1
|
Gazerani G, Piercey LR, Reema S, Wilson KA. Examining the Biophysical Properties of the Inner Membrane of Gram-Negative ESKAPE Pathogens. J Chem Inf Model 2025; 65:1453-1464. [PMID: 39874531 DOI: 10.1021/acs.jcim.4c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20-30% of the bacterial cellular proteins. Given the cell membrane's critical role in bacterial survival, antibiotics targeting the cell membrane have been proposed to combat bacterial infections. However, a deeper understanding of the biophysical properties of the bacterial cell membrane is crucial to developing effective and specific antibiotics. In this study, Martini coarse-grain molecular dynamics simulations were used to investigate the interplay between membrane composition and biophysical properties of the inner membrane across four pathogenic bacterial species: Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter cloacae, and Escherichia coli. The simulations indicate the impact of species-specific membrane composition on the overall membrane properties. Specifically, the cardiolipin concentration in the inner membrane is a key factor influencing the membrane features. Model membranes with varying concentrations of bacterial lipids (phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin) further support the significant role of cardiolipin in determining the membrane biophysical properties. The bacterial inner membrane models developed in this work pave the way for future simulations of bacterial membrane proteins and for simulations investigating novel strategies aimed at disrupting the bacterial membrane to treat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Golbarg Gazerani
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Lesley R Piercey
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Syeda Reema
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Katie A Wilson
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| |
Collapse
|
2
|
Ljubič M, Perdih A, Borišek J. All-Atom Simulations Reveal the Effect of Membrane Composition on the Signaling of the NKG2A/CD94/HLA-E Immune Receptor Complex. J Chem Inf Model 2024; 64:9374-9387. [PMID: 39621690 DOI: 10.1021/acs.jcim.4c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Understanding how membrane composition influences the dynamics and function of transmembrane proteins is crucial for the comprehensive elucidation of cellular signaling mechanisms and the development of targeted therapeutics. In this study, we employed all-atom molecular dynamics simulations to investigate the impact of different membrane compositions on the conformational dynamics of the NKG2A/CD94/HLA-E immune receptor complex, a key negative regulator of natural killer cell cytotoxic activity. Our results reveal significant variations in the behavior of the immune complex structure across five different membrane compositions, which include POPC, POPA, DPPC, and DLPC phospholipids, and a mixed POPC/cholesterol system. These variations are particularly evident in the intracellular domain of NKG2A, manifested as changes in mobility, tyrosine exposure, and interdomain communication. Additionally, we found that a large concentration of negative charge at the surface of the POPA-based membrane greatly increased the number of contacts with lipid molecules and significantly decreased the exposure of intracellular NKG2A ITIM regions to water molecules, thus likely halting the signal transduction process. Furthermore, the DPPC model with a membrane possessing a high transition temperature in a gel-like state became curved, affecting the exposure of one ITIM region. The decreased membrane thickness in the DPLC model caused a significant transmembrane domain tilt, altering the linker protrusion angle and potentially disrupting the hydrogen bonding network in the extracellular domain. Overall, our findings highlight the importance of considering membrane composition in the analysis of transmembrane protein dynamics and in the exploration of novel strategies for the external modulation of their signaling pathways.
Collapse
Affiliation(s)
- Martin Ljubič
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Jure Borišek
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Engberg O, Mathath AV, Döbel V, Frie C, Lemberg MK, Chakraborty D, Huster D. Evaluating the impact of the membrane thickness on the function of the intramembrane protease GlpG. Biophys J 2024; 123:4067-4081. [PMID: 39488732 PMCID: PMC11628809 DOI: 10.1016/j.bpj.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024] Open
Abstract
Cellular membranes exhibit a huge diversity of lipids and membrane proteins that differ in their properties and chemical structure. Cells organize these molecules into distinct membrane compartments characterized by specific lipid profiles and hydrophobic thicknesses of the respective domains. If a hydrophobic mismatch occurs between a membrane protein and the surrounding lipids, there can be functional consequences such as reduced protein activity. This phenomenon has been extensively studied for single-pass transmembrane proteins, rhodopsin, and small polypeptides such as gramicidin. Here, we investigate the E. coli rhomboid intramembrane protease GlpG as a model to systematically explore the impact of membrane thickness on GlpG activity. We used fully saturated 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine(DMPC) model lipids and altered membrane thickness by varying the cholesterol content. Physical membrane parameters were determined by 2H and 31P NMR spectroscopy and correlated with GlpG activity measurements in the respective host membranes. Differences in bulk and annular lipids as well as alterations in protein structure in the respective host membranes were determined using molecular dynamics simulations. Our findings indicate that GlpG can influence the membrane thickness in DLPC/cholesterol membranes but not in DMPC/cholesterol membranes. Moreover, we observe that GlpG protease activity is reduced in DLPC membranes at low cholesterol content, which was not observed for DMPC. While a change in GlpG activity can already be due to smallest differences in the lipid environment, potentially enabling allosteric regulation of intramembrane proteolysis, there is no overall correlation to cholesterol-mediated lipid bilayer organization and phase behavior. Additional factors such as the influence of cholesterol on membrane bending rigidity and curvature energy need to be considered. In conclusion, the functionality of α-helical membrane proteins such as GlpG relies not only on hydrophobic matching but also on other membrane properties, specific lipid interaction, and the composition of the annular layer.
Collapse
Affiliation(s)
- Oskar Engberg
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Anjana V Mathath
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, Karnataka, India
| | - Viola Döbel
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Christian Frie
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marius K Lemberg
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Debashree Chakraborty
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Mangalore, Karnataka, India
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
4
|
Justice I, Kiesel P, Safronova N, von Appen A, Saenz JP. A tuneable minimal cell membrane reveals that two lipid species suffice for life. Nat Commun 2024; 15:9679. [PMID: 39516463 PMCID: PMC11549477 DOI: 10.1038/s41467-024-53975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
All cells are encapsulated by a lipid membrane that facilitates their interactions with the environment. How cells manage diverse mixtures of lipids, which dictate membrane property and function, is experimentally challenging to address. Here, we present an approach to tune and minimize membrane lipid composition in the bacterium Mycoplasma mycoides and its derived 'minimal cell' (JCVI-Syn3A), revealing that a two-component lipidome can support life. Systematic reintroduction of phospholipids with different features demonstrates that acyl chain diversity is more important for growth than head group diversity. By tuning lipid chirality, we explore the lipid divide between Archaea and the rest of life, showing that ancestral lipidomes could have been heterochiral. However, in these simple organisms, heterochirality leads to impaired cellular fitness. Thus, our approach offers a tunable minimal membrane system to explore the fundamental lipidomic requirements for life, thereby extending the concept of minimal life from the genome to the lipidome.
Collapse
Affiliation(s)
- Isaac Justice
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany
| | - Petra Kiesel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 107, Dresden, Germany
| | - Nataliya Safronova
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany
| | - Alexander von Appen
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 107, Dresden, Germany
| | - James P Saenz
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, Dresden, Germany.
- Technische Universität Dresden, Faculty of Medicine, Dresden, Germany.
| |
Collapse
|
5
|
Justice I, Kiesel P, Safronova N, von Appen A, Saenz JP. A tuneable minimal cell membrane reveals that two lipid species suffice for life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.24.563757. [PMID: 39464110 PMCID: PMC11507672 DOI: 10.1101/2023.10.24.563757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
All cells are encapsulated by a lipid membrane which facilitates the interaction between life and its environment. How life exploits the diverse mixtures of lipids that dictate membrane property and function has been experimentally challenging to address. We introduce an approach to tune and minimize lipidomes in Mycoplasma mycoides and the Minimal Cell (JCVI-Syn3A) revealing that a 2-component lipidome can support life. Systematically reintroducing phospholipid features demonstrated that acyl chain diversity is more critical for growth than head group diversity. By tuning lipid chirality, we explored the lipid divide between Archaea and the rest of life, showing that ancestral lipidomes could have been heterochiral. Our approach offers a tunable minimal membrane system to explore the fundamental lipidomic requirements for life, thereby extending the concept of minimal life from the genome to the lipidome.
Collapse
Affiliation(s)
- Isaac Justice
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
| | - Petra Kiesel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 107, 01307 Dresden
| | - Nataliya Safronova
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
| | - Alexander von Appen
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 107, 01307 Dresden
| | - James P. Saenz
- Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany
- Technische Universität Dresden, Faculty of Medicine, Dresden 01307, Germany
| |
Collapse
|
6
|
Ray AP, Jin B, Eddy MT. The conformational equilibria of a human GPCR compared between lipid vesicles and aqueous solutions by integrative 19F-NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618237. [PMID: 39464034 PMCID: PMC11507675 DOI: 10.1101/2024.10.14.618237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Endogenous phospholipids influence the conformational equilibria of G protein-coupled receptors, regulating their ability to bind drugs and form signaling complexes. However, most studies of GPCR-lipid interactions have been carried out in mixed micelles or lipid nanodiscs. Though useful, these membrane mimetics do not fully replicate the physical properties of native cellular membranes associated with large assemblies of lipids. We investigated the conformational equilibria of the human A2A adenosine receptor (A2AAR) in phospholipid vesicles using 19F solid-state magic angle spinning NMR (SSNMR). By applying an optimized sample preparation workflow and experimental conditions, we were able to obtain 19F-SSNMR spectra for both antagonist- and agonist-bound complexes with sensitivity and linewidths closely comparable to those achieved using solution NMR. This facilitated a direct comparison of the A2AAR conformational equilibria across detergent micelle, lipid nanodisc, and lipid vesicle preparations. While antagonist-bound A2AAR showed a similar conformational equilibria across all membrane and membrane mimetic systems, the conformational equilibria of agonist-bound A2AAR exhibited differences among different environments. This suggests that the conformational equilibria of GPCRs may be influenced not only by specific receptor-lipid interactions but also by the membrane properties found in larger lipid assemblies.
Collapse
Affiliation(s)
- Arka Prabha Ray
- Department of Chemistry; University of Florida; Gainesville, FL, 32611; USA
| | - Beining Jin
- Department of Chemistry; University of Florida; Gainesville, FL, 32611; USA
| | - Matthew T Eddy
- Department of Chemistry; University of Florida; Gainesville, FL, 32611; USA
| |
Collapse
|
7
|
Safronova N, Junghans L, Saenz JP. Temperature change elicits lipidome adaptation in the simple organisms Mycoplasma mycoides and JCVI-syn3B. Cell Rep 2024; 43:114435. [PMID: 38985673 DOI: 10.1016/j.celrep.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/05/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
Cell membranes mediate interactions between life and its environment, with lipids determining their properties. Understanding how cells adjust their lipidomes to tune membrane properties is crucial yet poorly defined due to the complexity of most organisms. We used quantitative shotgun lipidomics to study temperature adaptation in the simple organism Mycoplasma mycoides and the minimal cell JCVI-syn3B. We show that lipid abundances follow a universal logarithmic distribution across eukaryotes and bacteria, with comparable degrees of lipid remodeling for adaptation regardless of lipidomic or organismal complexity. Lipid features analysis demonstrates head-group-specific acyl chain remodeling as characteristic of lipidome adaptation; its deficiency in Syn3B is associated with impaired homeoviscous adaptation. Temporal analysis reveals a two-stage cold adaptation process: swift cholesterol and cardiolipin shifts followed by gradual acyl chain modifications. This work provides an in-depth analysis of lipidome adaptation in minimal cells, laying a foundation to probe the design principles of living membranes.
Collapse
Affiliation(s)
- Nataliya Safronova
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Lisa Junghans
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - James P Saenz
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany; Faculty of Medicine, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
8
|
Hutchins CM, Gorfe AA. Intrinsically Disordered Membrane Anchors of Rheb, RhoA, and DiRas3 Small GTPases: Molecular Dynamics, Membrane Organization, and Interactions. J Phys Chem B 2024; 128:6518-6528. [PMID: 38942776 PMCID: PMC11265623 DOI: 10.1021/acs.jpcb.4c01876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Protein structure has been well established to play a key role in determining function; however, intrinsically disordered proteins and regions (IDPs and IDRs) defy this paradigm. IDPs and IDRs exist as an ensemble of structures rather than a stable 3D structure yet play essential roles in many cell-signaling processes. Nearly all Ras superfamily GTPases are tethered to membranes by a lipid tail at the end of a flexible IDR. The sequence of the IDR is a key determinant of membrane localization, and interaction between the IDR and the membrane has been shown to affect signaling in RAS proteins through the modulation of dynamic membrane organization. Here, we utilized atomistic molecular dynamics simulations to study the membrane interaction, conformational dynamics, and lipid sorting of three IDRs from small GTPases Rheb, RhoA, and DiRas3 in model membranes representing their physiological target membranes. We found that complementarity between the lipidated IDR sequence and target membrane lipid composition is a determinant of conformational plasticity. We also show that electrostatic interactions between anionic lipids and basic residues on IDRs are correlated with sampling of semistable conformational substates, and lack of these interactions is associated with greater conformational diversity. Finally, we show that small GTPase IDRs with a polybasic domain alter local lipid composition by segregating anionic lipids and, in some cases, excluding other lipids from their immediate vicinity in favor of anionic lipids.
Collapse
Affiliation(s)
- Chase M Hutchins
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas 77030, United States
- Biochemistry and Cell Biology Program & Therapeutics and Pharmacology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6431 Fannin St., Houston, Texas 77030, United States
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas 77030, United States
- Biochemistry and Cell Biology Program & Therapeutics and Pharmacology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6431 Fannin St., Houston, Texas 77030, United States
| |
Collapse
|
9
|
Morito M, Yasuda H, Matsufuji T, Kinoshita M, Matsumori N. Identification of lipid-specific proteins with high-density lipid-immobilized beads. Analyst 2024; 149:3747-3755. [PMID: 38829210 DOI: 10.1039/d4an00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In biological membranes, lipids often interact with membrane proteins (MPs), regulating the localization and activity of MPs in cells. Although elucidating lipid-MP interactions is critical to comprehend the physiological roles of lipids, a systematic and comprehensive identification of lipid-binding proteins has not been adequately established. Therefore, we report the development of lipid-immobilized beads where lipid molecules were covalently immobilized. Owing to the detergent tolerance, these beads enable screening of water-soluble proteins and MPs, the latter of which typically necessitate surfactants for solubilization. Herein, two sphingolipid species-ceramide and sphingomyelin-which are major constituents of lipid rafts, were immobilized on the beads. We first showed that the density of immobilized lipid molecules on the beads was as high as that of biological lipid membranes. Subsequently, we confirmed that these beads enabled the selective pulldown of known sphingomyelin- or ceramide-binding proteins (lysenin, p24, and CERT) from protein mixtures, including cell lysates. In contrast, commercial sphingomyelin beads, on which lipid molecules are sparsely immobilized through biotin-streptavidin linkage, failed to capture lysenin, a well-known protein that recognizes clustered sphingomyelin molecules. This clearly demonstrates the applicability of our beads for obtaining proteins that recognize not only a single lipid molecule but also lipid clusters or lipid membranes. Finally, we demonstrated the screening of lipid-binding proteins from Neuro2a cell lysates using these beads. This method is expected to significantly contribute to the understanding of interactions between lipids and proteins and to unravel the complexities of lipid diversity.
Collapse
Affiliation(s)
- Masayuki Morito
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Hiroki Yasuda
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Takaaki Matsufuji
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
10
|
Yokoi S, Suno R, Mitsutake A. Structural and Computational Insights into Dynamics and Intermediate States of Orexin 2 Receptor Signaling. J Phys Chem B 2024; 128:6082-6096. [PMID: 38722794 DOI: 10.1021/acs.jpcb.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Orexin 2 receptor (OX2R) is a G protein-coupled receptor (GPCR) whose activation is crucial to regulation of the sleep-wake cycle. Recently, inactive and active state structures were determined from X-ray crystallography and cryo-electron microscopy single particle analysis, and the activation mechanisms have been discussed based on these static data. GPCRs have multiscale intermediate states during activation, and insights into these dynamics and intermediate states may aid the precise control of intracellular signaling by ligands in drug discovery. Molecular dynamics (MD) simulations are used to investigate dynamics induced in response to thermal perturbations, such as structural fluctuations of main and side chains. In this study, we proposed collective motions of the TM domain during activation by performing 30 independent microsecond-scale MD simulations for various OX2R systems and applying relaxation mode analysis. The analysis results suggested that TM3 had a vertical structural movement relative to the membrane surface during activation. In addition, we extracted three characteristic amino acid residues on TM3, i.e., Q1343.32, V1423.40, and R1523.50, which exhibited large conformational fluctuations. We quantitatively evaluated the changes in their equilibrium during activation in relation to the movement of TM3. We also discuss the regulation of ligand binding recognition and intracellular signal selectivity by changes in the equilibrium of Q1343.32 and R1523.50, respectively, according to MD simulations and GPCR database. Additionally, the OX2R-Gi signaling complex is stabilized in the conformation resembling a non-canonical (NC) state, which was previously proposed as an intermediate state during activation of neurotensin 1 receptor. Insights into the dynamics and intermediate states during activation gained from this study may be useful for developing biased agonists for OX2R.
Collapse
Affiliation(s)
- Shun Yokoi
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ryoji Suno
- Department of Medical Chemistry, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka 573-1010, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
11
|
Talandashti R, van Ek L, Gehin C, Xue D, Moqadam M, Gavin AC, Reuter N. Membrane specificity of the human cholesterol transfer protein STARD4. J Mol Biol 2024; 436:168572. [PMID: 38615744 DOI: 10.1016/j.jmb.2024.168572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
STARD4 regulates cholesterol homeostasis by transferring cholesterol between the plasma membrane and endoplasmic reticulum. The STARD4 structure features a helix-grip fold surrounding a large hydrophobic cavity holding the sterol. Its access is controlled by a gate formed by the Ω1 and Ω4 loops and the C-terminal α-helix. Little is known about the mechanisms by which STARD4 binds to membranes and extracts/releases cholesterol. All available structures of STARD4 are without a bound sterol and display the same closed conformation of the gate. The cholesterol transfer activity of the mouse STARD4 is enhanced in the presence of anionic lipids, and in particular of phosphatidylinositol biphosphates (PIP2) for which two binding sites were proposed on the mouse STARD4 surface. Yet only one of these sites is conserved in human STARD4. We here report the results of a liposome microarray-based assay and microseconds-long molecular dynamics simulations of human STARD4 with complex lipid bilayers mimicking the composition of the donor and acceptor membranes. We show that the binding of apo form of human STARD4 is sensitive to the presence of PIP2 through two specific binding sites, one of which was not identified on mouse STARD4. We report two novel conformations of the gate in holo-STARD4: a yet-unobserved close conformation and an open conformation of Ω4 shedding light on the opening/closure mechanism needed for cholesterol uptake/release. Overall, the modulation of human STARD4 membrane-binding by lipid composition, and by the presence of the cargo supports the capacity of human STARD4 to achieve directed transfer between specific organelle membranes.
Collapse
Affiliation(s)
- Reza Talandashti
- Department of Chemistry, University of Bergen, Bergen 5020, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| | - Larissa van Ek
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Charlotte Gehin
- École Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Dandan Xue
- Department of Chemistry, University of Bergen, Bergen 5020, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| | - Mahmoud Moqadam
- Department of Chemistry, University of Bergen, Bergen 5020, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| | - Anne-Claude Gavin
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nathalie Reuter
- Department of Chemistry, University of Bergen, Bergen 5020, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway.
| |
Collapse
|
12
|
Orlikowska-Rzeznik H, Versluis J, Bakker HJ, Piatkowski L. Cholesterol Changes Interfacial Water Alignment in Model Cell Membranes. J Am Chem Soc 2024; 146:13151-13162. [PMID: 38687869 PMCID: PMC11099968 DOI: 10.1021/jacs.4c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
The nanoscopic layer of water that directly hydrates biological membranes plays a critical role in maintaining the cell structure, regulating biochemical processes, and managing intermolecular interactions at the membrane interface. Therefore, comprehending the membrane structure, including its hydration, is essential for understanding the chemistry of life. While cholesterol is a fundamental lipid molecule in mammalian cells, influencing both the structure and dynamics of cell membranes, its impact on the structure of interfacial water has remained unknown. We used surface-specific vibrational sum-frequency generation spectroscopy to study the effect of cholesterol on the structure and hydration of monolayers of the lipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and egg sphingomyelin (SM). We found that for the unsaturated lipid DOPC, cholesterol intercalates in the membrane without significantly changing the orientation of the lipid tails and the orientation of the water molecules hydrating the headgroups of DOPC. In contrast, for the saturated lipids DPPC and SM, the addition of cholesterol leads to clearly enhanced packing and ordering of the hydrophobic tails. It is also observed that the orientation of the water hydrating the lipid headgroups is enhanced upon the addition of cholesterol. These results are important because the orientation of interfacial water molecules influences the cell membranes' dipole potential and the strength and specificity of interactions between cell membranes and peripheral proteins and other biomolecules. The lipid nature-dependent role of cholesterol in altering the arrangement of interfacial water molecules offers a fresh perspective on domain-selective cellular processes, such as protein binding.
Collapse
Affiliation(s)
- Hanna Orlikowska-Rzeznik
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Jan Versluis
- AMOLF,
Ultrafast Spectroscopy, 1098 XG Amsterdam, The Netherlands
| | - Huib J. Bakker
- AMOLF,
Ultrafast Spectroscopy, 1098 XG Amsterdam, The Netherlands
| | - Lukasz Piatkowski
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|
13
|
Hutchins CM, Gorfe AA. Intrinsically disordered membrane anchors of Rheb, RhoA and DiRas3 small GTPases: Molecular dynamics, membrane organization, and interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591151. [PMID: 38712287 PMCID: PMC11071463 DOI: 10.1101/2024.04.25.591151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Protein structure has been well established to play a key role in determining function; however, intrinsically disordered proteins and regions (IDPs and IDRs) defy this paradigm. IDPs and IDRs exist as an ensemble of structures rather than a stable 3D structure yet play essential roles in many cell signaling processes. Nearly all Ras Superfamily GTPases are tethered to membranes by a lipid tail at the end of a flexible IDR. The sequence of these IDRs are key determinants of membrane localization, and interactions between the IDR and the membrane have been shown to affect signaling in RAS proteins through modulation of dynamic membrane organization. Here we utilized atomistic molecular dynamics simulations to study the membrane interactions, conformational dynamics, and lipid sorting of three IDRs from small GTPases Rheb, RhoA and DiRas3 in model membranes representing their physiological target membranes. We found that complementarity between lipidated IDR sequence and target membrane lipid composition is a determinant of conformational plasticity. We also show that electrostatic interactions between anionic lipids and basic residues on IDRs generate semi-stable conformational sub-states, and a lack of these residues leads to greater conformational diversity. Finally, we show that small GTPase IDRs with a polybasic domain alter local lipid composition by segregating anionic membrane lipids, and, in some cases, excluding other lipids from their immediate proximity in favor of anionic lipids.
Collapse
|
14
|
Kang C, Fujioka K, Sun R. Atomistic Insight into the Lipid Nanodomains of Synaptic Vesicles. J Phys Chem B 2024; 128:2707-2716. [PMID: 38325816 DOI: 10.1021/acs.jpcb.3c07982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Membrane curvature, once regarded as a passive consequence of membrane composition and cellular architecture, has been shown to actively modulate various properties of the cellular membrane. These changes could also lead to segregation of the constituents of the membrane, generating nanodomains with precise biological properties. Proteins often linked with neurodegeneration (e.g., tau, alpha-synuclein) exhibit an unintuitive affinity for synaptic vesicles in neurons, which are reported to lack distinct, ordered nanodomains based on their composition. In this study, all-atom molecular dynamics simulations are used to study a full-scale synaptic vesicle of realistic Gaussian curvature and its effect on the membrane dynamics and lipid nanodomain organization. Compelling indicators of nanodomain formation, from the perspective of composition, surface areas per lipid, order parameter, and domain lifetime, are identified in the vesicle membrane, which are absent in a flat bilayer of the same lipid composition. Therefore, our study supports the idea that curvature may induce phase separation in an otherwise fluid, disordered membrane.
Collapse
Affiliation(s)
- Christopher Kang
- Department of Chemistry, The University of Hawai'i, Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Kazuumi Fujioka
- Department of Chemistry, The University of Hawai'i, Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Rui Sun
- Department of Chemistry, The University of Hawai'i, Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
15
|
Żak A, Korshunova K, Rajtar N, Kulig W, Kepczynski M. Deciphering Lipid Arrangement in Phosphatidylserine/Phosphatidylcholine Mixed Membranes: Simulations and Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18995-19007. [PMID: 38096496 PMCID: PMC10753890 DOI: 10.1021/acs.langmuir.3c03061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/27/2023]
Abstract
Phosphatidylserine (PS) exposure on the plasma membrane is crucial for many cellular processes including apoptotic cell recognition, blood clotting regulation, cellular signaling, and intercellular interactions. In this study, we investigated the arrangement of PS headgroups in mixed PS/phosphatidylcholine (PC) bilayers, serving as a simplified model of the outer leaflets of mammalian cell plasma membranes. Combining atomistic-scale molecular dynamics (MD) simulations with Langmuir monolayer experiments, we unraveled the mutual miscibility of POPC and POPS lipids and the intricate intermolecular interactions inherent to these membranes as well as the disparities in position and orientation of PC and PS headgroups. Our experiments revealed micrometer-scale miscibility at all mole fractions of POPC and POPS, marked by modest deviations from ideal mixing with no apparent microscale phase separation. The MD simulations, meanwhile, demonstrated that these deviations were due to strong electrostatic interactions between like-lipid pairs (POPC-POPC and POPS-POPS), culminating in lateral segregation and nanoscale clustering. Notably, PS headgroups profoundly affect the ordering of the lipid acyl chains, leading to lipid elongation and subtle PS protrusion above the zwitterionic membrane. In addition, PC headgroups are more tilted with respect to the membrane normal, while PS headgroups align at a smaller angle, making them more exposed to the surface of the mixed PC/PS membranes. These findings provide a detailed molecular-level account of the organization of mixed PC/PS membranes, corroborated by experimental data. The insights gained here extend our comprehension of the physiological role of PSs.
Collapse
Affiliation(s)
- Agata Żak
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Ksenia Korshunova
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Natan Rajtar
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Waldemar Kulig
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Mariusz Kepczynski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
16
|
Raviv U, Asor R, Shemesh A, Ginsburg A, Ben-Nun T, Schilt Y, Levartovsky Y, Ringel I. Insight into structural biophysics from solution X-ray scattering. J Struct Biol 2023; 215:108029. [PMID: 37741561 DOI: 10.1016/j.jsb.2023.108029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
The current challenges of structural biophysics include determining the structure of large self-assembled complexes, resolving the structure of ensembles of complex structures and their mass fraction, and unraveling the dynamic pathways and mechanisms leading to the formation of complex structures from their subunits. Modern synchrotron solution X-ray scattering data enable simultaneous high-spatial and high-temporal structural data required to address the current challenges of structural biophysics. These data are complementary to crystallography, NMR, and cryo-TEM data. However, the analysis of solution scattering data is challenging; hence many different analysis tools, listed in the SAS Portal (http://smallangle.org/), were developed. In this review, we start by briefly summarizing classical X-ray scattering analyses providing insight into fundamental structural and interaction parameters. We then describe recent developments, integrating simulations, theory, and advanced X-ray scattering modeling, providing unique insights into the structure, energetics, and dynamics of self-assembled complexes. The structural information is essential for understanding the underlying physical chemistry principles leading to self-assembled supramolecular architectures and computational structural refinement.
Collapse
Affiliation(s)
- Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.
| | - Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Asaf Shemesh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Avi Ginsburg
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Tal Ben-Nun
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yaelle Schilt
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yehonatan Levartovsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Israel Ringel
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
17
|
Kumar A, Daschakraborty S. Anomalous lateral diffusion of lipids during the fluid/gel phase transition of a lipid membrane. Phys Chem Chem Phys 2023; 25:31431-31443. [PMID: 37962400 DOI: 10.1039/d3cp04081j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A lipid membrane undergoes a phase transition from fluid to gel phase upon changing external thermodynamic conditions, such as decreasing temperature and increasing pressure. Extremophilic organisms face the challenge of preventing this deleterious phase transition. The main focus of their adaptive strategy is to facilitate effective temperature sensing through sensor proteins, relying on the drastic changes in packing density and membrane fluidity during the phase transition. Although the changes in packing density parameters due to the fluid/gel phase transition are studied in detail, the impact on membrane fluidity is less explored in the literature. Understanding the lateral diffusive dynamics of lipids in response to temperature, particularly during the fluid/gel phase transition, is albeit crucial. Here we have simulated the phase transition of a single component lipid membrane composed of dipalmitoylphosphatidylcholine (DPPC) lipids using a coarse-grained (CG) model and studied the changes of the structural and dynamical properties. It is observed that near the phase transition point, both fluid and gel phase domains coexist together. The dynamics remains highly non-Gaussian for a long time even when the mean square displacement reaches the Fickian regime at a much earlier time. This Fickian yet non-Gaussian diffusion (FnGD) is a characteristic of a highly heterogeneous system, previously observed for the lateral diffusion of lipids in raft mimetic membranes having liquid-ordered and liquid-disordered phases co-existing together. We have analyzed the molecular trajectories and calculated the jump-diffusion of the lipids, stemming from sudden jump translations, using a translational jump-diffusion (TJD) approach. An overwhelming contribution of the jump-diffusion of the lipids is observed suggesting anomalous diffusion of lipids during fluid/gel phase transition of the membrane. These results are important in unravelling the intricate nature of lipid diffusion during the phase transition of the membrane and open up a new possibility of investigating the most significant change of membrane properties during phase transition, which can be effectively sensed by proteins.
Collapse
Affiliation(s)
- Abhay Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | | |
Collapse
|
18
|
Henning P, Köster T, Haack F, Burrage K, Uhrmacher AM. Implications of different membrane compartmentalization models in particle-based in silico studies. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221177. [PMID: 37416823 PMCID: PMC10320350 DOI: 10.1098/rsos.221177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Studying membrane dynamics is important to understand the cellular response to environmental stimuli. A decisive spatial characteristic of the plasma membrane is its compartmental structure created by the actin-based membrane-skeleton (fences) and anchored transmembrane proteins (pickets). Particle-based reaction-diffusion simulation of the membrane offers a suitable temporal and spatial resolution to analyse its spatially heterogeneous and stochastic dynamics. Fences have been modelled via hop probabilities, potentials or explicit picket fences. Our study analyses the different approaches' constraints and their impact on simulation results and performance. Each of the methods comes with its own constraints; the picket fences require small timesteps, potential fences might induce a bias in diffusion in crowded systems, and probabilistic fences, in addition to carefully scaling the probability with the timesteps, induce higher computational costs for each propagation step.
Collapse
Affiliation(s)
- Philipp Henning
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Till Köster
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Fiete Haack
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Kevin Burrage
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- Visiting Professor, Department of Computer Science, University of Oxford, Oxford, UK
| | - Adelinde M. Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| |
Collapse
|
19
|
Wurl A, Saalwächter K, Mendes Ferreira T. Time-domain proton-detected local-field NMR for molecular structure determination in complex lipid membranes. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:115-127. [PMID: 37904803 PMCID: PMC10583295 DOI: 10.5194/mr-4-115-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/03/2023] [Indexed: 11/01/2023]
Abstract
Proton-detected local-field (PDLF) NMR spectroscopy, using magic-angle spinning and dipolar recoupling, is presently the most powerful experimental technique for obtaining atomistic structural information from small molecules undergoing anisotropic motion. Common examples include peptides, drugs, or lipids in model membranes and molecules that form liquid crystals. The measurements on complex systems are however compromised by the larger number of transients required. Retaining sufficient spectral quality in the direct dimension requires that the indirect time-domain modulation becomes too short for yielding dipolar splittings in the frequency domain. In such cases, the dipolar couplings can be obtained by fitting the experimental data; however ideal models often fail to fit PDLF data properly due to effects of radiofrequency field (RF) spatial inhomogeneity. Here, we demonstrate that by accounting for RF spatial inhomogeneity in the modeling of R-symmetry-based PDLF NMR experiments, the fitting accuracy is improved, facilitating the analysis of the experimental data. In comparison to the analysis of dipolar splittings without any fitting procedure, the accurate modeling of PDLF measurements makes possible three important improvements: the use of shorter experiments that enable the investigation of samples with a higher level of complexity, the measurement of C-H bond order parameters with smaller magnitudes | S CH | and of smaller variations of | S CH | caused by perturbations of the system, and the determination of | S CH | values with small differences from distinct sites having the same chemical shift. The increase in fitting accuracy is demonstrated by comparison with 2 H NMR quadrupolar echo experiments on mixtures of deuterated and non-deuterated dimyristoylphosphatidylcholine (DMPC) and with 1-palmitoyl-2-oleoyl-s n -glycero-3-phosphoethanolamine (POPE) membranes. Accurate modeling of PDLF NMR experiments is highly useful for investigating complex membrane systems. This is exemplified by application of the proposed fitting procedure for the characterization of membranes composed of a brain lipid extract with many distinct lipid types.
Collapse
Affiliation(s)
- Anika Wurl
- NMR group, Institute for Physics, Martin Luther University Halle–Wittenberg, Halle (Saale), Germany
| | - Kay Saalwächter
- NMR group, Institute for Physics, Martin Luther University Halle–Wittenberg, Halle (Saale), Germany
| | - Tiago Mendes Ferreira
- NMR group, Institute for Physics, Martin Luther University Halle–Wittenberg, Halle (Saale), Germany
| |
Collapse
|
20
|
Kononova PA, Selyutina OY, Polyakov NE. The Interaction of the Transmembrane Domain of SARS-CoV-2 E-Protein with Glycyrrhizic Acid in Lipid Bilayer. MEMBRANES 2023; 13:membranes13050505. [PMID: 37233566 DOI: 10.3390/membranes13050505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
The interaction of the transmembrane domain of SARS-CoV-2 E-protein with glycyrrhizic acid in a model lipid bilayer (small isotropic bicelles) is demonstrated using various NMR techniques. Glycyrrhizic acid (GA) is the main active component of licorice root, and it shows antiviral activity against various enveloped viruses, including coronavirus. It is suggested that GA can influence the stage of fusion between the viral particle and the host cell by incorporating into the membrane. Using NMR spectroscopy, it was shown that the GA molecule penetrates into the lipid bilayer in a protonated state, but localizes on the bilayer surface in a deprotonated state. The transmembrane domain of SARS-CoV-2 E-protein facilitates deeper GA penetration into the hydrophobic region of bicelles at both acidic and neutral pH and promotes the self-association of GA at neutral pH. Phenylalanine residues of the E-protein interact with GA molecules inside the lipid bilayer at neutral pH. Furthermore, GA influences the mobility of the transmembrane domain of SARS-CoV-2 E-protein in the bilayer. These data provide deeper insight into the molecular mechanism of antiviral activity of glycyrrhizic acid.
Collapse
Affiliation(s)
- Polina A Kononova
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya str. 3, 630090 Novosibirsk, Russia
| | - Olga Yu Selyutina
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya str. 3, 630090 Novosibirsk, Russia
| | - Nikolay E Polyakov
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya str. 3, 630090 Novosibirsk, Russia
| |
Collapse
|
21
|
Reiter S, Kiss FL, Hauer J, de Vivie-Riedle R. Thermal site energy fluctuations in photosystem I: new insights from MD/QM/MM calculations. Chem Sci 2023; 14:3117-3131. [PMID: 36970098 PMCID: PMC10034153 DOI: 10.1039/d2sc06160k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Cyanobacterial photosystem I (PSI) is one of the most efficient photosynthetic machineries found in nature. Due to the large scale and complexity of the system, the energy transfer mechanism from the antenna complex to the reaction center is still not fully understood. A central element is the accurate evaluation of the individual chlorophyll excitation energies (site energies). Such an evaluation must include a detailed treatment of site specific environmental influences on structural and electrostatic properties, but also their evolution in the temporal domain, because of the dynamic nature of the energy transfer process. In this work, we calculate the site energies of all 96 chlorophylls in a membrane-embedded model of PSI. The employed hybrid QM/MM approach using the multireference DFT/MRCI method in the QM region allows to obtain accurate site energies under explicit consideration of the natural environment. We identify energy traps and barriers in the antenna complex and discuss their implications for energy transfer to the reaction center. Going beyond previous studies, our model also accounts for the molecular dynamics of the full trimeric PSI complex. Via statistical analysis we show that the thermal fluctuations of single chlorophylls prevent the formation of a single prominent energy funnel within the antenna complex. These findings are also supported by a dipole exciton model. We conclude that energy transfer pathways may form only transiently at physiological temperatures, as thermal fluctuations overcome energy barriers. The set of site energies provided in this work sets the stage for theoretical and experimental studies on the highly efficient energy transfer mechanisms in PSI.
Collapse
Affiliation(s)
- Sebastian Reiter
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Ferdinand L Kiss
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich Lichtenbergstr. 4, Garching 85747 Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| |
Collapse
|
22
|
Doktorova M, Khelashvili G, Ashkar R, Brown MF. Molecular simulations and NMR reveal how lipid fluctuations affect membrane mechanics. Biophys J 2023; 122:984-1002. [PMID: 36474442 PMCID: PMC10111610 DOI: 10.1016/j.bpj.2022.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Lipid bilayers form the main matrix of functional cell membranes, and their dynamics underlie a host of physical and biological processes. Here we show that elastic membrane properties and collective molecular dynamics (MD) are related by the mean-square amplitudes (order parameters) and relaxation rates (correlation times) of lipid acyl chain motions. We performed all-atom MD simulations of liquid-crystalline bilayers that allow direct comparison with carbon-hydrogen (CH) bond relaxations measured with NMR spectroscopy. Previous computational and theoretical approaches have assumed isotropic relaxation, which yields inaccurate description of lipid chain dynamics and incorrect data interpretation. Instead, the new framework includes a fixed bilayer normal (director axis) and restricted anisotropic motion of the CH bonds in accord with their segmental order parameters, enabling robust validation of lipid force fields. Simulated spectral densities of thermally excited CH bond fluctuations exhibited well-defined spin-lattice (Zeeman) relaxations analogous to those in NMR measurements. Their frequency signature could be fit to a simple power-law function, indicative of nematic-like collective dynamics. Moreover, calculated relaxation rates scaled as the squared order parameters yielding an apparent κC modulus for bilayer bending. Our results show a strong correlation with κC values obtained from solid-state NMR studies of bilayers without and with cholesterol as validated by neutron spin-echo measurements of membrane elasticity. The simulations uncover a critical role of interleaflet coupling in membrane mechanics and thus provide important insights into molecular sites of emerging elastic properties within lipid bilayers.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia.
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York; Institute of Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, Virginia; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona; Program in Applied Mathematics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
23
|
Gupta A, Kallianpur M, Roy DS, Engberg O, Chakrabarty H, Huster D, Maiti S. Different membrane order measurement techniques are not mutually consistent. Biophys J 2023; 122:964-972. [PMID: 36004780 PMCID: PMC10111216 DOI: 10.1016/j.bpj.2022.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
"Membrane order" is a term commonly used to describe the elastic and mechanical properties of the lipid bilayer, though its exact meaning is somewhat context- and method dependent. These mechanical properties of the membrane control many cellular functions and are measured using various biophysical techniques. Here, we ask if the results obtained from various techniques are mutually consistent. Such consistency cannot be assumed a priori because these techniques probe different spatial locations and different spatial and temporal scales. We evaluate the change of membrane order induced by serotonin using nine different techniques in lipid bilayers of three different compositions. Serotonin is an important neurotransmitter present at 100s of mM concentrations in neurotransmitter vesicles, and therefore its interaction with the lipid bilayer is biologically relevant. Our measurement tools include fluorescence of lipophilic dyes (Nile Red, Laurdan, TMA-DPH, DPH), whose properties are a function of membrane order; atomic force spectroscopy, which provides a measure of the force required to indent the lipid bilayer; 2H solid-state NMR spectroscopy, which measures the molecular order of the lipid acyl chain segments; fluorescence correlation spectroscopy, which provides a measure of the diffusivity of the probe in the membrane; and Raman spectroscopy, where spectral intensity ratios are affected by acyl chain order. We find that different measures often do not correlate with each other and sometimes even yield conflicting results. We conclude that no probe provides a general measure of membrane order and that any inference based on the change of membrane order measured by a particular probe may be unreliable.
Collapse
Affiliation(s)
- Ankur Gupta
- Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | | | | | - Oskar Engberg
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | | | - Daniel Huster
- Tata Institute of Fundamental Research, Colaba, Mumbai, India; Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany.
| | - Sudipta Maiti
- Tata Institute of Fundamental Research, Colaba, Mumbai, India.
| |
Collapse
|
24
|
Won T, Mohid SA, Choi J, Kim M, Krishnamoorthy J, Biswas I, Bhunia A, Lee D. The role of hydrophobic patches of de novo designed MSI-78 and VG16KRKP antimicrobial peptides on fragmenting model bilayer membranes. Biophys Chem 2023; 296:106981. [PMID: 36871366 DOI: 10.1016/j.bpc.2023.106981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Antimicrobial peptides (AMPs) with cell membrane lysing capability are considered potential candidates for the development of the next generation of antibiotics. Designing novel AMPs requires an in-depth understanding of the mechanism of action of the peptides. In this work, we used various biophysical techniques including 31P solid-state NMR to examine the interaction of model membranes with amphipathic de novo-designed peptides. Two such peptides, MSI-78 and VG16KRKP, were designed with different hydrophobicity and positive charges. The model lipid membranes were constituted by mixing lipids of varying degrees of 'area per lipid' (APL), which directly affected the packing properties of the membrane. The observed emergence of the isotropic peak in 31P NMR spectra as a function of time is a consequence of the fragmentation of the membrane mediated by the peptide interaction. The factors such as the charges, overall hydrophilicity of the AMPs, as well as lipid membrane packing, contributed to the kinetics of membrane fragmentation. Furthermore, we anticipate the designed AMPs follow the carpet and toroidal pore mechanisms when lysing the cell membrane. This study highlights the significance of the effect of the overall charges and the hydrophobicity of the novel AMPs designed for antimicrobial activity.
Collapse
Affiliation(s)
- TaeJun Won
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Sk Abdul Mohid
- Department of Biophysics, Bose Institute, Unified Academic Campus, Bidhan Nagar EN 80, Kolkata 700 091, India
| | - JiHye Choi
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - MinSoo Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | | | - Indranil Biswas
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Unified Academic Campus, Bidhan Nagar EN 80, Kolkata 700 091, India.
| | - DongKuk Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
25
|
Abdel-Gawad WM, Abdelmohsen M, Gaber MH, Khalil WMA, Abu-Elmagd MSM. Molecular dynamics simulation of phosphatidylcholine membrane in low ionic strengths of sodium chloride. J Biomol Struct Dyn 2023; 41:13891-13901. [PMID: 36812302 DOI: 10.1080/07391102.2023.2183040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
The one-microsecond molecular dynamics simulations of a membrane-protein complex investigate the influence of the aqueous sodium chloride solutions on the structure and dynamics of a palmitoyl-oleoyl-phosphatidylcholine bilayer membrane. The simulations were performed on five different concentrations (40, 150, 200, 300, and 400 mM) in addition to a salt-free system by using the charmm36 force field for all atoms. Four biophysical parameters, (membrane thicknesses of annular and bulk lipids, and the area per lipid of both leaflets), were computed separately. Nevertheless, the area per lipid was expressed by using the Voronoi algorithm. All time-independent analyses were carried out for the last 400 ns trajectories. Different concentrations revealed dissimilar membrane dynamics before equilibration. The biophysical properties of the membrane (thickness, area-per-lipid, and order parameter) have non-significant changes with increasing ionic strength, however, the 150 mM system had exceptional behavior. Sodium cations were dynamically penetrating the membrane forming weak coordinate bonds with single or multiple lipids. Nevertheless, the binding constant was unaffected by the cation concentration. The electrostatic and Van der Waals energies of lipid-lipid interactions were influenced by the ionic strength. On the other hand, the Fast Fourier Transform was performed to figure out the dynamics at the membrane-protein interface. The nonbonding energies of membrane-protein interactions and order parameters explained the differences in the synchronization pattern. All results were consensus with experimental and theoretical works.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Mahmoud Abdelmohsen
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
- Mathematics and Engineering Physics Department, The Higher Institute of Engineering, Shorouk Academy, El-Shorouk City, Cairo, Egypt
| | | | | | | |
Collapse
|
26
|
Kurki M, Poso A, Bartos P, Miettinen MS. Structure of POPC Lipid Bilayers in OPLS3e Force Field. J Chem Inf Model 2022; 62:6462-6474. [PMID: 36044537 PMCID: PMC9795559 DOI: 10.1021/acs.jcim.2c00395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is crucial for molecular dynamics simulations of biomembranes that the force field parameters give a realistic model of the membrane behavior. In this study, we examined the OPLS3e force field for the carbon-hydrogen order parameters SCH of POPC (1-palmitoyl-2-oleoylphosphatidylcholine) lipid bilayers at varying hydration conditions and ion concentrations. The results show that OPLS3e behaves similarly to the CHARMM36 force field and relatively accurately follows the experimentally measured SCH for the lipid headgroup, the glycerol backbone, and the acyl tails. Thus, OPLS3e is a good choice for POPC bilayer simulations under many biologically relevant conditions. The exception are systems with an abundancy of ions, as similarly to most other force fields OPLS3e strongly overestimates the membrane-binding of cations, especially Ca2+. This leads to undesirable positive charge of the membrane surface and drastically lowers the concentration of Ca2+ in the surrounding solvent, which might cause issues in systems sensitive to correct charge distribution profiles across the membrane.
Collapse
Affiliation(s)
- Milla Kurki
- School
of Pharmacy, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1
C, P.O. Box 1627, 70211 Kuopio, Finland
| | - Antti Poso
- School
of Pharmacy, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1
C, P.O. Box 1627, 70211 Kuopio, Finland
| | - Piia Bartos
- School
of Pharmacy, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1
C, P.O. Box 1627, 70211 Kuopio, Finland,
| | - Markus S. Miettinen
- Department
of Chemistry, University of Bergen, 5007 Bergen, Norway,Computational
Biology Unit, Department of Informatics, University of Bergen, 5007 Bergen, Norway
| |
Collapse
|
27
|
Yasuda T, Watanabe H, Hirosawa KM, Suzuki KGN, Suga K, Hanashima S. Fluorescence Spectroscopic Analysis of Lateral and Transbilayer Fluidity of Exosome Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14695-14703. [PMID: 36421004 PMCID: PMC9731264 DOI: 10.1021/acs.langmuir.2c02258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Exosomes are small extracellular vesicles (sEVs) involved in distal cell-cell communication and cancer migration by transferring functional cargo molecules. Membrane domains similar to lipid rafts are assumed to occur in exosome membranes and are involved in interactions with target cells. However, the bilayer membrane properties of these small vesicles have not been fully investigated. Therefore, we examined the fluidity, lateral domain separation, and transbilayer asymmetry of exosome membranes using fluorescence spectroscopy. Although there were some differences between the exosomes, TMA-DPH anisotropy showing moderate lipid chain order indicated that ordered phases comprised a significant proportion of exosome membranes. Selective TEMPO quenching of the TMA-DPH fluorescence in the liquid-disordered phase indicated that 40-50% of the exosome membrane area belonged to the ordered phase based on a phase-separated model. Furthermore, NBD-PC in the outer leaflet showed longer fluorescence lifetimes than those in the inner leaflets. Therefore, the exosome membranes maintained transbilayer asymmetry with a topology similar to that of the plasma membranes. In addition, the lateral and transbilayer orders of exosome membranes obtained from different cell lines varied, probably depending on the different membrane lipid components and compositions partially derived from donor cells. As these higher membrane orders and asymmetric topologies are similar to those of cell membranes with lipid rafts, raft-like functional domains are possibly enriched on exosome membranes. These domains likely play key roles in the biological functions and cellular uptake of exosomes by facilitating selective membrane interactions with target organs.
Collapse
Affiliation(s)
- Tomokazu Yasuda
- Graduate
School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka560-0043, Japan
| | - Hirofumi Watanabe
- Graduate
School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka560-0043, Japan
| | - Koichiro M. Hirosawa
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu501-1193, Japan
| | - Kenichi G. N. Suzuki
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu501-1193, Japan
| | - Keishi Suga
- Department
of Chemical Engineering, Tohoku University, 6-6-07, Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi980-8579, Japan
| | - Shinya Hanashima
- Graduate
School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka560-0043, Japan
| |
Collapse
|
28
|
Somberg NH, Wu WW, Medeiros-Silva J, Dregni AJ, Jo H, DeGrado WF, Hong M. SARS-CoV-2 Envelope Protein Forms Clustered Pentamers in Lipid Bilayers. Biochemistry 2022; 61:2280-2294. [PMID: 36219675 PMCID: PMC9583936 DOI: 10.1021/acs.biochem.2c00464] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Indexed: 11/30/2022]
Abstract
The SARS-CoV-2 envelope (E) protein is a viroporin associated with the acute respiratory symptoms of COVID-19. E forms cation-selective ion channels that assemble in the lipid membrane of the endoplasmic reticulum Golgi intermediate compartment. The channel activity of E is linked to the inflammatory response of the host cell to the virus. Like many viroporins, E is thought to oligomerize with a well-defined stoichiometry. However, attempts to determine the E stoichiometry have led to inconclusive results and suggested mixtures of oligomers whose exact nature might vary with the detergent used. Here, we employ 19F solid-state nuclear magnetic resonance and the centerband-only detection of exchange (CODEX) technique to determine the oligomeric number of E's transmembrane domain (ETM) in lipid bilayers. The CODEX equilibrium value, which corresponds to the inverse of the oligomeric number, indicates that ETM assembles into pentamers in lipid bilayers, without any detectable fraction of low-molecular-weight oligomers. Unexpectedly, at high peptide concentrations and in the presence of the lipid phosphatidylinositol, the CODEX data indicate that more than five 19F spins are within a detectable distance of about 2 nm, suggesting that the ETM pentamers cluster in the lipid bilayer. Monte Carlo simulations that take into account peptide-peptide and peptide-lipid interactions yielded pentamer clusters that reproduced the CODEX data. This supramolecular organization is likely important for E-mediated virus assembly and budding and for the channel function of the protein.
Collapse
Affiliation(s)
- Noah H Somberg
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts02139, United States
| | - Westley W Wu
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts02139, United States
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts02139, United States
| | - Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts02139, United States
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 555 Mission Bay Blvd. South, San Francisco, California94158, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 555 Mission Bay Blvd. South, San Francisco, California94158, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts02139, United States
| |
Collapse
|
29
|
Molugu TR, Thurmond RL, Alam TM, Trouard TP, Brown MF. Phospholipid headgroups govern area per lipid and emergent elastic properties of bilayers. Biophys J 2022; 121:4205-4220. [PMID: 36088534 PMCID: PMC9674990 DOI: 10.1016/j.bpj.2022.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/10/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Phospholipid bilayers are liquid-crystalline materials whose intermolecular interactions at mesoscopic length scales have key roles in the emergence of membrane physical properties. Here we investigated the combined effects of phospholipid polar headgroups and acyl chains on biophysical functions of membranes with solid-state 2H NMR spectroscopy. We compared the structural and dynamic properties of phosphatidylethanolamine and phosphatidylcholine with perdeuterated acyl chains in the solid-ordered (so) and liquid-disordered (ld) phases. Our analysis of spectral lineshapes of 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE-d62) and 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphocholine (DPPC-d62) in the so (gel) phase indicated an all-trans rotating chain structure for both lipids. Greater segmental order parameters (SCD) were observed in the ld (liquid-crystalline) phase for DPPE-d62 than for DPPC-d62 membranes, while their mixtures had intermediate values irrespective of the deuterated lipid type. Our results suggest the SCD profiles of the acyl chains are governed by methylation of the headgroups and are averaged over the entire system. Variations in the acyl chain molecular dynamics were further investigated by spin-lattice (R1Z) and quadrupolar-order relaxation (R1Q) measurements. The two acyl-perdeuterated lipids showed distinct differences in relaxation behavior as a function of the order parameter. The R1Z rates had a square-law dependence on SCD, implying collective mesoscopic dynamics, with a higher bending rigidity for DPPE-d62 than for DPPC-d62 lipids. Remodeling of lipid average and dynamic properties by methylation of the headgroups thus provides a mechanism to control the actions of peptides and proteins in biomembranes.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | | | - Todd M Alam
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, New Mexico
| | - Theodore P Trouard
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
30
|
Doole FT, Kumarage T, Ashkar R, Brown MF. Cholesterol Stiffening of Lipid Membranes. J Membr Biol 2022; 255:385-405. [PMID: 36219221 PMCID: PMC9552730 DOI: 10.1007/s00232-022-00263-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Biomembrane order, dynamics, and other essential physicochemical parameters are controlled by cholesterol, a major component of mammalian cell membranes. Although cholesterol is well known to exhibit a condensing effect on fluid lipid membranes, the extent of stiffening that occurs with different degrees of lipid acyl chain unsaturation remains an enigma. In this review, we show that cholesterol locally increases the bending rigidity of both unsaturated and saturated lipid membranes, suggesting there may be a length-scale dependence of the bending modulus. We review our published data that address the origin of the mechanical effects of cholesterol on unsaturated and polyunsaturated lipid membranes and their role in biomembrane functions. Through a combination of solid-state deuterium NMR spectroscopy and neutron spin-echo spectroscopy, we show that changes in molecular packing cause the universal effects of cholesterol on the membrane bending rigidity. Our findings have broad implications for the role of cholesterol in lipid–protein interactions as well as raft-like mixtures, drug delivery applications, and the effects of antimicrobial peptides on lipid membranes.
Collapse
Affiliation(s)
- Fathima T Doole
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA
| | - Teshani Kumarage
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA. .,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Michael F Brown
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA. .,Department of Physics, University of Arizona, Tucson, AZ, 85712, USA.
| |
Collapse
|
31
|
Tarenzi T, Lattanzi G, Potestio R. Membrane binding of pore-forming γ-hemolysin components studied at different lipid compositions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183970. [PMID: 35605647 DOI: 10.1016/j.bbamem.2022.183970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Methicillin-resistant Staphylococcus aureus is among those pathogens currently posing the highest threat to public health. Its host immune evasion strategy is mediated by pore-forming toxins (PFTs), among which the bi-component γ-hemolysin is one of the most common. The complexity of the porogenesis mechanism by γ-hemolysin poses difficulties in the development of antivirulence therapies targeting PFTs from S. aureus, and sparse and apparently contrasting experimental data have been produced. Here, through a large set of molecular dynamics simulations at different levels of resolution, we investigate the first step of pore formation, and in particular the effect of membrane composition on the ability of γ-hemolysin components, LukF and Hlg2, to steadily adhere to the lipid bilayer in the absence of proteinaceous receptors. Our simulations are in agreement with experimental data of γ-hemolysin pore formation on model membranes, which are here explained on the basis of the bilayer properties. Our computational investigation suggests a possible rationale to explain experimental data on phospholipid binding to the LukF component, and to hypothesise a mechanism by which, on purely lipidic bilayers, the stable anchoring of LukF to the cell surface facilitates Hlg2 binding, through the exposure of its N-terminal region. We expect that further insights on the mechanism of transition between soluble and membrane bound-forms and on the role played by the lipid molecules will contribute to the design of antivirulence agents with enhanced efficacy against methicillin-resistant S. aureus infections.
Collapse
Affiliation(s)
- Thomas Tarenzi
- Department of Physics, University of Trento, Via Sommarive 14, Povo (TN) 38123, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, Povo (TN) 38123, Italy.
| | - Gianluca Lattanzi
- Department of Physics, University of Trento, Via Sommarive 14, Povo (TN) 38123, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, Povo (TN) 38123, Italy.
| | - Raffaello Potestio
- Department of Physics, University of Trento, Via Sommarive 14, Povo (TN) 38123, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, Povo (TN) 38123, Italy.
| |
Collapse
|
32
|
Nguyen TQT, Lund FW, Zanjani AAH, Khandelia H. Magic mushroom extracts in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183957. [PMID: 35561790 DOI: 10.1016/j.bbamem.2022.183957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The active hallucinogen of magic mushrooms, psilocin, is being repurposed to treat nicotine addiction and treatment-resistant depression. Psilocin belongs to the tryptamine class of psychedelic compounds which include the hormone serotonin. It is believed that psilocin exerts its effect by binding to the serotonin 5-HT2A receptor. However, recent in-vivo evidence suggests that psilocin may employ a different mechanism to exert its effects. Membrane-mediated receptor desensitization of neurotransmitter receptors is one such mechanism. We compare the impact of the neutral and charged versions of psilocin and serotonin on the properties of zwitterionic and anionic lipid membranes using molecular dynamics simulations and calorimetry. Both compounds partition to the lipid interface and induce membrane thinning. The tertiary amine in psilocin, as opposed to the primary amine in serotonin, limits psilocin's impact on the membrane although more psilocin partitions into the membrane than serotonin. Calorimetry corroborates that both compounds induce a classical melting point depression like anesthetics do. Our results also lend support to a membrane-mediated receptor-binding mechanism for both psilocin and serotonin and provide physical insights into subtle chemical changes that can alter the membrane-binding of psychedelic compounds.
Collapse
Affiliation(s)
- Teresa Quynh Tram Nguyen
- Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Frederik Wendelboe Lund
- Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ali Asghar Hakami Zanjani
- Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Himanshu Khandelia
- Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
33
|
Pramanik S, Steinkühler J, Dimova R, Spatz J, Lipowsky R. Binding of His-tagged fluorophores to lipid bilayers of giant vesicles. SOFT MATTER 2022; 18:6372-6383. [PMID: 35975692 DOI: 10.1039/d2sm00915c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
His-tagged molecules can be attached to lipid bilayers via certain anchor lipids, a method that has been widely used for the biofunctionalization of membranes and vesicles. To observe the membrane-bound molecules, it is useful to consider His-tagged molecules that are fluorescent as well. Here, we study two such molecules, green fluorescence protein (GFP) and green-fluorescent fluorescein isothiocyanate (FITC), both of which are tagged with a chain of six histidines (6H) that bind to the anchor lipids within the bilayers. The His-tag 6H is much smaller than the GFP molecule but somewhat larger than the FITC dye. The lipid bilayers form giant unilamellar vesicles (GUVs), the behavior of which can be directly observed in the optical microscope. We apply and compare three well-established preparation methods for GUVs: electroformation on platinum wire, polyvinyl alcohol (PVA) hydrogel swelling, and electroformation on indium tin oxide (ITO) glass. Microfluidics is used to expose the GUVs to a constant fluorophore concentration in the exterior solution. The brightness of membrane-bound 6H-GFP exceeds the brightness of membrane-bound 6H-FITC, in contrast to the quantum yields of the two fluorophores in solution. In fact, 6H-FITC is observed to be strongly quenched by the anchor lipids which bind the fluorophores via Ni2+ ions. For both 6H-GFP and 6H-FITC, the membrane fluorescence is measured as a function of the fluorophores' molar concentration. The theoretical analysis of these data leads to the equilibrium dissociation constants Kd = 37.5 nM for 6H-GFP and Kd = 18.5 nM for 6H-FITC. We also observe a strong pH-dependence of the membrane fluorescence.
Collapse
Affiliation(s)
- Shreya Pramanik
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Jan Steinkühler
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Joachim Spatz
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| |
Collapse
|
34
|
Mitchell W, Tamucci JD, Ng EL, Liu S, Birk AV, Szeto HH, May ER, Alexandrescu AT, Alder NN. Structure-activity relationships of mitochondria-targeted tetrapeptide pharmacological compounds. eLife 2022; 11:75531. [PMID: 35913044 PMCID: PMC9342957 DOI: 10.7554/elife.75531] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria play a central role in metabolic homeostasis, and dysfunction of this organelle underpins the etiology of many heritable and aging-related diseases. Tetrapeptides with alternating cationic and aromatic residues such as SS-31 (elamipretide) show promise as therapeutic compounds for mitochondrial disorders. In this study, we conducted a quantitative structure-activity analysis of three alternative tetrapeptide analogs, benchmarked against SS-31, that differ with respect to aromatic side chain composition and sequence register. We present the first structural models for this class of compounds, obtained with Nuclear Magnetic Resonance (NMR) and molecular dynamics approaches, showing that all analogs except for SS-31 form compact reverse turn conformations in the membrane-bound state. All peptide analogs bound cardiolipin-containing membranes, yet they had significant differences in equilibrium binding behavior and membrane interactions. Notably, analogs had markedly different effects on membrane surface charge, supporting a mechanism in which modulation of membrane electrostatics is a key feature of their mechanism of action. The peptides had no strict requirement for side chain composition or sequence register to permeate cells and target mitochondria in mammalian cell culture assays. All four peptides were pharmacologically active in serum withdrawal cell stress models yet showed significant differences in their abilities to restore mitochondrial membrane potential, preserve ATP content, and promote cell survival. Within our peptide set, the analog containing tryptophan side chains, SPN10, had the strongest impact on most membrane properties and showed greatest efficacy in cell culture studies. Taken together, these results show that side chain composition and register influence the activity of these mitochondria-targeted peptides, helping provide a framework for the rational design of next-generation therapeutics with enhanced potency.
Collapse
Affiliation(s)
- Wayne Mitchell
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Jeffrey D Tamucci
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Emery L Ng
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Shaoyi Liu
- Social Profit Network, Menlo Park, CA, United States
| | - Alexander V Birk
- Department of Biology, York College of CUNY, New York, NY, United States
| | - Hazel H Szeto
- Social Profit Network, Menlo Park, CA, United States
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
35
|
Hanashima S, Mito K, Umegawa Y, Murata M, Hojo H. Lipid chain-driven interaction of a lipidated Src-family kinase Lyn with the bilayer membrane. Org Biomol Chem 2022; 20:6436-6444. [PMID: 35880995 DOI: 10.1039/d2ob01079h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Myristoylation is a process of ubiquitous protein modification, which promotes the interaction of lipidated proteins on cell surfaces, in conjunction with reversible S-palmitoylation. We report the cooperative lipid-lipid interaction of two acyl chains of proteins, which increases the protein-membrane interaction and facilitates selective targeting of membranes containing anionic lipids. Lyn is a member of the Src family kinases distributed on the membrane surface by N-myristoyl and neighbouring S-palmitoyl chain anchors at the unique N-terminus domain. We prepared N-terminal short segments of lipidated Lyn to investigate the behaviour of each acyl chain in the lipid composition-dependent membrane interaction by solid-state nuclear magnetic resonance (NMR) analysis. Solid-state 31P-NMR studies revealed that S-palmitoylation of N-myristoylated Lyn peptides increased the interaction between peptides and phospholipid head groups, particularly with the anionic phosphatidylserine-containing bilayers. The solid-state 2H-NMR of Lyn peptides with a perdeutero N-myristoyl chain indicated an increase (0.6-0.8 Å) in the extent of the N-myristoyl chain in the presence of nearby S-palmitoyl chains, probably through the interaction via the acyl chains. The cooperative hydrocarbon chain interaction of the two acyl chains of Lyn increased membrane binding by extending the hydrocarbon chains deeper into the membrane interior, thereby promoting the peptide-membrane surface interaction between the cationic peptide side chains and the anionic lipid head groups. This lipid-driven mechanism by S-palmitoylation promotes the partition of the lipidated proteins to the cytoplasmic surface of the cell membranes and may be involved in recruiting Lyn at the signalling domains rich in anionic lipids.
Collapse
Affiliation(s)
- Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Kanako Mito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan. .,Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hironobu Hojo
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.,Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita 565-0871, Japan
| |
Collapse
|
36
|
Antila HS, Kav B, Miettinen MS, Martinez-Seara H, Jungwirth P, Ollila OHS. Emerging Era of Biomolecular Membrane Simulations: Automated Physically-Justified Force Field Development and Quality-Evaluated Databanks. J Phys Chem B 2022. [DOI: 10.1021/acs.jpcb.2c01954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hanne S. Antila
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Batuhan Kav
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum
Jülich, Wilhelm-Johnen-Str., 52425 Jülich, Germany
| | - Markus S. Miettinen
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
- Department of Chemistry, University of Bergen, 5020 Bergen, Norway
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic
| | - O. H. Samuli Ollila
- Institute of Biotechonology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
37
|
Borcik C, Eason IR, Vanderloop B, Wylie BJ. 2H, 13C-Cholesterol for Dynamics and Structural Studies of Biological Membranes. ACS OMEGA 2022; 7:17151-17160. [PMID: 35647452 PMCID: PMC9134247 DOI: 10.1021/acsomega.2c00796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/08/2022] [Indexed: 05/19/2023]
Abstract
We present a cost-effective means of 2H and 13C enrichment of cholesterol. This method exploits the metabolism of 2H,13C-acetate into acetyl-CoA, the first substrate in the mevalonate pathway. We show that growing the cholesterol producing strain RH6827 of Saccharomyces cerevisiae in 2H,13C-acetate-enriched minimal media produces a skip-labeled pattern of deuteration. We characterize this cholesterol labeling pattern by mass spectrometry and solid-state nuclear magnetic resonance spectroscopy. It is confirmed that most 2H nuclei retain their original 2H-13C bonds from acetate throughout the biosynthetic pathway. We then quantify the changes in 13C chemical shifts brought by deuteration and the impact upon 13C-13C spin diffusion. Finally, using adiabatic rotor echo short pulse irradiation cross-polarization (RESPIRATIONCP), we acquire the 2H-13C correlation spectra to site specifically quantify cholesterol dynamics in two model membranes as a function of temperature. These measurements show that cholesterol acyl chains at physiological temperatures in mixtures of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), sphingomyelin, and cholesterol are more dynamic than cholesterol in POPC. However, this overall change in motion is not uniform across the cholesterol molecule. This result establishes that this cholesterol labeling pattern will have great utility in reporting on cholesterol dynamics and orientation in a variety of environments and with different membrane bilayer components, as well as monitoring the mevalonate pathway product interactions within the bilayer. Finally, the flexibility and universality of acetate labeling will allow this technique to be widely applied to a large range of lipids and other natural products.
Collapse
|
38
|
Nguyen HL, Linh HQ, Krupa P, La Penna G, Li MS. Amyloid β Dodecamer Disrupts the Neuronal Membrane More Strongly than the Mature Fibril: Understanding the Role of Oligomers in Neurotoxicity. J Phys Chem B 2022; 126:3659-3672. [PMID: 35580354 PMCID: PMC9150093 DOI: 10.1021/acs.jpcb.2c01769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The amyloid cascade
hypothesis states that senile plaques, composed
of amyloid β (Aβ) fibrils, play a key role in Alzheimer’s
disease (AD). However, recent experiments have shown that Aβ
oligomers are more toxic to neurons than highly ordered fibrils. The
molecular mechanism underlying this observation remains largely unknown.
One of the possible scenarios for neurotoxicity is that Aβ peptides
create pores in the lipid membrane that allow Ca2+ ions
to enter cells, resulting in a signal of cell apoptosis. Hence, one
might think that oligomers are more toxic due to their higher ability
to create ion channels than fibrils. In this work, we study the effect
of Aβ42 dodecamer and fibrils on a neuronal membrane, which
is similar to that observed in AD patients, using all-atom molecular
dynamics simulations. Due to short simulation times, we cannot observe
the formation of pores, but useful insight on the early events of
this process has been obtained. Namely, we showed that dodecamer distorts
the lipid membrane to a greater extent than fibrils, which may indicate
that ion channels can be more easily formed in the presence of oligomers.
Based on this result, we anticipate that oligomers are more toxic
than mature fibrils, as observed experimentally. Moreover, the Aβ–membrane
interaction was found to be governed by the repulsive electrostatic
interaction between Aβ and the ganglioside GM1 lipid. We calculated
the bending and compressibility modulus of the membrane in the absence
of Aβ and obtained good agreement with the experiment. We predict
that the dodecamer will increase the compressibility modulus but has
little effect on the bending modulus. Due to the weak interaction
with the membrane, fibrils insignificantly change the membrane elastic
properties.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam.,Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 740500, Vietnam.,Vietnam National University, Ho Chi Minh City 71300, Vietnam
| | - Huynh Quang Linh
- Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 740500, Vietnam.,Vietnam National University, Ho Chi Minh City 71300, Vietnam
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw 02-668, Poland
| | - Giovanni La Penna
- National Research Council of Italy (CNR), Institute for Chemistry of Organometallic Compounds (ICCOM), Florence 50019, Italy.,National Institute for Nuclear Physics (INFN), Section of Roma-Tor Vergata, Rome 00815, Italy
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw 02-668, Poland
| |
Collapse
|
39
|
Zizzi EA, Cavaglià M, Tuszynski JA, Deriu MA. Alteration of lipid bilayer mechanics by volatile anesthetics: Insights from μs-long molecular dynamics simulations. iScience 2022; 25:103946. [PMID: 35265816 PMCID: PMC8898909 DOI: 10.1016/j.isci.2022.103946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 11/24/2022] Open
Abstract
Very few drugs in clinical practice feature the chemical diversity, narrow therapeutic window, unique route of administration, and reversible cognitive effects of volatile anesthetics. The correlation between their hydrophobicity and their potency and the increasing amount of evidence suggesting that anesthetics exert their action on transmembrane proteins, justifies the investigation of their effects on phospholipid bilayers at the molecular level, given the strong functional and structural link between transmembrane proteins and the surrounding lipid matrix. Molecular dynamics simulations of a model lipid bilayer in the presence of ethylene, desflurane, methoxyflurane, and the nonimmobilizer 1,2-dichlorohexafluorocyclobutane (also called F6 or 2N) at different concentrations highlight the structural consequences of VA partitioning in the lipid phase, with a decrease of lipid order and bilayer thickness, an increase in overall lipid lateral mobility and area-per-lipid, and a marked reduction in the mechanical stiffness of the membrane, that strongly correlates with the compounds' hydrophobicity.
Collapse
Affiliation(s)
- Eric A. Zizzi
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Marco Cavaglià
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | - Jack A. Tuszynski
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Marco A. Deriu
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
40
|
Canner SW, Feller SE, Wassall SR. Molecular Organization of a Raft-like Domain in a Polyunsaturated Phospholipid Bilayer: A Supervised Machine Learning Analysis of Molecular Dynamics Simulations. J Phys Chem B 2021; 125:13158-13167. [PMID: 34812629 DOI: 10.1021/acs.jpcb.1c06511] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerous health benefits are associated with omega-3 polyunsaturated fatty acids (n-3 PUFA) consumed in fish oils. An understanding of the mechanism remains elusive. The plasma membrane as a site of action is the focus in this study. With large-scale all-atom MD simulations run on a model membrane (1050 lipid molecules), we observed the evolution over time (6 μs) of a circular (raft-like) domain composed of N-palmitoylsphingomyelin (PSM) and cholesterol embedded into a surrounding (non-raft) patch composed of polyunsaturated 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) (1:1:1 mol). A supervised machine learning algorithm was developed to characterize the migration of each lipid based on molecular conformation and the local environment. PDPC molecules were seen to infiltrate the ordered raft-like domain in a small amount, while a small concentration of PSM and cholesterol molecules was seen to migrate into the disordered non-raft region. Enclosing the raft-like domain, a narrow (∼2 nm in width) interfacial zone composed of PDPC, PSM, and cholesterol that buffers the substantial difference in order (ΔSCD ≈ 0.12) between raft-like and non-raft environments was seen to form. Our results suggest that n-3 PUFA regulate the architecture of lipid rafts enriched in sphingolipids and cholesterol with a minimal effect on order within their interior in membranes.
Collapse
Affiliation(s)
- Samuel W Canner
- Department of Physics, IUPUI, Indianapolis, Indiana 46202-3273, United States.,Department of Computer and Information Science, IUPUI, Indianapolis, Indiana 46202-5132, United States
| | - Scott E Feller
- Department of Chemistry, Wabash College, Crawfordsville, Indiana 47933, United States
| | - Stephen R Wassall
- Department of Physics, IUPUI, Indianapolis, Indiana 46202-3273, United States
| |
Collapse
|
41
|
Shobhna, Kumari M, Kashyap HK. Mechanistic Insight on BioIL-Induced Structural Alterations in DMPC Lipid Bilayer. J Phys Chem B 2021; 125:11955-11966. [PMID: 34672578 DOI: 10.1021/acs.jpcb.1c06218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The emerging application risks of traditional ionic liquids (ILs) toward the ecosystem have changed the perception regarding their greenness. This resulted in the exploration of their more biocompatible alternatives known as biocompatible ILs (BioILs). Here, we have investigated the impact of two such biocompatible cholinium amino acid-based ILs on the structural behavior of model homogeneous DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) lipid bilayer using all-atom molecular dynamics simulation technique. Two classic cholinium-amino acid-based ILs, cholinium glycinate ([Ch][Gly]) and cholinium phenylalaninate ([Ch][Phe]), which differ only by the side chain lengths and hydrophobicity of the anions, have been utilized in the present work. Simultaneous analysis of the bilayer structural properties reveals that the existence of [Ch][Gly] BioIL above a particular concentration induces phase transition from fluid phase to gel phase in the DMPC lipid bilayer. Such a freezing of lipid bilayer upon the exposure to concentrated aqueous solution of [Ch][Gly] BioIL indicates the harmfulness of this BioIL toward the cell membranes majorly containing DMPC lipids, as the cell freezing can negatively affect its stability and functionality. Despite having a more hydrophobic amino acid side chain of [Phe]- anion in [Ch][Phe], in the case of bilayer-[Ch][Phe] systems we observe the minimal impact of [Ch][Phe] BioIL on the DMPC bilayer properties up to 10 mol % concentration. In the presence of these BioIL, we observe the thickening of the bilayer and accumulation of the cations and anions of the BioILs at the interface of DMPC lipid heads and tails. The transfer free-energy profile of a [Phe]- anion from aqueous phase to membrane center also indicates the anion partitioning at lipid head-tail interface and its inability to penetrate in the lipid membrane tail region. In contrast, the free-energy profile for a [Gly]- anion offers a very high energy barrier to the insertion of [Gly]- into the membrane interior, leading to accumulation of [Gly]- anions at the lipid head-water region.
Collapse
Affiliation(s)
- Shobhna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
42
|
Wilson KA, Wang L, O’Mara ML. Site of Cholesterol Oxidation Impacts Its Localization and Domain Formation in the Neuronal Plasma Membrane. ACS Chem Neurosci 2021; 12:3873-3884. [PMID: 34633798 DOI: 10.1021/acschemneuro.1c00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cholesterol is integral to the structure of mammalian cell membranes. Oxidation of cholesterol alters how it behaves in the membrane and influences the membrane biophysical properties. Elevated levels of oxidized cholesterol are associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease. Previous work has investigated the impact of oxidized cholesterol in the context of simple model membrane systems. However, there is a growing body of literature that shows that complex membranes possessing physiological phospholipid distributions have different properties from those of binary or trinary model membranes. In the current work, the impact of oxidized cholesterol on the biophysical properties of a complex neuronal plasma membrane is investigated using coarse-grained Martini molecular dynamics simulations. Comparison of the native neuronal membrane to neuronal membranes containing 10% tail-oxidized or 10% head-oxidized cholesterol shows that the site of oxidization changes the behavior of the oxidized cholesterol in the membrane. Furthermore, species-specific domain formation is observed between each oxidized cholesterol and minor lipid classes. Although both tail-oxidized and head-oxidized cholesterols modulate the biophysical properties of the membrane, smaller changes are observed in the complex neuronal membrane than seen in the previous work on simple binary or trinary model membranes. This work highlights the presence of compensatory effects of lipid diversity in the complex neuronal membrane. Overall, this study improves our molecular-level understanding of the effects of oxidized cholesterol on the properties of neuronal tissue and emphasizes the importance of studying membranes with realistic lipid compositions.
Collapse
Affiliation(s)
- Katie A. Wilson
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Lily Wang
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Megan L. O’Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
43
|
Claridge B, Lozano J, Poh QH, Greening DW. Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities. Front Cell Dev Biol 2021; 9:734720. [PMID: 34616741 PMCID: PMC8488228 DOI: 10.3389/fcell.2021.734720] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields' utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.
Collapse
Affiliation(s)
- Bethany Claridge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jonathan Lozano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Wilson KA, Fairweather SJ, MacDermott-Opeskin HI, Wang L, Morris RA, O'Mara ML. The role of plasmalogens, Forssman lipids, and sphingolipid hydroxylation in modulating the biophysical properties of the epithelial plasma membrane. J Chem Phys 2021; 154:095101. [PMID: 33685172 DOI: 10.1063/5.0040887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A coarse-grain model of the epithelial plasma membrane was developed from high-resolution lipidomic data and simulated using the MARTINI force field to characterize its biophysical properties. Plasmalogen lipids, Forssman glycosphingolipids, and hydroxylated Forssman glycosphingolipids and sphingomyelin were systematically added to determine their structural effects. Plasmalogen lipids have a minimal effect on the overall biophysical properties of the epithelial plasma membrane. In line with the hypothesized role of Forssman lipids in the epithelial apical membrane, the introduction of Forssman lipids initiates the formation of glycosphingolipid-rich nanoscale lipid domains, which also include phosphatidylethanolamine (PE), sphingomyelin (SM), and cholesterol (CHOL). This decreases the lateral diffusion in the extracellular leaflet, as well as the area per lipid of domain forming lipids, most notably PE. Finally, hydroxylation of the Forssman glycosphingolipids and sphingomyelin further modulates the lateral organization of the membrane. Through comparison to the previously studied average and neuronal plasma membranes, the impact of membrane lipid composition on membrane properties was characterized. Overall, this study furthers our understanding of the biophysical properties of complex membranes and the impact of lipid diversity in modulating membrane properties.
Collapse
Affiliation(s)
- Katie A Wilson
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Stephen J Fairweather
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Hugo I MacDermott-Opeskin
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Lily Wang
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Richard A Morris
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
45
|
Yokoi S, Mitsutake A. Molecular Dynamics Simulations for the Determination of the Characteristic Structural Differences between Inactive and Active States of Wild Type and Mutants of the Orexin2 Receptor. J Phys Chem B 2021; 125:4286-4298. [PMID: 33885321 DOI: 10.1021/acs.jpcb.0c10985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The orexin2 receptor (OX2R), which is classified as a class A G protein-coupled receptor (GPCR), is the target of our study. We performed over 20 several-microsecond-scale molecular dynamics simulations of the wild type and mutants of OX2R to extract the characteristics of the structural changes taking place in the active state. We introduced mutations that exhibited the stable inactive state and the constitutively active state in class A GPCRs. In these simulations, significant characteristic structural changes were observed in the V3096.40Y mutant, which corresponded to a constitutively active mutant. These conformational changes include the outward movement of the transmembrane helix 6 (TM6) and the inward movement of TM7, which are common structural changes in the activation of GPCRs. In addition, we extracted a suitable index for the quantitative evaluation of the active and inactive states of GPCRs, namely, the inter-atomic distance of Cα atoms between x(3.46) and Y(7.53). The structures of the inactive and active states solved by X-ray crystallography and cryo-electron microscopy can be classified using the inter-atomic distance. Furthermore, we clarified that the inward movement of TM7 requires the swapping of M3056.36 on TM6 and L3677.56 on TM7. Finally, we discussed the structural advantages of TM7 inward movement for GPCR activation.
Collapse
Affiliation(s)
- Shun Yokoi
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
46
|
Sefah E, Mertz B. Bacterial Analogs to Cholesterol Affect Dimerization of Proteorhodopsin and Modulates Preferred Dimer Interface. J Chem Theory Comput 2021; 17:2502-2512. [PMID: 33788568 DOI: 10.1021/acs.jctc.0c01174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hopanoids, the bacterial analogues of sterols, are ubiquitous in bacteria and play a significant role in organismal survival under stressful environments. Unlike sterols, hopanoids have a high degree of variation in the size and chemical nature of the substituent attached to the ring moiety, leading to different effects on the structure and dynamics of biological membranes. While it is understood that hopanoids can indirectly tune membrane physical properties, little is known on the role that hopanoids may play in affecting the organization and behavior of bacterial membrane proteins. In this work we used coarse-grained molecular dynamics simulations to characterize the effects of two hopanoids, diploptene (DPT) and bacteriohopanetetrol (BHT), on the oligomerization of proteorhodopsin (PR) in a model membrane composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phophoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-3-phosphoglycerol (POPG). PR is a bacterial membrane protein that functions as a light-activated proton pump. We chose PR based on its ability to adopt a distribution of oligomeric states in different membrane environments. Furthermore, the efficiency of proton pumping in PR is intimately linked to its organization into oligomers. Our results reveal that both BHT and DPT indirectly affect dimerization by tuning membrane properties in a fashion that is concentration-dependent. Variation in their interaction with PR in the membrane-embedded and the cytoplasmic regions leads to distinctly different effects on the plasticity of the dimer interface. BHT has the ability to intercalate between monomers in the dimeric interface, whereas DPT shifts dimerization interactions via packing of the interleaflet region of the membrane. Our results show a direct relationship between hopanoid structure and lateral organization of PR, providing a first glimpse at how these bacterial analogues to eukaryotic sterols produce very similar biophysical effects within the cell membrane.
Collapse
Affiliation(s)
- Eric Sefah
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States.,WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
47
|
Wadhwa R, Yadav NS, Katiyar SP, Yaguchi T, Lee C, Ahn H, Yun CO, Kaul SC, Sundar D. Molecular dynamics simulations and experimental studies reveal differential permeability of withaferin-A and withanone across the model cell membrane. Sci Rep 2021; 11:2352. [PMID: 33504873 PMCID: PMC7840742 DOI: 10.1038/s41598-021-81729-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/30/2020] [Indexed: 12/23/2022] Open
Abstract
Poor bioavailability due to the inability to cross the cell membrane is one of the major reasons for the failure of a drug in clinical trials. We have used molecular dynamics simulations to predict the membrane permeability of natural drugs-withanolides (withaferin-A and withanone) that have similar structures but remarkably differ in their cytotoxicity. We found that whereas withaferin-A, could proficiently transverse through the model membrane, withanone showed weak permeability. The free energy profiles for the interaction of withanolides with the model bilayer membrane revealed that whereas the polar head group of the membrane caused high resistance for the passage of withanone, the interior of the membrane behaves similarly for both withanolides. The solvation analysis further revealed that the high solvation of terminal O5 oxygen of withaferin-A was the major driving force for its high permeability; it interacted with the phosphate group of the membrane that led to its smooth passage across the bilayer. The computational predictions were tested by raising and recruiting unique antibodies that react to withaferin-A and withanone. The time-lapsed analyses of control and treated cells demonstrated higher permeation of withaferin-A as compared to withanone. The concurrence between the computation and experimental results thus re-emphasised the use of computational methods for predicting permeability and hence bioavailability of natural drug compounds in the drug development process.
Collapse
Affiliation(s)
- Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305 8565, Japan
| | - Neetu Singh Yadav
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Shashank P Katiyar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Tomoko Yaguchi
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305 8565, Japan
| | - Chohee Lee
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305 8565, Japan.,Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyomin Ahn
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305 8565, Japan.,Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.,GeneMedicine Co., Ltd, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.,GeneMedicine Co., Ltd, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.,Institute of Nano Science and Technology (INST), 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sunil C Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305 8565, Japan.
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India.
| |
Collapse
|
48
|
Wilson KA, Wang L, Lin YC, O'Mara ML. Investigating the lipid fingerprint of SLC6 neurotransmitter transporters: a comparison of dDAT, hDAT, hSERT, and GlyT2. BBA ADVANCES 2021; 1:100010. [PMID: 37082011 PMCID: PMC10074915 DOI: 10.1016/j.bbadva.2021.100010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The local lipid annulus, or "fingerprint", of four SLC6 transporters (dDAT, hDAT, hSERT, and GlyT2) embedded in a complex neuronal membrane were compared and characterised using molecular dynamics. Our analysis included the development of new tools to improve membrane leaflet detection and the analysis of leaflet-dependent properties. Overall, the lipid fingerprints of the four transporters are comprised of similar lipids when grouped by headgroup or tail saturation. The enrichment and depletion of specific lipids, including sites of cholesterol contacts, varies between transporters. The subtle differences in lipid fingerprints results in varying membrane biophysical properties near the transporter. Our results highlight that the lipid-fingerprint of SLC6 transporters in complex membranes is highly dependent on membrane composition. Our results further characterize how the presence and identity of membrane proteins affects the complex interplay of lipid-protein interactions, influencing the local lipid environment and membrane biophysical properties.
Collapse
|
49
|
In Silico Prediction of the Binding, Folding, Insertion, and Overall Stability of Membrane-Active Peptides. Methods Mol Biol 2021; 2315:161-182. [PMID: 34302676 DOI: 10.1007/978-1-0716-1468-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Membrane-active peptides (MAPs) are short-length peptides used for potential biomedical applications in diagnostic imaging of tissues, targeted drug delivery, gene delivery, and antimicrobials and antibiotics. The broad appeal of MAPs is that they are infinitely variable, relatively low cost, and biocompatible. However, experimentally characterizing the specific properties of a MAP or its many variants is a low-resolution and potentially time-consuming endeavor; molecular dynamics (MD) simulations have emerged as an invaluable tool in identifying the biophysical interactions that are fundamental to the function of MAPs. In this chapter, a step-by-step approach to discreetly model the binding, folding, and insertion of a membrane-active peptide to a model lipid bilayer using MD simulations is described. Detailed discussion is devoted to the critical aspects of running these types of simulations: prior knowledge of the system, understanding the strengths and weaknesses of molecular mechanics force fields, proper construction and equilibration of the system, realistically estimating both experimental and computational timescales, and leveraging analysis to make direct comparisons to experimental results as often as possible.
Collapse
|
50
|
Ausili A, Gómez-Murcia V, Candel AM, Beltrán A, Torrecillas A, He L, Jiang Y, Zhang S, Teruel JA, Gómez-Fernández JC. A comparison of the location in membranes of curcumin and curcumin-derived bivalent compounds with potential neuroprotective capacity for Alzheimer's disease. Colloids Surf B Biointerfaces 2020; 199:111525. [PMID: 33373844 DOI: 10.1016/j.colsurfb.2020.111525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/14/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
Curcumin and two bivalent compounds, namely 17MD and 21MO, both obtained by conjugation of curcumin with a steroid molecule that acts as a membrane anchor, were comparatively studied. When incorporated into 1,2-dipalmitoyl-sn-glycero-3-phosphocholine the compounds showed a very limited solubility in the model membranes. Curcumin and the two bivalent compounds were also incorporated in membranes of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and quenching the fluorescence of pure curcumin or of the curcumin moiety in the bivalent compounds by acrylamide it was seen that curcumin was accessible to this water soluble quencher but the molecule was somehow located in a hydrophobic environment. This was confirmed by quenching with doxyl-phosphatidylcholines, indicating that the curcumin moieties of 17MD and 21MO were in a more polar environment than pure curcumin itself. 1H NOESY MAS-NMR analysis supports this notion by showing that the orientation of curcumin was parallel to the plane of the membrane surface close to C2 and C3 of the fatty acyl chains, while the curcumin moiety of 17MD and 21MO positioned close to the polar part of the membrane with the steroid moiety in the centre of the membrane. Molecular dynamics studies were in close agreement with the experimental results with respect to the likely proximity of the protons studied by NMR and show that 17MD and 21MO have a clear tendency to aggregate in a fluid membrane. The anchorage of the bivalent compounds to the membrane leaving the curcumin moiety near the polar part may be very important to facilitate the bioactivity of the curcumin moiety when used as anti-Alzheimer drugs.
Collapse
Affiliation(s)
- Alessio Ausili
- Departamento De Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, Murcia, E-30080, Spain
| | - Victoria Gómez-Murcia
- Departamento de Farmacología, Facultad de Medicina, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, Murcia, E-30080, Spain
| | - Adela M Candel
- Departamento De Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, Murcia, E-30080, Spain
| | - Andrea Beltrán
- Departamento De Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, Murcia, E-30080, Spain
| | - Alejandro Torrecillas
- Departamento De Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, Murcia, E-30080, Spain
| | - Liu He
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
| | - Yuqi Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
| | - José A Teruel
- Departamento De Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, Murcia, E-30080, Spain
| | - Juan C Gómez-Fernández
- Departamento De Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, Murcia, E-30080, Spain.
| |
Collapse
|