1
|
Costan SA, Ryan PM, Kim H, Wolgemuth CW, Riedel-Kruse IH. Biophysical characterization of synthetic adhesins for predicting and tuning engineered living material properties. MATTER 2024; 7:2125-2143. [PMID: 39165662 PMCID: PMC11335339 DOI: 10.1016/j.matt.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Bacterial synthetic multicellular systems are promising platforms for engineered living materials (ELMs) for medical, biosynthesis, environmental, and smart materials applications. Recent advancements in genetically encoded adhesion toolkits have enabled precise manipulation of cell-cell adhesion and the design and patterning of self-assembled multicellular materials. However, in contrast to gene regulation in synthetic biology, the characterization and control of synthetic adhesins remains limited. Here, we demonstrate the quantitative characterization of a bacterial synthetic adhesion toolbox through various biophysical methods. We determine key parameters, including number of adhesins per cell, in-membrane diffusion constant, production and decay rates, and bond-breaking force between adhesins. With these parameters, we demonstrate the bottom-up prediction and quantitative tuning of macroscopic ELM properties (tensile strength) and, furthermore, that cells inside ELMs are connected only by a small fraction of available adhesins. These results enable the rational engineering, characterization, and modeling of other synthetic and natural adhesins and multicellular consortia.
Collapse
Affiliation(s)
- Stefana A. Costan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Paul M. Ryan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| | - Honesty Kim
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Charles W. Wolgemuth
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
- Department of Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
| | - Ingmar H. Riedel-Kruse
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
- Department of Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
- Lead contact
| |
Collapse
|
2
|
Lee Upton S, Tay JW, Schwartz DK, Sousa MC. Similarly slow diffusion of BAM and SecYEG complexes in live E. coli cells observed with 3D spt-PALM. Biophys J 2023; 122:4382-4394. [PMID: 37853695 PMCID: PMC10698321 DOI: 10.1016/j.bpj.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
The β-barrel assembly machinery (BAM) complex is responsible for inserting outer membrane proteins (OMPs) into the Escherichia coli outer membrane. The SecYEG translocon inserts inner membrane proteins into the inner membrane and translocates both soluble proteins and nascent OMPs into the periplasm. Recent reports describe Sec possibly playing a direct role in OMP biogenesis through interactions with the soluble polypeptide transport-associated (POTRA) domains of BamA (the central OMP component of BAM). Here we probe the diffusion behavior of these protein complexes using photoactivatable super-resolution localization microscopy and single-particle tracking in live E. coli cells of BAM and SecYEG components BamA and SecE and compare them to other outer and inner membrane proteins. To accurately measure trajectories on the highly curved cell surface, three-dimensional tracking was performed using double-helix point-spread function microscopy. All proteins tested exhibit two diffusive modes characterized by "slow" and "fast" diffusion coefficients. We implement a diffusion coefficient analysis as a function of the measurement lag time to separate positional uncertainty from true mobility. The resulting true diffusion coefficients of the slow and fast modes showed a complete immobility of full-length BamA constructs in the time frame of the experiment, whereas the OMP OmpLA displayed a slow diffusion consistent with the high viscosity of the outer membrane. The periplasmic POTRA domains of BamA were found to anchor BAM to other cellular structures and render it immobile. However, deletion of individual distal POTRA domains resulted in increased mobility, suggesting that these domains are required for the full set of cellular interactions. SecE diffusion was much slower than that of the inner membrane protein PgpB and was more like OMPs and BamA. Strikingly, SecE diffused faster upon POTRA domain deletion. These results are consistent with the existence of a BAM-SecYEG trans-periplasmic assembly in live E. coli cells.
Collapse
Affiliation(s)
- Stephen Lee Upton
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Daniel Keith Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado
| | | |
Collapse
|
3
|
Miller J, Murray PJ. Space and time on the membrane: modelling Type VI secretion system dynamics as a state-dependent random walk. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230284. [PMID: 37920566 PMCID: PMC10618060 DOI: 10.1098/rsos.230284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023]
Abstract
The type six secretion system (T6SS) is a transmembrane protein complex that mediates bacterial cell killing. The T6SS comprises three main components (transmembrane, baseplate and sheath/tube complexes) that are sequentially assembled in order to enable an attacking cell to transport payloads into neighbouring cells. A T6SS attack disrupts the function of essential cellular components of target cells, typically resulting in their death. While the assembled T6SS adopts a fixed position in the cell membrane of the attacking cell, the location of the firing site varies between firing events. In Serratia marcescens, a post-translational regulatory network regulates the assembly and firing kinetics of the T6SS in a manner that affects the attacking cell's ability to kill target cells. Moreover, when the ability of membrane complexes to reorient is reduced, an attacking cell's competitiveness is also reduced. In this study, we will develop a mathematical model that describes both the spatial motion and assembly/disassembly of a firing T6SS. The model represents the motion of a T6SS on the cell membrane as a state-dependent random walk. Using the model, we will explore how both spatial and temporal effects can combine to give rise to different firing phenotypes. Using parameters inferred from the available literature, we show that variation in estimated diffusion coefficients is sufficient to give rise to either spatially local or global firers.
Collapse
|
4
|
Liu W, Huang Y, Zhang H, Liu Z, Huan Q, Xiao X, Wang Z. Factors and Mechanisms Influencing Conjugation In Vivo in the Gastrointestinal Tract Environment: A Review. Int J Mol Sci 2023; 24:5919. [PMID: 36982992 PMCID: PMC10059276 DOI: 10.3390/ijms24065919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The emergence and spread of antibiotic resistance genes (ARGs) have imposed a serious threat on global public health. Horizontal gene transfer (HGT) via plasmids is mainly responsible for the spread of ARGs, and conjugation plays an important role in HGT. The conjugation process is very active in vivo and its effect on the spreading of ARGs may be underestimated. In this review, factors affecting conjugation in vivo, especially in the intestinal environment, are summarized. In addition, the potential mechanisms affecting conjugation in vivo are summarized from the perspectives of bacterial colonization and the conjugation process.
Collapse
Affiliation(s)
- Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Yanhu Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Han Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Ziyi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Quanmin Huan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225012, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225012, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
5
|
Surveying membrane landscapes: a new look at the bacterial cell surface. Nat Rev Microbiol 2023:10.1038/s41579-023-00862-w. [PMID: 36828896 DOI: 10.1038/s41579-023-00862-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Recent studies applying advanced imaging techniques are changing the way we understand bacterial cell surfaces, bringing new knowledge on everything from single-cell heterogeneity in bacterial populations to their drug sensitivity and mechanisms of antimicrobial resistance. In both Gram-positive and Gram-negative bacteria, the outermost surface of the bacterial cell is being imaged at nanoscale; as a result, topographical maps of bacterial cell surfaces can be constructed, revealing distinct zones and specific features that might uniquely identify each cell in a population. Functionally defined assembly precincts for protein insertion into the membrane have been mapped at nanoscale, and equivalent lipid-assembly precincts are suggested from discrete lipopolysaccharide patches. As we review here, particularly for Gram-negative bacteria, the applications of various modalities of nanoscale imaging are reawakening our curiosity about what is conceptually a 3D cell surface landscape: what it looks like, how it is made and how it provides resilience to respond to environmental impacts.
Collapse
|
6
|
Ye C, Feng M, Chen Y, Zhang Y, Chen Q, Yu X. Dormancy induced by oxidative damage during disinfection facilitates conjugation of ARGs through enhancing efflux and oxidative stress: A lagging response. WATER RESEARCH 2022; 221:118798. [PMID: 35779456 DOI: 10.1016/j.watres.2022.118798] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Disinfection is known to greatly alter bacterial characteristics in water, and high horizontal gene transfer (HGT) frequency occurs in eutrophic conditions. Interestingly, these two seemingly irrelevant phenomena were closely linked by a lagging response of the increased conjugation frequency probably via daily water disinfection in this study. Three disinfection methods (UV, chlorine, and UV/chlorine) were selected to investigate the increased frequency of conjugation of ARGs during the stage of continuing culture after disinfection. The results showed that the conjugative transfer frequency was inhibited for all disinfection treatments after 24 h of co-incubation. Unexpectedly, after 3-7 days of co-cultivation, the HGT frequencies were increased by 2.71-5.61-fold and 5.46-13.96-fold in chlorine (30 min) and UV/chlorine (1 min) groups compared to the control, but not in UV-irradiated groups. A neglected lagging response was found for the first time, i.e., oxidative disinfection-induced dormancy promotes conjugative transfer of ARGs. Furthermore, mechanistic insights were gained from (1) membrane permeability, (2) conjugation-regulated system, (3) efflux pump system, and (4) oxidative stress system, suggesting the critical role of enhancing efflux and oxidative stress in the propagation of ARGs. Finally, the known instantaneous effect of oxidation disinfection was compared to address the controversial debate in this research field, proposing that the dormancy level of donor bacteria is the key to evaluating whether it can promote the HGT process. This study has important environmental implications for elucidating the transmission of ARGs after oxidation disinfection.
Collapse
Affiliation(s)
- Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Mingbao Feng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China.
| | - Yuqi Chen
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Yiting Zhang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Qian Chen
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
7
|
Yang Y, Gress H, Ekinci KL. Measurement of the low-frequency charge noise of bacteria. Phys Rev E 2022; 105:064413. [PMID: 35854507 DOI: 10.1103/physreve.105.064413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/08/2022] [Indexed: 11/07/2022]
Abstract
Bacteria meticulously regulate their intracellular ion concentrations and create ionic concentration gradients across the bacterial membrane. These ionic concentration gradients provide free energy for many cellular processes and are maintained by transmembrane transport. Given the physical dimensions of a bacterium and the stochasticity in transmembrane transport, intracellular ion concentrations and hence the charge state of a bacterium are bound to fluctuate. Here we investigate the charge noise of hundreds of nonmotile bacteria by combining electrical measurement techniques from condensed matter physics with microfluidics. In our experiments, bacteria in a microchannel generate charge density fluctuations in the embedding electrolyte due to random influx and efflux of ions. Detected as electrical resistance noise, these charge density fluctuations display a power spectral density proportional to 1/f^{2} for frequencies 0.05Hz≤f≤1Hz. Fits to a simple noise model suggest that the steady-state charge of a bacterium fluctuates by ±1.30×10^{6}e(e≈1.60×10^{-19}C), indicating that bacterial ion homeostasis is highly dynamic and dominated by strong charge noise. The rms charge noise can then be used to estimate the fluctuations in the membrane potential; however, the estimates are unreliable due to our limited understanding of the intracellular concentration gradients.
Collapse
Affiliation(s)
- Yichao Yang
- Department of Mechanical Engineering, Division of Materials Science and Engineering, and the Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| | - Hagen Gress
- Department of Mechanical Engineering, Division of Materials Science and Engineering, and the Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| | - Kamil L Ekinci
- Department of Mechanical Engineering, Division of Materials Science and Engineering, and the Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
8
|
Spatiotemporal stop-and-go dynamics of the mitochondrial TOM core complex correlates with channel activity. Commun Biol 2022; 5:471. [PMID: 35581327 PMCID: PMC9114391 DOI: 10.1038/s42003-022-03419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Abstract
Single-molecule studies can reveal phenomena that remain hidden in ensemble measurements. Here we show the correlation between lateral protein diffusion and channel activity of the general protein import pore of mitochondria (TOM-CC) in membranes resting on ultrathin hydrogel films. Using electrode-free optical recordings of ion flux, we find that TOM-CC switches reversibly between three states of ion permeability associated with protein diffusion. While freely diffusing TOM-CC molecules are predominantly in a high permeability state, non-mobile molecules are mostly in an intermediate or low permeability state. We explain this behavior by the mechanical binding of the two protruding Tom22 subunits to the hydrogel and a concomitant combinatorial opening and closing of the two β-barrel pores of TOM-CC. TOM-CC could thus represent a β-barrel membrane protein complex to exhibit membrane state-dependent mechanosensitive properties, mediated by its two Tom22 subunits.
Collapse
|
9
|
Sowlati-Hashjin S, Gandhi A, Garton M. Dawn of a New Era for Membrane Protein Design. BIODESIGN RESEARCH 2022; 2022:9791435. [PMID: 37850134 PMCID: PMC10521746 DOI: 10.34133/2022/9791435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/20/2022] [Indexed: 10/19/2023] Open
Abstract
A major advancement has recently occurred in the ability to predict protein secondary structure from sequence using artificial neural networks. This new accessibility to high-quality predicted structures provides a big opportunity for the protein design community. It is particularly welcome for membrane protein design, where the scarcity of solved structures has been a major limitation of the field for decades. Here, we review the work done to date on the membrane protein design and set out established and emerging tools that can be used to most effectively exploit this new access to structures.
Collapse
Affiliation(s)
- Shahin Sowlati-Hashjin
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada, M5S 3E2
| | - Aanshi Gandhi
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada, M5S 3E2
| | - Michael Garton
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, Canada, M5S 3E2
| |
Collapse
|
10
|
Galitskaya P, Biktasheva L, Kuryntseva P, Selivanovskaya S. Response of soil bacterial communities to high petroleum content in the absence of remediation procedures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9610-9627. [PMID: 33155112 DOI: 10.1007/s11356-020-11290-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Oil spills are events that frequently lead to petroleum pollution. This pollution may cause stress to microbial communities, which require long adaption periods. Soil petroleum pollution is currently considered one of the most serious environmental problems. In the present work, processes occurring in the bacterial communities of three soil samples with different physicochemical characteristics, artificially polluted with 12% of crude oil, were investigated in 120-day laboratory experiment. It was found that the total petroleum hydrocarbon content did not decrease during this time; however, the proportion of petroleum fractions was altered. Petroleum pollution led to a short-term decrease in the bacterial 16S rRNA gene copy number. On the basis of amplicon sequencing analysis, it was concluded that bacterial community successions were similar in the three soils investigated. Thus, the phyla Actinobacteria and Proteobacteria and candidate TM7 phylum (Saccaribacteria) were predominant with relative abundances ranging from 35 to 58%, 25 to 30%, and 15 to 35% in different samples, respectively. The predominant operational taxonomic units (OTUs) after pollution belonged to the genera Rhodococcus and Mycobacterium, families Nocardioidaceae and Sinobacteraceae, and candidate class ТМ7-3. Genes from the alkIII group encoding monoxygenases were the most abundant compared with other catabolic genes from the alkI, alkII, GN-PAH, and GP-PAH groups, and their copy number significantly increased after pollution. The copy numbers of expressed genes involved in the horizontal transfer of catabolic genes, FlgC, TraG, and OmpF, also increased after pollution by 11-33, 16-63, and 11-71 times, respectively. The bacterial community structure after a high level of petroleum pollution changed because of proliferation of the cells that initially were able to decompose hydrocarbons, and in the second place, because proliferation of the cells that received these catabolic genes through horizontal transfer.
Collapse
Affiliation(s)
- Polina Galitskaya
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008
| | - Liliya Biktasheva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008.
| | - Polina Kuryntseva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008
| | | |
Collapse
|
11
|
Casuso I, Redondo-Morata L, Rico F. Biological physics by high-speed atomic force microscopy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190604. [PMID: 33100165 PMCID: PMC7661283 DOI: 10.1098/rsta.2019.0604] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
While many fields have contributed to biological physics, nanotechnology offers a new scale of observation. High-speed atomic force microscopy (HS-AFM) provides nanometre structural information and dynamics with subsecond resolution of biological systems. Moreover, HS-AFM allows us to measure piconewton forces within microseconds giving access to unexplored, fast biophysical processes. Thus, HS-AFM provides a tool to nourish biological physics through the observation of emergent physical phenomena in biological systems. In this review, we present an overview of the contribution of HS-AFM, both in imaging and force spectroscopy modes, to the field of biological physics. We focus on examples in which HS-AFM observations on membrane remodelling, molecular motors or the unfolding of proteins have stimulated the development of novel theories or the emergence of new concepts. We finally provide expected applications and developments of HS-AFM that we believe will continue contributing to our understanding of nature, by serving to the dialogue between biology and physics. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.
Collapse
Affiliation(s)
- Ignacio Casuso
- Aix-Marseile University, Inserm, CNRS, LAI, 163 Av. de Luminy, 13009 Marseille, France
| | - Lorena Redondo-Morata
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, 59000 Lille, France
| | - Felix Rico
- Aix-Marseile University, Inserm, CNRS, LAI, 163 Av. de Luminy, 13009 Marseille, France
- e-mail:
| |
Collapse
|
12
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
13
|
Jaumouillé V, Waterman CM. Physical Constraints and Forces Involved in Phagocytosis. Front Immunol 2020; 11:1097. [PMID: 32595635 PMCID: PMC7304309 DOI: 10.3389/fimmu.2020.01097] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in Klebsiella pneumoniae. mBio 2020; 11:mBio.00603-20. [PMID: 32291303 PMCID: PMC7157821 DOI: 10.1128/mbio.00603-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Klebsiella pneumoniae is a pathogen of humans with high rates of mortality and a recognized global rise in incidence of carbapenem-resistant K. pneumoniae (CRKP). The outer membrane of K. pneumoniae forms a permeability barrier that modulates the ability of antibiotics to reach their intracellular target. OmpK35, OmpK36, OmpK37, OmpK38, PhoE, and OmpK26 are porins in the outer membrane of K. pneumoniae, demonstrated here to have a causative relationship to drug resistance phenotypes in a physiological context. The data highlight that currently trialed combination treatments with a carbapenem and β-lactamase inhibitors could be effective on porin-deficient K. pneumoniae. Together with structural data, the results reveal the role of outer membrane proteome remodeling in antimicrobial resistance of K. pneumoniae and point to the role of extracellular loops, not channel parameters, in drug permeation. This significant finding warrants care in the development of phage therapies for K. pneumoniae infections, given the way porin expression will be modulated to confer phage-resistant—and collateral drug-resistant—phenotypes in K. pneumoniae. In Gram-negative bacteria, the permeability of the outer membrane governs rates of antibiotic uptake and thus the efficacy of antimicrobial treatment. Hydrophilic drugs like β-lactam antibiotics depend on diffusion through pore-forming outer membrane proteins to reach their intracellular targets. In this study, we investigated the distribution of porin genes in more than 2,700 Klebsiella isolates and found a widespread loss of OmpK35 functionality, particularly in those strains isolated from clinical environments. Using a defined set of outer-membrane-remodeled mutants, the major porin OmpK35 was shown to be largely responsible for β-lactam permeation. Sequence similarity network analysis characterized the porin protein subfamilies and led to discovery of a new porin family member, OmpK38. Structure-based comparisons of OmpK35, OmpK36, OmpK37, OmpK38, and PhoE showed near-identical pore frameworks but defining differences in the sequence characteristics of the extracellular loops. Antibiotic sensitivity profiles of isogenic Klebsiella pneumoniae strains, each expressing a different porin as its dominant pore, revealed striking differences in the antibiotic permeability characteristics of each channel in a physiological context. Since K. pneumoniae is a nosocomial pathogen with high rates of antimicrobial resistance and concurrent mortality, these experiments elucidate the role of porins in conferring specific drug-resistant phenotypes in a global context, informing future research to combat antimicrobial resistance in K. pneumoniae.
Collapse
|
15
|
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Abstract
Diffusion within bacteria is often thought of as a "simple" random process by which molecules collide and interact with each other. New research however shows that this is far from the truth. Here we shed light on the complexity and importance of diffusion in bacteria, illustrating the similarities and differences of diffusive behaviors of molecules within different compartments of bacterial cells. We first describe common methodologies used to probe diffusion and the associated models and analyses. We then discuss distinct diffusive behaviors of molecules within different bacterial cellular compartments, highlighting the influence of metabolism, size, crowding, charge, binding, and more. We also explicitly discuss where further research and a united understanding of what dictates diffusive behaviors across the different compartments of the cell are required, pointing out new research avenues to pursue.
Collapse
Affiliation(s)
- Christopher H Bohrer
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Rodrigues G, Silva GGO, Buccini DF, Duque HM, Dias SC, Franco OL. Bacterial Proteinaceous Compounds With Multiple Activities Toward Cancers and Microbial Infection. Front Microbiol 2019; 10:1690. [PMID: 31447795 PMCID: PMC6691048 DOI: 10.3389/fmicb.2019.01690] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
In recent decades, cancer and multidrug resistance have become a worldwide problem, resulting in high morbidity and mortality. Some infectious agents like Streptococcus pneumoniae, Stomatococcus mucilaginous, Staphylococcus spp., E. coli. Klebsiella spp., Pseudomonas aeruginosa, Candida spp., Helicobacter pylori, hepatitis B and C, and human papillomaviruses (HPV) have been associated with the development of cancer. Chemotherapy, radiotherapy and antibiotics are the conventional treatment for cancer and infectious disease. This treatment causes damage in healthy cells and tissues, and usually triggers systemic side-effects, as well as drug resistance. Therefore, the search for new treatments is urgent, in order to improve efficacy and also reduce side-effects. Proteins and peptides originating from bacteria can thus be a promising alternative to conventional treatments used nowadays against cancer and infectious disease. These molecules have demonstrated specific activity against cancer cells and bacterial infection; indeed, proteins and peptides can be considered as future antimicrobial and anticancer drugs. In this context, this review will focus on the desirable characteristics of proteins and peptides from bacterial sources that demonstrated activity against microbial infections and cancer, as well as their efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | | | - Danieli Fernanda Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Pós-Graduação em Biologia Animal, Universidade de Brasilia, Brasília, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
18
|
On mechanisms of colicin import: the outer membrane quandary. Biochem J 2018; 475:3903-3915. [PMID: 30541793 DOI: 10.1042/bcj20180477] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 01/09/2023]
Abstract
Current problems in the understanding of colicin import across the Escherichia coli outer membrane (OM), involving a range of cytotoxic mechanisms, are discussed: (I) Crystal structure analysis of colicin E3 (RNAase) with bound OM vitamin B12 receptor, BtuB, and of the N-terminal translocation (T) domain of E3 and E9 (DNAase) inserted into the OM OmpF porin, provide details of the initial interaction of the colicin central receptor (R)- and N-terminal T-domain with OM receptors/translocators. (II) Features of the translocon include: (a) high-affinity (K d ≈ 10-9 M) binding of the E3 receptor-binding R-domain E3 to BtuB; (b) insertion of disordered colicin N-terminal domain into the OmpF trimer; (c) binding of the N-terminus, documented for colicin E9, to the TolB protein on the periplasmic side of OmpF. Reinsertion of the colicin N-terminus into the second of the three pores in OmpF implies a colicin anchor site on the periplasmic side of OmpF. (III) Studies on the insertion of nuclease colicins into the cytoplasmic compartment imply that translocation proceeds via the C-terminal catalytic domain, proposed here to insert through the unoccupied third pore of the OmpF trimer, consistent with in vitro occlusion of OmpF channels by the isolated E3 C-terminal domain. (IV) Discussion of channel-forming colicins focuses mainly on colicin E1 for which BtuB is receptor and the OM TolC protein the proposed translocator. The ability of TolC, part of a multidrug efflux pump, for which there is no precedent for an import function, to provide a trans-periplasmic import pathway for colicin E1, is questioned on the basis of an unfavorable hairpin conformation of colicin N-terminal peptides inserted into TolC.
Collapse
|
19
|
Schavemaker PE, Boersma AJ, Poolman B. How Important Is Protein Diffusion in Prokaryotes? Front Mol Biosci 2018; 5:93. [PMID: 30483513 PMCID: PMC6243074 DOI: 10.3389/fmolb.2018.00093] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022] Open
Abstract
That diffusion is important for the proper functioning of cells is without question. The extent to which the diffusion coefficient is important is explored here for prokaryotic cells. We discuss the principles of diffusion focusing on diffusion-limited reactions, summarize the known values for diffusion coefficients in prokaryotes and in in vitro model systems, and explain a number of cases where diffusion coefficients are either limiting for reaction rates or necessary for the existence of phenomena. We suggest a number of areas that need further study including expanding the range of organism growth temperatures, direct measurements of diffusion limitation, expanding the range of cell sizes, diffusion limitation for membrane proteins, and taking into account cellular context when assessing the possibility of diffusion limitation.
Collapse
Affiliation(s)
- Paul E Schavemaker
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | - Arnold J Boersma
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
20
|
Gunasinghe SD, Webb CT, Elgass KD, Hay ID, Lithgow T. Super-Resolution Imaging of Protein Secretion Systems and the Cell Surface of Gram-Negative Bacteria. Front Cell Infect Microbiol 2017; 7:220. [PMID: 28611954 PMCID: PMC5447050 DOI: 10.3389/fcimb.2017.00220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/12/2017] [Indexed: 12/28/2022] Open
Abstract
Gram-negative bacteria have a highly evolved cell wall with two membranes composed of complex arrays of integral and peripheral proteins, as well as phospholipids and glycolipids. In order to sense changes in, respond to, and exploit their environmental niches, bacteria rely on structures assembled into or onto the outer membrane. Protein secretion across the cell wall is a key process in virulence and other fundamental aspects of bacterial cell biology. The final stage of protein secretion in Gram-negative bacteria, translocation across the outer membrane, is energetically challenging so sophisticated nanomachines have evolved to meet this challenge. Advances in fluorescence microscopy now allow for the direct visualization of the protein secretion process, detailing the dynamics of (i) outer membrane biogenesis and the assembly of protein secretion systems into the outer membrane, (ii) the spatial distribution of these and other membrane proteins on the bacterial cell surface, and (iii) translocation of effector proteins, toxins and enzymes by these protein secretion systems. Here we review the frontier research imaging the process of secretion, particularly new studies that are applying various modes of super-resolution microscopy.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Chaille T Webb
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | | | - Iain D Hay
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
21
|
The Colicin E1 TolC Box: Identification of a Domain Required for Colicin E1 Cytotoxicity and TolC Binding. J Bacteriol 2016; 199:JB.00412-16. [PMID: 27795317 DOI: 10.1128/jb.00412-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/17/2016] [Indexed: 11/20/2022] Open
Abstract
Colicins are protein toxins made by Escherichia coli to kill related bacteria that compete for scarce resources. All colicins must cross the target cell outer membrane in order to reach their intracellular targets. Normally, the first step in the intoxication process is the tight binding of the colicin to an outer membrane receptor protein via its central receptor-binding domain. It is shown here that for one colicin, E1, that step, although it greatly increases the efficiency of killing, is not absolutely necessary. For colicin E1, the second step, translocation, relies on the outer membrane/transperiplasmic protein TolC. The normal role of TolC in bacteria is as an essential component of a family of tripartite drug and toxin exporters, but for colicin E1, it is essential for its import. Colicin E1 and some N-terminal translocation domain peptides had been shown previously to bind in vitro to TolC and occlude channels made by TolC in planar lipid bilayer membranes. Here, a set of increasingly shorter colicin E1 translocation domain peptides was shown to bind to Escherichia coli in vivo and protect them from subsequent challenge by colicin E1. A segment of only 21 residues, the "TolC box," was thereby defined; that segment is essential for colicin E1 cytotoxicity and for binding of translocation domain peptides to TolC. IMPORTANCE The Escherichia coli outer membrane/transperiplasmic protein TolC is normally an essential component of the bacterium's tripartite drug and toxin export machinery. The protein toxin colicin E1 instead uses TolC for its import into the cells that it kills, thereby subverting its normal role. Increasingly shorter constructs of the colicin's N-terminal translocation domain were used to define an essential 21-residue segment that is required for both colicin cytotoxicity and for binding of the colicin's translocation domain to bacteria, in order to protect them from subsequent challenge by active colicin E1. Thus, an essential TolC binding sequence of colicin E1 was identified and may ultimately lead to the development of drugs to block the bacterial drug export pathway.
Collapse
|
22
|
Zakharov SD, Wang XS, Cramer WA. The Colicin E1 TolC-Binding Conformer: Pillar or Pore Function of TolC in Colicin Import? Biochemistry 2016; 55:5084-94. [PMID: 27536862 DOI: 10.1021/acs.biochem.6b00621] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mechanism by which the drug export protein TolC is utilized for import of the cytotoxin colicin E1 across the outer membrane and periplasmic space is addressed. Studies of the initial binding of colicin E1 with TolC, occlusion of membrane-incorporated TolC ion channels, and the structure underlying the colicin-TolC complex were based on the interactions with TolC of individual colicin translocation domain (T-domain) peptides from a set of 19 that span different segments of the T-domain. These studies led to identification of a short 20-residue segment 101-120, a "TolC box", located near the center of the colicin T-domain, which is necessary for binding of colicin to TolC. Omission of this segment eliminated the ability of the T-domain to occlude TolC channels and to co-elute with TolC on a size-exclusion column. Far-ultraviolet circular dichroism spectral and thermal stability analysis of the structure of T-domain peptides implies (i) a helical hairpin conformation of the T-domain, (ii) the overlap of the TolC-binding site with a hinge of the helical hairpin, and (iii) a TolC-dependent stage of colicin import in which a central segment of the T-domain in a helical hairpin conformation binds to the TolC entry port following initial binding to the BtuB receptor. These studies provide the first structure-based information about the interaction of colicin E1 with the unique TolC protein. The model inferred for binding of the T-domain to TolC implies reservations about the traditional model for colicin import in which TolC functions to provide a channel for translocation of the colicin in an unfolded state across the bacterial outer membrane and a large part of the periplasmic space.
Collapse
Affiliation(s)
- Stanislav D Zakharov
- Department of Biological Sciences, Purdue University , Hockmeyer Building of Structural Biology, West Lafayette, Indiana 47907, United States
| | - Xin S Wang
- Department of Biological Sciences, Purdue University , Hockmeyer Building of Structural Biology, West Lafayette, Indiana 47907, United States
| | - William A Cramer
- Department of Biological Sciences, Purdue University , Hockmeyer Building of Structural Biology, West Lafayette, Indiana 47907, United States
| |
Collapse
|
23
|
Gram-negative trimeric porins have specific LPS binding sites that are essential for porin biogenesis. Proc Natl Acad Sci U S A 2016; 113:E5034-43. [PMID: 27493217 DOI: 10.1073/pnas.1602382113] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outer membrane (OM) of gram-negative bacteria is an unusual asymmetric bilayer with an external monolayer of lipopolysaccharide (LPS) and an inner layer of phospholipids. The LPS layer is rigid and stabilized by divalent cation cross-links between phosphate groups on the core oligosaccharide regions. This means that the OM is robust and highly impermeable to toxins and antibiotics. During their biogenesis, OM proteins (OMPs), which function as transporters and receptors, must integrate into this ordered monolayer while preserving its impermeability. Here we reveal the specific interactions between the trimeric porins of Enterobacteriaceae and LPS. Isolated porins form complexes with variable numbers of LPS molecules, which are stabilized by calcium ions. In earlier studies, two high-affinity sites were predicted to contain groups of positively charged side chains. Mutation of these residues led to the loss of LPS binding and, in one site, also prevented trimerization of the porin, explaining the previously observed effect of LPS mutants on porin folding. The high-resolution X-ray crystal structure of a trimeric porin-LPS complex not only helps to explain the mutagenesis results but also reveals more complex, subtle porin-LPS interactions and a bridging calcium ion.
Collapse
|
24
|
Burger VM, Nolasco DO, Stultz CM. Expanding the Range of Protein Function at the Far End of the Order-Structure Continuum. J Biol Chem 2016; 291:6706-13. [PMID: 26851282 PMCID: PMC4807258 DOI: 10.1074/jbc.r115.692590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The traditional view of the structure-function paradigm is that a protein's function is inextricably linked to a well defined, three-dimensional structure, which is determined by the protein's primary amino acid sequence. However, it is now accepted that a number of proteins do not adopt a unique tertiary structure in solution and that some degree of disorder is required for many proteins to perform their prescribed functions. In this review, we highlight how a number of protein functions are facilitated by intrinsic disorder and introduce a new protein structure taxonomy that is based on quantifiable metrics of a protein's disorder.
Collapse
Affiliation(s)
- Virginia M Burger
- From the Research Laboratory for Electronics, Department of Electrical Engineering & Computer Science, and
| | - Diego O Nolasco
- From the Research Laboratory for Electronics, Department of Electrical Engineering & Computer Science, and
| | - Collin M Stultz
- From the Research Laboratory for Electronics, Department of Electrical Engineering & Computer Science, and the Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138
| |
Collapse
|
25
|
Lin W, Li S, Zhang S, Yu X. Reduction in horizontal transfer of conjugative plasmid by UV irradiation and low-level chlorination. WATER RESEARCH 2016; 91:331-338. [PMID: 26803268 DOI: 10.1016/j.watres.2016.01.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/29/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
The widespread presence of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the drinking water system facilitates their horizontal gene transfer among microbiota. In this study, the conjugative gene transfer of RP4 plasmid after disinfection including ultraviolet (UV) irradiation and low-level chlorine treatment was investigated. It was found that both UV irradiation and low-level chlorine treatment reduced the conjugative gene transfer frequency. The transfer frequency gradually decreased from 2.75 × 10(-3) to 2.44 × 10(-5) after exposure to UV doses ranging from 5 to 20 mJ/cm(2). With higher UV dose of 50 and 100 mJ/cm(2), the transfer frequency was reduced to 1.77 × 10(-6) and 2.44 × 10(-8). The RP4 plasmid transfer frequency was not significantly affected by chlorine treatment at dosages ranging from 0.05 to 0.2 mg/l, but treatment with 0.3-0.5 mg/l chlorine induced a decrease in conjugative transfer to 4.40 × 10(-5) or below the detection limit. The mechanisms underlying these phenomena were also explored, and the results demonstrated that UV irradiation and chlorine treatment (0.3 and 0.5 mg/l) significantly reduced the viability of bacteria, thereby lowering the conjugative transfer frequency. Although the lower chlorine concentrations tested (0.05-0.2 mg/l) were not sufficient to damage the cells, exposure to these concentrations may still depress the expression of a flagellar gene (FlgC), an outer membrane porin gene (ompF), and a DNA transport-related gene (TraG). Additionally, fewer pili were scattered on the bacteria after chlorine treatment. These findings are important in assessing and controlling the risk of ARG transfer and dissemination in the drinking water system.
Collapse
Affiliation(s)
- Wenfang Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shuai Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shuting Zhang
- College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
26
|
Choi H, Chakraborty S, Liu R, Gellman SH, Weisshaar JC. Single-Cell, Time-Resolved Antimicrobial Effects of a Highly Cationic, Random Nylon-3 Copolymer on Live Escherichia coli. ACS Chem Biol 2016; 11:113-20. [PMID: 26493221 DOI: 10.1021/acschembio.5b00547] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Synthetic random copolymers based on the nylon-3 (β-peptide) backbone show promise as inexpensive antimicrobial agents resistant to proteolysis. We present a time-resolved observational study of the attack of a particular copolymer MM63:CHx37 on single, live Escherichia coli cells. The composition and chain length of MM63:CHx37 (63% cationic subunits, 37% hydrophobic subunits, 35-subunit average length) were optimized to enhance antibacterial activity while minimizing lysis of human red blood cells. For E. coli cells that export GFP to the periplasm, we obtain alternating phase-contrast and green fluorescence images with a time resolution of 12 s over 60 min following initiation of copolymer flow. Within seconds, cells shrink and exhibit the same plasmolysis spaces that occur following abrupt external osmotic upshift. The osmoprotection machinery attempts to replenish cytoplasmic water, but recovery is interrupted by permeabilization of the cytoplasmic membrane (CM) to GFP. Evidently, the highly cationic copolymer and its counterions rapidly translocate across the outer membrane without permeabilizing it to GFP. The CM permeabilization event is spatially localized. Cells whose CM has been permeabilized never recover growth. The minimum inhibitory concentration (MIC) for cells lacking the osmolyte importer ProP is 4-fold smaller than for normal cells, suggesting that osmoprotection is an important survival strategy. In addition, at the time of CM permeabilization, we observe evidence of oxidative stress. The MIC under anaerobic conditions is at least 8-fold larger than under aerobic conditions, further implicating oxidative damage as an important bacteriostatic effect. Once the copolymer reaches the periplasm, multiple growth-halting mechanisms proceed in parallel.
Collapse
Affiliation(s)
- Heejun Choi
- Department of Chemistry and ‡Molecular Biophysics
Program, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Saswata Chakraborty
- Department of Chemistry and ‡Molecular Biophysics
Program, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Runhui Liu
- Department of Chemistry and ‡Molecular Biophysics
Program, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry and ‡Molecular Biophysics
Program, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - James C. Weisshaar
- Department of Chemistry and ‡Molecular Biophysics
Program, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
27
|
Kleanthous C, Rassam P, Baumann CG. Protein-protein interactions and the spatiotemporal dynamics of bacterial outer membrane proteins. Curr Opin Struct Biol 2015; 35:109-15. [PMID: 26629934 PMCID: PMC4684144 DOI: 10.1016/j.sbi.2015.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/26/2015] [Accepted: 10/30/2015] [Indexed: 01/14/2023]
Abstract
We discuss spatiotemporal patterning in the bacterial outer membrane. Promiscuous interactions between outer membrane proteins govern their behaviour. Turnover and biogenesis of outer membrane proteins linked to formation of clusters. Implications of spatiotemporal patterning for bacterial physiology discussed.
It has until recently been unclear whether outer membrane proteins (OMPs) of Gram-negative bacteria are organized or distributed randomly. Studies now suggest promiscuous protein–protein interactions (PPIs) between β-barrel OMPs in Escherichia coli govern their local and global dynamics, engender spatiotemporal patterning of the outer membrane into micro-domains and are the basis of β-barrel protein turnover. We contextualize these latest advances, speculate on areas of bacterial cell biology that might be influenced by the organization of OMPs into supramolecular assemblies, and highlight the new questions and controversies this revised view of the bacterial outer membrane raises.
Collapse
Affiliation(s)
- Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Patrice Rassam
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
28
|
Rassam P, Copeland NA, Birkholz O, Tóth C, Chavent M, Duncan AL, Cross SJ, Housden NG, Kaminska R, Seger U, Quinn DM, Garrod TJ, Sansom MSP, Piehler J, Baumann CG, Kleanthous C. Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria. Nature 2015; 523:333-6. [PMID: 26061769 PMCID: PMC4905513 DOI: 10.1038/nature14461] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/08/2015] [Indexed: 12/24/2022]
Abstract
Gram-negative bacteria inhabit a broad range of ecological niches. For Escherichia coli, this includes river water as well as humans and animals, where it can be both a commensal and a pathogen. Intricate regulatory mechanisms ensure that bacteria have the right complement of β-barrel outer membrane proteins (OMPs) to enable adaptation to a particular habitat. Yet no mechanism is known for replacing OMPs in the outer membrane, an issue that is further confounded by the lack of an energy source and the high stability and abundance of OMPs. Here we uncover the process underpinning OMP turnover in E. coli and show it to be passive and binary in nature, in which old OMPs are displaced to the poles of growing cells as new OMPs take their place. Using fluorescent colicins as OMP-specific probes, in combination with ensemble and single-molecule fluorescence microscopy in vivo and in vitro, as well as molecular dynamics simulations, we established the mechanism for binary OMP partitioning. OMPs clustered to form ∼0.5-μm diameter islands, where their diffusion is restricted by promiscuous interactions with other OMPs. OMP islands were distributed throughout the cell and contained the Bam complex, which catalyses the insertion of OMPs in the outer membrane. However, OMP biogenesis occurred as a gradient that was highest at mid-cell but largely absent at cell poles. The cumulative effect is to push old OMP islands towards the poles of growing cells, leading to a binary distribution when cells divide. Hence, the outer membrane of a Gram-negative bacterium is a spatially and temporally organized structure, and this organization lies at the heart of how OMPs are turned over in the membrane.
Collapse
Affiliation(s)
- Patrice Rassam
- 1] Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK [2] Department of Biology, University of York, York YO10 5DD, UK
| | | | - Oliver Birkholz
- Department of Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Csaba Tóth
- Department of Biology, University of York, York YO10 5DD, UK
| | - Matthieu Chavent
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Stephen J Cross
- Department of Biology, University of York, York YO10 5DD, UK
| | - Nicholas G Housden
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Urban Seger
- Department of Biology, University of York, York YO10 5DD, UK
| | - Diana M Quinn
- Department of Biology, University of York, York YO10 5DD, UK
| | - Tamsin J Garrod
- Department of Biology, University of York, York YO10 5DD, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | | | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
29
|
Kim YC, Tarr AW, Penfold CN. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1717-31. [PMID: 24746518 DOI: 10.1016/j.bbamcr.2014.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 01/03/2023]
Abstract
Bacteriocins are a diverse group of ribosomally synthesized protein antibiotics produced by most bacteria. They range from small lanthipeptides produced by lactic acid bacteria to much larger multi domain proteins of Gram negative bacteria such as the colicins from Escherichia coli. For activity bacteriocins must be released from the producing cell and then bind to the surface of a sensitive cell to instigate the import process leading to cell death. For over 50years, colicins have provided a working platform for elucidating the structure/function studies of bacteriocin import and modes of action. An understanding of the processes that contribute to the delivery of a colicin molecule across two lipid membranes of the cell envelope has advanced our knowledge of protein-protein interactions (PPI), protein-lipid interactions and the role of order-disorder transitions of protein domains pertinent to protein transport. In this review, we provide an overview of the arrangement of genes that controls the synthesis and release of the mature protein. We examine the uptake processes of colicins from initial binding and sequestration of binding partners to crossing of the outer membrane, and then discuss the translocation of colicins through the cell periplasm and across the inner membrane to their cytotoxic site of action. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Young Chan Kim
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Alexander W Tarr
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Christopher N Penfold
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
30
|
The free energy landscape of dimerization of a membrane protein, NanC. PLoS Comput Biol 2014; 10:e1003417. [PMID: 24415929 PMCID: PMC3886892 DOI: 10.1371/journal.pcbi.1003417] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 11/18/2013] [Indexed: 11/19/2022] Open
Abstract
Membrane proteins are frequently present in crowded environments, which favour lateral association and, on occasions, two-dimensional crystallization. To better understand the non-specific lateral association of a membrane protein we have characterized the free energy landscape for the dimerization of a bacterial outer membrane protein, NanC, in a phospholipid bilayer membrane. NanC is a member of the KdgM-family of bacterial outer membrane proteins and is responsible for sialic acid transport in E. coli. Umbrella sampling and coarse-grained molecular dynamics were employed to calculate the potentials of mean force (PMF) for a variety of restrained relative orientations of two NanC proteins as the separation of their centres of mass was varied. We found the free energy of dimerization for NanC to be in the range of to . Differences in the depths of the PMFs for the various orientations are related to the shape of the proteins. This was quantified by calculating the lipid-inaccessible buried surface area of the proteins in the region around the minimum of each PMF. The depth of the potential well of the PMF was shown to depend approximately linearly on the buried surface area. We were able to resolve local minima in the restrained PMFs that would not be revealed using conventional umbrella sampling. In particular, these features reflected the local organization of the intervening lipids between the two interacting proteins. Through a comparison with the distribution of lipids around a single freely-diffusing NanC, we were able to predict the location of these restrained local minima for the orientational configuration in which they were most pronounced. Our ability to make this prediction highlights the important role that lipid organization plays in the association of two NanCs in a bilayer. Cells are surrounded by selectively-permeable bilayer membranes, enabling the cell to control its internal environment. Embedded within these membranes are a variety of membrane proteins, many of which facilitate this environmental control and are integral to numerous metabolic processes. Their location within the membrane and their mutual association are controlled by many factors. We use molecular dynamics simulations to investigate the free energy of association for a pair of relatively simple membrane proteins. By doing so, we are able to characterize the effect that the geometrical properties of the protein have on their mutual association in a bilayer environment, showing that there is a correlation between the buried surface area of two proteins when in contact and the strength of their interaction. We also observe the effect of protein-lipid-protein interactions in this free energy characterization. Such interactions are related to the preferential distribution of lipids around proteins in the membrane.
Collapse
|
31
|
Guillon L, Altenburger S, Graumann PL, Schalk IJ. Deciphering protein dynamics of the siderophore pyoverdine pathway in Pseudomonas aeruginosa. PLoS One 2013; 8:e79111. [PMID: 24205369 PMCID: PMC3813593 DOI: 10.1371/journal.pone.0079111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/26/2013] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa produces the siderophore, pyoverdine (PVD), to obtain iron. Siderophore pathways involve complex mechanisms, and the machineries responsible for biosynthesis, secretion and uptake of the ferri-siderophore span both membranes of Gram-negative bacteria. Most proteins involved in the PVD pathway have been identified and characterized but the way the system functions as a whole remains unknown. By generating strains expressing fluorescent fusion proteins, we show that most of the proteins are homogeneously distributed throughout the bacterial cell. We also studied the dynamics of these proteins using fluorescence recovery after photobleaching (FRAP). This led to the first diffusion coefficients ever determined in P. aeruginosa. Cytoplasmic and periplamic diffusion appeared to be slower than in Escherichia coli but membrane proteins seemed to behave similarly in the two species. The diffusion of cytoplasmic and periplasmic tagged proteins involved in the PVD pathway was dependent on the interaction network to which they belong. Importantly, the TonB protein, motor of the PVD-Fe uptake process, was mostly immobile but its mobility increased substantially in the presence of PVD-Fe.
Collapse
Affiliation(s)
| | - Stephan Altenburger
- SYMMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, University of Marburg, Marburg, Germany
| | - Peter L. Graumann
- SYMMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, University of Marburg, Marburg, Germany
| | | |
Collapse
|
32
|
Longo G, Alonso-Sarduy L, Rio LM, Bizzini A, Trampuz A, Notz J, Dietler G, Kasas S. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. NATURE NANOTECHNOLOGY 2013; 8:522-6. [PMID: 23812189 DOI: 10.1038/nnano.2013.120] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 05/27/2013] [Indexed: 05/24/2023]
Abstract
The widespread misuse of drugs has increased the number of multiresistant bacteria, and this means that tools that can rapidly detect and characterize bacterial response to antibiotics are much needed in the management of infections. Various techniques, such as the resazurin-reduction assays, the mycobacterial growth indicator tube or polymerase chain reaction-based methods, have been used to investigate bacterial metabolism and its response to drugs. However, many are relatively expensive or unable to distinguish between living and dead bacteria. Here we show that the fluctuations of highly sensitive atomic force microscope cantilevers can be used to detect low concentrations of bacteria, characterize their metabolism and quantitatively screen (within minutes) their response to antibiotics. We applied this methodology to Escherichia coli and Staphylococcus aureus, showing that live bacteria produced larger cantilever fluctuations than bacteria exposed to antibiotics. Our preliminary experiments suggest that the fluctuation is associated with bacterial metabolism.
Collapse
Affiliation(s)
- G Longo
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Goose JE, Sansom MSP. Reduced lateral mobility of lipids and proteins in crowded membranes. PLoS Comput Biol 2013; 9:e1003033. [PMID: 23592975 PMCID: PMC3623704 DOI: 10.1371/journal.pcbi.1003033] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/28/2013] [Indexed: 12/31/2022] Open
Abstract
Coarse-grained molecular dynamics simulations of the E. coli outer membrane proteins FhuA, LamB, NanC, OmpA and OmpF in a POPE/POPG (3∶1) bilayer were performed to characterise the diffusive nature of each component of the membrane. At small observation times (<10 ns) particle vibrations dominate phospholipid diffusion elevating the calculated values from the longer time-scale bulk value (>50 ns) of 8.5×10−7 cm2 s−1. The phospholipid diffusion around each protein was found to vary based on distance from protein. An asymmetry in the diffusion of annular lipids in the inner and outer leaflets was observed and correlated with an asymmetry in charged residues in the vicinity of the inner and outer leaflet head-groups. Protein rotational and translational diffusion were also found to vary with observation time and were inversely correlated with the radius of gyration of the protein in the plane of the bilayer. As the concentration of protein within the bilayer was increased, the overall mobility of the membrane decreased reflected in reduced lipid diffusion coefficients for both lipid and protein components. The increase in protein concentration also resulted in a decrease in the anomalous diffusion exponent α of the lipid. Formation of extended clusters and networks of proteins led to compartmentalisation of lipids in extreme cases. Biological membranes are selective barriers which control the entry/exit of molecules to/from the interior of a cell. They are composed of a lipid bilayer in which are embedded many membrane proteins. Whilst the individual components of membranes are relatively well characterised, the lateral organization and dynamics of the membrane remain less well understood. The lateral mobility of constituent membrane species affects many processes, including how quickly proteins complexes form and protein recruitment occurs, how quickly lipids can be modified/lysed, and the formation of disordered and ordered microdomains. Biological membranes can contain as much as 50% protein. The dynamics of these crowded environments differ greatly from the sparsely populated membranes often studied in silico or in vitro. We use molecular dynamics computer simulations to quantify how mobility within the membrane decreases as the protein concentration increases. We calculate a baseline diffusion of both lipids and selected bacterial outer membrane proteins in the simplest of systems, namely a single protein in a large lipid bilayer patch. In this case diffusion can be correlated with the size of the protein. We observe how proteins affect the mobility of adjacent lipids. As the protein concentration within our systems increases we show that diffusion of both the proteins and lipids is reduced.
Collapse
Affiliation(s)
- Joseph E. Goose
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Verhoeven GS, Dogterom M, den Blaauwen T. Absence of long-range diffusion of OmpA in E. coli is not caused by its peptidoglycan binding domain. BMC Microbiol 2013; 13:66. [PMID: 23522061 PMCID: PMC3637615 DOI: 10.1186/1471-2180-13-66] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/18/2013] [Indexed: 11/15/2022] Open
Abstract
Background It is widely believed that integral outer membrane (OM) proteins in bacteria are able to diffuse laterally in the OM. However, stable, immobile proteins have been identified in the OM of Escherichia coli. In explaining the observations, a hypothesized interaction of the immobilized OM proteins with the underlying peptidoglycan (PG) cell wall played a prominent role. Results OmpA is an abundant outer membrane protein in E. coli containing a PG-binding domain. We use FRAP to investigate whether OmpA is able to diffuse laterally over long-range (> ~100 nm) distances in the OM. First, we show that OmpA, containing a PG binding domain, does not exhibit long-range lateral diffusion in the OM. Then, to test whether PG interaction was required for this immobilization, we genetically removed the PG binding domain and repeated the FRAP experiment. To our surprise, this did not increase the mobility of the protein in the OM. Conclusions OmpA exhibits an absence of long-range (> ~100 nm) diffusion in the OM that is not caused by its PG binding domain. Therefore, other mechanisms are needed to explain this observation, such as the presence of physical barriers in the OM, or strong interactions with other elements in the cell envelope.
Collapse
|
35
|
Farrance OE, Hann E, Kaminska R, Housden NG, Derrington SR, Kleanthous C, Radford SE, Brockwell DJ. A force-activated trip switch triggers rapid dissociation of a colicin from its immunity protein. PLoS Biol 2013; 11:e1001489. [PMID: 23431269 PMCID: PMC3576412 DOI: 10.1371/journal.pbio.1001489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 01/09/2013] [Indexed: 01/24/2023] Open
Abstract
A single-molecule force study shows that rapid dissociation of a high-affinity protein interaction can be triggered by site-specific remodelling of one protein partner, and that prevention of remodelling maintains avidity. Colicins are protein antibiotics synthesised by Escherichia coli strains to target and kill related bacteria. To prevent host suicide, colicins are inactivated by binding to immunity proteins. Despite their high avidity (Kd≈fM, lifetime ≈4 days), immunity protein release is a pre-requisite of colicin intoxication, which occurs on a timescale of minutes. Here, by measuring the dynamic force spectrum of the dissociation of the DNase domain of colicin E9 (E9) and immunity protein 9 (Im9) complex using an atomic force microscope we show that application of low forces (<20 pN) increases the rate of complex dissociation 106-fold, to a timescale (lifetime ≈10 ms) compatible with intoxication. We term this catastrophic force-triggered increase in off-rate a trip bond. Using mutational analysis, we elucidate the mechanism of this switch in affinity. We show that the N-terminal region of E9, which has sparse contacts with the hydrophobic core, is linked to an allosteric activator region in E9 (residues 21–30) whose remodelling triggers immunity protein release. Diversion of the force transduction pathway by the introduction of appropriately positioned disulfide bridges yields a force resistant complex with a lifetime identical to that measured by ensemble techniques. A trip switch within E9 is ideal for its function as it allows bipartite complex affinity, whereby the stable colicin:immunity protein complex required for host protection can be readily converted to a kinetically unstable complex whose dissociation is necessary for cellular invasion and competitor death. More generally, the observation of two force phenotypes for the E9:Im9 complex demonstrates that force can re-sculpt the underlying energy landscape, providing new opportunities to modulate biological reactions in vivo; this rationalises the commonly observed discrepancy between off-rates measured by dynamic force spectroscopy and ensemble methods. Many proteins interact with other proteins as part of their function. One method of modulating the activity of protein complexes is to break them apart. Some complexes, however, are extremely kinetically stable and it is unclear how these can dissociate on a biologically relevant timescale. In this study we address this question using protein complexes between colicin E9 (a bacterial toxin) and its immunity protein Im9. These highly avid complexes (with a lifetime of days) must be broken apart for colicin to be activated. By using single-molecule force methods we show that pulling on one end of colicin E9 drastically destabilises the complex so that it dissociates a million-fold faster than its intrinsic rate. We then show that preventing this destabilisation (by the insertion of cross-links that pin the N-terminus of E9 in place) yields a kinetically stable complex. It has previously been postulated that force can destabilise a protein complex by partially unfolding one or more binding partners. Our work provides new experimental evidence that shows this is the case and provides a mechanism for this phenomenon, which we term a trip bond. For the E9:Im9 complex, trip bond behaviour allows a stable complex to be rapidly dissociated by application of a surprisingly small force.
Collapse
Affiliation(s)
- Oliver E. Farrance
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - Eleanore Hann
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Sasha R. Derrington
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sheena E. Radford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
| | - David J. Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Ritchie K, Lill Y, Sood C, Lee H, Zhang S. Single-molecule imaging in live bacteria cells. Philos Trans R Soc Lond B Biol Sci 2012; 368:20120355. [PMID: 23267188 DOI: 10.1098/rstb.2012.0355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteria, such as Escherichia coli and Caulobacter crescentus, are the most studied and perhaps best-understood organisms in biology. The advances in understanding of living systems gained from these organisms are immense. Application of single-molecule techniques in bacteria have presented unique difficulties owing to their small size and highly curved form. The aim of this review is to show advances made in single-molecule imaging in bacteria over the past 10 years, and to look to the future where the combination of implementing such high-precision techniques in well-characterized and controllable model systems such as E. coli could lead to a greater understanding of fundamental biological questions inaccessible through classic ensemble methods.
Collapse
Affiliation(s)
- Ken Ritchie
- Department of Physics, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Karen S. Jakes
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461;
| | - William A. Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907;
| |
Collapse
|
38
|
Pathways of colicin import: utilization of BtuB, OmpF porin and the TolC drug-export protein. Biochem Soc Trans 2012; 40:1463-8. [PMID: 23176499 DOI: 10.1042/bst20120211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pathway I. Group A nuclease colicins parasitize and bind tightly (Kd ≤ 10−9 M) to the vitamin B12 receptor on which they diffuse laterally in the OM (outer membrane) and use their long (≥100 Å; 1 Å=0.1 nm) receptor-binding domain as a ‘fishing pole’ to locate the OmpF porin channel for translocation. Crystal structures of OmpF imply that a disordered N-terminal segment of the colicin T-domain initiates insertion. Pathway II. Colicin N does not possess a ‘fishing pole’ receptor-binding domain. Instead, it uses OmpF as the Omp (outer membrane protein) for reception and translocation, processes in which LPS (lipopolysaccharide) may also serve. Keio collection experiments defined the LPS core that is used. Pathway III. Colicin E1 utilizes the drug-export protein TolC for import. CD spectra and thermal-melting analysis predict: (i) N-terminal translocation (T) and central receptor (BtuB) -binding (R) domains are predominantly α-helical; and (ii) helical coiled-coil conformation of the R-domain is similar to that of colicins E3 and Ia. Recombinant colicin peptides spanning the N-terminal translocation domain defined TolC-binding site(s). The N-terminal 40-residue segment lacks the ordered secondary structure. Peptide 41–190 is helical (78%), co-elutes with TolC and occluded TolC channels. Driven by a trans-negative potential, peptides 82–140 and 141–190 occluded TolC channels. The use of TolC for colicin E1 import implies that the interaction of this colicin with the other Tol proteins does not occur in the periplasmic space, but rather through Tol domains in the cytoplasmic membrane, thus explaining colicin E1 cytotoxicity towards a strain in which a 234 residue periplasmic TolA segment is deleted.
Collapse
|
39
|
Chow D, Guo L, Gai F, Goulian M. Fluorescence correlation spectroscopy measurements of the membrane protein TetA in Escherichia coli suggest rapid diffusion at short length scales. PLoS One 2012; 7:e48600. [PMID: 23119068 PMCID: PMC3485324 DOI: 10.1371/journal.pone.0048600] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/28/2012] [Indexed: 12/30/2022] Open
Abstract
Structural inhomogeneities in biomembranes can lead to complex diffusive behavior of membrane proteins that depend on the length or time scales that are probed. This effect is well studied in eukaryotic cells, but has been explored only recently in bacteria. Here we used fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) to study diffusion of the membrane protein TetA-YFP in E. coli. We find that the diffusion constant determined from FRAP is comparable to other reports of inner membrane protein diffusion constants in E. coli. However, FCS, which probes diffusion on shorter length scales, gives a value that is almost two orders of magnitude higher and is comparable to lipid diffusion constants. These results suggest there is a population of TetA-YFP molecules in the membrane that move rapidly over short length scales (~ 400 nm) but move significantly more slowly over the longer length scales probed by FRAP.
Collapse
Affiliation(s)
- David Chow
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lin Guo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark Goulian
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
40
|
Lill Y, Kaserer WA, Newton SM, Lill M, Klebba PE, Ritchie K. Single-molecule study of molecular mobility in the cytoplasm of Escherichia coli. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021907. [PMID: 23005785 DOI: 10.1103/physreve.86.021907] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Indexed: 06/01/2023]
Abstract
The cytoplasm of bacterial cells is filled with individual molecules and molecular complexes that rely on diffusion to bring them together for interaction. The mobility of molecules in the cytoplasm has been characterized by several techniques mainly using fluorescent probes and ensemble methods. In order to probe the microenvrionment inside the cytoplasm as viewed by an individual molecule, we have studied single green fluorescent proteins (GFPs) diffusing in the cytoplasm of Escherichia coli cells at observation at rates ranging from 60 to 1000 Hz. Over long times the diffusion shows confinement due to the geometry of the cells themselves. A simulation in model cells using the actual distribution of cell sizes found in the experiments describes accurately the experimental results as well as reveals a short time diffusion coefficient that agrees well with that determined by ensemble methods. Higher short time diffusion coefficients can be obtained by filling the simulated cell with small spheres modeling cytoplasmic molecules and, depending on the density of particles included in the modeled cytoplasm, can approach the diffusion coefficient of GFPs found in water. Thus, single-molecule tracking combined with analysis using simple simulation of Brownian motion is able to reveal the main contributors to the GFP mobility in the cytoplasm of E. coli.
Collapse
Affiliation(s)
- Yoriko Lill
- Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
41
|
Casuso I, Khao J, Chami M, Paul-Gilloteaux P, Husain M, Duneau JP, Stahlberg H, Sturgis JN, Scheuring S. Characterization of the motion of membrane proteins using high-speed atomic force microscopy. NATURE NANOTECHNOLOGY 2012; 7:525-9. [PMID: 22772862 DOI: 10.1038/nnano.2012.109] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/04/2012] [Indexed: 05/23/2023]
Abstract
For cells to function properly, membrane proteins must be able to diffuse within biological membranes. The functions of these membrane proteins depend on their position and also on protein-protein and protein-lipid interactions. However, so far, it has not been possible to study simultaneously the structure and dynamics of biological membranes. Here, we show that the motion of unlabelled membrane proteins can be characterized using high-speed atomic force microscopy. We find that the molecules of outer membrane protein F (OmpF) are widely distributed in the membrane as a result of diffusion-limited aggregation, and while the overall protein motion scales roughly with the local density of proteins in the membrane, individual protein molecules can also diffuse freely or become trapped by protein-protein interactions. Using these measurements, and the results of molecular dynamics simulations, we determine an interaction potential map and an interaction pathway for a membrane protein, which should provide new insights into the connection between the structures of individual proteins and the structures and dynamics of supramolecular membranes.
Collapse
Affiliation(s)
- Ignacio Casuso
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 avenue de Luminy, 13009 Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
It is more than 80 years since Gratia first described 'a remarkable antagonism between two strains of Escherichia coli'. Shown subsequently to be due to the action of proteins (or peptides) produced by one bacterium to kill closely related species with which it might be cohabiting, such bacteriocins have since been shown to be commonplace in the internecine warfare between bacteria. Bacteriocins have been studied primarily from the twin perspectives of how they shape microbial communities and how they penetrate bacteria to kill them. Here, we review the modes of action of a family of bacteriocins that cleave nucleic acid substrates in E. coli, known collectively as nuclease colicins, and the specific immunity (inhibitor) proteins that colicin-producing organisms make in order to avoid committing suicide. In a process akin to targeting in mitochondria, nuclease colicins engage in a variety of cellular associations in order to translocate their cytotoxic domains through the cell envelope to the cytoplasm. As well as informing on the process itself, the study of nuclease colicin import has also illuminated functional aspects of the host proteins they parasitize. We also review recent studies where nuclease colicins and their immunity proteins have been used as model systems for addressing fundamental problems in protein folding and protein-protein interactions, areas of biophysics that are intimately linked to the role of colicins in bacterial competition and to the import process itself.
Collapse
|
43
|
Clifton LA, Johnson CL, Solovyova AS, Callow P, Weiss KL, Ridley H, Le Brun AP, Kinane CJ, Webster JRP, Holt SA, Lakey JH. Low resolution structure and dynamics of a colicin-receptor complex determined by neutron scattering. J Biol Chem 2011; 287:337-346. [PMID: 22081604 PMCID: PMC3249085 DOI: 10.1074/jbc.m111.302901] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Proteins that translocate across cell membranes need to overcome a significant hydrophobic barrier. This is usually accomplished via specialized protein complexes, which provide a polar transmembrane pore. Exceptions to this include bacterial toxins, which insert into and cross the lipid bilayer itself. We are studying the mechanism by which large antibacterial proteins enter Escherichia coli via specific outer membrane proteins. Here we describe the use of neutron scattering to investigate the interaction of colicin N with its outer membrane receptor protein OmpF. The positions of lipids, colicin N, and OmpF were separately resolved within complex structures by the use of selective deuteration. Neutron reflectivity showed, in real time, that OmpF mediates the insertion of colicin N into lipid monolayers. This data were complemented by Brewster Angle Microscopy images, which showed a lateral association of OmpF in the presence of colicin N. Small angle neutron scattering experiments then defined the three-dimensional structure of the colicin N-OmpF complex. This revealed that colicin N unfolds and binds to the OmpF-lipid interface. The implications of this unfolding step for colicin translocation across membranes are discussed.
Collapse
Affiliation(s)
- Luke A Clifton
- ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Christopher L Johnson
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Alexandra S Solovyova
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Phil Callow
- Partnership for Structural Biology, Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Kevin L Weiss
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Helen Ridley
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Anton P Le Brun
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Christian J Kinane
- ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - John R P Webster
- ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Stephen A Holt
- ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
44
|
Cramer WA, Zakharov SD, Saif Hasan S, Zhang H, Baniulis D, Zhalnina MV, Soriano GM, Sharma O, Rochet JC, Ryan C, Whitelegge J, Kurisu G, Yamashita E. Membrane proteins in four acts: function precedes structure determination. Methods 2011; 55:415-20. [PMID: 22079407 DOI: 10.1016/j.ymeth.2011.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/30/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022] Open
Abstract
Studies on four membrane protein systems, which combine information derived from crystal structures and biophysical studies have emphasized, as a precursor to crystallization, demonstration of functional activity. These assays have relied on sensitive spectrophotometric, electrophysiological, and microbiological assays of activity to select purification procedures that lead to functional complexes and with greater likelihood to successful crystallization: (I), Hetero-oligomeric proteins involved in electron transport/proton translocation. (1) Crystal structures of the eight subunit hetero-oligomeric trans-membrane dimeric cytochrome b(6)f complex were obtained from cyanobacteria using a protocol that allowed an analysis of the structure and function of internal lipids at specific intra-membrane, intra-protein sites. Proteolysis and monomerization that inactivated the complex and prevented crystallization was minimized through the use of filamentous cyanobacterial strains that seem to have a different set of membrane-active proteases. (2) An NADPH-quinone oxido-reductase isolated from cyanobacteria contains an expanded set of 17 monotopic and polytopic hetero-subunits. (II) β-Barrel outer membrane proteins (OMPs). High resolution structures of the vitamin B(12) binding protein, BtuB, solved in meso and in surfo, provide the best example of the differences in such structures that were anticipated in the first application of the lipid cubic phase to membrane proteins [1]. A structure of the complex of BtuB with the colicin E3 and E2 receptor binding domain established a "fishing pole" model for outer membrane receptor function in cellular import of nuclease colicins. (III) A modified faster purification procedure contributed to significantly improved resolution (1.83Å) of the universal porin, OmpF, the first membrane protein for which meaningful 3D crystals have been obtained [2]. A crystal structure of the N-terminal translocation domain of colicin E3 complexed to OmpF established the role of OmpF as an import channel for colicin nuclease cytotoxins. (IV) α-Synuclein, associated with the etiology of Parkinson's Disease, is an example of a protein, which is soluble and disordered in solution, but which can assume an ordered predominantly α-helical conformation upon binding to membranes. When subjected in its membrane-bound form to a trans-membrane electrical potential, α-synuclein can form voltage-gated ion channels. Summary of methods to assay functions/activities: (i) sensitive spectrophotometric assay to measure electron transfer activities; (ii) hydrophobic chromatography to deplete lipids, allowing reconstitution with specific lipids for studies on lipid-protein interactions; (iii) microbiological screen to assay high affinity binding of colicin receptor domains to Escherichia coli outer membrane receptors; (iv) electrophysiology/channel analysis (a) to select channel-occluding ligands for co-crystallization with ion channels of OmpF, and (b) to provide a unique description of voltage-gated ion channels of α-synuclein.
Collapse
Affiliation(s)
- W A Cramer
- Department of Biological Sciences, Purdue University, Hall of Structural Biology, 240 Hockmeyer Hall, West Lafayette, IN 47907-1354, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|