in Luminal B [HER-2(+)] breast cancer, while fmass was lower in HER-2(+) and triple-negative breast cancer. Among the statistically significant prognostic factors, the P values of the transverse sections of the masses were all less than or equal to those of the longitudinal sections. The AUC of fmass in the transverse sections of the masses for predicting ER and PR expression were 0.73 (95% CI 0.65 to 0.80) and 0.67 (95% CI 0.60 to 0.74), respectively, with the optimal cut-off values being 76.50 and 60.66, the sensitivities being 72.45% and 81.98%, the specificities being 66.13% and 45.35%, and the accuracies being 70.93% and 69.77%, respectively. The AUC of fmass in the longitudinal sections of the masses for predicting ER and PR expression were 0.74 (95% CI 0.67 to 0.81) and 0.65 (95% CI 0.58 to 0.72), respectively, with the optimal cut-off values being 131.8 and 137.5, the sensitivities being 69.90% and 66.28%, the specificities being 72.58% and 60.47%, and the accuracies being 70.54% and 64.34%, respectively. The fmass in the transverse sections of the masses was more statistically significant. CONCLUSIONS The poor prognosis factors of IBC are related to high Emean, Emin, Emax, Esd, and low fmass. The fmass can predict the expression of ER and PR, and the transverse cut data are more meaningful. SWE is helpful for predicting the invasiveness of IBC.
Collapse
Affiliation(s)
- Xu Liu
- Ultrasound Diagnosis Center, Hunan Cancer Hospital, Changsha 410013.
| | - Jigang Li
- Department of Clinical Pathology, Hunan Cancer Hospital, Changsha 410013
| | - Ying He
- Sencond Department of Breast Surgery, Hunan Cancer Hospital, Changsha 410013, China
| | - Zhiyuan Wang
- Ultrasound Diagnosis Center, Hunan Cancer Hospital, Changsha 410013.
| |
Collapse
|
5
|
Cai G, Rodgers NC, Liu AP. Unjamming Transition as a Paradigm for Biomechanical Control of Cancer Metastasis. Cytoskeleton (Hoboken) 2024. [PMID: 39633605 DOI: 10.1002/cm.21963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Tumor metastasis is a complex phenomenon that poses significant challenges to current cancer therapeutics. While the biochemical signaling involved in promoting motile phenotypes is well understood, the role of biomechanical interactions has recently begun to be incorporated into models of tumor cell migration. Specifically, we propose the unjamming transition, adapted from physical paradigms describing the behavior of granular materials, to better discern the transition toward an invasive phenotype. In this review, we introduce the jamming transition broadly and narrow our discussion to the different modes of 3D tumor cell migration that arise. Then we discuss the mechanical interactions between tumor cells and their neighbors, along with the interactions between tumor cells and the surrounding extracellular matrix. We center our discussion on the interactions that induce a motile state or unjamming transition in these contexts. By considering the interplay between biochemical and biomechanical signaling in tumor cell migration, we can advance our understanding of biomechanical control in cancer metastasis.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole C Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Zhang Z, Chen W, Sun M, Aalders T, Verhaegh GW, Kouwer PHJ. TempEasy 3D Hydrogel Coculture System Provides Mechanistic Insights into Prostate Cancer Bone Metastasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25773-25787. [PMID: 38739686 PMCID: PMC11129143 DOI: 10.1021/acsami.4c03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Patients diagnosed with advanced prostate cancer (PCa) often experience incurable bone metastases; however, a lack of relevant experimental models has hampered the study of disease mechanisms and the development of therapeutic strategies. In this study, we employed the recently established Temperature-based Easy-separable (TempEasy) 3D cell coculture system to investigate PCa bone metastasis. Through coculturing PCa and bone cells for 7 days, our results showed a reduction in PCa cell proliferation, an increase in neovascularization, and an enhanced metastasis potential when cocultured with bone cells. Additionally, we observed increased cell proliferation, higher stemness, and decreased bone matrix protein expression in bone cells when cocultured with PCa cells. Furthermore, we demonstrated that the stiffness of the extracellular matrix had a negligible impact on molecular responses in both primary (PCa cells) and distant malignant (bone cells) sites. The TempEasy 3D hydrogel coculture system is an easy-to-use and versatile coculture system that provides valuable insights into the mechanisms of cell-cell communication and interaction in cancer metastasis.
Collapse
Affiliation(s)
- Zhaobao Zhang
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Wen Chen
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Mingchen Sun
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Tilly Aalders
- Department
of Urology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Geert Grooteplein Zuid 28, Nijmegen 6525 GA, The Netherlands
| | - Gerald W. Verhaegh
- Department
of Urology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Geert Grooteplein Zuid 28, Nijmegen 6525 GA, The Netherlands
| | - Paul H. J. Kouwer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
7
|
Cambria E, Coughlin MF, Floryan MA, Offeddu GS, Shelton SE, Kamm RD. Linking cell mechanical memory and cancer metastasis. Nat Rev Cancer 2024; 24:216-228. [PMID: 38238471 PMCID: PMC11146605 DOI: 10.1038/s41568-023-00656-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 03/01/2024]
Abstract
Metastasis causes most cancer-related deaths; however, the efficacy of anti-metastatic drugs is limited by incomplete understanding of the biological mechanisms that drive metastasis. Focusing on the mechanics of metastasis, we propose that the ability of tumour cells to survive the metastatic process is enhanced by mechanical stresses in the primary tumour microenvironment that select for well-adapted cells. In this Perspective, we suggest that biophysical adaptations favourable for metastasis are retained via mechanical memory, such that the extent of memory is influenced by both the magnitude and duration of the mechanical stress. Among the mechanical cues present in the primary tumour microenvironment, we focus on high matrix stiffness to illustrate how it alters tumour cell proliferation, survival, secretion of molecular factors, force generation, deformability, migration and invasion. We particularly centre our discussion on potential mechanisms of mechanical memory formation and retention via mechanotransduction and persistent epigenetic changes. Indeed, we propose that the biophysical adaptations that are induced by this process are retained throughout the metastatic process to improve tumour cell extravasation, survival and colonization in the distant organ. Deciphering mechanical memory mechanisms will be key to discovering a new class of anti-metastatic drugs.
Collapse
Affiliation(s)
- Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Mark F Coughlin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni S Offeddu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
9
|
Gil‐Redondo JC, Weber A, Vivanco MDM, Toca‐Herrera JL. Measuring (biological) materials mechanics with atomic force microscopy. 5. Traction force microscopy (cell traction forces). Microsc Res Tech 2023; 86:1069-1078. [PMID: 37345422 PMCID: PMC10952526 DOI: 10.1002/jemt.24368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Cells generate traction forces to probe the mechanical properties of the surroundings and maintain a basal equilibrium state of stress. Traction forces are also implicated in cell migration, adhesion and ECM remodeling, and alteration of these forces is often observed in pathologies such as cancer. Thus, analyzing the traction forces is important for studies of cell mechanics in cancer and metastasis. In this primer, the methodology for conducting two-dimensional traction force microscopy (2D-TFM) experiments is reported. As a practical example, we analyzed the traction forces generated by three human breast cancer cell lines of different metastatic potential: MCF10-A, MCF-7 and MDA-MB-231 cells, and studied the effects of actin cytoskeleton disruption on those traction forces. Contrary to what is often reported in literature, lower traction forces were observed in cells with higher metastatic potential (MDA-MB-231). Implications of substrate stiffness and concentration of extracellular matrix proteins in such findings are discussed in the text. RESEARCH HIGHLIGHTS: Traction force microscopy (TFM) is suitable for studying and quantifying cell-substrate and cell-cell forces. TFM is suitable for investigating the relationship between chemical to mechanical signal transduction and vice versa. TFM can be combined with classical indentation studies providing a compact picture of cell mechanics. TFM still needs new physico-chemical (sample preparation) and computational approaches for more accurate data evaluation.
Collapse
Affiliation(s)
- Juan Carlos Gil‐Redondo
- Institute of Biophysics, Department of BionanosciencesUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Andreas Weber
- Institute of Biophysics, Department of BionanosciencesUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Maria dM. Vivanco
- Cancer Heterogeneity Lab, CIC BioGUNEBasque Research and Technology Alliance, BRTABizkaia Technology ParkDerioSpain
| | - José L. Toca‐Herrera
- Institute of Biophysics, Department of BionanosciencesUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| |
Collapse
|
10
|
Sievers J, Mahajan V, Welzel PB, Werner C, Taubenberger A. Precision Hydrogels for the Study of Cancer Cell Mechanobiology. Adv Healthc Mater 2023; 12:e2202514. [PMID: 36826799 PMCID: PMC11468035 DOI: 10.1002/adhm.202202514] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Indexed: 02/25/2023]
Abstract
Cancer progression is associated with extensive remodeling of the tumor microenvironment (TME), resulting in alterations of biochemical and biophysical cues that affect both cancer and stromal cells. In particular, the mechanical characteristics of the TME extracellular matrix undergo significant changes. Bioengineered polymer hydrogels can be instrumental to systematically explore how mechanically changed microenvironments impact cancer cell behavior, including proliferation, survival, drug resistance, and invasion. This article reviews studies that have explored the impact of different mechanical cues of the cells' 3D microenvironment on cancer cell behavior using hydrogel-based in vitro models. In particular, advanced engineering strategies are highlighted for tailored hydrogel matrices recapitulating the TME's micrometer- and sub-micrometer-scale architectural and mechanical features, while accounting for its intrinsically heterogenic and dynamic nature. It is anticipated that such precision hydrogel systems will further the understanding of cancer mechanobiology.
Collapse
Affiliation(s)
- Jana Sievers
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Vaibhav Mahajan
- Center for Molecular and Cellular Bioengineering (CMCB)BIOTECTU Dresden01307DresdenGermany
| | - Petra B. Welzel
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center of Regenerative Therapies Dresden and Cluster of Excellence Physics of LifeTU Dresden01062DresdenGermany
| | - Anna Taubenberger
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center for Molecular and Cellular Bioengineering (CMCB)BIOTECTU Dresden01307DresdenGermany
| |
Collapse
|
11
|
Melnik D, Cortés-Sánchez JL, Sandt V, Kahlert S, Kopp S, Grimm D, Krüger M. Dexamethasone Selectively Inhibits Detachment of Metastatic Thyroid Cancer Cells during Random Positioning. Cancers (Basel) 2023; 15:cancers15061641. [PMID: 36980530 PMCID: PMC10046141 DOI: 10.3390/cancers15061641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
We recently reported that synthetic glucocorticoid dexamethasone (DEX) is able to suppress metastasis-like spheroid formation in a culture of follicular thyroid cancer (FTC)-133 cells cultured under random positioning. We now show that this inhibition was selective for two metastatic thyroid carcinoma cells, FTC-133 and WRO, whereas benign Nthy-ori 3-1 thyrocytes and recurrent ML-1 follicular thyroid cancer cells were not affected by DEX. We then compare Nthy-ori 3-1 and FTC-133 cells concerning their adhesion and mechanosignaling. We demonstrate that DEX disrupts random positioning-triggered p38 stress signaling in FTC-133 cells, thereby antagonizing a variety of biological functions. Thus, DEX treatment of FTC-133 cells is associated with increased adhesiveness, which is mainly caused by the restored, pronounced formation of a normal number of tight junctions. Moreover, we show that Nthy-ori 3-1 and ML-1 cells upregulate the anti-adhesion protein mucin-1 during random positioning, presumably as a protection against mechanical stress. In summary, mechanical stress seems to be an important component in this metastasis model system that is processed differently by metastatic and healthy cells. The balance between adhesion, anti-adhesion and cell–cell connections enables detachment of adherent human cells on the random positioning machine—or not, allowing selective inhibition of thyroid in vitro metastasis by DEX.
Collapse
Affiliation(s)
- Daniela Melnik
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Viviann Sandt
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Stefan Kahlert
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Institute of Anatomy, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Sascha Kopp
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Core Facility Tissue Engineering, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-6757471
| |
Collapse
|
12
|
Li J, Sun B, Li Y, Li S, Wang J, Zhu Y, Lu H. Correlation analysis between shear-wave elastography and pathological profiles in breast cancer. Breast Cancer Res Treat 2023; 197:269-276. [PMID: 36374375 DOI: 10.1007/s10549-022-06804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To explore the correlation between shear-wave elastography (SWE) parameters and pathological profiles of invasive breast cancer. METHODS A total of 197 invasive breast cancers undergoing preoperative SWE and primary surgical treatment were included. Maximum elastic modulus (Emax), mean elastic modulus (Emean), and elastic modulus standard deviation (Esd) were calculated by SWE. Pathological profile was gold standard according to postoperative pathology. The relationship between SWE parameters and pathological factors were analyzed using univariate and multivariate analysis. RESULTS In univariate analysis, large cancers showed significantly higher Emax, Emean and Esd (all P < 0.001). Emax and Esd in the group of histological grade III were higher than those in the group of grade I (both P < 0.05). Invasive lobular carcinomas (ILC) showed higher Emean than invasive ductal carcinoma (IDC) (P < 0.001). Lymphovascular invasion (LVI) group showed higher Emax values than negative group (P < 0.05). Emax, Emean and Esd of the Ki-67 positive group presented higher values than negative group (all P < 0.05). Androgen receptor (AR) positive lesions had lower Esd than AR negative lesions (P < 0.05). In multivariate analysis, invasive size independently influenced Emax (P < 0.001). Invasive size and pathological type both independently influenced Emean (both P < 0.001). Invasive size and AR status were both independently influenced Esd (both P < 0.05). CONCLUSION SWE parameters correlated with pathological profiles of invasive breast cancer.In particular, AR positive group showed significantly low Esd than negative group.
Collapse
Affiliation(s)
- Junnan Li
- Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Bo Sun
- The Second Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yanbo Li
- Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Shuang Li
- Department of Bone and Tissue Oncology, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jiahui Wang
- Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ying Zhu
- Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Hong Lu
- Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. .,Tianjin Medical University Cancer Institute and Hospital, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
13
|
Quantitative Assessment of Breast-Tumor Stiffness Using Shear-Wave Elastography Histograms. Diagnostics (Basel) 2022; 12:diagnostics12123140. [PMID: 36553148 PMCID: PMC9777730 DOI: 10.3390/diagnostics12123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose: Shear-wave elastography (SWE) measures tissue elasticity using ultrasound waves. This study proposes a histogram-based SWE analysis to improve breast malignancy detection. Methods: N = 22/32 (patients/tumors) benign and n = 51/64 malignant breast tumors with histological ground truth. Colored SWE heatmaps were adjusted to a 0−180 kPa scale. Normalized, 250-binned RGB histograms were used as image descriptors based on skewness and area under curve (AUC). The histogram method was compared to conventional SWE metrics, such as (1) the qualitative 5-point scale classification and (2) average stiffness (SWEavg)/maximal tumor stiffness (SWEmax) within the tumor B-mode boundaries. Results: The SWEavg and SWEmax did not discriminate malignant lesions in this database, p > 0.05, rank sum test. RGB histograms, however, differed between malignant and benign tumors, p < 0.001, Kolmogorov−Smirnoff test. The AUC analysis of histograms revealed the reduction of soft-tissue components as a significant SWE biomarker (p = 0.03, rank sum). The diagnostic accuracy of the suggested method is still low (Se = 0.30 for Se = 0.90) and a subject for improvement in future studies. Conclusions: Histogram-based SWE quantitation improved the diagnostic accuracy for malignancy compared to conventional average SWE metrics. The sensitivity is a subject for improvement in future studies.
Collapse
|
14
|
Divya G, Madhura R, Khetan V, Rishi P, Narayanan J. Understanding the mechano and chemo response of retinoblastoma tumor cells. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Kiwanuka M, Higgins G, Ngcobo S, Nagawa J, Lang DM, Zaman MH, Davies NH, Franz T. Effect of paclitaxel treatment on cellular mechanics and morphology of human oesophageal squamous cell carcinoma in 2D and 3D environments. Integr Biol (Camb) 2022; 14:zyac013. [PMID: 36244059 PMCID: PMC9585394 DOI: 10.1093/intbio/zyac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/14/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
During chemotherapy, structural and mechanical changes in malignant cells have been observed in several cancers, including leukaemia and pancreatic and prostate cancer. Such cellular changes may act as physical biomarkers for chemoresistance and cancer recurrence. This study aimed to determine how exposure to paclitaxel affects the intracellular stiffness of human oesophageal cancer of South African origin in vitro. A human oesophageal squamous cell carcinoma cell line WHCO1 was cultured on glass substrates (2D) and in collagen gels (3D) and exposed to paclitaxel for up to 48 h. Cellular morphology and stiffness were assessed with confocal microscopy, visually aided morpho-phenotyping image recognition and mitochondrial particle tracking microrheology at 24 and 48 h. In the 2D environment, the intracellular stiffness was higher for the paclitaxel-treated than for untreated cells at 24 and 48 h. In the 3D environment, the paclitaxel-treated cells were stiffer than the untreated cells at 24 h, but no statistically significant differences in stiffness were observed at 48 h. In 2D, paclitaxel-treated cells were significantly larger at 24 and 48 h and more circular at 24 but not at 48 h than the untreated controls. In 3D, there were no significant morphological differences between treated and untreated cells. The distribution of cell shapes was not significantly different across the different treatment conditions in 2D and 3D environments. Future studies with patient-derived primary cancer cells and prolonged drug exposure will help identify physical cellular biomarkers to detect chemoresistance onset and assess therapy effectiveness in oesophageal cancer patients.
Collapse
Affiliation(s)
- Martin Kiwanuka
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Ghodeejah Higgins
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Silindile Ngcobo
- Cardiovascular Research Unit, Christiaan Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Juliet Nagawa
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Dirk M Lang
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Neil H Davies
- Cardiovascular Research Unit, Christiaan Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | - Thomas Franz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
- Bioengineering Science Research Group, Engineering Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
16
|
La Verde G, Artiola V, Pugliese M, La Commara M, Arrichiello C, Muto P, Netti PA, Fusco S, Panzetta V. Radiation therapy affects YAP expression and intracellular localization by modulating lamin A/C levels in breast cancer. Front Bioeng Biotechnol 2022; 10:969004. [PMID: 36091449 PMCID: PMC9450017 DOI: 10.3389/fbioe.2022.969004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The microenvironment of breast cancer actively participates in tumorigenesis and cancer progression. The changes observed in the architecture of the extracellular matrix initiate an oncogene-mediated cell reprogramming, that leads to a massive triggering of YAP nuclear entry, and, therefore, to cancer cell proliferation, invasion and probably to increased radiation-resistance. However, it is not yet fully understood how radiotherapy regulates the expression and subcellular localization of YAP in breast cancer cells experiencing different microenvironmental stiffnesses. To elucidate the role of extracellular matrix stiffness and ionizing radiations on YAP regulation, we explored the behaviour of two different mammary cell lines, a normal epithelial cell line (MCF10A) and a highly aggressive and invasive adenocarcinoma cell line (MDA-MB-231) interacting with polyacrylamide substrates mimicking the mechanics of both normal and tumour tissues (∼1 and ∼13 kPa). We report that X-ray radiation affected in a significant way the levels of YAP expression, density, and localization in both cell lines. After 24 h, MCF10A and MDA-MB-231 increased the expression level of YAP in both nucleus and cytoplasm in a dose dependent manner and particularly on the stiffer substrates. After 72 h, MCF10A reduced mostly the YAP expression in the cytoplasm, whereas it remained high in the nucleus of cells on stiffer substrates. Tumour cells continued to exhibit higher levels of YAP expression, especially in the cytoplasmic compartment, as indicated by the reduction of nuclear/cytoplasmic ratio of total YAP. Then, we investigated the existence of a correlation between YAP localization and the expression of the nuclear envelope protein lamin A/C, considering its key role in modulating nuclear deformability and changes in YAP shuttling phenomena. As supposed, we found that the effects of radiation on YAP nucleus/cytoplasmic expression ratio, increasing in healthy cells and decreasing in tumour ones, were accompanied by lower and higher lamin A/C levels in MCF10A and MDA-MB-231 cells, respectively. These findings point to obtain a deeper knowledge of the role of the extracellular matrix and the effects of X-rays on YAP and lamin A/C expression that can be used in the design of doses and timing of radiation therapy.
Collapse
Affiliation(s)
- Giuseppe La Verde
- Istituto Nazionale di Fisica Nucleare, INFN Sezione di Napoli, Naples, Italy
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, Italy
| | - Valeria Artiola
- Dipartimento di Fisica “Ettore Pancini”, Università Degli Studi di Napoli Federico II, Naples, Italy
| | - Mariagabriella Pugliese
- Istituto Nazionale di Fisica Nucleare, INFN Sezione di Napoli, Naples, Italy
- Dipartimento di Fisica “Ettore Pancini”, Università Degli Studi di Napoli Federico II, Naples, Italy
| | - Marco La Commara
- Istituto Nazionale di Fisica Nucleare, INFN Sezione di Napoli, Naples, Italy
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, Italy
| | - Cecilia Arrichiello
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, Naples, Italy
| | - Paolo Muto
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, Naples, Italy
| | - Paolo A. Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, Università Degli Studi di Napoli Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
- *Correspondence: Sabato Fusco,
| | - Valeria Panzetta
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, Università Degli Studi di Napoli Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
17
|
Sahan AZ, Baday M, Patel CB. Biomimetic Hydrogels in the Study of Cancer Mechanobiology: Overview, Biomedical Applications, and Future Perspectives. Gels 2022; 8:gels8080496. [PMID: 36005097 PMCID: PMC9407355 DOI: 10.3390/gels8080496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrogels are biocompatible polymers that are tunable to the system under study, allowing them to be widely used in medicine, bioprinting, tissue engineering, and biomechanics. Hydrogels are used to mimic the three-dimensional microenvironment of tissues, which is essential to understanding cell–cell interactions and intracellular signaling pathways (e.g., proliferation, apoptosis, growth, and survival). Emerging evidence suggests that the malignant properties of cancer cells depend on mechanical cues that arise from changes in their microenvironment. These mechanobiological cues include stiffness, shear stress, and pressure, and have an impact on cancer proliferation and invasion. The hydrogels can be tuned to simulate these mechanobiological tissue properties. Although interest in and research on the biomedical applications of hydrogels has increased in the past 25 years, there is still much to learn about the development of biomimetic hydrogels and their potential applications in biomedical and clinical settings. This review highlights the application of hydrogels in developing pre-clinical cancer models and their potential for translation to human disease with a focus on reviewing the utility of such models in studying glioblastoma progression.
Collapse
Affiliation(s)
- Ayse Z. Sahan
- Biomedical Sciences Graduate Program, Department of Pharmacology, School of Medicine, University California at San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Murat Baday
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Precision Health and Integrated Diagnostics Center, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Correspondence: (M.B.); (C.B.P.)
| | - Chirag B. Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Correspondence: (M.B.); (C.B.P.)
| |
Collapse
|
18
|
Sharma V, Letson J, Furuta S. Fibrous stroma: Driver and passenger in cancer development. Sci Signal 2022; 15:eabg3449. [PMID: 35258999 DOI: 10.1126/scisignal.abg3449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cumulative evidence shows that fibrogenic stroma and stiff extracellular matrix (ECM) not only result from tumor growth but also play pivotal roles in cellular transformation and tumor initiation. This emerging concept may largely account for the increased cancer risk associated with environmental fibrogenic agents, such as asbestos and silica, and with chronic conditions that are fibrogenic, such as obesity and diabetes. It may also contribute to poor outcomes in patients treated with certain chemotherapeutics that can promote fibrosis, such as bleomycin and methotrexate. Although the mechanistic details of this phenomenon are still being unraveled, we provide an overview of the experimental evidence linking fibrogenic stroma and tumor initiation. In this Review, we will summarize the causes and consequences of fibrous stroma and how this stromal cue is transmitted to the nuclei of parenchymal cells through a physical continuum from the ECM to chromatin, as well as ECM-dependent biochemical signaling that contributes to cellular transformation.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| |
Collapse
|
19
|
Sutlive J, Xiu H, Chen Y, Gou K, Xiong F, Guo M, Chen Z. Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103466. [PMID: 34837328 PMCID: PMC8831476 DOI: 10.1002/smll.202103466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/19/2021] [Indexed: 05/02/2023]
Abstract
Embryonic morphogenesis is a biological process which depicts shape forming of tissues and organs during development. Unveiling the roles of mechanical forces generated, transmitted, and regulated in cells and tissues through these processes is key to understanding the biophysical mechanisms governing morphogenesis. To this end, it is imperative to measure, simulate, and predict the regulation and control of these mechanical forces during morphogenesis. This article aims to provide a comprehensive review of the recent advances on mechanical properties of cells and tissues, generation of mechanical forces in cells and tissues, the transmission processes of these generated forces during cells and tissues, the tools and methods used to measure and predict these mechanical forces in vivo, in vitro, or in silico, and to better understand the corresponding regulation and control of generated forces. Understanding the biomechanics and mechanobiology of morphogenesis will not only shed light on the fundamental physical mechanisms underlying these concerted biological processes during normal development, but also uncover new information that will benefit biomedical research in preventing and treating congenital defects or tissue engineering and regeneration.
Collapse
Affiliation(s)
- Joseph Sutlive
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Haning Xiu
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Yunfeng Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Kun Gou
- Department of Mathematical, Physical, and Engineering Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224
| | - Fengzhu Xiong
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zi Chen
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| |
Collapse
|
20
|
Electrodeformation of White Blood Cells Enriched with Gold Nanoparticles. Processes (Basel) 2022. [DOI: 10.3390/pr10010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The elasticity of white blood cells (WBCs) provides valuable insight into the condition of the cells themselves, the presence of some diseases, as well as immune system activity. In this work, we describe a novel process of refined control of WBCs’ elasticity through a combined use of gold nanoparticles (AuNPs) and the microelectrode array device. The capture and controlled deformation of gold nanoparticles enriched white blood cells in vitro are demonstrated and quantified. Gold nanoparticles enhance the effect of electrically induced deformation and make the DEP-related processes more controllable.
Collapse
|
21
|
Kumemura M, Pekin D, Menon VA, Van Seuningen I, Collard D, Tarhan MC. Fabricating Silicon Resonators for Analysing Biological Samples. MICROMACHINES 2021; 12:1546. [PMID: 34945396 PMCID: PMC8708134 DOI: 10.3390/mi12121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
The adaptability of microscale devices allows microtechnologies to be used for a wide range of applications. Biology and medicine are among those fields that, in recent decades, have applied microtechnologies to achieve new and improved functionality. However, despite their ability to achieve assay sensitivities that rival or exceed conventional standards, silicon-based microelectromechanical systems remain underutilised for biological and biomedical applications. Although microelectromechanical resonators and actuators do not always exhibit optimal performance in liquid due to electrical double layer formation and high damping, these issues have been solved with some innovative fabrication processes or alternative experimental approaches. This paper focuses on several examples of silicon-based resonating devices with a brief look at their fundamental sensing elements and key fabrication steps, as well as current and potential biological/biomedical applications.
Collapse
Affiliation(s)
- Momoko Kumemura
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu-shi, Fukuoka 808-0196, Japan;
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
| | - Deniz Pekin
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
- CNRS/IIS/COL/Lille University, SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, CEDEX, 59046 Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
| | - Vivek Anand Menon
- Division of Mechanical Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan;
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
| | - Dominique Collard
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
- CNRS/IIS/COL/Lille University, SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, CEDEX, 59046 Lille, France
| | - Mehmet Cagatay Tarhan
- LIMMS/CNRS-IIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; (D.P.); (D.C.)
- CNRS/IIS/COL/Lille University, SMMiL-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, 2 rue de Canonniers, CEDEX, 59046 Lille, France
- Univ. Lille, CNRS, Centrale Lille, Junia, University Polytechnique Hauts-de-France, UMR 8520—IEMN, Institut
d’Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France
| |
Collapse
|
22
|
Mahajan V, Beck T, Gregorczyk P, Ruland A, Alberti S, Guck J, Werner C, Schlüßler R, Taubenberger AV. Mapping Tumor Spheroid Mechanics in Dependence of 3D Microenvironment Stiffness and Degradability by Brillouin Microscopy. Cancers (Basel) 2021; 13:5549. [PMID: 34771711 PMCID: PMC8583550 DOI: 10.3390/cancers13215549] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Altered biophysical properties of cancer cells and of their microenvironment contribute to cancer progression. While the relationship between microenvironmental stiffness and cancer cell mechanical properties and responses has been previously studied using two-dimensional (2D) systems, much less is known about it in a physiologically more relevant 3D context and in particular for multicellular systems. To investigate the influence of microenvironment stiffness on tumor spheroid mechanics, we first generated MCF-7 tumor spheroids within matrix metalloproteinase (MMP)-degradable 3D polyethylene glycol (PEG)-heparin hydrogels, where spheroids showed reduced growth in stiffer hydrogels. We then quantitatively mapped the mechanical properties of tumor spheroids in situ using Brillouin microscopy. Maps acquired for tumor spheroids grown within stiff hydrogels showed elevated Brillouin frequency shifts (hence increased longitudinal elastic moduli) with increasing hydrogel stiffness. Maps furthermore revealed spatial variations of the mechanical properties across the spheroids' cross-sections. When hydrogel degradability was blocked, comparable Brillouin frequency shifts of the MCF-7 spheroids were found in both compliant and stiff hydrogels, along with similar levels of growth-induced compressive stress. Under low compressive stress, single cells or free multicellular aggregates showed consistently lower Brillouin frequency shifts compared to spheroids growing within hydrogels. Thus, the spheroids' mechanical properties were modulated by matrix stiffness and degradability as well as multicellularity, and also to the associated level of compressive stress felt by tumor spheroids. Spheroids generated from a panel of invasive breast, prostate and pancreatic cancer cell lines within degradable stiff hydrogels, showed higher Brillouin frequency shifts and less cell invasion compared to those in compliant hydrogels. Taken together, our findings contribute to a better understanding of the interplay between cancer cells and microenvironment mechanics and degradability, which is relevant to better understand cancer progression.
Collapse
Affiliation(s)
- Vaibhav Mahajan
- Center for Molecular and Cellular Bioengineering (CMCB), BIOTEC, Technische Universitaet Dresden, 01307 Dresden, Germany; (V.M.); (T.B.); (P.G.); (S.A.); (R.S.)
| | - Timon Beck
- Center for Molecular and Cellular Bioengineering (CMCB), BIOTEC, Technische Universitaet Dresden, 01307 Dresden, Germany; (V.M.); (T.B.); (P.G.); (S.A.); (R.S.)
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Staudtstr. 2, 91058 Erlangen, Germany;
| | - Paulina Gregorczyk
- Center for Molecular and Cellular Bioengineering (CMCB), BIOTEC, Technische Universitaet Dresden, 01307 Dresden, Germany; (V.M.); (T.B.); (P.G.); (S.A.); (R.S.)
| | - André Ruland
- Max Bergmann Center, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany; (A.R.); (C.W.)
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering (CMCB), BIOTEC, Technische Universitaet Dresden, 01307 Dresden, Germany; (V.M.); (T.B.); (P.G.); (S.A.); (R.S.)
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Staudtstr. 2, 91058 Erlangen, Germany;
| | - Carsten Werner
- Max Bergmann Center, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany; (A.R.); (C.W.)
| | - Raimund Schlüßler
- Center for Molecular and Cellular Bioengineering (CMCB), BIOTEC, Technische Universitaet Dresden, 01307 Dresden, Germany; (V.M.); (T.B.); (P.G.); (S.A.); (R.S.)
| | - Anna Verena Taubenberger
- Center for Molecular and Cellular Bioengineering (CMCB), BIOTEC, Technische Universitaet Dresden, 01307 Dresden, Germany; (V.M.); (T.B.); (P.G.); (S.A.); (R.S.)
| |
Collapse
|
23
|
Tayler IM, Stowers RS. Engineering hydrogels for personalized disease modeling and regenerative medicine. Acta Biomater 2021; 132:4-22. [PMID: 33882354 DOI: 10.1016/j.actbio.2021.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Technological innovations and advances in scientific understanding have created an environment where data can be collected, analyzed, and interpreted at scale, ushering in the era of personalized medicine. The ability to isolate cells from individual patients offers tremendous promise if those cells can be used to generate functional tissue replacements or used in disease modeling to determine optimal treatment strategies. Here, we review recent progress in the use of hydrogels to create artificial cellular microenvironments for personalized tissue engineering and regenerative medicine applications, as well as to develop personalized disease models. We highlight engineering strategies to control stem cell fate through hydrogel design, and the use of hydrogels in combination with organoids, advanced imaging methods, and novel bioprinting techniques to generate functional tissues. We also discuss the use of hydrogels to study molecular mechanisms underlying diseases and to create personalized in vitro disease models to complement existing pre-clinical models. Continued progress in the development of engineered hydrogels, in combination with other emerging technologies, will be essential to realize the immense potential of personalized medicine. STATEMENT OF SIGNIFICANCE: In this review, we cover recent advances in hydrogel engineering strategies with applications in personalized medicine. Specifically, we focus on material systems to expand or control differentiation of patient-derived stem cells, and hydrogels to reprogram somatic cells to pluripotent states. We then review applications of hydrogels in developing personalized engineered tissues. We also highlight the use of hydrogel systems as personalized disease models, focusing on specific examples in fibrosis and cancer, and more broadly on drug screening strategies using patient-derived cells and hydrogels. We believe this review will be a valuable contribution to the Special Issue and the readership of Acta Biomaterialia will appreciate the comprehensive overview of the utility of hydrogels in the developing field of personalized medicine.
Collapse
|
24
|
Gu J, Polley EC, Boughey JC, Fazzio RT, Fatemi M, Alizad A. Prediction of Invasive Breast Cancer Using Mass Characteristic Frequency and Elasticity in Correlation with Prognostic Histologic Features and Immunohistochemical Biomarkers. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2193-2201. [PMID: 33994231 PMCID: PMC8243825 DOI: 10.1016/j.ultrasmedbio.2021.03.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 05/17/2023]
Abstract
This purpose of this study is to correlate a new shear-wave elastography (SWE) parameter, mass characteristic frequency (fmass) and other elasticity measure with the prognostic histological factors and immunohistochemical (IHC) biomarkers for the evaluation of heterogeneous breast carcinomas. The new parameter, fmass, first introduced in this paper, is defined as the ratio of the averaged minimum shear wave speed taken spatially within regions of interest to the largest mass dimension. 264 biopsy-proven breast cancerous masses were included in this study. Mean (Emean), maximum (Emax), minimum (Emin) shear wave elasticity and standard deviation (Esd) of shear wave elasticity were found significantly correlated with tumor size, axillary lymph node (ALN) status, histological subtypes and IHC subtypes. The areas under the curve for the ALN prediction are 0.73 (95% confidence interval [CI]: 0.67-0.80) and 0.75 (95% CI: 0.69-0.81) for the combination of Emean with Breast Imaging Reporting and Data System (BI-RADS) score and Emax with BI-RADS score, respectively. fmass was significantly correlated with the presence of calcifications, ALN status, histological grade, the expressions of IHC biomarkers and IHC subtypes. To conclude, poor prognostic factors were associated with high shear wave elasticity values and low mass characteristic frequency value. Therefore, SWE provides valuable information that may help with prediction of breast cancer invasiveness.
Collapse
Affiliation(s)
- Juanjuan Gu
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Eric C Polley
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Judy C Boughey
- Division of Subspecialty General Surgery, Department of General Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Robert T Fazzio
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA; Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA.
| |
Collapse
|
25
|
Rheinlaender J, Wirbel H, Schäffer TE. Spatial correlation of cell stiffness and traction forces in cancer cells measured with combined SICM and TFM. RSC Adv 2021; 11:13951-13956. [PMID: 35423943 PMCID: PMC8697701 DOI: 10.1039/d1ra01277k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
The mechanical properties of cancer cells at the single-cell and the subcellular level might be the key for answering long-standing questions in the diagnosis and treatment of cancer. However, the subcellular distribution of two main mechanical properties, cell stiffness and traction forces, has been investigated only rarely and qualitatively yet. Here, we present the first direct combination of scanning ion conductance microscopy (SICM) and traction force microscopy (TFM), which we used to identify a correlation between the local stiffness and the local traction force density in living cells. We found a correlation in normal breast epithelial cells, but no correlation in cancerous breast epithelial cells. This indicates that the interplay between cell stiffness and traction forces is altered in cancer cells as compared to healthy cells, which might give new insight in the research field of cancer cell mechanobiology.
Collapse
Affiliation(s)
- Johannes Rheinlaender
- Institute of Applied Physics, University of Tübingen Auf der Morgenstelle 10 72076 Tübingen Germany +49 7071 29 5093 +49 7071 29 76030
| | - Hannes Wirbel
- Institute of Applied Physics, University of Tübingen Auf der Morgenstelle 10 72076 Tübingen Germany +49 7071 29 5093 +49 7071 29 76030
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen Auf der Morgenstelle 10 72076 Tübingen Germany +49 7071 29 5093 +49 7071 29 76030
| |
Collapse
|
26
|
Espina JA, Marchant CL, Barriga EH. Durotaxis: the mechanical control of directed cell migration. FEBS J 2021; 289:2736-2754. [PMID: 33811732 PMCID: PMC9292038 DOI: 10.1111/febs.15862] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
Directed cell migration is essential for cells to efficiently migrate in physiological and pathological processes. While migrating in their native environment, cells interact with multiple types of cues, such as mechanical and chemical signals. The role of chemical guidance via chemotaxis has been studied in the past, the understanding of mechanical guidance of cell migration via durotaxis remained unclear until very recently. Nonetheless, durotaxis has become a topic of intensive research and several advances have been made in the study of mechanically guided cell migration across multiple fields. Thus, in this article we provide a state of the art about durotaxis by discussing in silico, in vitro and in vivo data. We also present insights on the general mechanisms by which cells sense, transduce and respond to environmental mechanics, to then contextualize these mechanisms in the process of durotaxis and explain how cells bias their migration in anisotropic substrates. Furthermore, we discuss what is known about durotaxis in vivo and we comment on how haptotaxis could arise from integrating durotaxis and chemotaxis in native environments.
Collapse
Affiliation(s)
- Jaime A Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Cristian L Marchant
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| |
Collapse
|
27
|
Chhetri A, Rispoli JV, Lelièvre SA. 3D Cell Culture for the Study of Microenvironment-Mediated Mechanostimuli to the Cell Nucleus: An Important Step for Cancer Research. Front Mol Biosci 2021; 8:628386. [PMID: 33644116 PMCID: PMC7902798 DOI: 10.3389/fmolb.2021.628386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
The discovery that the stiffness of the tumor microenvironment (TME) changes during cancer progression motivated the development of cell culture involving extracellular mechanostimuli, with the intent of identifying mechanotransduction mechanisms that influence cell phenotypes. Collagen I is a main extracellular matrix (ECM) component used to study mechanotransduction in three-dimensional (3D) cell culture. There are also models with interstitial fluid stress that have been mostly focusing on the migration of invasive cells. We argue that a major step for the culture of tumors is to integrate increased ECM stiffness and fluid movement characteristic of the TME. Mechanotransduction is based on the principles of tensegrity and dynamic reciprocity, which requires measuring not only biochemical changes, but also physical changes in cytoplasmic and nuclear compartments. Most techniques available for cellular rheology were developed for a 2D, flat cell culture world, hence hampering studies requiring proper cellular architecture that, itself, depends on 3D tissue organization. New and adapted measuring techniques for 3D cell culture will be worthwhile to study the apparent increase in physical plasticity of cancer cells with disease progression. Finally, evidence of the physical heterogeneity of the TME, in terms of ECM composition and stiffness and of fluid flow, calls for the investigation of its impact on the cellular heterogeneity proposed to control tumor phenotypes. Reproducing, measuring and controlling TME heterogeneity should stimulate collaborative efforts between biologists and engineers. Studying cancers in well-tuned 3D cell culture platforms is paramount to bring mechanomedicine into the realm of oncology.
Collapse
Affiliation(s)
- Apekshya Chhetri
- Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Joseph V Rispoli
- Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
28
|
Yu Y, Wu X, Liu S, Zhao H, Li B, Zhao H, Feng X. Piezo1 regulates migration and invasion of breast cancer cells via modulating cell mechanobiological properties. Acta Biochim Biophys Sin (Shanghai) 2021; 53:10-18. [PMID: 33210711 DOI: 10.1093/abbs/gmaa112] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Cell migration and invasion are two essential processes during cancer metastasis. Increasing evidence has shown that the Piezo1 channel is involved in mediating cell migration and invasion in some types of cancers. However, the role of Piezo1 in the breast cancer and its underlying mechanisms have not been clarified yet. Here, we show that Piezo1 is high-expressed in breast cancer cell (BCC) lines, despite its complex expression in clinical patient database. Piezo1 knockdown (Piezo1-KD) promotes unconfined BCC migration, but impedes confined cell migration. Piezo1 may mediate BCC migration through the balances of cell adhesion, cell stiffness, and contractility. Furthermore, Piezo1-KD inhibits BCC invasion by impairing the invadopodium formation and suppressing the expression of metalloproteinases (MMPs) as well. However, the proliferation and cell cycle of BCCs are not significantly affected by Piezo1. Our study highlights a crucial role of Piezo1 in regulating migration and invasion of BCCs, indicating Piezo1 channel might be a new prognostic and therapeutic target in BCCs.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Xiao’an Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Sisi Liu
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Hongping Zhao
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Hucheng Zhao
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Xiqiao Feng
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Gensbittel V, Kräter M, Harlepp S, Busnelli I, Guck J, Goetz JG. Mechanical Adaptability of Tumor Cells in Metastasis. Dev Cell 2020; 56:164-179. [PMID: 33238151 DOI: 10.1016/j.devcel.2020.10.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The most dangerous aspect of cancer lies in metastatic progression. Tumor cells will successfully form life-threatening metastases when they undergo sequential steps along a journey from the primary tumor to distant organs. From a biomechanics standpoint, growth, invasion, intravasation, circulation, arrest/adhesion, and extravasation of tumor cells demand particular cell-mechanical properties in order to survive and complete the metastatic cascade. With metastatic cells usually being softer than their non-malignant counterparts, high deformability for both the cell and its nucleus is thought to offer a significant advantage for metastatic potential. However, it is still unclear whether there is a finely tuned but fixed mechanical state that accommodates all mechanical features required for survival throughout the cascade or whether tumor cells need to dynamically refine their properties and intracellular components at each new step encountered. Here, we review the various mechanical requirements successful cancer cells might need to fulfill along their journey and speculate on the possibility that they dynamically adapt their properties accordingly. The mechanical signature of a successful cancer cell might actually be its ability to adapt to the successive microenvironmental constraints along the different steps of the journey.
Collapse
Affiliation(s)
- Valentin Gensbittel
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Ignacio Busnelli
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
30
|
Dawson MR, Xuan B, Hsu J, Ghosh D. Force balancing ACT-IN the tumor microenvironment: Cytoskeletal modifications in cancer and stromal cells to promote malignancy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 360:1-31. [PMID: 33962748 DOI: 10.1016/bs.ircmb.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment is a complex milieu that dictates the growth, invasion, and metastasis of cancer cells. Both cancer and stromal cells in the tumor tissue encounter and adapt to a variety of extracellular factors, and subsequently contribute and drive the progression of the disease to more advanced stages. As the disease progresses, a small population of cancer cells becomes more invasive through a complex process known as epithelial-mesenchymal transition, and nearby stromal cells assume a carcinoma associated fibroblast phenotype characterized by enhanced migration, cell contractility, and matrix secretion with the ability to reorganize extracellular matrices. As cells transition into more malignant phenotypes their biophysical properties, controlled by the organization of cytoskeletal proteins, are altered. Actin and its associated proteins are essential modulators and facilitators of these changes. As the cells respond to the cues in the microenvironment, actin driven mechanical forces inside and outside the cells also evolve. Recent advances in biophysical techniques have enabled us to probe these actin driven changes in cancer and stromal cells and demarcate their role in driving changes in the microenvironment. Understanding the underlying biophysical mechanisms that drive cancer progression could provide critical insight on novel therapeutic approaches in the fight against cancer.
Collapse
Affiliation(s)
- Michelle R Dawson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States; Brown University, Center for Biomedical Engineering, Providence, RI, United States.
| | - Botai Xuan
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States
| | - Jeffrey Hsu
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States
| | - Deepraj Ghosh
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States
| |
Collapse
|
31
|
Zheng X, Huang Y, Liu Y, Wang Y, Mao R, Li F, Cao L, Zhou J. Shear-Wave Elastography of the Breast: Added Value of a Quality Map in Diagnosis and Prediction of the Biological Characteristics of Breast Cancer. Korean J Radiol 2020; 21:172-180. [PMID: 31997592 PMCID: PMC6992439 DOI: 10.3348/kjr.2019.0453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022] Open
Abstract
Objective To determine the added value of a shear-wave elastography (SWE) quality map (QM) in the diagnosis of breast lesions and in predicting the biological characteristics of invasive breast cancer. Materials and Methods Between January 2016 and February 2019, this study included 368 women with 368 pathologically proven breast lesions, which appeared as poor-quality regions in the QM of SWE. To measure shear-wave velocity (SWV), seven regions of interest were placed in each lesion with and without QM guidance. Under QM guidance, poor-quality areas were avoided. Diagnostic performance was calculated for mean SWV (SWVmean), max SWV (SWVmax), and standard deviation (SD) with QM guidance (SWVmean + QM, SWVmax + QM, and SD + QM, respectively) and without QM guidance (SWVmean − QM, SWVmax − QM, and SD − QM, respectively). For invasive cancers, the relationship between SWV findings and biological characteristics was investigated with and without QM guidance. Results Of the 368 women (mean age, 47 years; SD, 10.8 years) enrolled, 159 had benign breast lesions and 209 had malignant breast lesions. SWVmean + QM (3.6 ± 1.39 m/s) and SD + QM (1.02 ± 0.84) were significantly different from SWVmean − QM (3.29 ± 1.22 m/s) and SD − QM (1.46 ± 1.06), respectively (all p < 0.001). For differential diagnosis of breast lesions, the sensitivity and areas under the receiver operating characteristic curve (AUC) of SWVmean + QM (sensitivity: 89%; AUC: 0.932) were better than those of SWVmean − QM (sensitivity, 84.2%; AUC, 0.912) (all p < 0.05). There was no significant difference in sensitivity and specificity between SD + QM and SD − QM (all p = 1.000). Among the biological characteristics of invasive cancers, lymphovascular involvement, axillary lymph node metastasis, negative estrogen receptor status, negative progesterone receptor status, positive human epidermal growth factor receptor status, and aggressive molecular subtypes showed higher SWVmean + QM (all p < 0.05), while only lymphovascular involvement showed higher SWVmean − QM (p = 0.036). Conclusion The use of QM in SWE might improve the diagnostic performance for breast lesions and facilitate prediction of the biological characteristics of invasive breast cancers.
Collapse
Affiliation(s)
- Xueyi Zheng
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yini Huang
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yubo Liu
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yun Wang
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rushuang Mao
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fei Li
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Longhui Cao
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jianhua Zhou
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
32
|
Higgins G, Peres J, Abdalrahman T, Zaman MH, Lang DM, Prince S, Franz T. Cytoskeletal tubulin competes with actin to increase deformability of metastatic melanoma cells. Exp Cell Res 2020; 394:112154. [PMID: 32598874 DOI: 10.1016/j.yexcr.2020.112154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 01/07/2023]
Abstract
The formation of membrane protrusions during migration is reliant upon the cells' cytoskeletal structure and stiffness. It has been reported that actin disruption blocks protrusion and decreases cell stiffness whereas microtubule disruption blocks protrusion but increases stiffness in several cell types. In melanoma, cell migration is of concern as this cancer spreads unusually rapidly during early tumour development. The aim of this study was to characterise motility, structural properties and stiffness of human melanoma cells at radial growth phase (RGP), vertical growth phase (VGP), and metastatic stage (MET) in two-dimensional in vitro environments. Wound assays, western blotting and mitochondrial particle tracking were used to assess cell migration, cytoskeletal content and intracellular fluidity. Our results indicate that cell motility increase with increasing disease stage. Despite their different motility, RGP and VGP cells exhibit similar fluidity, actin and tubulin levels. MET cells, however, display increased fluidity which was associated with increased actin and tubulin content. Our findings demonstrate an interplay between actin and microtubule activity and their role in increasing motility of cells while minimizing cell stiffness at advanced disease stage. In earlier disease stages, cell stiffness may however not serve as an indicator of migratory capabilities.
Collapse
Affiliation(s)
- Ghodeejah Higgins
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, University of Cape Town, South Africa
| | - Tamer Abdalrahman
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa
| | - Muhammad H Zaman
- Department of Biomedical Engineering and Howard Hughes Medical Institute, Boston University, USA
| | - Dirk M Lang
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, University of Cape Town, South Africa
| | - Thomas Franz
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, South Africa; Bioengineering Science Research Group, Engineering Sciences, University of Southampton, UK.
| |
Collapse
|
33
|
Devarasetty M, Dominijanni A, Herberg S, Shelkey E, Skardal A, Soker S. Simulating the human colorectal cancer microenvironment in 3D tumor-stroma co-cultures in vitro and in vivo. Sci Rep 2020; 10:9832. [PMID: 32555362 PMCID: PMC7300090 DOI: 10.1038/s41598-020-66785-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME) plays a significant role in cancer progression and thus modeling it will advance our understanding of cancer growth dynamics and response to therapies. Most in vitro models are not exposed to intact body physiology, and at the same time, fail to recapitulate the extensive features of the tumor stroma. Conversely, animal models do not accurately capture the human tumor architecture. We address these deficiencies with biofabricated colorectal cancer (CRC) tissue equivalents, which are built to replicate architectural features of biopsied CRC tissue. Our data shows that tumor-stroma co-cultures consisting of aligned extracellular matrix (ECM) fibers and ordered micro-architecture induced an epithelial phenotype in CRC cells while disordered ECM drove a mesenchymal phenotype, similar to well and poorly differentiated tumors, respectively. Importantly, co-cultures studied in vitro, and upon implantation in mice, revealed similar tumor growth dynamics and retention of architectural features for 28 days. Altogether, these results are the first demonstration of replicating human tumor ECM architecture in ex vivo and in vivo cultures.
Collapse
Affiliation(s)
| | | | - Samuel Herberg
- SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Ethan Shelkey
- Wake Forest Baptist Medical Center, Winston-Salem, NC, 27101, USA
| | | | - Shay Soker
- Wake Forest Baptist Medical Center, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
34
|
Molina ER, Chim LK, Barrios S, Ludwig JA, Mikos AG. Modeling the Tumor Microenvironment and Pathogenic Signaling in Bone Sarcoma. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:249-271. [PMID: 32057288 PMCID: PMC7310212 DOI: 10.1089/ten.teb.2019.0302] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Investigations of cancer biology and screening of potential therapeutics for efficacy and safety begin in the preclinical laboratory setting. A staple of most basic research in cancer involves the use of tissue culture plates, on which immortalized cell lines are grown in monolayers. However, this practice has been in use for over six decades and does not account for vital elements of the tumor microenvironment that are thought to aid in initiation, propagation, and ultimately, metastasis of cancer. Furthermore, information gleaned from these techniques does not always translate to animal models or, more crucially, clinical trials in cancer patients. Osteosarcoma (OS) and Ewing sarcoma (ES) are the most common primary tumors of bone, but outcomes for patients with metastatic or recurrent disease have stagnated in recent decades. The unique elements of the bone tumor microenvironment have been shown to play critical roles in the pathogenesis of these tumors and thus should be incorporated in the preclinical models of these diseases. In recent years, the field of tissue engineering has leveraged techniques used in designing scaffolds for regenerative medicine to engineer preclinical tumor models that incorporate spatiotemporal control of physical and biological elements. We herein review the clinical aspects of OS and ES, critical elements present in the sarcoma microenvironment, and engineering approaches to model the bone tumor microenvironment. Impact statement The current paradigm of cancer biology investigation and therapeutic testing relies heavily on monolayer, monoculture methods developed over half a century ago. However, these methods often lack essential hallmarks of the cancer microenvironment that contribute to tumor pathogenesis. Tissue engineers incorporate scaffolds, mechanical forces, cells, and bioactive signals into biological environments to drive cell phenotype. Investigators of bone sarcomas, aggressive tumors that often rob patients of decades of life, have begun to use tissue engineering techniques to devise in vitro models for these diseases. Their efforts highlight how critical elements of the cancer microenvironment directly affect tumor signaling and pathogenesis.
Collapse
Affiliation(s)
- Eric R. Molina
- Department of Bioengineering, Rice University, Houston, Texas
| | - Letitia K. Chim
- Department of Bioengineering, Rice University, Houston, Texas
| | - Sergio Barrios
- Department of Bioengineering, Rice University, Houston, Texas
| | - Joseph A. Ludwig
- Division of Cancer Medicine, Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | | |
Collapse
|
35
|
Xue X, Xue S, Wan W, Li J, Shi H. HIF-1α interacts with Kindlin-2 and influences breast cancer elasticity: A study based on shear wave elastography imaging. Cancer Med 2020; 9:4971-4979. [PMID: 32436609 PMCID: PMC7367621 DOI: 10.1002/cam4.3130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer was the most frequent and the second most deadly cancer in women in 2018 in China; thus, early diagnosis of breast cancer is important. Studies have reported that tissue stiffness promotes cancer progression through increased collagen or fibrosis. Shear wave elastography (SWE) is a technique for measuring tissue stiffness. However, the mechanisms underlying cancer tissue stiffness or fibrosis are not entirely clear. Hypoxia‐inducible factor 1 (HIF‐1α) is expressed in response to hypoxia and contributes to tumor progression and metastasis. Kindlin‐2 is an important co‐activator of integrin. We have reported that Kindlin‐2 influences breast cancer stiffness and metastasis. In this study, SWE was used to determine the maximum elasticity (Emax) of patients before operation or core needle biopsy. The specimens were used for staining. Knockdown, overexpression, co‐immunoprecipitation, and immunofluorescence assays were used to explore the relationship between HIF‐1α and Kindlin‐2. We found that HIF‐1α and Kindlin‐2 were highly expressed in invasive breast cancer and that the expression levels of HIF‐1α and Kindlin‐2 were correlated with Emax. HIF‐1α interacts with Kindlin‐2. Besides, HIF‐1α and Kindlin‐2 influence the expression of P4HA1, an important protein in collagen biogenesis through the integrin/FAK pathway. Our study first identified a new mechanism of invasive breast cancer stiffness by linking HIF‐1α and Kindlin‐2 to collagen biogenesis. Therefore, based on SWE, Emax could be a physical biomarker of invasive breast cancer for early, noninvasive diagnosis, and HIF‐1α and Kindlin‐2 could be pathological markers for early diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Xiaowei Xue
- Department of Ultrasound, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaowei Xue
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenbo Wan
- Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junlai Li
- Department of Ultrasound, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huaiyin Shi
- Department of Pathology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Panzetta V, La Verde G, Pugliese M, Artiola V, Arrichiello C, Muto P, La Commara M, Netti PA, Fusco S. Adhesion and Migration Response to Radiation Therapy of Mammary Epithelial and Adenocarcinoma Cells Interacting with Different Stiffness Substrates. Cancers (Basel) 2020; 12:E1170. [PMID: 32384675 PMCID: PMC7281676 DOI: 10.3390/cancers12051170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
The structural and mechanical properties of the microenvironmental context have a profound impact on cancer cell motility, tumor invasion, and metastasis formation. In fact, cells react to their mechanical environment modulating their adhesion, cytoskeleton organization, changes of shape, and, consequently, the dynamics of their motility. In order to elucidate the role of extracellular matrix stiffness as a driving force in cancer cell motility/invasion and the effects of ionizing radiations on these processes, we evaluated adhesion and migration as biophysical properties of two different mammary cell lines, over a range of pathophysiological stiffness (1-13 kPa) in a control condition and after the exposure to two different X-ray doses (2 and 10 Gy, photon beams). We concluded that the microenvironment mimicking the normal mechanics of healthy tissue has a radioprotective role on both cell lines, preventing cell motility and invasion. Supraphysiological extracellular matrix stiffness promoted tumor cell motility instead, but also had a normalizing effect on the response to radiation of tumor cells, lowering their migratory capability. This work lays the foundation for exploiting the extracellular matrix-mediated mechanism underlying the response of healthy and tumor cells to radiation treatments and opens new frontiers in the diagnostic and therapeutic use of radiotherapy.
Collapse
Affiliation(s)
- Valeria Panzetta
- Centro di Ricerca Interdipartimentale sui Biomateriali, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy;
- Centre for Advanced Biomaterial for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Giuseppe La Verde
- Istituto Nazionale di Fisica Nucleare, INFN sezione di Napoli, Via Cinthia ed. 6, 80126 Napoli, Italy; (G.L.V.); (M.P.); (M.L.C.)
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Montesano 49, 80131 Napoli, Italy
| | - Mariagabriella Pugliese
- Istituto Nazionale di Fisica Nucleare, INFN sezione di Napoli, Via Cinthia ed. 6, 80126 Napoli, Italy; (G.L.V.); (M.P.); (M.L.C.)
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli Federico II, Via Cinthia ed. 6, 80126 Napoli, Italy;
| | - Valeria Artiola
- Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli Federico II, Via Cinthia ed. 6, 80126 Napoli, Italy;
| | - Cecilia Arrichiello
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, Via Semmola, 53, 80131 Naples, Italy; (C.A.); (P.M.)
| | - Paolo Muto
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione “G. Pascale”, Via Semmola, 53, 80131 Naples, Italy; (C.A.); (P.M.)
| | - Marco La Commara
- Istituto Nazionale di Fisica Nucleare, INFN sezione di Napoli, Via Cinthia ed. 6, 80126 Napoli, Italy; (G.L.V.); (M.P.); (M.L.C.)
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Montesano 49, 80131 Napoli, Italy
| | - Paolo A. Netti
- Centro di Ricerca Interdipartimentale sui Biomateriali, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy;
- Centre for Advanced Biomaterial for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Sabato Fusco
- Centro di Ricerca Interdipartimentale sui Biomateriali, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy;
- Centre for Advanced Biomaterial for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| |
Collapse
|
37
|
Kruger TM, Bell KJ, Lansakara TI, Tivanski AV, Doorn JA, Stevens LL. A Soft Mechanical Phenotype of SH-SY5Y Neuroblastoma and Primary Human Neurons Is Resilient to Oligomeric Aβ(1-42) Injury. ACS Chem Neurosci 2020; 11:840-850. [PMID: 32058688 DOI: 10.1021/acschemneuro.9b00401] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aggregated amyloid beta (Aβ) is widely reported to cause neuronal dystrophy and toxicity through multiple pathways: oxidative stress, disrupting calcium homeostasis, and cytoskeletal dysregulation. The neuro-cytoskeleton is a dynamic structure that reorganizes to maintain cell homeostasis in response to varying soluble and physical cues presented from the extracellular matrix (ECM). Due this relationship between cell health and the ECM, we hypothesize that amyloid toxicity may be directly influenced by physical changes to the ECM (stiffness and dimensionality) through mechanosensitive pathways, and while previous studies demonstrated that Aβ can distort focal adhesion signaling with pathological consequences, these studies do not address the physical contribution from a physiologically relevant matrix. To test our hypothesis that physical cues can adjust Aβ toxicity, SH-SY5Y human neuroblastoma and primary human cortical neurons were plated on soft and stiff, 2D polyacrylamide matrices or suspended in 3D collagen gels. Each cell culture was exposed to escalating concentrations of oligomeric or fibrillated Aβ(1-42) with MTS viability and lactate dehydrogenase toxicity assessed. Actin restructuring was further monitored in live cells by atomic force microscopy nanoindentation, and our results demonstrate that increasing either matrix stiffness or exposure to oligomeric Aβ promotes F-actin polymerization and cell stiffening, while mature Aβ fibrils yielded no apparent cell stiffening and minor toxicity. Moreover, the rounded, softer mechanical phenotype displayed by cells plated onto a compliant matrix also demonstrated a resilience to oligomeric Aβ as noted by a significant recovery of viability when compared to same-dosed cells plated on traditional tissue culture plastic. This recovery was reproduced pharmacologically through inhibiting actin polymerization with cytochalasin D prior to Aβ exposure. These studies indicate that the cell-ECM interface can modify amyloid toxicity in neurons and the matrix-mediated pathways that promote this protection may offer unique targets in amyloid pathologies like Alzheimer's disease.
Collapse
Affiliation(s)
- Terra M. Kruger
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Kendra J. Bell
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | | | - Alexei V. Tivanski
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan A. Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Lewis L. Stevens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
38
|
Liver Bioreactor Design Issues of Fluid Flow and Zonation, Fibrosis, and Mechanics: A Computational Perspective. J Funct Biomater 2020; 11:jfb11010013. [PMID: 32121053 PMCID: PMC7151609 DOI: 10.3390/jfb11010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/27/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering, with the goal of repairing or replacing damaged tissue and organs, has continued to make dramatic science-based advances since its origins in the late 1980’s and early 1990’s. Such advances are always multi-disciplinary in nature, from basic biology and chemistry through physics and mathematics to various engineering and computer fields. This review will focus its attention on two topics critical for tissue engineering liver development: (a) fluid flow, zonation, and drug screening, and (b) biomechanics, tissue stiffness, and fibrosis, all within the context of 3D structures. First, a general overview of various bioreactor designs developed to investigate fluid transport and tissue biomechanics is given. This includes a mention of computational fluid dynamic methods used to optimize and validate these designs. Thereafter, the perspective provided by computer simulations of flow, reactive transport, and biomechanics responses at the scale of the liver lobule and liver tissue is outlined, in addition to how bioreactor-measured properties can be utilized in these models. Here, the fundamental issues of tortuosity and upscaling are highlighted, as well as the role of disease and fibrosis in these issues. Some idealized simulations of the effects of fibrosis on lobule drug transport and mechanics responses are provided to further illustrate these concepts. This review concludes with an outline of some practical applications of tissue engineering advances and how efficient computational upscaling techniques, such as dual continuum modeling, might be used to quantify the transition of bioreactor results to the full liver scale.
Collapse
|
39
|
Rianna C, Radmacher M, Kumar S. Direct evidence that tumor cells soften when navigating confined spaces. Mol Biol Cell 2020; 31:1726-1734. [PMID: 31995446 PMCID: PMC7521845 DOI: 10.1091/mbc.e19-10-0588] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanical properties of cells strongly regulate many physiological and pathological processes. For example, in cancer, invasive and metastatic tumor cells have often been reported to be softer than nontumor cells, raising speculation that cancer cells might adaptively soften to facilitate migration through narrow tissue spaces. Despite growing interest in targeting cell softening to impede invasion and metastasis, it remains to be directly demonstrated that tumor cells soften as they migrate through confined spaces. Here, we address this open question by combining topographically patterned substrates with atomic force microscopy (AFM). Using a polydimethylsiloxane open-roof microdevice featuring tapered, fibronectin-coated channels, we followed the migration of U2OS cells through various stages of confinement while simultaneously performing AFM indentation. As cells progress from unconfined migration to fully confined migration, cells soften and exclude Yes-associated protein from the nucleus. Superresolution imaging reveals that confinement induces remodeling of actomyosin stress fiber architecture. Companion studies with flat one-dimensional microlines indicate that the changes in cytoarchitecture and mechanics are intrinsically driven by topographical confinement rather than changes in cellular aspect ratio. Our studies represent among the most direct evidence to date that tumor cells soften during confined migration and support cell softening as a mechanoadaptive mechanism during invasion.
Collapse
Affiliation(s)
- Carmela Rianna
- Institute of Biophysics, University of Bremen, 28359 Bremen, Germany.,Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720
| | - Manfred Radmacher
- Institute of Biophysics, University of Bremen, 28359 Bremen, Germany
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720
| |
Collapse
|
40
|
Brill-Karniely Y, Dror D, Duanis-Assaf T, Goldstein Y, Schwob O, Millo T, Orehov N, Stern T, Jaber M, Loyfer N, Vosk-Artzi M, Benyamini H, Bielenberg D, Kaplan T, Buganim Y, Reches M, Benny O. Triangular correlation (TrC) between cancer aggressiveness, cell uptake capability, and cell deformability. SCIENCE ADVANCES 2020; 6:eaax2861. [PMID: 31998832 PMCID: PMC6962040 DOI: 10.1126/sciadv.aax2861] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 11/18/2019] [Indexed: 05/14/2023]
Abstract
The malignancy potential is correlated with the mechanical deformability of the cancer cells. However, mechanical tests for clinical applications are limited. We present here a Triangular Correlation (TrC) between cell deformability, phagocytic capacity, and cancer aggressiveness, suggesting that phagocytic measurements can be a mechanical surrogate marker of malignancy. The TrC was proved in human prostate cancer cells with different malignancy potential, and in human bladder cancer and melanoma cells that were sorted into subpopulations based solely on their phagocytic capacity. The more phagocytic subpopulations showed elevated aggressiveness ex vivo and in vivo. The uptake potential was preserved, and differences in gene expression and in epigenetic signature were detected. In all cases, enhanced phagocytic and aggressiveness phenotypes were correlated with greater cell deformability and predicted by a computational model. Our multidisciplinary study provides the proof of concept that phagocytic measurements can be applied for cancer diagnostics and precision medicine.
Collapse
Affiliation(s)
- Yifat Brill-Karniely
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Corresponding author. (O.B.); (Y.B.-K.)
| | - Dvir Dror
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Tal Duanis-Assaf
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yoel Goldstein
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ouri Schwob
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Talya Millo
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Natalie Orehov
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Tal Stern
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Mohammad Jaber
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem 91120, Israel
| | - Netanel Loyfer
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Margarita Vosk-Artzi
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University and Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Diane Bielenberg
- Department of Surgery, Harvard Medical School, Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University–Hadassah Medical School, Jerusalem 91120, Israel
| | - Meital Reches
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ofra Benny
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Corresponding author. (O.B.); (Y.B.-K.)
| |
Collapse
|
41
|
Leartprapun N, Iyer RR, Mackey CD, Adie SG. Spatial localization of mechanical excitation affects spatial resolution, contrast, and contrast-to-noise ratio in acoustic radiation force optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2019; 10:5877-5904. [PMID: 31799053 PMCID: PMC6865116 DOI: 10.1364/boe.10.005877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 05/05/2023]
Abstract
The notion that a spatially confined mechanical excitation would produce an elastogram with high spatial resolution has motivated the development of various elastography techniques with localized mechanical excitation. However, a quantitative investigation of the effects of spatial localization of mechanical excitation on the spatial resolution of elastograms is still lacking in optical coherence elastography (OCE). Here, we experimentally investigated the effect of spatial localization of acoustic radiation force (ARF) excitation on spatial resolution, contrast, and contrast-to-noise ratio (CNR) of dynamic uniaxial strain elastograms in dynamic ARF-OCE, based on a framework for analyzing the factors that influence the quality of the elastogram at different stages of the elastography workflow. Our results show that localized ARF excitation with a smaller acoustic focal spot size produced a strain elastogram with superior spatial resolution, contrast, and CNR. Our results also suggest that the spatial extent spanned by the displacement response in the sample may connect between the spatial localization of the mechanical excitation and the resulting elastogram quality. The elastography framework and experimental approach presented here may provide a basis for the quantitative analysis of elastogram quality in OCE that can be adapted and applied to different OCE systems and applications.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Cornell University, Meinig School of Biomedical Engineering, Weill Hall, Ithaca, New York 14853, USA
| | - Rishyashring R. Iyer
- Cornell University, Meinig School of Biomedical Engineering, Weill Hall, Ithaca, New York 14853, USA
- Present address: University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, USA
| | - Colin D. Mackey
- Cornell University, Meinig School of Biomedical Engineering, Weill Hall, Ithaca, New York 14853, USA
| | - Steven G. Adie
- Cornell University, Meinig School of Biomedical Engineering, Weill Hall, Ithaca, New York 14853, USA
| |
Collapse
|
42
|
Chen H, Cai Y, Chen Q, Li Z. Multiscale modeling of solid stress and tumor cell invasion in response to dynamic mechanical microenvironment. Biomech Model Mechanobiol 2019; 19:577-590. [PMID: 31571083 DOI: 10.1007/s10237-019-01231-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022]
Abstract
Mathematical models can provide a quantitatively sophisticated description of tumor cell (TC) behaviors under mechanical microenvironment and help us better understand the role of specific biophysical factors based on their influences on the TC behaviors. To this end, we propose an off-lattice cell-based multiscale mathematical model to describe the dynamic growth-induced solid stress during tumor progression and investigate the influence of the mechanical microenvironment on TC invasion. At the cellular level, cell-cell and cell-matrix interactive forces depend on the mechanical properties of the cells and the cancer-associated fibroblasts in the stroma, respectively. The constitutive relationship between the interactive forces and cell migrations obeys the Hooke's law and damping effects. At the tissue level, the integrated growth-induced forces caused by proliferating cells within the simulation region are balanced by the external forces applied by the surrounding host tissues. Then, the cell movements are calculated according to the Newton's second law of motion, and the morphology of TC invasion is updated. The simulation results reveal the continuous changes of the macroscopic mechanical forces due to the interactions among the structural components and the microscopic environmental factors. Moreover, the simulation results demonstrate the adverse effect of the stiffness of tumor tissue on tumor growth and invasion. A decrease in the stiffness of tumor and matrix can promote TCs to proliferate at a much faster rate and invade into the surrounding healthy tissue more easily, whereas an increase in the stiffness can lead to an aggressive morphology of tumor invasion. We envision that the proposed model can be served as a quantitative theoretical platform to study the underlying biophysical role of the mechanical microenvironmental factors during tumor invasion and metastasis.
Collapse
Affiliation(s)
- H Chen
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Y Cai
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Q Chen
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Z Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China. .,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| |
Collapse
|
43
|
Liu H, Wan J, Xu G, Xiang LH, Fang Y, Ding SS, Jiang X, Sun LP, Zhang YF. Conventional US and 2-D Shear Wave Elastography of Virtual Touch Tissue Imaging Quantification: Correlation with Immunohistochemical Subtypes of Breast Cancer. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2612-2622. [PMID: 31371128 DOI: 10.1016/j.ultrasmedbio.2019.06.421] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Our study aimed to investigate the correlation of the imaging features obtained using conventional ultrasound (US) and elastography (conventional strain elastography of elasticity imaging [EI], virtual touch tissue imaging [VTI] and 2-D shear wave elastography [2-D-SWE] of virtual touch tissue imaging quantification [VTIQ]) with the clinicopathologic features and immunohistochemical (IHC) subtypes of breast cancer. The sample consisted of images from 202 patients with 206 breast lesions that were confirmed as breast cancers. Lesions with HER2 overexpression (luminal B HER2+ or HER2+) had higher mean shear wave velocity (SWV) values than the others. Older patients, lower histologic grade, no lymphovascular invasion and no lymph node metastasis were associated with luminal A (p < 0.001). There were significant differences in SWV values, histologic grade and lymph node status among the different pathologic types. This association may allow the use of 2-D-SWE in the pre-operative prediction of tumor characteristics and biologic activity, which may determine the prognosis in a non-invasive manner.
Collapse
Affiliation(s)
- Hui Liu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China; Thyroid Institute, Tongji University School of Medicine, Shanghai, China
| | - Jing Wan
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China; Thyroid Institute, Tongji University School of Medicine, Shanghai, China
| | - Guang Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China; Thyroid Institute, Tongji University School of Medicine, Shanghai, China
| | - Li-Hua Xiang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China; Thyroid Institute, Tongji University School of Medicine, Shanghai, China
| | - Yan Fang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China; Thyroid Institute, Tongji University School of Medicine, Shanghai, China
| | - Shi-Si Ding
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China; Thyroid Institute, Tongji University School of Medicine, Shanghai, China
| | - Xiao Jiang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li-Ping Sun
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China; Thyroid Institute, Tongji University School of Medicine, Shanghai, China
| | - Yi-Feng Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China; Thyroid Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Scott KE, Rychel K, Ranamukhaarachchi S, Rangamani P, Fraley SI. Emerging themes and unifying concepts underlying cell behavior regulation by the pericellular space. Acta Biomater 2019; 96:81-98. [PMID: 31176842 DOI: 10.1016/j.actbio.2019.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022]
Abstract
Cells reside in a complex three-dimensional (3D) microenvironment where physical, chemical, and architectural features of the pericellular space regulate important cellular functions like migration, differentiation, and morphogenesis. A major goal of tissue engineering is to identify which properties of the pericellular space orchestrate these emergent cell behaviors and how. In this review, we highlight recent studies at the interface of biomaterials and single cell biophysics that are lending deeper insight towards this goal. Advanced methods have enabled the decoupling of architectural and mechanical features of the microenvironment, revealing multiple mechanisms of adhesion and mechanosensing modulation by biomaterials. Such studies are revealing important roles for pericellular space degradability, hydration, and adhesion competition in cell shape, volume, and differentiation regulation. STATEMENT OF SIGNIFICANCE: Cell fate and function are closely regulated by the local extracellular microenvironment. Advanced methods at the interface of single cell biophysics and biomaterials have shed new light on regulators of cell-pericellular space interactions by decoupling more features of the complex pericellular milieu than ever before. These findings lend deeper mechanistic insight into how biomaterials can be designed to fine-tune outcomes like differentiation, migration, and collective morphogenesis.
Collapse
Affiliation(s)
- Kiersten E Scott
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| | - Kevin Rychel
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| | - Sural Ranamukhaarachchi
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| | - Padmini Rangamani
- Mechanical and Aerospace Engineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0411, La Jolla, CA 92093, USA.
| | - Stephanie I Fraley
- Bioengineering, University of California San Diego Jacobs School of Engineering, 9500 Gilman Drive #0435, La Jolla, CA 92093, USA.
| |
Collapse
|
45
|
Grimm MJ. Engineering and women's health: a slow start, but gaining momentum. Interface Focus 2019; 9:20190017. [PMID: 31263535 DOI: 10.1098/rsfs.2019.0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
While biomedical engineers have participated in research studies that focus on understanding aspects particular to women's health since the 1950s, the depth and breadth of the research have increased significantly in the last 15-20 years. It has been increasingly clear that engineers can lend important knowledge and analysis to address questions that are key to understanding physiology and pathophysiology related to women's health. This historical survey identifies some of the earliest contributions of engineers to exploring aspects of women's health, from the behaviour of key tissues, to issues of reproduction and breast cancer. In addition, some of the more recent work in each area is identified and areas deserving additional attention are described. The interdisciplinary nature of this area of engineering, along with the growing interest within the field of biomedical engineering, promise to bring exciting new discoveries and expand knowledge that will positively impact women's health in the near future.
Collapse
Affiliation(s)
- Michele J Grimm
- Wielenga Creative Engineering Endowed Professor, Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
46
|
Verotti M, Di Giamberardino P, Belfiore N, Giannini O. A genetic algorithm-based method for the mechanical characterization of biosamples using a MEMS microgripper: numerical simulations. J Mech Behav Biomed Mater 2019; 96:88-95. [DOI: 10.1016/j.jmbbm.2019.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/03/2019] [Accepted: 04/11/2019] [Indexed: 01/18/2023]
|
47
|
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064602. [PMID: 30947151 DOI: 10.1088/1361-6633/ab1628] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The minimal structural unit of a solid tumor is a single cell or a cellular compartment such as the nucleus. A closer look inside the cells reveals that there are functional compartments or even structural domains determining the overall properties of a cell such as the mechanical phenotype. The mechanical interaction of these living cells leads to the complex organization such as compartments, tissues and organs of organisms including mammals. In contrast to passive non-living materials, living cells actively respond to the mechanical perturbations occurring in their microenvironment during diseases such as fibrosis and cancer. The transformation of single cancer cells in highly aggressive and hence malignant cancer cells during malignant cancer progression encompasses the basement membrane crossing, the invasion of connective tissue, the stroma microenvironments and transbarrier migration, which all require the immediate interaction of the aggressive and invasive cancer cells with the surrounding extracellular matrix environment including normal embedded neighboring cells. All these steps of the metastatic pathway seem to involve mechanical interactions between cancer cells and their microenvironment. The pathology of cancer due to a broad heterogeneity of cancer types is still not fully understood. Hence it is necessary to reveal the signaling pathways such as mechanotransduction pathways that seem to be commonly involved in the development and establishment of the metastatic and mechanical phenotype in several carcinoma cells. We still do not know whether there exist distinct metastatic genes regulating the progression of tumors. These metastatic genes may then be activated either during the progression of cancer by themselves on their migration path or in earlier stages of oncogenesis through activated oncogenes or inactivated tumor suppressor genes, both of which promote the metastatic phenotype. In more detail, the adhesion of cancer cells to their surrounding stroma induces the generation of intracellular contraction forces that deform their microenvironments by alignment of fibers. The amplitude of these forces can adapt to the mechanical properties of the microenvironment. Moreover, the adhesion strength of cancer cells seems to determine whether a cancer cell is able to migrate through connective tissue or across barriers such as the basement membrane or endothelial cell linings of blood or lymph vessels in order to metastasize. In turn, exposure of adherent cancer cells to physical forces, such as shear flow in vessels or compression forces around tumors, reinforces cell adhesion, regulates cell contractility and restructures the ordering of the local stroma matrix that leads subsequently to secretion of crosslinking proteins or matrix degrading enzymes. Hence invasive cancer cells alter the mechanical properties of their microenvironment. From a mechanobiological point-of-view, the recognized physical signals are transduced into biochemical signaling events that guide cellular responses such as cancer progression after the malignant transition of cancer cells from an epithelial and non-motile phenotype to a mesenchymal and motile (invasive) phenotype providing cellular motility. This transition can also be described as the physical attempt to relate this cancer cell transitional behavior to a T1 phase transition such as the jamming to unjamming transition. During the invasion of cancer cells, cell adaptation occurs to mechanical alterations of the local stroma, such as enhanced stroma upon fibrosis, and therefore we need to uncover underlying mechano-coupling and mechano-regulating functional processes that reinforce the invasion of cancer cells. Moreover, these mechanisms may also be responsible for the awakening of dormant residual cancer cells within the microenvironment. Physicists were initially tempted to consider the steps of the cancer metastasis cascade as single events caused by a single mechanical alteration of the overall properties of the cancer cell. However, this general and simple view has been challenged by the finding that several mechanical properties of cancer cells and their microenvironment influence each other and continuously contribute to tumor growth and cancer progression. In addition, basement membrane crossing, cell invasion and transbarrier migration during cancer progression is explained in physical terms by applying physical principles on living cells regardless of their complexity and individual differences of cancer types. As a novel approach, the impact of the individual microenvironment surrounding cancer cells is also included. Moreover, new theories and models are still needed to understand why certain cancers are malignant and aggressive, while others stay still benign. However, due to the broad variety of cancer types, there may be various pathways solely suitable for specific cancer types and distinct steps in the process of cancer progression. In this review, physical concepts and hypotheses of cancer initiation and progression including cancer cell basement membrane crossing, invasion and transbarrier migration are presented and discussed from a biophysical point-of-view. In addition, the crosstalk between cancer cells and a chronically altered microenvironment, such as fibrosis, is discussed including the basic physical concepts of fibrosis and the cellular responses to mechanical stress caused by the mechanically altered microenvironment. Here, is highlighted how biophysical approaches, both experimentally and theoretically, have an impact on classical hallmarks of cancer and fibrosis and how they contribute to the understanding of the regulation of cancer and its progression by sensing and responding to the physical environmental properties through mechanotransduction processes. Finally, this review discusses various physical models of cell migration such as blebbing, nuclear piston, protrusive force and unjamming transition migration modes and how they contribute to cancer progression. Moreover, these cellular migration modes are influenced by microenvironmental perturbances such as fibrosis that can induce mechanical alterations in cancer cells, which in turn may impact the environment. Hence, the classical hallmarks of cancer need to be refined by including biomechanical properties of cells, cell clusters and tissues and their microenvironment to understand mechano-regulatory processes within cancer cells and the entire organism.
Collapse
|
48
|
Heydarian A, Khorramymehr S, Vasaghi-Gharamaleki B. Short-term effects of X-ray on viscoelastic properties of epithelial cells. Proc Inst Mech Eng H 2019; 233:535-543. [DOI: 10.1177/0954411919837563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Examining the effects of ionizing radiation on the living cell is significant due to its usage in recent centuries. Investigations into the long- and short-term effects of ionizing radiation began simultaneously with its discovery. Previous studies were done on the effects of radiation on cell DNA or the biochemical cycle based on the electromagnetic radiation wavelength, intensity, and exposure time. Considering some dependent parameters like cell communication, the differentiation and the mechanical interactions of intercellular environment, and cell mechanical properties, the effects of ionizing radiation on the viscoelastic properties of cells seem to be important. The current research investigated the short-term biomechanical effects of ionizing radiation and examined the mechanical properties of cells using magnetic tweezer cytometry with nanomagnetic particles. To evaluate these effects, cells were incubated with nanomagnetic particles and then separated into controlled and irradiated groups. A 3 mGy cm2 X-ray was radiated to the irradiated group for 0.02 s. The dishes of both groups were inserted into magnetic tweezer cytometry for applying a magnetic force pulse, and the cell membrane displacement was detected by an image processing system. The creep response of the membrane was determined for viscoelastic model curve fitting. The frequency responses of the model for both groups were calculated. The results showed that radiation could decrease cell extensibility from 0.084 ± 0.001 to 0.019 ± 0.001 µm and change the storage and loss modulus as the indicator of the viscoelastic property of the material. This research explains that radiation could affect cellular mechanical properties.
Collapse
Affiliation(s)
- Ashkan Heydarian
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Siamak Khorramymehr
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
49
|
Lee G, Han SB, Lee JH, Kim HW, Kim DH. Cancer Mechanobiology: Microenvironmental Sensing and Metastasis. ACS Biomater Sci Eng 2019; 5:3735-3752. [PMID: 33405888 DOI: 10.1021/acsbiomaterials.8b01230] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cellular microenvironment plays an important role in regulating cancer progress. Cancer can physically and chemically remodel its surrounding extracellular matrix (ECM). Critical cellular behaviors such as recognition of matrix geometry and rigidity, cell polarization and motility, cytoskeletal reorganization, and proliferation can be changed as a consequence of these ECM alternations. Here, we present an overview of cancer mechanobiology in detail, focusing on cancer microenvironmental sensing of exogenous cues and quantification of cancer-substrate interactions. In addition, mechanics of metastasis classified with tumor progression will be discussed. The mechanism underlying cancer mechanosensation and tumor progression may provide new insights into therapeutic strategies to alleviate cancer malignancy.
Collapse
Affiliation(s)
- GeonHui Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, South Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, South Korea.,Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
50
|
Yeoman BM, Katira P. A stochastic algorithm for accurately predicting path persistence of cells migrating in 3D matrix environments. PLoS One 2018; 13:e0207216. [PMID: 30440015 PMCID: PMC6237354 DOI: 10.1371/journal.pone.0207216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/26/2018] [Indexed: 01/07/2023] Open
Abstract
Cell mobility plays a critical role in immune response, wound healing, and the rate of cancer metastasis and tumor progression. Mobility within a three-dimensional (3D) matrix environment can be characterized by the average velocity of cell migration and the persistence length of the path it follows. Computational models that aim to predict cell migration within such 3D environments need to be able predict both of these properties as a function of the various cellular and extra-cellular factors that influence the migration process. A large number of models have been developed to predict the velocity of cell migration driven by cellular protrusions in 3D environments. However, prediction of the persistence of a cell's path is a more tedious matter, as it requires simulating cells for a long time while they migrate through the model extra-cellular matrix (ECM). This can be a computationally expensive process, and only recently have there been attempts to quantify cell persistence as a function of key cellular or matrix properties. Here, we propose a new stochastic algorithm that can simulate and analyze 3D cell migration occurring over days with a computation time of minutes, opening new possibilities of testing and predicting long-term cell migration behavior as a function of a large variety of cell and matrix properties. In this model, the matrix elements are generated as needed and stochastically based on the biophysical and biochemical properties of the ECM the cell migrates through. This approach significantly reduces the computational resources required to track and calculate cell matrix interactions. Using this algorithm, we predict the effect of various cellular and matrix properties such as cell polarity, cell mechanoactivity, matrix fiber density, matrix stiffness, fiber alignment, and fiber binding site density on path persistence of cellular migration and the mean squared displacement of cells over long periods of time.
Collapse
Affiliation(s)
- Benjamin Michael Yeoman
- Mechanical Engineering Department, San Diego State University, San Diego, CA, United States of America
- Department of Bioengineering, University of California San Diego, San Diego, CA, United States of America
| | - Parag Katira
- Mechanical Engineering Department, San Diego State University, San Diego, CA, United States of America
- Computational Science Research Center, San Diego State University, San Diego, CA, United States of America
| |
Collapse
|