1
|
Fiedler AF, Leben R, Stürmer H, Günther R, Matthys R, Nützi R, Hauser AE, Niesner RA. FLIMB: fluorescence lifetime microendoscopy for metabolic and functional imaging of femoral marrow at subcellular resolution. BIOMEDICAL OPTICS EXPRESS 2025; 16:1711-1731. [PMID: 40321997 PMCID: PMC12047734 DOI: 10.1364/boe.549311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 05/08/2025]
Abstract
Intravital imaging of bone marrow provides a unique opportunity to study cellular dynamics and their interaction with the tissue microenvironment, which governs cell functions and metabolic profiles. To optically access the deep marrow of long bones, we previously developed a microendoscopy system for longitudinal two-photon fluorescence imaging of the murine femur. However, this does not provide information on cell functions or metabolism, for which quantification fluorescence lifetime imaging (FLIM) has proven to be a versatile tool. We present and characterize FLIMB, an adapted GRIN-based microendoscopic system capable of performing reliable, co-registered TCSPC-based two-photon excited FLIM and fluorescence imaging in the femur of fluorescent reporter mice, at sub-cellular resolution. Using FLIMB, we demonstrate metabolic imaging via NAD(P)H-FLIM and intracellular Ca2+ signaling via FRET-FLIM in immune cell subsets, in the femoral marrow. This method retains the power to study molecular mechanisms underlying various cell functions in tissue context thus providing new insights into bone biology.
Collapse
Affiliation(s)
- Alexander F. Fiedler
- Biophysical Analytics, German Rheumatism Research Center – a Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Freie Universität Berlin, Berlin, Germany
| | - Ruth Leben
- Biophysical Analytics, German Rheumatism Research Center – a Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Freie Universität Berlin, Berlin, Germany
| | | | - Robert Günther
- Biophysical Analytics, German Rheumatism Research Center – a Leibniz Institute, Berlin, Germany
- Immune Dynamics, German Rheumatism Research Center – a Leibniz Institute, Berlin, Germany
| | | | | | - Anja E. Hauser
- Immune Dynamics, German Rheumatism Research Center – a Leibniz Institute, Berlin, Germany
- Charité – Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinics for Rheumatology and Clinical Immunology, Berlin, Germany
| | - Raluca A. Niesner
- Biophysical Analytics, German Rheumatism Research Center – a Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Sheng CQ, Wu SS, Cheng YK, Wu Y, Li YM. Comprehensive review of indicators and techniques for optical mapping of intracellular calcium ions. Cereb Cortex 2024; 34:bhae346. [PMID: 39191664 DOI: 10.1093/cercor/bhae346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/27/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Calcium ions (Ca2+) play crucial roles in almost every cellular process, making the detection of changes in intracellular Ca2+ essential to understanding cell function. The fluorescence indicator method has garnered widespread application due to its exceptional sensitivity, rapid analysis, cost-effectiveness, and user-friendly nature. It has successfully delineated the spatial and temporal dynamics of Ca2+ signaling across diverse cell types. However, it is vital to understand that different indicators have varying levels of accuracy, sensitivity, and stability, making choosing the right inspection method crucial. As optical detection technologies advance, they continually broaden the horizons of scientific inquiry. This primer offers a systematic synthesis of the current fluorescence indicators and optical imaging modalities utilized for the detection of intracellular Ca2+. It elucidates their practical applications and inherent limitations, serving as an essential reference for researchers seeking to identify the most suitable detection methodologies for their calcium-centric investigations.
Collapse
Affiliation(s)
- Chu-Qiao Sheng
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699, Qianjin Street, Changchun, Jilin 130012, China
| | - Shuang-Shuang Wu
- Department of Pediatric Hematology, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yong-Kang Cheng
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yao Wu
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yu-Mei Li
- Department of Pediatric Intensive Care Unit, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
3
|
Frei MS, Mehta S, Zhang J. Next-Generation Genetically Encoded Fluorescent Biosensors Illuminate Cell Signaling and Metabolism. Annu Rev Biophys 2024; 53:275-297. [PMID: 38346245 PMCID: PMC11786609 DOI: 10.1146/annurev-biophys-030722-021359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Genetically encoded fluorescent biosensors have revolutionized the study of cell signaling and metabolism, as they allow for live-cell measurements with high spatiotemporal resolution. This success has spurred the development of tailor-made biosensors that enable the study of dynamic phenomena on different timescales and length scales. In this review, we discuss different approaches to enhancing and developing new biosensors. We summarize the technologies used to gain structural insights into biosensor design and comment on useful screening technologies. Furthermore, we give an overview of different applications where biosensors have led to key advances over recent years. Finally, we give our perspective on where future work is bound to make a large impact.
Collapse
Affiliation(s)
- Michelle S Frei
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA; , ,
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA; , ,
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA; , ,
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Ghosh S, Dahiya M, Kumar A, Bheri M, Pandey GK. Calcium imaging: a technique to monitor calcium dynamics in biological systems. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1777-1811. [PMID: 38222278 PMCID: PMC10784449 DOI: 10.1007/s12298-023-01405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Calcium ion (Ca2+) is a multifaceted signaling molecule that acts as an important second messenger. During the course of evolution, plants and animals have developed Ca2+ signaling in order to respond against diverse stimuli, to regulate a large number of physiological and developmental pathways. Our understanding of Ca2+ signaling and its components in physiological phenomena ranging from lower to higher organisms, and from single cell to multiple tissues has grown exponentially. The generation of Ca2+ transients or signatures for various stress factor is a well-known mechanism adopted in plant and animal systems. However, the decoding of such remarkable signatures is an uphill task and is always an interesting goal for the scientific community. In the past few decades, studies on the concentration and dynamics of intracellular Ca2+ are significantly increasing and have become a trend in modern biology. The advancement in approaches from Ca2+ binding dyes to in vivo Ca2+ imaging through the use of Ca2+ biosensors to achieve spatio-temporal resolution in micro and milliseconds range, provide us phenomenal opportunities to study live cell Ca2+ imaging or dynamics. Here, we describe the usage, improvement and advancement of Ca2+ based dyes, genetically encoded probes and sensors to achieve extraordinary Ca2+ imaging in plants and animals. Graphical abstract
Collapse
Affiliation(s)
- Soma Ghosh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Monika Dahiya
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Amit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| |
Collapse
|
5
|
Maslov I, Volkov O, Khorn P, Orekhov P, Gusach A, Kuzmichev P, Gerasimov A, Luginina A, Coucke Q, Bogorodskiy A, Gordeliy V, Wanninger S, Barth A, Mishin A, Hofkens J, Cherezov V, Gensch T, Hendrix J, Borshchevskiy V. Sub-millisecond conformational dynamics of the A 2A adenosine receptor revealed by single-molecule FRET. Commun Biol 2023; 6:362. [PMID: 37012383 PMCID: PMC10070357 DOI: 10.1038/s42003-023-04727-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
The complex pharmacology of G-protein-coupled receptors (GPCRs) is defined by their multi-state conformational dynamics. Single-molecule Förster Resonance Energy Transfer (smFRET) is well suited to quantify dynamics for individual protein molecules; however, its application to GPCRs is challenging. Therefore, smFRET has been limited to studies of inter-receptor interactions in cellular membranes and receptors in detergent environments. Here, we performed smFRET experiments on functionally active human A2A adenosine receptor (A2AAR) molecules embedded in freely diffusing lipid nanodiscs to study their intramolecular conformational dynamics. We propose a dynamic model of A2AAR activation that involves a slow (>2 ms) exchange between the active-like and inactive-like conformations in both apo and antagonist-bound A2AAR, explaining the receptor's constitutive activity. For the agonist-bound A2AAR, we detected faster (390 ± 80 µs) ligand efficacy-dependent dynamics. Our work establishes a general smFRET platform for GPCR investigations that can potentially be used for drug screening and/or mechanism-of-action studies.
Collapse
Affiliation(s)
- Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | | | - Polina Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Philipp Orekhov
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Anastasiia Gusach
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Pavel Kuzmichev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Andrey Gerasimov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
- Vyatka State University, Kirov, Russia
| | - Aleksandra Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Quinten Coucke
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Valentin Gordeliy
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - Simon Wanninger
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Anders Barth
- Physical Chemistry, Department of Chemistry, Center for Nano Science (CENS), Center for Integrated Protein Science (CIPSM) and Nanosystems Initiative München (NIM), Ludwig-Maximilians-Universität Munich, Munich, Germany
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, HZ, Delft, The Netherlands
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Johan Hofkens
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
- Max Plank Institute for Polymer Research, Mainz, Germany
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Thomas Gensch
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), Hasselt University, Diepenbeek, Belgium.
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium.
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
- Joint Institute for Nuclear Research, Dubna, Russian Federation.
| |
Collapse
|
6
|
Van Thillo T, Van Deuren V, Dedecker P. Smart genetically-encoded biosensors for the chemical monitoring of living systems. Chem Commun (Camb) 2023; 59:520-534. [PMID: 36519509 DOI: 10.1039/d2cc05363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetically-encoded biosensors provide the all-optical and non-invasive visualization of dynamic biochemical events within living systems, which has allowed the discovery of profound new insights. Twenty-five years of biosensor development has steadily improved their performance and has provided us with an ever increasing biosensor repertoire. In this feature article, we present recent advances made in biosensor development and provide a perspective on the future direction of the field.
Collapse
Affiliation(s)
- Toon Van Thillo
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Vincent Van Deuren
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| |
Collapse
|
7
|
Ulbricht C, Leben R, Cao Y, Niesner RA, Hauser AE. Combined FRET-FLIM and NAD(P)H FLIM to Analyze B Cell Receptor Signaling Induced Metabolic Activity of Germinal Center B Cells In Vivo. Methods Mol Biol 2023; 2654:91-111. [PMID: 37106177 DOI: 10.1007/978-1-0716-3135-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Affinity maturation of B cell clones within germinal centers constitutes an important mechanism for immune memory. During this process, B cell receptor signaling capacity is tested in multiple rounds of positive selection. Antigen stimulation and co-stimulatory signals mobilize calcium to switch on gene expression leading to proliferation and survival and to differentiation into memory B cells and plasma cells. Additionally, all these processes require adaption of B cell metabolism, and calcium signaling and metabolic pathways are closely interlinked. Mitochondrial adaption, ROS production, and NADPH oxidase activation are involved in cell fate decisions, but it remains elusive to what extent, especially because the analysis of these dynamic processes in germinal centers has to take place in vivo. Here, we introduce a quantitative intravital imaging method for combined measurement of cytoplasmic calcium concentration and enzymatic fingerprinting in germinal center B cells as a possible tool in order to further examine the relationship of calcium signaling and immunometabolism.
Collapse
Affiliation(s)
- Carolin Ulbricht
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Ruth Leben
- Biophysical Analysis, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
- Dynamic and functional in vivo imaging, Freie Universität Berlin, Veterinary Medicine, Berlin, Germany
| | - Yu Cao
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Raluca A Niesner
- Biophysical Analysis, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
- Dynamic and functional in vivo imaging, Freie Universität Berlin, Veterinary Medicine, Berlin, Germany
| | - Anja E Hauser
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany.
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany.
| |
Collapse
|
8
|
Vecchia MD, Conte-Daban A, Cappe B, Vandenberg W, Vandenabeele P, Riquet FB, Dedecker P. Spectrally Tunable Förster Resonance Energy Transfer-Based Biosensors Using Organic Dye Grafting. ACS Sens 2022; 7:2920-2927. [PMID: 36162130 DOI: 10.1021/acssensors.2c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biosensors based on Förster resonance energy transfer (FRET) have revolutionized cellular biology by allowing the direct measurement of biochemical processes in situ. Many genetically encoded sensors make use of fluorescent proteins that are limited in spectral versatility and that allow few ways to change the spectral properties once the construct has been created. In this work, we developed genetically encoded FRET biosensors based on the chemigenetic SNAP and HaloTag domains combined with matching organic fluorophores. We found that the resulting constructs can display comparable responses, kinetics, and reversibility compared to their fluorescent protein-based ancestors, but with the added advantage of spectral versatility, including the availability of red-shifted dye pairs. However, we also find that the introduction of these tags can alter the sensor readout, showing that careful validation is required before applying such constructs in practice. Overall, our approach delivers an innovative methodology that can readily expand the spectral variety and versatility of FRET-based biosensors.
Collapse
Affiliation(s)
- Marco Dalla Vecchia
- Lab for NanoBiology, Department of Chemistry, 3001 Leuven, Belgium.,Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | | | - Benjamin Cappe
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Wim Vandenberg
- Lab for NanoBiology, Department of Chemistry, 3001 Leuven, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Franck B Riquet
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium.,Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, 59000 Lille, France
| | - Peter Dedecker
- Lab for NanoBiology, Department of Chemistry, 3001 Leuven, Belgium
| |
Collapse
|
9
|
Serrat R, Oliveira-Pinto A, Marsicano G, Pouvreau S. Imaging mitochondrial calcium dynamics in the central nervous system. J Neurosci Methods 2022; 373:109560. [PMID: 35320763 DOI: 10.1016/j.jneumeth.2022.109560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/28/2022]
Abstract
Mitochondrial calcium handling is a particularly active research area in the neuroscience field, as it plays key roles in the regulation of several functions of the central nervous system, such as synaptic transmission and plasticity, astrocyte calcium signaling, neuronal activity… In the last few decades, a panel of techniques have been developed to measure mitochondrial calcium dynamics, relying mostly on photonic microscopy, and including synthetic sensors, hybrid sensors and genetically encoded calcium sensors. The goal of this review is to endow the reader with a deep knowledge of the historical and latest tools to monitor mitochondrial calcium events in the brain, as well as a comprehensive overview of the current state of the art in brain mitochondrial calcium signaling. We will discuss the main calcium probes used in the field, their mitochondrial targeting strategies, their key properties and major drawbacks. In addition, we will detail the main roles of mitochondrial calcium handling in neuronal tissues through an extended report of the recent studies using mitochondrial targeted calcium sensors in neuronal and astroglial cells, in vitro and in vivo.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Alexandre Oliveira-Pinto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France.
| |
Collapse
|
10
|
Reinartz I, Sarter M, Otten J, Höfig H, Pohl M, Schug A, Stadler AM, Fitter J. Structural Analysis of a Genetically Encoded FRET Biosensor by SAXS and MD Simulations. SENSORS 2021; 21:s21124144. [PMID: 34208740 PMCID: PMC8234384 DOI: 10.3390/s21124144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/27/2022]
Abstract
Inspired by the modular architecture of natural signaling proteins, ligand binding proteins are equipped with two fluorescent proteins (FPs) in order to obtain Förster resonance energy transfer (FRET)-based biosensors. Here, we investigated a glucose sensor where the donor and acceptor FPs were attached to a glucose binding protein using a variety of different linker sequences. For three resulting sensor constructs the corresponding glucose induced conformational changes were measured by small angle X-ray scattering (SAXS) and compared to recently published single molecule FRET results (Höfig et al., ACS Sensors, 2018). For one construct which exhibits a high change in energy transfer and a large change of the radius of gyration upon ligand binding, we performed coarse-grained molecular dynamics simulations for the ligand-free and the ligand-bound state. Our analysis indicates that a carefully designed attachment of the donor FP is crucial for the proper transfer of the glucose induced conformational change of the glucose binding protein into a well pronounced FRET signal change as measured in this sensor construct. Since the other FP (acceptor) does not experience such a glucose induced alteration, it becomes apparent that only one of the FPs needs to have a well-adjusted attachment to the glucose binding protein.
Collapse
Affiliation(s)
- Ines Reinartz
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
- HIDSS4Health-Helmholtz Information and Data Science School for Health, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mona Sarter
- I Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany; (M.S.); (H.H.)
- Forschungszentrum Jülich, IBI-8/JCNS-1, 52428 Jülich, Germany;
| | - Julia Otten
- Forschungszentrum Jülich, IBG-1, 52426 Jülich, Germany; (J.O.); (M.P.)
| | - Henning Höfig
- I Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany; (M.S.); (H.H.)
- Forschungszentrum Jülich, IBI-6, 52428 Jülich, Germany
| | - Martina Pohl
- Forschungszentrum Jülich, IBG-1, 52426 Jülich, Germany; (J.O.); (M.P.)
| | - Alexander Schug
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany;
- Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Andreas M. Stadler
- Forschungszentrum Jülich, IBI-8/JCNS-1, 52428 Jülich, Germany;
- Institut für Physikalische Chemie, RWTH Aachen University, 52074 Aachen, Germany
| | - Jörg Fitter
- I Physikalisches Institut (IA), AG Biophysik, RWTH Aachen University, 52074 Aachen, Germany; (M.S.); (H.H.)
- Forschungszentrum Jülich, IBI-6, 52428 Jülich, Germany
- Correspondence: ; Tel.: +49-241-80-27209
| |
Collapse
|
11
|
Röllen K, Granzin J, Remeeva A, Davari MD, Gensch T, Nazarenko VV, Kovalev K, Bogorodskiy A, Borshchevskiy V, Hemmer S, Schwaneberg U, Gordeliy V, Jaeger KE, Batra-Safferling R, Gushchin I, Krauss U. The molecular basis of spectral tuning in blue- and red-shifted flavin-binding fluorescent proteins. J Biol Chem 2021; 296:100662. [PMID: 33862085 PMCID: PMC8131319 DOI: 10.1016/j.jbc.2021.100662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
Photoactive biological systems modify the optical properties of their chromophores, known as spectral tuning. Determining the molecular origin of spectral tuning is instrumental for understanding the function and developing applications of these biomolecules. Spectral tuning in flavin-binding fluorescent proteins (FbFPs), an emerging class of fluorescent reporters, is limited by their dependency on protein-bound flavins, whose structure and hence electronic properties cannot be altered by mutation. A blue-shifted variant of the plant-derived improved light, oxygen, voltage FbFP has been created by introducing a lysine within the flavin-binding pocket, but the molecular basis of this shift remains unconfirmed. We here structurally characterize the blue-shifted improved light, oxygen, voltage variant and construct a new blue-shifted CagFbFP protein by introducing an analogous mutation. X-ray structures of both proteins reveal displacement of the lysine away from the chromophore and opening up of the structure as instrumental for the blue shift. Site saturation mutagenesis and high-throughput screening yielded a red-shifted variant, and structural analysis revealed that the lysine side chain of the blue-shifted variant is stabilized close to the flavin by a secondary mutation, accounting for the red shift. Thus, a single additional mutation in a blue-shifted variant is sufficient to generate a red-shifted FbFP. Using spectroscopy, X-ray crystallography, and quantum mechanics molecular mechanics calculations, we provide a firm structural and functional understanding of spectral tuning in FbFPs. We also show that the identified blue- and red-shifted variants allow for two-color microscopy based on spectral separation. In summary, the generated blue- and red-shifted variants represent promising new tools for application in life sciences.
Collapse
Affiliation(s)
- Katrin Röllen
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Joachim Granzin
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Thomas Gensch
- IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France; Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin Borshchevskiy
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Stefanie Hemmer
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany; IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany; DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Valentin Gordeliy
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, Grenoble, France
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany; IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Renu Batra-Safferling
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany; IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
| |
Collapse
|
12
|
Ulbricht C, Leben R, Rakhymzhan A, Kirchhoff F, Nitschke L, Radbruch H, Niesner RA, Hauser AE. Intravital quantification reveals dynamic calcium concentration changes across B cell differentiation stages. eLife 2021; 10:56020. [PMID: 33749591 PMCID: PMC8060033 DOI: 10.7554/elife.56020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/19/2021] [Indexed: 01/31/2023] Open
Abstract
Calcium is a universal second messenger present in all eukaryotic cells. The mobilization and storage of Ca2+ ions drives a number of signaling-related processes, stress-responses, or metabolic changes, all of which are relevant for the development of immune cells and their adaption to pathogens. Here, we introduce the Förster resonance energy transfer (FRET)-reporter mouse YellowCaB expressing the genetically encoded calcium indicator TN-XXL in B lymphocytes. Calcium-induced conformation change of TN-XXL results in FRET-donor quenching measurable by two-photon fluorescence lifetime imaging. For the first time, using our novel numerical analysis, we extract absolute cytoplasmic calcium concentrations in activated B cells during affinity maturation in vivo. We show that calcium in activated B cells is highly dynamic and that activation introduces a persistent calcium heterogeneity to the lineage. A characterization of absolute calcium concentrations present at any time within the cytosol is therefore of great value for the understanding of long-lived beneficial immune responses and detrimental autoimmunity.
Collapse
Affiliation(s)
- Carolin Ulbricht
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, Berlin, Germany.,Immune Dynamics, Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Ruth Leben
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Asylkhan Rakhymzhan
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | | | - Lars Nitschke
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Helena Radbruch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, Berlin, Germany
| | - Raluca A Niesner
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany.,Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja E Hauser
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, Berlin, Germany.,Immune Dynamics, Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| |
Collapse
|
13
|
Birkner K, Wasser B, Ruck T, Thalman C, Luchtman D, Pape K, Schmaul S, Bitar L, Krämer-Albers EM, Stroh A, Meuth SG, Zipp F, Bittner S. β1-Integrin- and KV1.3 channel-dependent signaling stimulates glutamate release from Th17 cells. J Clin Invest 2020; 130:715-732. [PMID: 31661467 DOI: 10.1172/jci126381] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 10/22/2019] [Indexed: 12/22/2022] Open
Abstract
Although the impact of Th17 cells on autoimmunity is undisputable, their pathogenic effector mechanism is still enigmatic. We discovered soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) complex proteins in Th17 cells that enable a vesicular glutamate release pathway that induces local intracytoplasmic calcium release and subsequent damage in neurons. This pathway is glutamine dependent and triggered by binding of β1-integrin to vascular cell adhesion molecule 1 (VCAM-1) on neurons in the inflammatory context. Glutamate secretion could be blocked by inhibiting either glutaminase or KV1.3 channels, which are known to be linked to integrin expression and highly expressed on stimulated T cells. Although KV1.3 is not expressed in CNS tissue, intrathecal administration of a KV1.3 channel blocker or a glutaminase inhibitor ameliorated disability in experimental neuroinflammation. In humans, T cells from patients with multiple sclerosis secreted higher levels of glutamate, and cerebrospinal fluid glutamine levels were increased. Altogether, our findings demonstrate that β1-integrin- and KV1.3 channel-dependent signaling stimulates glutamate release from Th17 cells upon direct cell-cell contact between Th17 cells and neurons.
Collapse
Affiliation(s)
- Katharina Birkner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beatrice Wasser
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tobias Ruck
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Carine Thalman
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dirk Luchtman
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katrin Pape
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Samantha Schmaul
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lynn Bitar
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Albrecht Stroh
- Institute for Pathophysiology, FTN, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven G Meuth
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2, ), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
14
|
Reza AM, Tavakoli J, Zhou Y, Qin J, Tang Y. Synthetic fluorescent probes to apprehend calcium signalling in lipid droplet accumulation in microalgae—an updated review. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9664-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
|
16
|
Xu J, Zeug A, Riederer B, Yeruva S, Griesbeck O, Daniel H, Tuo B, Ponimaskin E, Dong H, Seidler U. Calcium-sensing receptor regulates intestinal dipeptide absorption via Ca 2+ signaling and IK Ca activation. Physiol Rep 2020; 8:e14337. [PMID: 31960592 PMCID: PMC6971415 DOI: 10.14814/phy2.14337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although absorption of di- and tripeptides into intestinal epithelial cells occurs via the peptide transporter 1 (PEPT1, also called solute carrier family 15 member 1 (SLC15A1)), the detailed regulatory mechanisms are not fully understood. We examined: (a) whether dipeptide absorption in villous enterocytes is associated with a rise in cytosolic Ca2+ ([Ca2+ ]cyt ), (b) whether the calcium sensing receptor (CaSR) is involved in dipeptide-elicited [Ca2+ ]cyt signaling, and (c) what potential consequences of [Ca2+ ]cyt signaling may enhance enterocyte dipeptide absorption. Dipeptide Gly-Sar and CaSR agonist spermine markedly raised [Ca2+ ]cyt in villous enterocytes, which was abolished by NPS-2143, a selective CaSR antagonist and U73122, an phospholipase C (PLC) inhibitor. Apical application of Gly-Sar induced a jejunal short-circuit current (Isc), which was reduced by NPS-2143. CaSR expression was identified in the lamina propria and on the basal enterocyte membrane of mouse jejunal mucosa in both WT and Slc15a1-/- animals, but Gly-Sar-induced [Ca2+ ]cyt signaling was significantly decreased in Slc15a1-/- villi. Clotrimazole and TRM-34, two selective blockers of the intermediate conductance Ca2+ -activated K+ channel (IKCa ), but not iberiotoxin, a selective blocker of the large-conductance K+ channel (BKCa ) and apamin, a selective blocker of the small-conductance K+ channel (SKCa ), significantly inhibited Gly-Sar-induced Isc in native tissues. We reveal a novel CaSR-PLC-Ca2+ -IKCa pathway in the regulation of small intestinal dipeptide absorption, which may be exploited as a target for future drug development in human nutritional disorders.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
- Research GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Andre Zeug
- Cellular NeurophysiologyHannover Medical SchoolHannoverGermany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Sunil Yeruva
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| | | | - Hannelore Daniel
- Nutritional PhysiologyTechnical University of MunichFreisingGermany
| | - Biguang Tuo
- Research GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | | | - Hui Dong
- Department of MedicineUniversity of California, San DiegoLa JollaCAUSA
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
17
|
Trigo-Mourino P, Thestrup T, Griesbeck O, Griesinger C, Becker S. Dynamic tuning of FRET in a green fluorescent protein biosensor. SCIENCE ADVANCES 2019; 5:eaaw4988. [PMID: 31457088 PMCID: PMC6685724 DOI: 10.1126/sciadv.aaw4988] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/27/2019] [Indexed: 06/01/2023]
Abstract
Förster resonance energy transfer (FRET) between mutants of green fluorescent protein is widely used to monitor protein-protein interactions and as a readout mode in fluorescent biosensors. Despite the fundamental importance of distance and molecular angles of fluorophores to each other, structural details on fluorescent protein FRET have been missing. Here, we report the high-resolution x-ray structure of the fluorescent proteins mCerulean3 and cpVenus within the biosensor Twitch-2B, as they undergo FRET and characterize the dynamics of this biosensor with B 0 2 -dependent paramagnetic nuclear magnetic resonance at 900 MHz and 1.1 GHz. These structural data provide the unprecedented opportunity to calculate FRET from the x-ray structure and to compare it to experimental data in solution. We find that interdomain dynamics limits the FRET effect and show that a rigidification of the sensor further enhances FRET.
Collapse
Affiliation(s)
- Pablo Trigo-Mourino
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Structural Elucidation Group, Analytic Enabling Technologies, Merck & Co., 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | | | | | - Christian Griesinger
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
18
|
Greotti E, Fortunati I, Pendin D, Ferrante C, Galla L, Zentilin L, Giacca M, Kaludercic N, Di Sante M, Mariotti L, Lia A, Gómez-Gonzalo M, Sessolo M, Di Lisa F, Carmignoto G, Bozio R, Pozzan T. mCerulean3-Based Cameleon Sensor to Explore Mitochondrial Ca 2+ Dynamics In Vivo. iScience 2019; 16:340-355. [PMID: 31203189 PMCID: PMC6581653 DOI: 10.1016/j.isci.2019.05.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 02/02/2023] Open
Abstract
Genetically Encoded Ca2+ Indicators (GECIs) are extensively used to study organelle Ca2+ homeostasis, although some available probes are still plagued by a number of problems, e.g., low fluorescence intensity, partial mistargeting, and pH sensitivity. Furthermore, in the most commonly used mitochondrial Förster Resonance Energy Transfer based-GECIs, the donor protein ECFP is characterized by a double exponential lifetime that complicates the fluorescence lifetime analysis. We have modified the cytosolic and mitochondria-targeted Cameleon GECIs by (1) substituting the donor ECFP with mCerulean3, a brighter and more stable fluorescent protein with a single exponential lifetime; (2) extensively modifying the constructs to improve targeting efficiency and fluorescence changes caused by Ca2+ binding; and (3) inserting the cDNAs into adeno-associated viral vectors for in vivo expression. The probes have been thoroughly characterized in situ by fluorescence microscopy and Fluorescence Lifetime Imaging Microscopy, and examples of their ex vivo and in vivo applications are described. Donor substitution in a mitochondrial Ca2+ sensor improves photo-physical properties Mitochondria-targeting sequence amelioration enhances the sensor localization Donor substitution allows FLIM-FRET analysis, with a compensation for pH bias The performance of the sensor is improved in situ, ex vivo, and in vivo
Collapse
Affiliation(s)
- Elisa Greotti
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Ilaria Fortunati
- Department of Chemical Sciences and INSTM, University of Padua, 35131 Padua, Italy
| | - Diana Pendin
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Camilla Ferrante
- Department of Chemical Sciences and INSTM, University of Padua, 35131 Padua, Italy
| | - Luisa Galla
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Letizia Mariotti
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Annamaria Lia
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Marta Gómez-Gonzalo
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Michele Sessolo
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Renato Bozio
- Department of Chemical Sciences and INSTM, University of Padua, 35131 Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), 35131 Padua, Italy.
| |
Collapse
|
19
|
Mittal M, Hasan M, Balagunaseelan N, Fauland A, Wheelock C, Rådmark O, Haeggström JZ, Rinaldo-Matthis A. Investigation of calcium-dependent activity and conformational dynamics of zebra fish 12-lipoxygenase. Biochim Biophys Acta Gen Subj 2017; 1861:2099-2111. [DOI: 10.1016/j.bbagen.2017.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 11/26/2022]
|
20
|
Wingen M, Jaeger KE, Gensch T, Drepper T. Novel Thermostable Flavin-binding Fluorescent Proteins from Thermophilic Organisms. Photochem Photobiol 2017; 93:849-856. [DOI: 10.1111/php.12740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/28/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Marcus Wingen
- Institute of Molecular Enzyme Technology; Heinrich Heine University Düsseldorf; Forschungszentrum Jülich; Jülich Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology; Heinrich Heine University Düsseldorf; Forschungszentrum Jülich; Jülich Germany
- Institute of Bio- and Geosciences; IBG-1: Biotechnology; Forschungszentrum Jülich; Jülich Germany
| | - Thomas Gensch
- Institute of Complex Systems 4 (Cellular Biophysics); Forschungszentrum Jülich; Jülich Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology; Heinrich Heine University Düsseldorf; Forschungszentrum Jülich; Jülich Germany
| |
Collapse
|
21
|
Newman RH, Zhang J. Integrated Strategies to Gain a Systems-Level View of Dynamic Signaling Networks. Methods Enzymol 2017; 589:133-170. [PMID: 28336062 DOI: 10.1016/bs.mie.2017.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to survive and function properly in the face of an ever changing environment, cells must be able to sense changes in their surroundings and respond accordingly. Cells process information about their environment through complex signaling networks composed of many discrete signaling molecules. Individual pathways within these networks are often tightly integrated and highly dynamic, allowing cells to respond to a given stimulus (or, as is typically the case under physiological conditions, a combination of stimuli) in a specific and appropriate manner. However, due to the size and complexity of many cellular signaling networks, it is often difficult to predict how cellular signaling networks will respond under a particular set of conditions. Indeed, crosstalk between individual signaling pathways may lead to responses that are nonintuitive (or even counterintuitive) based on examination of the individual pathways in isolation. Therefore, to gain a more comprehensive view of cell signaling processes, it is important to understand how signaling networks behave at the systems level. This requires integrated strategies that combine quantitative experimental data with computational models. In this chapter, we first examine some of the progress that has recently been made toward understanding the systems-level regulation of cellular signaling networks, with a particular emphasis on phosphorylation-dependent signaling networks. We then discuss how genetically targetable fluorescent biosensors are being used together with computational models to gain unique insights into the spatiotemporal regulation of signaling networks within single, living cells.
Collapse
Affiliation(s)
- Robert H Newman
- North Carolina Agricultural and Technical State University, Greensboro, NC, United States.
| | - Jin Zhang
- University of California, San Diego, San Diego, CA, United States.
| |
Collapse
|
22
|
A Guide to Fluorescent Protein FRET Pairs. SENSORS 2016; 16:s16091488. [PMID: 27649177 PMCID: PMC5038762 DOI: 10.3390/s16091488] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022]
Abstract
Förster or fluorescence resonance energy transfer (FRET) technology and genetically encoded FRET biosensors provide a powerful tool for visualizing signaling molecules in live cells with high spatiotemporal resolution. Fluorescent proteins (FPs) are most commonly used as both donor and acceptor fluorophores in FRET biosensors, especially since FPs are genetically encodable and live-cell compatible. In this review, we will provide an overview of methods to measure FRET changes in biological contexts, discuss the palette of FP FRET pairs developed and their relative strengths and weaknesses, and note important factors to consider when using FPs for FRET studies.
Collapse
|
23
|
Luchtman D, Gollan R, Ellwardt E, Birkenstock J, Robohm K, Siffrin V, Zipp F. In vivo and in vitro effects of multiple sclerosis immunomodulatory therapeutics on glutamatergic excitotoxicity. J Neurochem 2016; 136:971-80. [PMID: 26662167 DOI: 10.1111/jnc.13456] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 11/27/2022]
Abstract
In multiple sclerosis (MS), a candidate downstream mechanism for neuronal injury is glutamate (Glu)-induced excitotoxicity, leading to toxic increases in intraneuronal Ca(2+) . Here, we used in vivo two-photon imaging in the brain of TN-XXL transgenic Ca(2+) reporter mice to test whether promising oral MS therapeutics, namely fingolimod, dimethyl fumarate, and their respective metabolites fingolimod-phosphate and monomethyl fumarate, can protect neurons against acute glutamatergic excitotoxic damage. We also assessed whether these drugs can protect against excitotoxicity in vitro using primary cortical neurons, and whether they can directly inhibit Glu release from pathogenic T-helper 17 lymphocytes. In vivo, direct and acute (1 h) administration of 100 mM Glu to the brainstem resulted in a rapid and significant up-regulation in neuronal Ca(2+) signaling as well as morphological excitotoxic changes that were attenuated by the NMDA-receptor antagonist MK801. Direct CNS administration of MS drugs prior to Glu significantly delayed or reduced, but did not prevent the neuronal Ca(2+) increase or morphological changes. In vitro, prolonged (24 h) treatment of primary neurons with the fumarates significantly protected against neurotoxicity induced by Glu as well as NMDA, similar to MK801. Furthermore, monomethyl fumerate significantly reduced Glu release from pathogenic T-helper 17 lymphocytes. Overall, these data suggest that MS drugs may mediate neuroprotection via excitotoxicity modulating effects. Evidence suggests MS pathogenesis may involve neuronal excitotoxicity, induced by local release of glutamate. However, current MS drugs, including dimethyl fumerate (DMF) and fingolimod (FTY720) are largely anti-inflammatory and not yet fully tested for their neuroprotective potential. Here, we show that the drugs, in particular DMF metabolite monomethyl fumerate (MMF), protect neurons by excitotoxicity modulating effects. Th17, T-helper 17.
Collapse
Affiliation(s)
- Dirk Luchtman
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - René Gollan
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Erik Ellwardt
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jérôme Birkenstock
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Robohm
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Volker Siffrin
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn²), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
24
|
Dushek O, Lellouch AC, Vaux DJ, Shahrezaei V. Biosensor architectures for high-fidelity reporting of cellular signaling. Biophys J 2015; 107:773-782. [PMID: 25099816 PMCID: PMC4129486 DOI: 10.1016/j.bpj.2014.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/26/2014] [Accepted: 06/10/2014] [Indexed: 11/29/2022] Open
Abstract
Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling.
Collapse
Affiliation(s)
- Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom; Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, United Kingdom.
| | - Annemarie C Lellouch
- Aix Marseille Université, Laboratoire d'Adhésion et Inflammation, Marseille, France; Institut National de la Santé et de la Recherche Médicale U1067, Marseille, France; Centre National de la Recherche Scientifique UMR 7333, Marseille, France
| | - David J Vaux
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, United Kingdom.
| |
Collapse
|
25
|
Large Scale Bacterial Colony Screening of Diversified FRET Biosensors. PLoS One 2015; 10:e0119860. [PMID: 26061878 PMCID: PMC4464885 DOI: 10.1371/journal.pone.0119860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/16/2015] [Indexed: 11/30/2022] Open
Abstract
Biosensors based on Förster Resonance Energy Transfer (FRET) between fluorescent protein mutants have started to revolutionize physiology and biochemistry. However, many types of FRET biosensors show relatively small FRET changes, making measurements with these probes challenging when used under sub-optimal experimental conditions. Thus, a major effort in the field currently lies in designing new optimization strategies for these types of sensors. Here we describe procedures for optimizing FRET changes by large scale screening of mutant biosensor libraries in bacterial colonies. We describe optimization of biosensor expression, permeabilization of bacteria, software tools for analysis, and screening conditions. The procedures reported here may help in improving FRET changes in multiple suitable classes of biosensors.
Collapse
|
26
|
Siffrin V, Birkenstock J, Luchtman DW, Gollan R, Baumgart J, Niesner RA, Griesbeck O, Zipp F. FRET based ratiometric Ca(2+) imaging to investigate immune-mediated neuronal and axonal damage processes in experimental autoimmune encephalomyelitis. J Neurosci Methods 2015; 249:8-15. [PMID: 25864804 DOI: 10.1016/j.jneumeth.2015.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Irreversible axonal and neuronal damage are the correlate of disability in patients suffering from multiple sclerosis (MS). A sustained increase of cytoplasmic free [Ca(2+)] is a common upstream event of many neuronal and axonal damage processes and could represent an early and potentially reversible step. NEW METHOD We propose a method to specifically analyze the neurodegenerative aspects of experimental autoimmune encephalomyelitis by Förster Resonance Energy Transfer (FRET) imaging of neuronal and axonal Ca(2+) dynamics by two-photon laser scanning microscopy (TPLSM). RESULTS Using the genetically encoded Ca(2+) sensor TN-XXL expressed in neurons and their corresponding axons, we confirm the increase of cytoplasmic free [Ca(2+)] in axons and neurons of autoimmune inflammatory lesions compared to those in non-inflamed brains. We show that these relative [Ca(2+)] increases were associated with immune-neuronal interactions. COMPARISON WITH EXISTING METHODS In contrast to Ca(2+)-sensitive dyes the use of a genetically encoded Ca(2+) sensor allows reliable intraaxonal free [Ca(2+)] measurements in living anesthetized mice in health and disease. This method detects early axonal damage processes in contrast to e.g. cell/axon morphology analysis, that rather detects late signs of neurodegeneration. CONCLUSIONS Thus, we describe a method to analyze and monitor early neuronal damage processes in the brain in vivo.
Collapse
Affiliation(s)
- Volker Siffrin
- Neurology Department, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Jérôme Birkenstock
- Neurology Department, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Dirk W Luchtman
- Neurology Department, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - René Gollan
- Neurology Department, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Jan Baumgart
- Central Research Animal Facility, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Oliver Griesbeck
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Frauke Zipp
- Neurology Department, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
27
|
Rose T, Goltstein PM, Portugues R, Griesbeck O. Putting a finishing touch on GECIs. Front Mol Neurosci 2014; 7:88. [PMID: 25477779 PMCID: PMC4235368 DOI: 10.3389/fnmol.2014.00088] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/29/2014] [Indexed: 01/12/2023] Open
Abstract
More than a decade ago genetically encoded calcium indicators (GECIs) entered the stage as new promising tools to image calcium dynamics and neuronal activity in living tissues and designated cell types in vivo. From a variety of initial designs two have emerged as promising prototypes for further optimization: FRET (Förster Resonance Energy Transfer)-based sensors and single fluorophore sensors of the GCaMP family. Recent efforts in structural analysis, engineering and screening have broken important performance thresholds in the latest generation for both classes. While these improvements have made GECIs a powerful means to perform physiology in living animals, a number of other aspects of sensor function deserve attention. These aspects include indicator linearity, toxicity and slow response kinetics. Furthermore creating high performance sensors with optically more favorable emission in red or infrared wavelengths as well as new stably or conditionally GECI-expressing animal lines are on the wish list. When the remaining issues are solved, imaging of GECIs will finally have crossed the last milestone, evolving from an initial promise into a fully matured technology.
Collapse
Affiliation(s)
- Tobias Rose
- Max-Planck-Institute of Neurobiology Martinsried, Germany
| | | | | | | |
Collapse
|
28
|
Thunemann M, Schmidt K, de Wit C, Han X, Jain RK, Fukumura D, Feil R. Correlative intravital imaging of cGMP signals and vasodilation in mice. Front Physiol 2014; 5:394. [PMID: 25352809 PMCID: PMC4196583 DOI: 10.3389/fphys.2014.00394] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 01/09/2023] Open
Abstract
Cyclic guanosine monophosphate (cGMP) is an important signaling molecule and drug target in the cardiovascular system. It is well known that stimulation of the vascular nitric oxide (NO)-cGMP pathway results in vasodilation. However, the spatiotemporal dynamics of cGMP signals themselves and the cGMP concentrations within specific cardiovascular cell types in health, disease, and during pharmacotherapy with cGMP-elevating drugs are largely unknown. To facilitate the analysis of cGMP signaling in vivo, we have generated transgenic mice that express fluorescence resonance energy transfer (FRET)-based cGMP sensor proteins. Here, we describe two models of intravital FRET/cGMP imaging in the vasculature of cGMP sensor mice: (1) epifluorescence-based ratio imaging in resistance-type vessels of the cremaster muscle and (2) ratio imaging by multiphoton microscopy within the walls of subcutaneous blood vessels accessed through a dorsal skinfold chamber. Both methods allow simultaneous monitoring of NO-induced cGMP transients and vasodilation in living mice. Detailed protocols of all steps necessary to perform and evaluate intravital imaging experiments of the vasculature of anesthetized mice including surgery, imaging, and data evaluation are provided. An image segmentation approach is described to estimate FRET/cGMP changes within moving structures such as the vessel wall during vasodilation. The methods presented herein should be useful to visualize cGMP or other biochemical signals that are detectable with FRET-based biosensors, such as cyclic adenosine monophosphate or Ca2+, and to correlate them with respective vascular responses. With further refinement and combination of transgenic mouse models and intravital imaging technologies, we envision an exciting future, in which we are able to “watch” biochemistry, (patho-)physiology, and pharmacotherapy in the context of a living mammalian organism.
Collapse
Affiliation(s)
- Martin Thunemann
- Interfakultäres Institut für Biochemie, University of Tübingen Tübingen, Germany
| | | | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck Lübeck, Germany
| | - Xiaoxing Han
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | - Robert Feil
- Interfakultäres Institut für Biochemie, University of Tübingen Tübingen, Germany
| |
Collapse
|
29
|
Göbl C, Madl T, Simon B, Sattler M. NMR approaches for structural analysis of multidomain proteins and complexes in solution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 80:26-63. [PMID: 24924266 DOI: 10.1016/j.pnmrs.2014.05.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/14/2014] [Indexed: 05/22/2023]
Abstract
NMR spectroscopy is a key method for studying the structure and dynamics of (large) multidomain proteins and complexes in solution. It plays a unique role in integrated structural biology approaches as especially information about conformational dynamics can be readily obtained at residue resolution. Here, we review NMR techniques for such studies focusing on state-of-the-art tools and practical aspects. An efficient approach for determining the quaternary structure of multidomain complexes starts from the structures of individual domains or subunits. The arrangement of the domains/subunits within the complex is then defined based on NMR measurements that provide information about the domain interfaces combined with (long-range) distance and orientational restraints. Aspects discussed include sample preparation, specific isotope labeling and spin labeling; determination of binding interfaces and domain/subunit arrangements from chemical shift perturbations (CSP), nuclear Overhauser effects (NOEs), isotope editing/filtering, cross-saturation, and differential line broadening; and based on paramagnetic relaxation enhancements (PRE) using covalent and soluble spin labels. Finally, the utility of complementary methods such as small-angle X-ray or neutron scattering (SAXS, SANS), electron paramagnetic resonance (EPR) or fluorescence spectroscopy techniques is discussed. The applications of NMR techniques are illustrated with studies of challenging (high molecular weight) protein complexes.
Collapse
Affiliation(s)
- Christoph Göbl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Tobias Madl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Molecular Biology, University of Graz, Graz, Austria.
| | - Bernd Simon
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
30
|
Zhuo Y, Solntsev KM, Reddish F, Tang S, Yang JJ. Effect of Ca²⁺ on the steady-state and time-resolved emission properties of the genetically encoded fluorescent sensor CatchER. J Phys Chem B 2014; 119:2103-11. [PMID: 24836743 PMCID: PMC4329989 DOI: 10.1021/jp501707n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
We
previously designed a calcium sensor CatchER (a GFP-based Calcium
sensor for detecting high concentrations in the high calcium concentration
environment such as ER) with a capability for monitoring calcium ion
responses in various types of cells. Calcium binding to CatchER induces
the ratiometric changes in the absorption spectra, as well as an increase
in fluorescence emission at 510 nm upon excitation at both 395 and
488 nm. Here, we have applied the combination of the steady-state
and time-resolved optical methods and Hydrogen/Deuterium isotope exchange
to understand the origin of such calcium-induced optical property
changes of CatchER. We first demonstrated that calcium binding results
in a 44% mean fluorescence lifetime increase of the indirectly excited
anionic chromophore. Thus, CatchER is the first protein-based calcium
indicator with the single fluorescent moiety to show the direct correlation
between the lifetime and calcium binding. Calcium exhibits a strong
inhibition on the excited-state proton transfer nonadiabatic geminate
recombination in protic (vs deuteric) medium. Analysis of CatchER
crystal structures and the MD simulations reveal the proton transfer
mechanism in which the disrupted proton migration path in CatchER
is rescued by calcium binding. Our finding provides important insights
for a strategy to design calcium sensors and suggests that CatchER
could be a useful probe for FLIM imaging of calcium in situ.
Collapse
Affiliation(s)
- You Zhuo
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30303, United States
| | | | | | | | | |
Collapse
|
31
|
Oldach L, Zhang J. Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. ACTA ACUST UNITED AC 2014; 21:186-97. [PMID: 24485761 DOI: 10.1016/j.chembiol.2013.12.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/22/2013] [Accepted: 12/10/2013] [Indexed: 11/30/2022]
Abstract
Fluorescence-based, genetically encodable biosensors are widely used tools for real-time analysis of biological processes. Over the last few decades, the number of available genetically encodable biosensors and the types of processes they can monitor have increased rapidly. Here, we aim to introduce the reader to general principles and practices in biosensor development and highlight ways in which biosensors can be used to illuminate outstanding questions of biological function. Specifically, we focus on sensors developed for monitoring kinase activity and use them to illustrate some common considerations for biosensor design. We describe several uses to which kinase and second-messenger biosensors have been put, and conclude with considerations for the use of biosensors once they are developed. Overall, as fluorescence-based biosensors continue to diversify and improve, we expect them to continue to be widely used as reliable and fruitful tools for gaining deeper insights into cellular and organismal function.
Collapse
Affiliation(s)
- Laurel Oldach
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Department of Oncology, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
Thestrup T, Litzlbauer J, Bartholomäus I, Mues M, Russo L, Dana H, Kovalchuk Y, Liang Y, Kalamakis G, Laukat Y, Becker S, Witte G, Geiger A, Allen T, Rome LC, Chen TW, Kim DS, Garaschuk O, Griesinger C, Griesbeck O. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat Methods 2014; 11:175-82. [DOI: 10.1038/nmeth.2773] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 11/29/2013] [Indexed: 01/20/2023]
|
33
|
Wingen M, Potzkei J, Endres S, Casini G, Rupprecht C, Fahlke C, Krauss U, Jaeger KE, Drepper T, Gensch T. The photophysics of LOV-based fluorescent proteins – new tools for cell biology. Photochem Photobiol Sci 2014; 13:875-83. [DOI: 10.1039/c3pp50414j] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study photophysical characteristics of LOV-based fluorescent proteins which are essential for analytic methods as well as imaging approaches have been comparatively analyzed in detail.
Collapse
Affiliation(s)
- Marcus Wingen
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Janko Potzkei
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Stephan Endres
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Giorgia Casini
- Institute of Complex Systems 4 (ICS-4
- Cellular Biophysics)
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Christian Rupprecht
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems 4 (ICS-4
- Cellular Biophysics)
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Ulrich Krauss
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Thomas Gensch
- Institute of Complex Systems 4 (ICS-4
- Cellular Biophysics)
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| |
Collapse
|
34
|
Rinnenthal JL, Börnchen C, Radbruch H, Andresen V, Mossakowski A, Siffrin V, Seelemann T, Spiecker H, Moll I, Herz J, Hauser AE, Zipp F, Behne MJ, Niesner R. Parallelized TCSPC for dynamic intravital fluorescence lifetime imaging: quantifying neuronal dysfunction in neuroinflammation. PLoS One 2013; 8:e60100. [PMID: 23613717 PMCID: PMC3629055 DOI: 10.1371/journal.pone.0060100] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 02/22/2013] [Indexed: 01/27/2023] Open
Abstract
Two-photon laser-scanning microscopy has revolutionized our view on vital processes by revealing motility and interaction patterns of various cell subsets in hardly accessible organs (e.g. brain) in living animals. However, current technology is still insufficient to elucidate the mechanisms of organ dysfunction as a prerequisite for developing new therapeutic strategies, since it renders only sparse information about the molecular basis of cellular response within tissues in health and disease. In the context of imaging, Förster resonant energy transfer (FRET) is one of the most adequate tools to probe molecular mechanisms of cell function. As a calibration-free technique, fluorescence lifetime imaging (FLIM) is superior for quantifying FRET in vivo. Currently, its main limitation is the acquisition speed in the context of deep-tissue 3D and 4D imaging. Here we present a parallelized time-correlated single-photon counting point detector (p-TCSPC) (i) for dynamic single-beam scanning FLIM of large 3D areas on the range of hundreds of milliseconds relevant in the context of immune-induced pathologies as well as (ii) for ultrafast 2D FLIM in the range of tens of milliseconds, a scale relevant for cell physiology. We demonstrate its power in dynamic deep-tissue intravital imaging, as compared to multi-beam scanning time-gated FLIM suitable for fast data acquisition and compared to highly sensitive single-channel TCSPC adequate to detect low fluorescence signals. Using p-TCSPC, 256×256 pixel FLIM maps (300×300 µm(2)) are acquired within 468 ms while 131×131 pixel FLIM maps (75×75 µm(2)) can be acquired every 82 ms in 115 µm depth in the spinal cord of CerTN L15 mice. The CerTN L15 mice express a FRET-based Ca-biosensor in certain neuronal subsets. Our new technology allows us to perform time-lapse 3D intravital FLIM (4D FLIM) in the brain stem of CerTN L15 mice affected by experimental autoimmune encephalomyelitis and, thereby, to truly quantify neuronal dysfunction in neuroinflammation.
Collapse
Affiliation(s)
- Jan Leo Rinnenthal
- German Rheumatism Research Center, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| | - Christian Börnchen
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helena Radbruch
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| | | | - Agata Mossakowski
- German Rheumatism Research Center, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| | - Volker Siffrin
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Neurology Department, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Ingrid Moll
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Josephine Herz
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| | - Anja E. Hauser
- German Rheumatism Research Center, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| | - Frauke Zipp
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Neurology Department, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin J. Behne
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raluca Niesner
- German Rheumatism Research Center, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité – University of Medicine, Berlin, Germany
| |
Collapse
|
35
|
Dedecker P, De Schryver FC, Hofkens J. Fluorescent Proteins: Shine on, You Crazy Diamond. J Am Chem Soc 2013; 135:2387-402. [DOI: 10.1021/ja309768d] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter Dedecker
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Frans C. De Schryver
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Johan Hofkens
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
36
|
Genetically encoded Ca(2+) indicators: properties and evaluation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1787-97. [PMID: 23352808 DOI: 10.1016/j.bbamcr.2013.01.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/02/2013] [Accepted: 01/10/2013] [Indexed: 02/04/2023]
Abstract
Genetically encoded calcium ion (Ca(2+)) indicators have become very useful and widely used tools for Ca(2+) imaging, not only in cellular models, but also in living organisms. However, the in vivo and in situ characterization of these indicators is tedious and time consuming, and it does not provide information regarding the suitability of an indicator for particular experimental environments. Thus, initial in vitro evaluation of these tools is typically performed to determine their properties. In this review, we examined the properties of dynamic range, affinity, selectivity, and kinetics for Ca(2+) indicators. Commonly used strategies for evaluating these properties are presented. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
37
|
Sun XR, Badura A, Pacheco DA, Lynch LA, Schneider ER, Taylor MP, Hogue IB, Enquist LW, Murthy M, Wang SSH. Fast GCaMPs for improved tracking of neuronal activity. Nat Commun 2013; 4:2170. [PMID: 23863808 PMCID: PMC3824390 DOI: 10.1038/ncomms3170] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/19/2013] [Indexed: 01/31/2023] Open
Abstract
The use of genetically encodable calcium indicator proteins to monitor neuronal activity is hampered by slow response times and a narrow Ca(2+)-sensitive range. Here we identify three performance-limiting features of GCaMP3, a popular genetically encodable calcium indicator protein. First, we find that affinity is regulated by the calmodulin domain's Ca(2+)-chelating residues. Second, we find that off-responses to Ca(2+) are rate-limited by dissociation of the RS20 domain from calmodulin's hydrophobic pocket. Third, we find that on-responses are limited by fast binding to the N-lobe at high Ca(2+) and by slow binding to the C-lobe at lower Ca(2+). We develop Fast-GCaMPs, which have up to 20-fold accelerated off-responses and show that they have a 200-fold range of K(D), allowing coexpression of multiple variants to span an expanded range of Ca(2+) concentrations. Finally, we show that Fast-GCaMPs track natural song in Drosophila auditory neurons and generate rapid responses in mammalian neurons, supporting the utility of our approach.
Collapse
Affiliation(s)
- Xiaonan R Sun
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Aleksandra Badura
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Diego A Pacheco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Laura A Lynch
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Eve R Schneider
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Matthew P Taylor
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Ian B Hogue
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Mala Murthy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - Samuel S-H Wang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
38
|
Laine R, Stuckey DW, Manning H, Warren SC, Kennedy G, Carling D, Dunsby C, Sardini A, French PMW. Fluorescence lifetime readouts of Troponin-C-based calcium FRET sensors: a quantitative comparison of CFP and mTFP1 as donor fluorophores. PLoS One 2012; 7:e49200. [PMID: 23152874 PMCID: PMC3494685 DOI: 10.1371/journal.pone.0049200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/08/2012] [Indexed: 11/23/2022] Open
Abstract
We have compared the performance of two Troponin-C-based calcium FRET sensors using fluorescence lifetime read-outs. The first sensor, TN-L15, consists of a Troponin-C fragment inserted between CFP and Citrine while the second sensor, called mTFP-TnC-Cit, was realized by replacing CFP in TN-L15 with monomeric Teal Fluorescent Protein (mTFP1). Using cytosol preparations of transiently transfected mammalian cells, we have measured the fluorescence decay profiles of these sensors at controlled concentrations of calcium using time-correlated single photon counting. These data were fitted to discrete exponential decay models using global analysis to determine the FRET efficiency, fraction of donor molecules undergoing FRET and calcium affinity of these sensors. We have also studied the decay profiles of the donor fluorescent proteins alone and determined the sensitivity of the donor lifetime to temperature and emission wavelength. Live-cell fluorescence lifetime imaging (FLIM) of HEK293T cells expressing each of these sensors was also undertaken. We confirmed that donor fluorescence of mTFP-TnC-Cit fits well to a two-component decay model, while the TN-L15 lifetime data was best fitted to a constrained four-component model, which was supported by phasor analysis of the measured lifetime data. If the constrained global fitting is employed, the TN-L15 sensor can provide a larger dynamic range of lifetime readout than the mTFP-TnC-Cit sensor but the CFP donor is significantly more sensitive to changes in temperature and emission wavelength compared to mTFP and, while the mTFP-TnC-Cit solution phase data broadly agreed with measurements in live cells, this was not the case for the TN-L15 sensor. Our titration experiment also indicates that a similar precision in determination of calcium concentration can be achieved with both FRET biosensors when fitting a single exponential donor fluorescence decay model to the fluorescence decay profiles. We therefore suggest that mTFP-based probes are more suitable for FLIM experiments than CFP-based probes.
Collapse
Affiliation(s)
- Romain Laine
- Institute of Chemical Biology (ICB), Imperial College of Science, Technology & Medicine, Institute of Chemical Biology (ICB), London, England
- Photonics Group, Blackett Lab, Imperial College of Science, Technology & Medicine, London, England
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College of Science, Technology & Medicine, London, England
- * E-mail:
| | - Daniel W. Stuckey
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College of Science, Technology & Medicine, London, England
| | - Hugh Manning
- Photonics Group, Blackett Lab, Imperial College of Science, Technology & Medicine, London, England
| | - Sean C. Warren
- Photonics Group, Blackett Lab, Imperial College of Science, Technology & Medicine, London, England
| | - Gordon Kennedy
- Photonics Group, Blackett Lab, Imperial College of Science, Technology & Medicine, London, England
| | - David Carling
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College of Science, Technology & Medicine, London, England
| | - Chris Dunsby
- Photonics Group, Blackett Lab, Imperial College of Science, Technology & Medicine, London, England
| | - Alessandro Sardini
- Medical Research Council (MRC) Clinical Sciences Centre, Imperial College of Science, Technology & Medicine, London, England
| | - Paul M. W. French
- Photonics Group, Blackett Lab, Imperial College of Science, Technology & Medicine, London, England
| |
Collapse
|