1
|
Dabaghi M, Singer R, Noble A, Arizpe Tafoya AV, González-Martínez DA, Gupta T, Formosa-Dague C, Rosas IO, Kolb MR, Shargall Y, Moran-Mirabal JM, Hirota JA. Influence of lung extracellular matrix from non-IPF and IPF donors on primary human lung fibroblast biology. Biomater Sci 2025; 13:1721-1741. [PMID: 39968884 DOI: 10.1039/d4bm00906a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Fibrosis, a pathological hallmark of various chronic diseases, involves the excessive accumulation of extracellular matrix (ECM) components leading to tissue scarring and functional impairment. Understanding how cells interact with the ECM in fibrotic diseases such as idiopathic pulmonary fibrosis (IPF), is crucial for developing effective therapeutic strategies. This study explores the effects of decellularized extracellular matrix (dECM) coatings derived from non-IPF and IPF donor lung tissue samples on the behavior of primary human lung fibroblasts (HLFs). Utilizing a substrate coating method that preserves the diversity of in situ ECM, we studied both the concentration-dependent effects and the intrinsic biochemical cues of ECM on cell morphology, protein expression, mechanobiology biomarkers, and gene expression. Morphological analysis revealed that HLFs displayed altered spreading, shape, and nuclear characteristics in response to dECM coatings relative to control plastic, indicating a response to the physical and biochemical cues. Protein expression studies showed an upregulation of α-smooth muscle actin (α-SMA) in cells interacting with both non-IPF and IPF dECM coatings, that was more prominent at IPF dECM-coated surface. In addition, YAP localization, a marker of mechanotransduction, was also dysregulated on dECM coatings, reflecting changes in mechanical signaling pathways. Gene expression profiles were differentially regulated by the different dECM coatings. The developed dECM coating strategy in this work facilitates the integration of tissue-specific biochemical cues onto standard cell culture platforms, which is ideal for high-throughput screening. Importantly, it minimizes the requirement for human tissue samples, especially when compared to more sample-intensive 3D models like dECM-based hydrogels.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health - Research Institute of St. Joseph's, Hamilton, ON L8N 4A6, Canada.
| | - Ryan Singer
- Firestone Institute for Respiratory Health - Research Institute of St. Joseph's, Hamilton, ON L8N 4A6, Canada.
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Alex Noble
- Firestone Institute for Respiratory Health - Research Institute of St. Joseph's, Hamilton, ON L8N 4A6, Canada.
| | | | | | - Tamaghna Gupta
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | | - Ivan O Rosas
- Department of Medicine, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Martin R Kolb
- Firestone Institute for Respiratory Health - Research Institute of St. Joseph's, Hamilton, ON L8N 4A6, Canada.
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Yaron Shargall
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Jose M Moran-Mirabal
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Jeremy A Hirota
- Firestone Institute for Respiratory Health - Research Institute of St. Joseph's, Hamilton, ON L8N 4A6, Canada.
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
2
|
Mao M, Han K, Gao J, Ren Z, Zhang Y, He J, Li D. Engineering Highly Aligned and Densely Populated Cardiac Muscle Bundles via Fibrin Remodeling in 3D-Printed Anisotropic Microfibrous Lattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419380. [PMID: 39811972 DOI: 10.1002/adma.202419380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles. Compared to lattices with isolated pores, the engineered aligned cardiac tissues from neonatal rat cardiomyocytes exhibit improved electrophysiological properties and synchronous contractions. Using a multiseeding strategy, an equivalent cell seeding density of 8 × 107 cells mL-1, facilitating the formation of multicellular, vascularized cardiac structures with maintained tissue viability and integrity, is achieved. As a demonstration, human-induced pluripotent stem cell-derived cardiac tissues are engineered with progressive maturation and functional integration over time. These findings underscore the potential of InterPore microfibrous lattices for applications in cardiac tissue engineering, drug discovery, and therapeutic development.
Collapse
Affiliation(s)
- Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Kang Han
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jingyuan Gao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhishuo Ren
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yabo Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Hain T, Santangelo C, Manning ML. Optimizing properties on the critical rigidity manifold of underconstrained central-force networks. Phys Rev E 2025; 111:015418. [PMID: 39972776 DOI: 10.1103/physreve.111.015418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/25/2024] [Indexed: 02/21/2025]
Abstract
Our goal is to develop a design framework for multifunctional mechanical metamaterials that can tune their rigidity while optimizing other desired properties. Towards this goal, we first demonstrate that underconstrained central-force networks possess a critical rigidity manifold of codimension 1 in the space of their physical constraints. We describe how the geometry of this manifold generates a natural parametrization in terms of the states of self-stress, and then use this parametrization to numerically generate disordered network structures that are on the critical rigidity manifold and also optimize various objective functions, such as maximizing the bulk stiffness under dilation, or minimizing length variance to find networks that can be self-assembled from equal-length parts. This framework can be used to design mechanical metamaterials that can tune their rigidity and also exhibit other desired properties.
Collapse
Affiliation(s)
- Tyler Hain
- Syracuse University, Department of Physics and BioInspired Institute, Syracuse, New York 13210, USA
| | - Chris Santangelo
- Syracuse University, Department of Physics and BioInspired Institute, Syracuse, New York 13210, USA
| | - M Lisa Manning
- Syracuse University, Department of Physics and BioInspired Institute, Syracuse, New York 13210, USA
| |
Collapse
|
4
|
Kim J, Sakar MS, Bouklas N. Modeling the mechanosensitive collective migration of cells on the surface and the interior of morphing soft tissues. Biomech Model Mechanobiol 2024; 23:1815-1835. [PMID: 38972940 DOI: 10.1007/s10237-024-01870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Cellular contractility, migration, and extracellular matrix (ECM) mechanics are critical for a wide range of biological processes including embryonic development, wound healing, tissue morphogenesis, and regeneration. Even though the distinct response of cells near the tissue periphery has been previously observed in cell-laden microtissues, including faster kinetics and more prominent cell-ECM interactions, there are currently no models that can fully combine coupled surface and bulk mechanics and kinetics to recapitulate the morphogenic response of these constructs. Mailand et al. (Biophys J 117(5):975-986, 2019) had shown the importance of active elastocapillarity in cell-laden microtissues, but modeling the distinct mechanosensitive migration of cells on the periphery and the interior of highly deforming tissues has not been possible thus far, especially in the presence of active elastocapillary effects. This paper presents a framework for understanding the interplay between cellular contractility, migration, and ECM mechanics in dynamically morphing soft tissues accounting for distinct cellular responses in the bulk and the surface of tissues. The major novelty of this approach is that it enables modeling the distinct migratory and contractile response of cells residing on the tissue surface and the bulk, where concurrently the morphing soft tissues undergo large deformations driven by cell contractility. Additionally, the simulation results capture the changes in shape and cell concentration for wounded and intact microtissues, enabling the interpretation of experimental data. The numerical procedure that accounts for mechanosensitive stress generation, large deformations, diffusive migration in the bulk and a distinct mechanism for diffusive migration on deforming surfaces is inspired from recent work on bulk and surface poroelasticity of hydrogels involving elastocapillary effects, but in this work, a two-field weak form is proposed and is able to alleviate numerical instabilities that were observed in the original method that utilized a three-field mixed finite element formulation.
Collapse
Affiliation(s)
- Jaemin Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, 14853, NY, USA
| | - Mahmut Selman Sakar
- Institutes of Mechanical Engineering and Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, 14853, NY, USA.
| |
Collapse
|
5
|
Fan Y, Chiu A, Zhao F, George JT. Understanding the interplay between extracellular matrix topology and tumor-immune interactions: Challenges and opportunities. Oncotarget 2024; 15:768-781. [PMID: 39513932 PMCID: PMC11546212 DOI: 10.18632/oncotarget.28666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Modern cancer management comprises a variety of treatment strategies. Immunotherapy, while successful at treating many cancer subtypes, is often hindered by tumor immune evasion and T cell exhaustion as a result of an immunosuppressive tumor microenvironment (TME). In solid malignancies, the extracellular matrix (ECM) embedded within the TME plays a central role in T cell recognition and cancer growth by providing structural support and regulating cell behavior. Relative to healthy tissues, tumor associated ECM signatures include increased fiber density and alignment. These and other differentiating features contributed to variation in clinically observed tumor-specific ECM configurations, collectively referred to as Tumor-Associated Collagen Signatures (TACS) 1-3. TACS is associated with disease progression and immune evasion. This review explores our current understanding of how ECM geometry influences the behaviors of both immune cells and tumor cells, which in turn impacts treatment efficacy and cancer evolutionary progression. We discuss the effects of ECM remodeling on cancer cells and T cell behavior and review recent in silico models of cancer-immune interactions.
Collapse
Affiliation(s)
- Yijia Fan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Translational Medical Sciences, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Alvis Chiu
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jason T. George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Translational Medical Sciences, Texas A&M University Health Science Center, Houston, TX 77030, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Chen D, Du Y, Llewellyn J, Bonna A, Zuo B, Janmey PA, Farndale RW, Wells RG. Versican binds collagen via its G3 domain and regulates the organization and mechanics of collagenous matrices. J Biol Chem 2024; 300:107968. [PMID: 39510178 PMCID: PMC11626796 DOI: 10.1016/j.jbc.2024.107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Type I collagen is the most abundant structural protein in the body and, with other fibrillar collagens, forms the fibrous network of the extracellular matrix. Another group of extracellular matrix polymers, the glycosaminoglycans, and glycosaminoglycan-modified proteoglycans, play important roles in regulating collagen behaviors and contribute to the compositional, structural, and mechanical complexity of the extracellular matrix. While the binding between collagen and small leucine-rich proteoglycans has been studied in detail, the interactions between collagen and the large bottlebrush proteoglycan versican are not well understood. Here, we report that versican binds collagen directly and regulates collagen structure and mechanics. Versican colocalizes with collagen fibers in vivo and binds to collagen via its C-terminal G3 domain (a non-GAG-modified domain present in all known versican isoforms) in vitro; it promotes the deposition of a highly aligned collagen-rich matrix by fibroblasts. Versican also shows an unexpected effect on the rheology of collagen gels in vitro, causing decreased stiffness and attenuated shear strain stiffening, and the cleavage of versican in the liver results in reduced tissue compression stiffening. Thus, versican is an important collagen-binding partner and plays a role in modulating collagen organization and mechanics.
Collapse
Affiliation(s)
- Dongning Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; The Materials Research Science & Engineering Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; National Science Foundation Center for Engineering MechanoBiology, Philadelphia, Pennsylvania, USA
| | - Yu Du
- National Science Foundation Center for Engineering MechanoBiology, Philadelphia, Pennsylvania, USA; Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Llewellyn
- National Science Foundation Center for Engineering MechanoBiology, Philadelphia, Pennsylvania, USA; Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Biao Zuo
- Electron Microscopy Resource Laboratory, Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul A Janmey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; The Materials Research Science & Engineering Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; National Science Foundation Center for Engineering MechanoBiology, Philadelphia, Pennsylvania, USA; Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Rebecca G Wells
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; The Materials Research Science & Engineering Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA; National Science Foundation Center for Engineering MechanoBiology, Philadelphia, Pennsylvania, USA; Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
7
|
Marzban S, Srivastava S, Kartika S, Bravo R, Safriel R, Zarski A, Anderson ARA, Chung CH, Amelio AL, West J. Spatial interactions modulate tumor growth and immune infiltration. NPJ Syst Biol Appl 2024; 10:106. [PMID: 39349537 PMCID: PMC11442770 DOI: 10.1038/s41540-024-00438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Direct observation of tumor-immune interactions is unlikely in tumors with currently available technology, but computational simulations based on clinical data can provide insight to test hypotheses. It is hypothesized that patterns of collagen evolve as a mechanism of immune escape, but the exact nature of immune-collagen interactions is poorly understood. Spatial data quantifying collagen fiber alignment in squamous cell carcinomas indicates that late-stage disease is associated with highly aligned fibers. Our computational modeling framework discriminates between two hypotheses: immune cell migration that moves (1) parallel or (2) perpendicular to collagen fiber orientation. The modeling recapitulates immune-extracellular matrix interactions where collagen patterns provide immune protection, leading to an emergent inverse relationship between disease stage and immune coverage. Here, computational modeling provides important mechanistic insights by defining a kernel cell-cell interaction function that considers a spectrum of local (cell-scale) to global (tumor-scale) spatial interactions. Short-range interaction kernels provide a mechanism for tumor cell survival under conditions with strong Allee effects, while asymmetric tumor-immune interaction kernels lead to poor immune response. Thus, the length scale of tumor-immune interaction kernels drives tumor growth and infiltration.
Collapse
Affiliation(s)
- Sadegh Marzban
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Sonal Srivastava
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Sharon Kartika
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
| | - Rafael Bravo
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Rachel Safriel
- High School Internship Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Aidan Zarski
- High School Internship Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Antonio L Amelio
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jeffrey West
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
8
|
Shivers JL, MacKintosh FC. Nonlinear Poisson effect in affine semiflexible polymer networks. Phys Rev E 2024; 110:014502. [PMID: 39160898 DOI: 10.1103/physreve.110.014502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Stretching an elastic material along one axis typically induces contraction along the transverse axes, a phenomenon known as the Poisson effect. From these strains, one can compute the specific volume, which generally either increases or, in the incompressible limit, remains constant as the material is stretched. However, in networks of semiflexible or stiff polymers, which are typically highly compressible yet stiffen significantly when stretched, one instead sees a significant reduction in specific volume under finite strains. This volume reduction is accompanied by increasing alignment of filaments along the strain axis and a nonlinear elastic response, with stiffening of the apparent Young's modulus. For semiflexible networks, in which entropic bending elasticity governs the linear elastic regime, the nonlinear Poisson effect is caused by the nonlinear force-extension relationship of the constituent filaments, which produces a highly asymmetric response of the constituent polymers to stretching and compression. The details of this relationship depend on the geometric and elastic properties of the underlying filaments, which can vary greatly in experimental systems. Here, we provide a comprehensive characterization of the nonlinear Poisson effect in an affine network model and explore the influence of filament properties on essential features of both microscopic and macroscopic response, including strain-driven alignment and volume reduction.
Collapse
Affiliation(s)
- Jordan L Shivers
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Fred C MacKintosh
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
9
|
Ye J, Baer JM, Faget DV, Morikis VA, Ren Q, Melam A, Delgado AP, Luo X, Bagchi SM, Belle JI, Campos E, Friedman M, Veis DJ, Knudsen ES, Witkiewicz AK, Powers S, Longmore GD, DeNardo DG, Stewart SA. Senescent CAFs Mediate Immunosuppression and Drive Breast Cancer Progression. Cancer Discov 2024; 14:1302-1323. [PMID: 38683161 PMCID: PMC11216870 DOI: 10.1158/2159-8290.cd-23-0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/26/2024] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
The tumor microenvironment (TME) profoundly influences tumorigenesis, with gene expression in the breast TME capable of predicting clinical outcomes. The TME is complex and includes distinct cancer-associated fibroblast (CAF) subtypes whose contribution to tumorigenesis remains unclear. Here, we identify a subset of myofibroblast CAFs (myCAF) that are senescent (senCAF) in mouse and human breast tumors. Utilizing the MMTV-PyMT;INK-ATTAC (INK) mouse model, we found that senCAF-secreted extracellular matrix specifically limits natural killer (NK) cell cytotoxicity to promote tumor growth. Genetic or pharmacologic senCAF elimination unleashes NK cell killing, restricting tumor growth. Finally, we show that senCAFs are present in HER2+, ER+, and triple-negative breast cancer and in ductal carcinoma in situ (DCIS) where they predict tumor recurrence. Together, these findings demonstrate that senCAFs are potently tumor promoting and raise the possibility that targeting them by senolytic therapy could restrain breast cancer development. Significance: senCAFs limit NK cell-mediated killing, thereby contributing to breast cancer progression. Thus, targeting senCAFs could be a clinically viable approach to limit tumor progression. See related article by Belle et al., p. 1324.
Collapse
Affiliation(s)
- Jiayu Ye
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John M. Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Douglas V. Faget
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vasilios A. Morikis
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qihao Ren
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anupama Melam
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ana Paula Delgado
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York
| | - Xianmin Luo
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Satarupa Mullick Bagchi
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jad I. Belle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Edward Campos
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael Friedman
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deborah J. Veis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | | | | | - Scott Powers
- Department of Pathology and Cancer Center, Renaissance School of Medicine, Stony Brook, New York
| | - Gregory D. Longmore
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- ICCE Institute, Washington University School of Medicine, St Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David G. DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- ICCE Institute, Washington University School of Medicine, St Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sheila A. Stewart
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- ICCE Institute, Washington University School of Medicine, St Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Kalaitzidou C, Grekas G, Zilian A, Makridakis C, Rosakis P. Compressive instabilities enable cell-induced extreme densification patterns in the fibrous extracellular matrix: Discrete model predictions. PLoS Comput Biol 2024; 20:e1012238. [PMID: 38950077 PMCID: PMC11244807 DOI: 10.1371/journal.pcbi.1012238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/12/2024] [Accepted: 06/08/2024] [Indexed: 07/03/2024] Open
Abstract
We present a new model and extensive computations that explain the dramatic remodelling undergone by a fibrous collagen extracellular matrix (ECM), when subjected to contractile mechanical forces from embedded cells or cell clusters. This remodelling creates complex patterns, comprising multiple narrow localised bands of severe densification and fiber alignment, extending far into the ECM, often joining distant cells or cell clusters (such as tumours). Most previous models cannot capture this behaviour, as they assume stable mechanical fiber response with stress an increasing function of fiber stretch, and a restriction to small displacements. Our fully nonlinear network model distinguishes between two types of single-fiber nonlinearity: fibers that undergo stable (supercritical) buckling (as in previous work) versus fibers that suffer unstable (subcritical) buckling collapse. The model allows unrestricted, arbitrarily large displacements (geometric nonlinearity). Our assumptions on single-fiber instability are supported by recent simulations and experiments on buckling of individual beams with a hierarchical microstructure, such as collagen fibers. We use simple scenarios to illustrate, for the first time, two distinct compressive-instability mechanisms at work in our model: unstable buckling collapse of single fibers, and snap-through of multiple-fiber groups. The latter is possible even when single fibers are stable. Through simulations of large fiber networks, we show how these instabilities lead to spatially extended patterns of densification, fiber alignment and ECM remodelling induced by cell contraction. Our model is simple, but describes a very complex, multi-stable energy landscape, using sophisticated numerical optimisation methods that overcome the difficulties caused by instabilities in large systems. Our work opens up new ways of understanding the unique biomechanics of fibrous-network ECM, by fully accounting for nonlinearity and associated loss of stability in fiber networks. Our results provide new insights on tumour invasion and metastasis.
Collapse
Affiliation(s)
- Chrysovalantou Kalaitzidou
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch sur Alzette, Luxembourg
| | - Georgios Grekas
- Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Andreas Zilian
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch sur Alzette, Luxembourg
| | - Charalambos Makridakis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, Greece
- Department of Mathematics, MPS, University of Sussex, Brighton, United Kingdom
| | - Phoebus Rosakis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, Greece
| |
Collapse
|
11
|
Marzban S, Srivastava S, Kartika S, Bravo R, Safriel R, Zarski A, Anderson A, Chung CH, Amelio AL, West J. Spatial interactions modulate tumor growth and immune infiltration. RESEARCH SQUARE 2024:rs.3.rs-3962451. [PMID: 38826398 PMCID: PMC11142313 DOI: 10.21203/rs.3.rs-3962451/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Lenia, a cellular automata framework used in artificial life, provides a natural setting to implement mathematical models of cancer incorporating features such as morphogenesis, homeostasis, motility, reproduction, growth, stimuli response, evolvability, and adaptation. Historically, agent-based models of cancer progression have been constructed with rules that govern birth, death and migration, with attempts to map local rules to emergent global growth dynamics. In contrast, Lenia provides a flexible framework for considering a spectrum of local (cell-scale) to global (tumor-scale) dynamics by defining an interaction kernel governing density-dependent growth dynamics. Lenia can recapitulate a range of cancer model classifications including local or global, deterministic or stochastic, non-spatial or spatial, single or multi-population, and off or on-lattice. Lenia is subsequently used to develop data-informed models of 1) single-population growth dynamics, 2) multi-population cell-cell competition models, and 3) cell migration or chemotaxis. Mathematical modeling provides important mechanistic insights. First, short-range interaction kernels provide a mechanism for tumor cell survival under conditions with strong Allee effects. Next, we find that asymmetric interaction tumor-immune kernels lead to poor immune response. Finally, modeling recapitulates immune-ECM interactions where patterns of collagen formation provide immune protection, indicated by an emergent inverse relationship between disease stage and immune coverage.
Collapse
Affiliation(s)
- Sadegh Marzban
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Sonal Srivastava
- Dept. of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Sharon Kartika
- Dept. of Biological Sciences, Indian Institute of Science Education and Research Kolkata
| | - Rafael Bravo
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Rachel Safriel
- High School Internship Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Aidan Zarski
- High School Internship Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Alexander Anderson
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Christine H. Chung
- Dept. of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Antonio L. Amelio
- Dept. of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Dept. of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Jeffrey West
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| |
Collapse
|
12
|
Oeler KJ, Blackmon RL, Kreda SM, Robinson T, Ghelardini M, Chapman BS, Tracy J, Hill DB, Oldenburg AL. In situ pulmonary mucus hydration assay using rotational and translational diffusion of gold nanorods with polarization-sensitive optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:046004. [PMID: 38690122 PMCID: PMC11060333 DOI: 10.1117/1.jbo.29.4.046004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Significance Assessing the nanostructure of polymer solutions and biofluids is broadly useful for understanding drug delivery and disease progression and for monitoring therapy. Aim Our objective is to quantify bronchial mucus solids concentration (wt. %) during hypertonic saline (HTS) treatment in vitro via nanostructurally constrained diffusion of gold nanorods (GNRs) monitored by polarization-sensitive optical coherence tomography (PS-OCT). Approach Using PS-OCT, we quantified GNR translational (D T ) and rotational (D R ) diffusion coefficients within polyethylene oxide solutions (0 to 3 wt. %) and human bronchial epithelial cell (hBEC) mucus (0 to 6.4 wt. %). Interpolation of D T and D R data is used to develop an assay to quantify mucus concentration. The assay is demonstrated on the mucus layer of an air-liquid interface hBEC culture during HTS treatment. Results In polymer solutions and mucus, D T and D R monotonically decrease with increasing concentration. D R is more sensitive than D T to changes above 1.5 wt. % of mucus and exhibits less intrasample variability. Mucus on HTS-treated hBEC cultures exhibits dynamic mixing from cilia. A region of hard-packed mucus is revealed by D R measurements. Conclusions The extended dynamic range afforded by simultaneous measurement of D T and D R of GNRs using PS-OCT enables resolving concentration of the bronchial mucus layer over a range from healthy to disease in depth and time during HTS treatment in vitro.
Collapse
Affiliation(s)
- Kelsey J. Oeler
- University of North Carolina at Chapel Hill, Department of Biomedical Engineering, Chapel Hill, North Carolina, United States
| | - Richard L. Blackmon
- Elon University, Department of Engineering, Elon, North Carolina, United States
| | - Silvia M. Kreda
- University of North Carolina at Chapel Hill, Marsico Lung Institute/Cystic Fibrosis/Pulmonary Research and Treatment Center, Chapel Hill, North Carolina, United States
| | - Taylor Robinson
- University of North Carolina at Chapel Hill, Department of Physics and Astronomy, Chapel Hill, North Carolina, United States
| | - Melanie Ghelardini
- North Carolina State University, Department of Materials Science and Engineering, Raleigh, North Carolina, United States
| | - Brian S. Chapman
- North Carolina State University, Department of Materials Science and Engineering, Raleigh, North Carolina, United States
| | - Joseph Tracy
- North Carolina State University, Department of Materials Science and Engineering, Raleigh, North Carolina, United States
| | - David B. Hill
- University of North Carolina at Chapel Hill, Department of Biomedical Engineering, Chapel Hill, North Carolina, United States
- University of North Carolina at Chapel Hill, Marsico Lung Institute/Cystic Fibrosis/Pulmonary Research and Treatment Center, Chapel Hill, North Carolina, United States
| | - Amy L. Oldenburg
- University of North Carolina at Chapel Hill, Department of Biomedical Engineering, Chapel Hill, North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Physics and Astronomy, Chapel Hill, North Carolina, United States
| |
Collapse
|
13
|
Marzban S, Srivastava S, Kartika S, Bravo R, Safriel R, Zarski A, Anderson A, Chung CH, Amelio AL, West J. Spatial interactions modulate tumor growth and immune infiltration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575036. [PMID: 38370722 PMCID: PMC10871273 DOI: 10.1101/2024.01.10.575036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Direct observation of immune cell trafficking patterns and tumor-immune interactions is unlikely in human tumors with currently available technology, but computational simulations based on clinical data can provide insight to test hypotheses. It is hypothesized that patterns of collagen formation evolve as a mechanism of immune escape, but the exact nature of the interaction between immune cells and collagen is poorly understood. Spatial data quantifying the degree of collagen fiber alignment in squamous cell carcinomas indicates that late stage disease is associated with highly aligned fibers. Here, we introduce a computational modeling framework (called Lenia) to discriminate between two hypotheses: immune cell migration that moves 1) parallel or 2) perpendicular to collagen fiber orientation. The modeling recapitulates immune-ECM interactions where collagen patterns provide immune protection, leading to an emergent inverse relationship between disease stage and immune coverage. We also illustrate the capabilities of Lenia to model the evolution of tumor progression and immune predation. Lenia provides a flexible framework for considering a spectrum of local (cell-scale) to global (tumor-scale) dynamics by defining a kernel cell-cell interaction function that governs tumor growth dynamics under immune predation with immune cell migration. Mathematical modeling provides important mechanistic insights into cell interactions. Short-range interaction kernels provide a mechanism for tumor cell survival under conditions with strong Allee effects, while asymmetric tumor-immune interaction kernels lead to poor immune response. Thus, the length scale of tumor-immune interactions drives tumor growth and infiltration.
Collapse
Affiliation(s)
- Sadegh Marzban
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Sonal Srivastava
- Dept. of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Sharon Kartika
- Dept. of Biological Sciences, Indian Institute of Science Education and Research Kolkata
| | - Rafael Bravo
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Rachel Safriel
- High School Internship Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Aidan Zarski
- High School Internship Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Alexander Anderson
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Christine H. Chung
- Dept. of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Antonio L. Amelio
- Dept. of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Dept. of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Jeffrey West
- Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| |
Collapse
|
14
|
Crossley RM, Johnson S, Tsingos E, Bell Z, Berardi M, Botticelli M, Braat QJS, Metzcar J, Ruscone M, Yin Y, Shuttleworth R. Modeling the extracellular matrix in cell migration and morphogenesis: a guide for the curious biologist. Front Cell Dev Biol 2024; 12:1354132. [PMID: 38495620 PMCID: PMC10940354 DOI: 10.3389/fcell.2024.1354132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism. In tandem with experiments, mathematical models are helpful in refining and testing hypotheses, generating predictions, and exploring conditions outside the scope of experiments. Such models can be combined and calibrated with in vivo and in vitro data to identify critical cell-ECM interactions that drive developmental and homeostatic processes, or the progression of diseases. In this review, we focus on mathematical and computational models of the ECM in processes such as cell migration including cancer metastasis, and in tissue structure and morphogenesis. By highlighting the predictive power of these models, we aim to help bridge the gap between experimental and computational approaches to studying the ECM and to provide guidance on selecting an appropriate model framework to complement corresponding experimental studies.
Collapse
Affiliation(s)
- Rebecca M. Crossley
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Samuel Johnson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Erika Tsingos
- Computational Developmental Biology Group, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - Zoe Bell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Optics11 life, Amsterdam, Netherlands
| | | | - Quirine J. S. Braat
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, Netherlands
| | - John Metzcar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
- Department of Informatics, Indiana University, Bloomington, IN, United States
| | | | - Yuan Yin
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
15
|
Jyoti Mech D, Suhail Rizvi M. Micromechanics of fibrous scaffolds and their stiffness sensing by cells. Biomed Mater 2024; 19:025035. [PMID: 38290154 DOI: 10.1088/1748-605x/ad2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Mechanical properties of the tissue engineering scaffolds are known to play a crucial role in cell response. Therefore, an understanding of the cell-scaffold interactions is of high importance. Here, we have utilized discrete fiber network model to quantitatively study the micromechanics of fibrous scaffolds with different fiber arrangements and cross-linking densities. We observe that localized forces on the scaffold result in its anisotropic deformation even for isotropic fiber arrangements. We also see an exponential decay of the displacement field with distance from the location of applied force. This nature of the decay allows us to estimate the characteristic length for force transmission in fibrous scaffolds. Furthermore, we also looked at the stiffness sensing of fibrous scaffolds by individual cells and its dependence on the cellular sensing mechanism. For this, we considered two conditions- stress-controlled, and strain-controlled application of forces by a cell. With fixed strain, we find that the stiffness sensed by a cell is proportional to the scaffold's 'macroscopic' elastic modulus. However, under fixed stress application by the cell, the stiffness sensed by the cell also depends on the cell's own stiffness. In fact, the stiffness values for the same scaffold sensed by the stiff and soft cells can differ from each other by an order of magnitude. The insights from this work will help in designing tissue engineering scaffolds for applications where mechanical stimuli are a critical factor.
Collapse
Affiliation(s)
- Dhruba Jyoti Mech
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Mohd Suhail Rizvi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
- Computational Biology Research Lab, IIT Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|
16
|
Zakharov A, Awan M, Cheng T, Gopinath A, Lee SJJ, Ramasubramanian AK, Dasbiswas K. Clots reveal anomalous elastic behavior of fiber networks. SCIENCE ADVANCES 2024; 10:eadh1265. [PMID: 38198546 PMCID: PMC10780871 DOI: 10.1126/sciadv.adh1265] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
The adaptive mechanical properties of soft and fibrous biological materials are relevant to their functionality. The emergence of the macroscopic response of these materials to external stress and intrinsic cell traction from local deformations of their structural components is not well understood. Here, we investigate the nonlinear elastic behavior of blood clots by combining microscopy, rheology, and an elastic network model that incorporates the stretching, bending, and buckling of constituent fibrin fibers. By inhibiting fibrin cross-linking in blood clots, we observe an anomalous softening regime in the macroscopic shear response as well as a reduction in platelet-induced clot contractility. Our model explains these observations from two independent macroscopic measurements in a unified manner, through a single mechanical parameter, the bending stiffness of individual fibers. Supported by experimental evidence, our mechanics-based model provides a framework for predicting and comprehending the nonlinear elastic behavior of blood clots and other active biopolymer networks in general.
Collapse
Affiliation(s)
- Andrei Zakharov
- Department of Physics, University of California, Merced, Merced, CA 95343, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Myra Awan
- Department of Chemical and Materials Engineering, San José State University, San José, CA 95192, USA
| | - Terrence Cheng
- Department of Chemical and Materials Engineering, San José State University, San José, CA 95192, USA
| | - Arvind Gopinath
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA
| | - Sang-Joon John Lee
- Department of Mechanical Engineering, San José State University, San José, CA 95192, USA
| | - Anand K. Ramasubramanian
- Department of Chemical and Materials Engineering, San José State University, San José, CA 95192, USA
| | - Kinjal Dasbiswas
- Department of Physics, University of California, Merced, Merced, CA 95343, USA
| |
Collapse
|
17
|
McKee JA, Olsen EA, Wills Kpeli G, Brooks MR, Beitollahpoor M, Pesika NS, Burow ME, Mondrinos MJ. Engineering dense tumor constructs via cellular contraction of extracellular matrix hydrogels. Biotechnol Bioeng 2024; 121:380-394. [PMID: 37822194 DOI: 10.1002/bit.28561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Physical characteristics of solid tumors such as dense internal microarchitectures and pathological stiffness influence cancer progression and treatment. While it is routine to engineer culture substrates and scaffolds with elastic moduli that approximate tumors, these models often fail to capture characteristic internal microarchitectures such as densely compacted concentric ECM fibers at the stromal interface. Contractile mesenchymal cells can solve this engineering challenge by deforming, contracting, and compacting extracellular matrix (ECM) hydrogels to decrease tissue volume and increase tissue density. Here we demonstrate that allowing human fibroblasts of varying origins to freely contract collagen type I-containing hydrogels co-seeded with carcinoma cell spheroids produces a tissue engineered construct with structural features that mimic dense solid tumors in vivo. Morphometry and mechanical testing were conducted in tandem with biochemical analysis of proliferation and viability to confirm that dense carcinoma constructs engineered using this approach capture relevant physical characteristics of solid carcinomas in a tractable format that preserves viability and is amenable to extended culture. The reported method is adaptable to the use of multiple mesenchymal cell types and the inclusion of fibrin in the ECM combined with seeding of endothelial cells to produce prevascularized constructs. The physical dense carcinoma constructs engineered using this approach may provide more clinically relevant venues for studying cancer pathophysiology and the challenges associated with the delivery of macromolecular drugs and cellular immunotherapies to solid tumors.
Collapse
Affiliation(s)
- Jae A McKee
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
- Bioinnovation Program, Tulane University, New Orleans, Louisiana, USA
| | - Elisabet A Olsen
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
- Bioinnovation Program, Tulane University, New Orleans, Louisiana, USA
| | - Gideon Wills Kpeli
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Moriah R Brooks
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | | | - Noshir S Pesika
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| | - Matthew E Burow
- Bioinnovation Program, Tulane University, New Orleans, Louisiana, USA
- Tulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
| | - Mark J Mondrinos
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
- Tulane University School of Medicine, Tulane Cancer Center, New Orleans, Louisiana, USA
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
18
|
Davidson CD, Midekssa FS, DePalma SJ, Kamen JL, Wang WY, Jayco DKP, Wieger ME, Baker BM. Mechanical Intercellular Communication via Matrix-Borne Cell Force Transmission During Vascular Network Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306210. [PMID: 37997199 PMCID: PMC10797481 DOI: 10.1002/advs.202306210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 11/25/2023]
Abstract
Intercellular communication is critical to the formation and homeostatic function of all tissues. Previous work has shown that cells can communicate mechanically via the transmission of cell-generated forces through their surrounding extracellular matrix, but this process is not well understood. Here, mechanically defined, synthetic electrospun fibrous matrices are utilized in conjunction with a microfabrication-based cell patterning approach to examine mechanical intercellular communication (MIC) between endothelial cells (ECs) during their assembly into interconnected multicellular networks. It is found that cell force-mediated matrix displacements in deformable fibrous matrices underly directional extension and migration of neighboring ECs toward each other prior to the formation of stable cell-cell connections enriched with vascular endothelial cadherin (VE-cadherin). A critical role is also identified for calcium signaling mediated by focal adhesion kinase and mechanosensitive ion channels in MIC that extends to multicellular assembly of 3D vessel-like networks when ECs are embedded within fibrin hydrogels. These results illustrate a role for cell-generated forces and ECM mechanical properties in multicellular assembly of capillary-like EC networks and motivates the design of biomaterials that promote MIC for vascular tissue engineering.
Collapse
Affiliation(s)
| | - Firaol S. Midekssa
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Samuel J. DePalma
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Jordan L. Kamen
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - William Y. Wang
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | | | - Megan E. Wieger
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Brendon M. Baker
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
19
|
Böhringer D, Bauer A, Moravec I, Bischof L, Kah D, Mark C, Grundy TJ, Görlach E, O'Neill GM, Budday S, Strissel PL, Strick R, Malandrino A, Gerum R, Mak M, Rausch M, Fabry B. Fiber alignment in 3D collagen networks as a biophysical marker for cell contractility. Matrix Biol 2023; 124:39-48. [PMID: 37967726 PMCID: PMC10872942 DOI: 10.1016/j.matbio.2023.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/14/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Cells cultured in 3D fibrous biopolymer matrices exert traction forces on their environment that induce deformations and remodeling of the fiber network. By measuring these deformations, the traction forces can be reconstructed if the mechanical properties of the matrix and the force-free matrix configuration are known. These requirements limit the applicability of traction force reconstruction in practice. In this study, we test whether force-induced matrix remodeling can instead be used as a proxy for cellular traction forces. We measure the traction forces of hepatic stellate cells and different glioblastoma cell lines and quantify matrix remodeling by measuring the fiber orientation and fiber density around these cells. In agreement with simulated fiber networks, we demonstrate that changes in local fiber orientation and density are directly related to cell forces. By resolving Rho-kinase (ROCK) inhibitor-induced changes of traction forces, fiber alignment, and fiber density in hepatic stellate cells, we show that the method is suitable for drug screening assays. We conclude that differences in local fiber orientation and density, which are easily measurable, can be used as a qualitative proxy for changes in traction forces. The method is available as an open-source Python package with a graphical user interface.
Collapse
Affiliation(s)
- David Böhringer
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | - Andreas Bauer
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ivana Moravec
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Lars Bischof
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Delf Kah
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Mark
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas J Grundy
- Children's Cancer Research Unit, The Children's Hospital at Westmead, University of Sydney, Australia
| | | | - Geraldine M O'Neill
- Children's Cancer Research Unit, The Children's Hospital at Westmead, University of Sydney, Australia
| | - Silvia Budday
- Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Pamela L Strissel
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Reiner Strick
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Malandrino
- Department of Materials Science and Engineering, Universitat Politécnica de Catalunya, Barcelona, Spain
| | - Richard Gerum
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Physics and Astronomy, York University, Toronto, Canada
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, USA.
| | - Martin Rausch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
20
|
Mohammadkhah M, Klinge S. Review paper: The importance of consideration of collagen cross-links in computational models of collagen-based tissues. J Mech Behav Biomed Mater 2023; 148:106203. [PMID: 37879165 DOI: 10.1016/j.jmbbm.2023.106203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Collagen as the main protein in Extra Cellular Matrix (ECM) is the main load-bearing component of fibrous tissues. Nanostructure and architecture of collagen fibrils play an important role in mechanical behavior of these tissues. Extensive experimental and theoretical studies have so far been performed to capture these properties, but none of the current models realistically represent the complexity of network mechanics because still less is known about the collagen's inner structure and its effect on the mechanical properties of tissues. The goal of this review article is to emphasize the significance of cross-links in computational modeling of different collagen-based tissues, and to reveal the need for continuum models to consider cross-links properties to better reflect the mechanical behavior observed in experiments. In addition, this study outlines the limitations of current investigations and provides potential suggestions for the future work.
Collapse
Affiliation(s)
- Melika Mohammadkhah
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Sandra Klinge
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
21
|
Poonja S, Forero Pinto A, Lloyd MC, Damaghi M, Rejniak KA. Dynamics of Fibril Collagen Remodeling by Tumor Cells: A Model of Tumor-Associated Collagen Signatures. Cells 2023; 12:2688. [PMID: 38067116 PMCID: PMC10705683 DOI: 10.3390/cells12232688] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Many solid tumors are characterized by a dense extracellular matrix (ECM) composed of various ECM fibril proteins. These proteins provide structural support and a biological context for the residing cells. The reciprocal interactions between growing and migrating tumor cells and the surrounding stroma result in dynamic changes in the ECM architecture and its properties. With the use of advanced imaging techniques, several specific patterns in the collagen surrounding the breast tumor have been identified in both tumor murine models and clinical histology images. These tumor-associated collagen signatures (TACS) include loosely organized fibrils far from the tumor and fibrils aligned either parallel or perpendicular to tumor colonies. They are correlated with tumor behavior, such as benign growth or invasive migration. However, it is not fully understood how one specific fibril pattern can be dynamically remodeled to form another alignment. Here, we present a novel multi-cellular lattice-free (MultiCell-LF) agent-based model of ECM that, in contrast to static histology images, can simulate dynamic changes between TACSs. This model allowed us to identify the rules of cell-ECM physical interplay and feedback that guided the emergence and transition among various TACSs.
Collapse
Affiliation(s)
- Sharan Poonja
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL 33612, USA
| | - Ana Forero Pinto
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Mark C. Lloyd
- Fujifilm Healthcare US, Inc., Lexington, MA 02421, USA;
| | - Mehdi Damaghi
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Katarzyna A. Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
22
|
Ouyang M, Hu Y, Chen W, Li H, Ji Y, Qiu L, Zhu L, Ji B, Bu B, Deng L. Cell Mechanics Regulates the Dynamic Anisotropic Remodeling of Fibril Matrix at Large Scale. RESEARCH (WASHINGTON, D.C.) 2023; 6:0270. [PMID: 39882542 PMCID: PMC11776286 DOI: 10.34133/research.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 10/22/2023] [Indexed: 01/31/2025]
Abstract
Living tissues often have anisotropic and heterogeneous organizations, in which developmental processes are coordinated by cells and extracellular matrix modeling. Cells have the capability of modeling matrix in long distance; however, the biophysical mechanism is largely unknown. We investigated the dynamic remodeling of collagen I (COL) fibril matrix by cell contraction with designed patterns of cell clusters. By considering cell dynamic contractions, our molecular dynamics simulations predicted the anisotropic patterns of the observed COL bundling in experiments with various geometrical patterns without spatial limitation. The pattern of COL bundling was closely related to the dynamic remodeling of fibril under cell active contraction. We showed that cell cytoskeletal integrity (actin filaments and microtubules), actomyosin contractions, and endoplasmic reticulum calcium channels acting as force generations and transductions were essential for fiber bundling inductions, and membrane mechanosensory components integrin and Piezo played critical roles as well. This study revealed the underlying mechanisms of the cell mechanics-induced matrix remodeling in large scales and the associated cellular mechanism and should provide important guidelines for tissue engineering in potential biomedical applications.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Yanling Hu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Weihui Chen
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Hui Li
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Yingbo Ji
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Linshuo Qiu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Linlin Zhu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Bing Bu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
23
|
Tan Y, Ma L, Cao X, Yi Z, Ma X, Li X. Tunable Stress Relaxing Biomimetic Matrices: Hyaluronan/Hydroxyapatite Hybridization Mediates Assembly of Collagen Fibrils. Biomacromolecules 2023; 24:5162-5174. [PMID: 37889885 DOI: 10.1021/acs.biomac.3c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The alluring correlations of cellular behaviors with viscoelastic extracellular matrices have driven increasing endeavors directed toward the understanding of mechanical cues on cell growth and differentiation via preparing biomimetic scaffolds/gels with viscoelastic controllability. Indeed, systematic investigations, especially into calcium phosphate-containing biomimetics, are relatively rare. Here, oxidized hyaluronic acid/hydroxyapatite hybrids (OHAHs) were synthesized by hyaluronan-mediated biomimetic mineralization with confined ion diffusion and subsequent oxidization treatment. The collagen self-assembly was applied to fabricate tunable stress relaxing fibrillar matrices in the presence of OHAHs in which the incorporated hyaluronic acid with aldehyde groups acted to improve the component compatibility as well as to supplement the molecular interactions with the occurrence of a Schiff-base reaction. With the addition of varying OHAH contents, the self-assembly behavior of collagen was altered, and the obtained collagen-hybrid (CH) matrices presented a heterogeneous fibrillar structure interspersed with OHAHs, characterized by large fibrillar bundles coexisting with small fibrils. The OHAHs improved the hydrogel stability of pure collagen, and according to rheological and nanoindentation measurements, CH matrices also exhibited tunable stress relaxation rates, following an OHAH concentration-dependent fashion. The proliferation and spreading of MC3T3-E1 cells cultured onto such CH matrices were further found to increase with the stress relaxing rate of the matrices. The present study showed that the introduction of hydroxyapatite incorporated with active hyaluronic acid during collagen reconstitution was a simple and effective strategy to realize the preparation of tunable stress relaxing biomimetic matrices potentially used for further appraising the regulation of mechanical cues on cell behaviors.
Collapse
Affiliation(s)
- Yunfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiaoyu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
24
|
Noerr PS, Zamora Alvarado JE, Golnaraghi F, McCloskey KE, Gopinathan A, Dasbiswas K. Optimal mechanical interactions direct multicellular network formation on elastic substrates. Proc Natl Acad Sci U S A 2023; 120:e2301555120. [PMID: 37910554 PMCID: PMC10636364 DOI: 10.1073/pnas.2301555120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/09/2023] [Indexed: 11/03/2023] Open
Abstract
Cells self-organize into functional, ordered structures during tissue morphogenesis, a process that is evocative of colloidal self-assembly into engineered soft materials. Understanding how intercellular mechanical interactions may drive the formation of ordered and functional multicellular structures is important in developmental biology and tissue engineering. Here, by combining an agent-based model for contractile cells on elastic substrates with endothelial cell culture experiments, we show that substrate deformation-mediated mechanical interactions between cells can cluster and align them into branched networks. Motivated by the structure and function of vasculogenic networks, we predict how measures of network connectivity like percolation probability and fractal dimension as well as local morphological features including junctions, branches, and rings depend on cell contractility and density and on substrate elastic properties including stiffness and compressibility. We predict and confirm with experiments that cell network formation is substrate stiffness dependent, being optimal at intermediate stiffness. We also show the agreement between experimental data and predicted cell cluster types by mapping a combined phase diagram in cell density substrate stiffness. Overall, we show that long-range, mechanical interactions provide an optimal and general strategy for multicellular self-organization, leading to more robust and efficient realizations of space-spanning networks than through just local intercellular interactions.
Collapse
Affiliation(s)
- Patrick S. Noerr
- Department of Physics, University of California, Merced, CA95343
| | - Jose E. Zamora Alvarado
- Department of Materials and Biomaterials Science and Engineering, University of California, Merced, CA95343
| | | | - Kara E. McCloskey
- Department of Materials and Biomaterials Science and Engineering, University of California, Merced, CA95343
| | - Ajay Gopinathan
- Department of Physics, University of California, Merced, CA95343
| | - Kinjal Dasbiswas
- Department of Physics, University of California, Merced, CA95343
| |
Collapse
|
25
|
Revell CK, Herrera JA, Lawless C, Lu Y, Kadler KE, Chang J, Jensen OE. Modeling collagen fibril self-assembly from extracellular medium in embryonic tendon. Biophys J 2023; 122:3219-3237. [PMID: 37415335 PMCID: PMC10465709 DOI: 10.1016/j.bpj.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023] Open
Abstract
Collagen is a key structural component of multicellular organisms and is arranged in a highly organized manner. In structural tissues such as tendons, collagen forms bundles of parallel fibers between cells, which appear within a 24-h window between embryonic day 13.5 (E13.5) and E14.5 during mouse embryonic development. Current models assume that the organized structure of collagen requires direct cellular control, whereby cells actively lay down collagen fibrils from cell surfaces. However, such models appear incompatible with the time and length scales of fibril formation. We propose a phase-transition model to account for the rapid development of ordered fibrils in embryonic tendon, reducing reliance on active cellular processes. We develop phase-field crystal simulations of collagen fibrillogenesis in domains derived from electron micrographs of inter-cellular spaces in embryonic tendon and compare results qualitatively and quantitatively to observed patterns of fibril formation. To test the prediction of this phase-transition model that free protomeric collagen should exist in the inter-cellular spaces before the formation of observable fibrils, we use laser-capture microdissection, coupled with mass spectrometry, which demonstrates steadily increasing free collagen in inter-cellular spaces up to E13.5, followed by a rapid reduction of free collagen that coincides with the appearance of less-soluble collagen fibrils. The model and measurements together provide evidence for extracellular self-assembly of collagen fibrils in embryonic mouse tendon, supporting an additional mechanism for rapid collagen fibril formation during embryonic development.
Collapse
Affiliation(s)
- Christopher K Revell
- Department of Mathematics, University of Manchester, Manchester, United Kingdom; Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jeremy A Herrera
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Yinhui Lu
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Karl E Kadler
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| | - Joan Chang
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| | - Oliver E Jensen
- Department of Mathematics, University of Manchester, Manchester, United Kingdom; Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
26
|
Kumar A, Quint DA, Dasbiswas K. Range and strength of mechanical interactions of force dipoles in elastic fiber networks. SOFT MATTER 2023. [PMID: 37470114 DOI: 10.1039/d3sm00381g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Mechanical forces generated by myosin II molecular motors drive diverse cellular processes, most notably shape change, division and locomotion. These forces may be transmitted over long range through the cytoskeletal medium - a disordered, viscoelastic network of biopolymers. The resulting cell size scale force chains can in principle mediate mechanical interactions between distant actomyosin units, leading to self-organized structural order in the cell cytoskeleton. Inspired by such force transmission through elastic structures in the cytoskeleton, we consider a percolated fiber lattice network, where fibers are represented as linear elastic elements that can both bend and stretch, and the contractile activity of myosin motors is represented by force dipoles. Then, by using a variety of metrics, we show how two such contractile force dipoles interact with each other through their mutual mechanical deformations of the elastic fiber network. As a prelude to two-dipole interactions, we quantify how forces propagate through the network from a single anisotropic force dipole by analyzing clusters of nodes connected by highly strained bonds, as well as through the decay rate of strain energy with distance from a force dipole. We show that predominant fiber bending screens out force propagation, resulting in reduced and strongly network configuration-dependent dipole interactions. On the other hand, stretching-dominated networks support longer-ranged inter-dipole interactions that recapitulate the predictions of linear elasticity theory. By characterizing the differences between tensile and compressive force propagation in the fiber network, we show how inter-dipole interaction depends on the dipoles' mutual separation and orientation. The resulting elastic interaction energy may mediate a force between multiple distant dipoles, leading to their self-organization into ordered configurations. This provides a potential pathway for active mechanical force-driven structural order in elastic biopolymer networks.
Collapse
Affiliation(s)
- Abhinav Kumar
- Department of Physics, University of California, Merced, Merced, CA 95343, USA.
| | - David A Quint
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Kinjal Dasbiswas
- Department of Physics, University of California, Merced, Merced, CA 95343, USA.
| |
Collapse
|
27
|
Tsingos E, Bakker BH, Keijzer KAE, Hupkes HJ, Merks RMH. Hybrid cellular Potts and bead-spring modeling of cells in fibrous extracellular matrix. Biophys J 2023; 122:2609-2622. [PMID: 37183398 PMCID: PMC10397577 DOI: 10.1016/j.bpj.2023.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023] Open
Abstract
The mechanical interaction between cells and the extracellular matrix (ECM) is fundamental to coordinate collective cell behavior in tissues. Relating individual cell-level mechanics to tissue-scale collective behavior is a challenge that cell-based models such as the cellular Potts model (CPM) are well-positioned to address. These models generally represent the ECM with mean-field approaches, which assume substrate homogeneity. This assumption breaks down with fibrous ECM, which has nontrivial structure and mechanics. Here, we extend the CPM with a bead-spring model of ECM fiber networks modeled using molecular dynamics. We model a contractile cell pulling with discrete focal adhesion-like sites on the fiber network and demonstrate agreement with experimental spatiotemporal fiber densification and displacement. We show that at high network cross-linking, contractile cell forces propagate over at least eight cell diameters, decaying with distance with power law exponent n= 0.35 - 0.65 typical of viscoelastic ECMs. Further, we use in silico atomic force microscopy to measure local cell-induced network stiffening consistent with experiments. Our model lays the foundation for investigating how local and long-ranged cell-ECM mechanobiology contributes to multicellular morphogenesis.
Collapse
Affiliation(s)
- Erika Tsingos
- Mathematical Institute, Leiden University, Leiden, the Netherlands.
| | | | - Koen A E Keijzer
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | | | - Roeland M H Merks
- Mathematical Institute, Leiden University, Leiden, the Netherlands; Institute for Biology Leiden, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
28
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
29
|
Javanmardi Y, Agrawal A, Malandrino A, Lasli S, Chen M, Shahreza S, Serwinski B, Cammoun L, Li R, Jorfi M, Djordjevic B, Szita N, Spill F, Bertazzo S, Sheridan GK, Shenoy V, Calvo F, Kamm R, Moeendarbary E. Endothelium and Subendothelial Matrix Mechanics Modulate Cancer Cell Transendothelial Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206554. [PMID: 37051804 PMCID: PMC10238207 DOI: 10.1002/advs.202206554] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/19/2023] [Indexed: 06/04/2023]
Abstract
Cancer cell extravasation, a key step in the metastatic cascade, involves cancer cell arrest on the endothelium, transendothelial migration (TEM), followed by the invasion into the subendothelial extracellular matrix (ECM) of distant tissues. While cancer research has mostly focused on the biomechanical interactions between tumor cells (TCs) and ECM, particularly at the primary tumor site, very little is known about the mechanical properties of endothelial cells and the subendothelial ECM and how they contribute to the extravasation process. Here, an integrated experimental and theoretical framework is developed to investigate the mechanical crosstalk between TCs, endothelium and subendothelial ECM during in vitro cancer cell extravasation. It is found that cancer cell actin-rich protrusions generate complex push-pull forces to initiate and drive TEM, while transmigration success also relies on the forces generated by the endothelium. Consequently, mechanical properties of the subendothelial ECM and endothelial actomyosin contractility that mediate the endothelial forces also impact the endothelium's resistance to cancer cell transmigration. These results indicate that mechanical features of distant tissues, including force interactions between the endothelium and the subendothelial ECM, are key determinants of metastatic organotropism.
Collapse
Affiliation(s)
- Yousef Javanmardi
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Ayushi Agrawal
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Andrea Malandrino
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Biomaterials, Biomechanics and Tissue Engineering GroupDepartment of Materials Science and Engineering and Research Center for Biomedical EngineeringUniversitat Politécnica de Catalunya (UPC)08019BarcelonaSpain
| | - Soufian Lasli
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Michelle Chen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Somayeh Shahreza
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Bianca Serwinski
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- 199 Biotechnologies LtdGloucester RoadLondonW2 6LDUK
| | - Leila Cammoun
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ran Li
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Mehdi Jorfi
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Boris Djordjevic
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- 199 Biotechnologies LtdGloucester RoadLondonW2 6LDUK
| | - Nicolas Szita
- Department of Biochemical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Fabian Spill
- School of MathematicsUniversity of BirminghamEdgbastonBirminghamB152TSUK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Graham K Sheridan
- School of Life SciencesQueen's Medical CentreUniversity of NottinghamNottinghamNG7 2UHUK
| | - Vivek Shenoy
- Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria)Santander39011Spain
| | - Roger Kamm
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Emad Moeendarbary
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
30
|
Jain P, Rimal R, Möller M, Singh S. Topographical influence of electrospun basement membrane mimics on formation of cellular monolayer. Sci Rep 2023; 13:8382. [PMID: 37225757 DOI: 10.1038/s41598-023-34934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
Functional unit of many organs like lung, kidney, intestine, and eye have their endothelial and epithelial monolayers physically separated by a specialized extracellular matrix called the basement membrane. The intricate and complex topography of this matrix influences cell function, behavior and overall homeostasis. In vitro barrier function replication of such organs requires mimicking of these native features on an artificial scaffold system. Apart from chemical and mechanical features, the choice of nano-scale topography of the artificial scaffold is integral, however its influence on monolayer barrier formation is unclear. Though studies have reported improved single cell adhesion and proliferation in presence of pores or pitted topology, corresponding influence on confluent monolayer formation is not well reported. In this work, basement membrane mimic with secondary topographical cues is developed and its influence on single cells and their monolayers is investigated. We show that single cells cultured on fibers with secondary cues form stronger focal adhesions and undergo increased proliferation. Counterintuitively, absence of secondary cues promoted stronger cell-cell interaction in endothelial monolayers and promoted formation of integral tight barriers in alveolar epithelial monolayers. Overall, this work highlights the importance of choice of scaffold topology to develop basement barrier function in in vitro models.
Collapse
Affiliation(s)
- Puja Jain
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Rahul Rimal
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Smriti Singh
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120, Heidelberg, Germany.
| |
Collapse
|
31
|
Peng L, Matellan C, Bosch‐Fortea M, Gonzalez‐Molina J, Frigerio M, Salentinig S, del Rio Hernandez A, Gautrot JE. Mesenchymal Stem Cells Sense the Toughness of Nanomaterials and Interfaces. Adv Healthc Mater 2023; 12:e2203297. [PMID: 36717365 PMCID: PMC11468436 DOI: 10.1002/adhm.202203297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/20/2023] [Indexed: 02/01/2023]
Abstract
Stem cells are known to sense and respond to the mechanical properties of biomaterials. In turn, cells exert forces on their environment that can lead to striking changes in shape, size and contraction of associated tissues, and may result in mechanical disruption and functional failure. However, no study has so far correlated stem cell phenotype and biomaterials toughness. Indeed, disentangling toughness-mediated cell response from other mechanosensing processes has remained elusive as it is particularly challenging to uncouple Youngs' or shear moduli from toughness, within a range relevant to cell-generated forces. In this report, it is shown how the design of the macromolecular architecture of polymer nanosheets regulates interfacial toughness, independently of interfacial shear storage modulus, and how this controls the expansion of mesenchymal stem cells at liquid interfaces. The viscoelasticity and toughness of poly(l-lysine) nanosheets assembled at liquid-liquid interfaces is characterised via interfacial shear rheology. The local (microscale) mechanics of nanosheets are characterised via magnetic tweezer-assisted interfacial microrheology and the thickness of these assemblies is determined from in situ ellipsometry. Finally, the response of mesenchymal stem cells to adhesion and culture at corresponding interfaces is investigated via immunostaining and confocal microscopy.
Collapse
Affiliation(s)
- Lihui Peng
- Institute of BioengineeringQueen Mary University of LondonMile End RoadE1 4NSLondonUK
- Cellular and Molecular Biomechanical LaboratoryDepartment of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Carlos Matellan
- School of Engineering and Materials ScienceQueen MaryUniversity of LondonMile End RoadLondonE1 4NSUK
| | - Minerva Bosch‐Fortea
- Institute of BioengineeringQueen Mary University of LondonMile End RoadE1 4NSLondonUK
- Cellular and Molecular Biomechanical LaboratoryDepartment of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Jordi Gonzalez‐Molina
- Institute of BioengineeringQueen Mary University of LondonMile End RoadE1 4NSLondonUK
- Cellular and Molecular Biomechanical LaboratoryDepartment of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Matteo Frigerio
- Department of ChemistryUniversity of FribourgChemin du Musée 9Fribourg1700Switzerland
| | - Stefan Salentinig
- Department of ChemistryUniversity of FribourgChemin du Musée 9Fribourg1700Switzerland
| | - Armando del Rio Hernandez
- School of Engineering and Materials ScienceQueen MaryUniversity of LondonMile End RoadLondonE1 4NSUK
| | - Julien E. Gautrot
- Institute of BioengineeringQueen Mary University of LondonMile End RoadE1 4NSLondonUK
- Cellular and Molecular Biomechanical LaboratoryDepartment of BioengineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
32
|
Jimenez JM, Tuttle T, Guo Y, Miles D, Buganza-Tepole A, Calve S. Multiscale mechanical characterization and computational modeling of fibrin gels. Acta Biomater 2023; 162:292-303. [PMID: 36965611 PMCID: PMC10313219 DOI: 10.1016/j.actbio.2023.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Fibrin is a naturally occurring protein network that forms a temporary structure to enable remodeling during wound healing. It is also a common tissue engineering scaffold because the structural properties can be controlled. However, to fully characterize the wound healing process and improve the design of regenerative scaffolds, understanding fibrin mechanics at multiple scales is necessary. Here, we present a strategy to quantify both the macroscale (1-10 mm) stress-strain response and the deformation of the mesoscale (10-1000 µm) network structure during unidirectional tensile tests. The experimental data were then used to inform a computational model to accurately capture the mechanical response of fibrin gels. Simultaneous mechanical testing and confocal microscopy imaging of fluorophore-conjugated fibrin gels revealed up to an 88% decrease in volume coupled with increase in volume fraction in deformed gels, and non-affine fiber alignment in the direction of deformation. Combination of the computational model with finite element analysis enabled us to predict the strain fields that were observed experimentally within heterogenous fibrin gels with spatial variations in material properties. These strategies can be expanded to characterize and predict the macroscale mechanics and mesoscale network organization of other heterogeneous biological tissues and matrices. STATEMENT OF SIGNIFICANCE: Fibrin is a naturally-occurring scaffold that supports cellular growth and assembly of de novo tissue and has tunable material properties. Characterization of meso- and macro-scale mechanics of fibrin gel networks can advance understanding of the wound healing process and impact future tissue engineering approaches. Using structural and mechanical characteristics of fibrin gels, a theoretical and computational model that can predict multiscale fibrin network mechanics was developed. These data and model can be used to design gels with tunable properties.
Collapse
Affiliation(s)
- Julian M Jimenez
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States
| | - Tyler Tuttle
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States
| | - Yifan Guo
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Dalton Miles
- Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States
| | - Adrian Buganza-Tepole
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States.
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States.
| |
Collapse
|
33
|
Gu B, Li X, Yao C, Qu X, Mao M, Li D, He J. Integration of microelectrodes and highly-aligned cardiac constructs for in situ electrophysiological recording. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
34
|
Mechanochemistry of collagen. Acta Biomater 2023; 163:50-62. [PMID: 36669548 DOI: 10.1016/j.actbio.2023.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
The collagen molecular family is the result of nearly one billion years of evolution. It is a unique family of proteins, the majority of which provide general mechanical support to biological tissues. Fibril forming collagens are the most abundant collagens in vertebrate animals and are generally found in positions that resist tensile loading. In animals, cells produce fibril-forming collagen molecules that self-assemble into larger structures known as collagen fibrils. Collagen fibrils are the fundamental, continuous, load-bearing elements in connective tissues, but are often further aggregated into larger load-bearing structures, fascicles in tendon, lamellae in cornea and in intervertebral disk. We know that failure to form fibrillar collagen is embryonic lethal, and excessive collagen formation/growth (fibrosis) or uncontrolled enzymatic remodeling (type II collagen: osteoarthritis) is pathological. Collagen is thus critical to vertebrate viability and instrumental in maintaining efficient mechanical structures. However, despite decades of research, our understanding of collagen matrix formation is not complete, and we know still less about the detailed mechanisms that drive collagen remodeling, growth, and pathology. In this perspective, we examine the known role of mechanical force on the formation and development of collagenous structure. We then discuss a mechanochemical mechanism that has the potential to unify our understanding of collagenous tissue assembly dynamics, which preferentially deposits and grows collagen fibrils directly in the path of mechanical force, where the energetics should be dissuasive and where collagen fibrils are most required. We term this mechanism: Mechanochemical force-structure causality. STATEMENT OF SIGNIFICANCE: Our mechanochemical-force structure causality postulate suggests that collagen molecules are components of mechanochemically-sensitive and dynamically-responsive fibrils. Collagen molecules assemble preferentially in the path of applied strain, can be grown in place by mechanical extension, and are retained in the path of force through strain-stabilization. The mechanisms that drive this behavior operate at the level of the molecules themselves and are encoded into the structure of the biomaterial. The concept might change our understanding of structure formation, enhance our ability to treat injuries, and accelerate the development of therapeutics to prevent pathologies such as fibrosis. We suggest that collagen is a mechanochemically responsive dynamic element designed to provide a substantial "material assist" in the construction of adaptive carriers of mechanical signals.
Collapse
|
35
|
Devarasou S, Kang M, Kwon TY, Cho Y, Shin JH. Fibrous Matrix Architecture-Dependent Activation of Fibroblasts with a Cancer-Associated Fibroblast-like Phenotype. ACS Biomater Sci Eng 2023; 9:280-291. [PMID: 36573928 DOI: 10.1021/acsbiomaterials.2c00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are one of the most prevalent cell types within the tumor microenvironment (TME). While several physicochemical cues from the TME, including growth factors, cytokines, and ECM specificity, have been identified as essential factors for CAF activation, the precise mechanism of how the ECM architecture regulates CAF initiation remains elusive. Using a gelatin-based electrospun fiber mesh, we examined the effect of matrix fiber density on CAF activation induced by MCF-7 conditioned media (CM). A less dense (3D) gelatin mesh matrix facilitated better activation of dermal fibroblasts into a CAF-like phenotype in the CM than a highly dense (3D) gelatin mesh matrix. In addition, it was discovered that CAF activation on the less dense (LD) matrix is dependent on the cell size-related AKT/mTOR signaling cascade, accompanied by an increase in intracellular tension within the well-spread fibroblasts.
Collapse
Affiliation(s)
- Somayadineshraj Devarasou
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Minwoo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae Yoon Kwon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
36
|
A cell-based framework for modeling cardiac mechanics. Biomech Model Mechanobiol 2023; 22:515-539. [PMID: 36602715 PMCID: PMC10097778 DOI: 10.1007/s10237-022-01660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/19/2022] [Indexed: 01/06/2023]
Abstract
Cardiomyocytes are the functional building blocks of the heart-yet most models developed to simulate cardiac mechanics do not represent the individual cells and their surrounding matrix. Instead, they work on a homogenized tissue level, assuming that cellular and subcellular structures and processes scale uniformly. Here we present a mathematical and numerical framework for exploring tissue-level cardiac mechanics on a microscale given an explicit three-dimensional geometrical representation of cells embedded in a matrix. We defined a mathematical model over such a geometry and parametrized our model using publicly available data from tissue stretching and shearing experiments. We then used the model to explore mechanical differences between the extracellular and the intracellular space. Through sensitivity analysis, we found the stiffness in the extracellular matrix to be most important for the intracellular stress values under contraction. Strain and stress values were observed to follow a normal-tangential pattern concentrated along the membrane, with substantial spatial variations both under contraction and stretching. We also examined how it scales to larger size simulations, considering multicellular domains. Our work extends existing continuum models, providing a new geometrical-based framework for exploring complex cell-cell and cell-matrix interactions.
Collapse
|
37
|
Tang H, Wang X, Zheng J, Long YZ, Xu T, Li D, Guo X, Zhang Y. Formation of low-density electrospun fibrous network integrated mesenchymal stem cell sheet. J Mater Chem B 2023; 11:389-402. [PMID: 36511477 DOI: 10.1039/d2tb02029g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Cell sheets combined with electrospun fibrous mats represent an attractive approach for the repair and regeneration of injured tissues. However, the conventional dense electrospun mats as supportive substrates in forming "cell sheet on fiber mat" complexes suffer from problems of limiting the cellular function and eliciting a host response upon implantation. To give full play to the role of electrospun biomimicking fibers in forming quality cell sheets, this study proposed to develop a cell-fiber integrated sheet (CFIS) featuring a spatially homogeneous distribution of cells within the fiber structure by using a low-density fibrous network for cell sheet formation. A low-density electrospun polycaprolactone (PCL) fibrous network at a density of 103.8 ± 16.3 μg cm-2 was produced by controlling the fiber deposition for a short period of 1 min and subsequently transferred onto polydimethylsiloxane rings for facilitating cell sheet formation, in which rat bone marrow-derived mesenchymal cells were used. Using a dense electrospun PCL fibrous mat (481.5 ± 7.5 μg cm-2) as the control, it was found that cells on the low-density fibrous network (L-G) exhibited improved capacities in spreading, proliferation, stemness maintenance and matrix-remodeling during the process of CFIS formation. Structurally, the CFIS constructs revealed strong integration between the cells and the fibrous network, thus providing excellent cohesion and physical integrity to enable strengthening of the formed cell sheet. By contrast, the cell sheet formed on the dense fibrous mat (D-G) showed a two-layer (biphasic) structure due to the limitation of cellular invasion. Moreover, such engineered CFIS was identified with enhanced immunomodulatory effects by promoting LPS-stimulated macrophages towards an M2 phenotype in vitro. Our results suggest that the CFIS may be used as a native tissue equivalent "cell sheet" for improving the efficacy of the tissue engineering approach for the repair and regeneration of impaired tissues.
Collapse
Affiliation(s)
- Han Tang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Xiaoli Wang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China
| | - Yun-Ze Long
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Tingting Xu
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Donghong Li
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Xuran Guo
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Yanzhong Zhang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
38
|
Leartprapun N, Adie SG. Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:208-248. [PMID: 36698669 PMCID: PMC9842001 DOI: 10.1364/boe.468932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Optical elastography offers a rich body of imaging capabilities that can serve as a bridge between organ-level medical elastography and single-molecule biophysics. We review the methodologies and recent developments in optical coherence elastography, Brillouin microscopy, optical microrheology, and photoacoustic elastography. With an outlook toward maximizing the basic science and translational clinical impact of optical elastography technologies, we discuss potential ways that these techniques can integrate not only with each other, but also with supporting technologies and capabilities in other biomedical fields. By embracing cross-modality and cross-disciplinary interactions with these parallel fields, optical elastography can greatly increase its potential to drive new discoveries in the biomedical sciences as well as the development of novel biomechanics-based clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
- Present affiliation: Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
39
|
Doha U, Aydin O, Joy MSH, Emon B, Drennan W, Saif MTA. Disorder to order transition in cell-ECM systems mediated by cell-cell collective interactions. Acta Biomater 2022; 154:290-301. [PMID: 36243372 DOI: 10.1016/j.actbio.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Cells in functional tissues execute various collective activities to achieve diverse ordered processes including wound healing, organogenesis, and tumor formation. How a group of individually operating cells initiate such complex collective processes is still not clear. Here, we report that cells in 3D extracellular matrix (ECM) initiate collective behavior by forming cell-ECM network when the cells are within a critical distance from each other. We employed compaction of free-floating (FF) 3D collagen gels with embedded fibroblasts as a model system to study collective behavior and found a sharp transition in the amount of compaction as a function of cell-cell distance, reminiscent of phase transition in materials. Within the critical distance, cells remodel the ECM irreversibly, and form dense collagen bridges between each other resulting in the formation of a network. Beyond the critical distance, cells exhibit Brownian dynamics and only deform the matrix reversibly in a transient manner with no memory of history, thus maintaining the disorder. Network formation seems to be a necessary and sufficient condition to trigger collective behavior and a disorder-to order transition. STATEMENT OF SIGNIFICANCE: Macroscopic compaction of in vitro collagen gels is mediated by collective mechanical interaction of cells. Previous studies on cell-induced ECM compaction suggest the existence of a critical cell density and phase transition associated with this phenomenon. Cell-mediated mechanical remodeling and global compaction of ECM has mostly been studied at steady state. Our study reveals a link between a transition in cell dynamics and material microstructure as cells collectively compact collagen gels. It underscores the significance of temporal evolution of these cell-ECM systems in understanding the mechanism of such collective action and provides insights on the process from a mechanistic viewpoint. These insights can be valuable in understanding dynamic pathological processes such as, cancer progression and wound healing, as well as engineering biomaterials and regenerative tissue mimics.
Collapse
Affiliation(s)
- Umnia Doha
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, United States
| | - Onur Aydin
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, United States
| | - Md Saddam Hossain Joy
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, United States
| | - Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, United States
| | - William Drennan
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, United States
| | - M Taher A Saif
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, United States.
| |
Collapse
|
40
|
Collagen-Based Biomimetic Systems to Study the Biophysical Tumour Microenvironment. Cancers (Basel) 2022; 14:cancers14235939. [PMID: 36497421 PMCID: PMC9739814 DOI: 10.3390/cancers14235939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The extracellular matrix (ECM) is a pericellular network of proteins and other molecules that provides mechanical support to organs and tissues. ECM biophysical properties such as topography, elasticity and porosity strongly influence cell proliferation, differentiation and migration. The cell's perception of the biophysical microenvironment (mechanosensing) leads to altered gene expression or contractility status (mechanotransduction). Mechanosensing and mechanotransduction have profound implications in both tissue homeostasis and cancer. Many solid tumours are surrounded by a dense and aberrant ECM that disturbs normal cell functions and makes certain areas of the tumour inaccessible to therapeutic drugs. Understanding the cell-ECM interplay may therefore lead to novel and more effective therapies. Controllable and reproducible cell culturing systems mimicking the ECM enable detailed investigation of mechanosensing and mechanotransduction pathways. Here, we discuss ECM biomimetic systems. Mainly focusing on collagen, we compare and contrast structural and molecular complexity as well as biophysical properties of simple 2D substrates, 3D fibrillar collagen gels, cell-derived matrices and complex decellularized organs. Finally, we emphasize how the integration of advanced methodologies and computational methods with collagen-based biomimetics will improve the design of novel therapies aimed at targeting the biophysical and mechanical features of the tumour ECM to increase therapy efficacy.
Collapse
|
41
|
Proestaki M, Sarkar M, Burkel BM, Ponik SM, Notbohm J. Effect of hyaluronic acid on microscale deformations of collagen gels. J Mech Behav Biomed Mater 2022; 135:105465. [PMID: 36154991 PMCID: PMC9575965 DOI: 10.1016/j.jmbbm.2022.105465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
As fibrous collagen is the most abundant protein in mammalian tissues, gels of collagen fibers have been extensively used as an extracellular matrix scaffold to study how cells sense and respond to cues from their microenvironment. Other components of native tissues, such as glycosaminoglycans like hyaluronic acid, can affect cell behavior in part by changing the mechanical properties of the collagen gel. Prior studies have quantified the effects of hyaluronic acid on the mechanical properties of collagen gels in experiments of uniform shear or compression at the macroscale. However, there remains a lack of experimental studies of how hyaluronic acid changes the mechanical properties of collagen gels at the scale of a cell. Here, we studied how addition of hyaluronic acid to gels of collagen fibers affects the local field of displacements in response to contractile loads applied on length scales similar to those of a contracting cell. Using spherical poly(N-isopropylacrylamide) particles, which contract when heated, we induced displacement in gels of collagen and collagen with hyaluronic acid. Displacement fields were quantified using a combination of confocal microscopy and digital image correlation. Results showed that hyaluronic acid suppressed the distance over which displacements propagated, suggesting that it caused the network to become more linear. Additionally, hyaluronic acid had no statistical effect on heterogeneity of the displacement fields, but it did make the gels more elastic by substantially reducing the magnitude of permanent deformations. Lastly, we examined the effect of hyaluronic acid on fiber remodeling due to localized forces and found that hyaluronic acid partially - but not fully - inhibited remodeling. This result is consistent with prior studies suggesting that fiber remodeling is associated with a phase transition resulting from an instability caused by nonlinearity of the collagen gel.
Collapse
Affiliation(s)
- Maria Proestaki
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Mainak Sarkar
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian M Burkel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
42
|
Liu H, Chansoria P, Delrot P, Angelidakis E, Rizzo R, Rütsche D, Applegate LA, Loterie D, Zenobi-Wong M. Filamented Light (FLight) Biofabrication of Highly Aligned Tissue-Engineered Constructs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204301. [PMID: 36095325 DOI: 10.1002/adma.202204301] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Cell-laden hydrogels used in tissue engineering generally lack sufficient 3D topographical guidance for cells to mature into aligned tissues. A new strategy called filamented light (FLight) biofabrication rapidly creates hydrogels composed of unidirectional microfilament networks, with diameters on the length scale of single cells. Due to optical modulation instability, a light beam is divided optically into FLight beams. Local polymerization of a photoactive resin is triggered, leading to local increase in refractive index, which itself creates self-focusing waveguides and further polymerization of photoresin into long hydrogel microfilaments. Diameter and spacing of the microfilaments can be tuned from 2 to 30 µm by changing the coherence length of the light beam. Microfilaments show outstanding cell instructive properties with fibroblasts, tenocytes, endothelial cells, and myoblasts, influencing cell alignment, nuclear deformation, and extracellular matrix deposition. FLight is compatible with multiple types of photoresins and allows for biofabrication of centimeter-scale hydrogel constructs with excellent cell viability within seconds (<10 s per construct). Multidirectional microfilaments are achievable within a single hydrogel construct by changing the direction of FLight projection, and complex multimaterial/multicellular tissue-engineered constructs are possible by sequentially exchanging the cell-laden photoresin. FLight offers a transformational approach to developing anisotropic tissues using photo-crosslinkable biomaterials.
Collapse
Affiliation(s)
- Hao Liu
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Parth Chansoria
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Paul Delrot
- Readily3D SA, EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Emmanouil Angelidakis
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Dominic Rütsche
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Plastic, Reconstructive & Hand Surgery, Lausanne University Hospital, University of Lausanne, Epalinges, 1066, Switzerland
| | - Damien Loterie
- Readily3D SA, EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| |
Collapse
|
43
|
Guo Y, Mofrad MRK, Tepole AB. On modeling the multiscale mechanobiology of soft tissues: Challenges and progress. BIOPHYSICS REVIEWS 2022; 3:031303. [PMID: 38505274 PMCID: PMC10903412 DOI: 10.1063/5.0085025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/12/2022] [Indexed: 03/21/2024]
Abstract
Tissues grow and remodel in response to mechanical cues, extracellular and intracellular signals experienced through various biological events, from the developing embryo to disease and aging. The macroscale response of soft tissues is typically nonlinear, viscoelastic anisotropic, and often emerges from the hierarchical structure of tissues, primarily their biopolymer fiber networks at the microscale. The adaptation to mechanical cues is likewise a multiscale phenomenon. Cell mechanobiology, the ability of cells to transform mechanical inputs into chemical signaling inside the cell, and subsequent regulation of cellular behavior through intra- and inter-cellular signaling networks, is the key coupling at the microscale between the mechanical cues and the mechanical adaptation seen macroscopically. To fully understand mechanics of tissues in growth and remodeling as observed at the tissue level, multiscale models of tissue mechanobiology are essential. In this review, we summarize the state-of-the art modeling tools of soft tissues at both scales, the tissue level response, and the cell scale mechanobiology models. To help the interested reader become more familiar with these modeling frameworks, we also show representative examples. Our aim here is to bring together scientists from different disciplines and enable the future leap in multiscale modeling of tissue mechanobiology.
Collapse
Affiliation(s)
- Yifan Guo
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Mohammad R. K. Mofrad
- Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Adrian Buganza Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
44
|
Dickerson DA. Advancing Engineered Heart Muscle Tissue Complexity with Hydrogel Composites. Adv Biol (Weinh) 2022; 7:e2200067. [PMID: 35999488 DOI: 10.1002/adbi.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/19/2022] [Indexed: 11/10/2022]
Abstract
A heart attack results in the permanent loss of heart muscle and can lead to heart disease, which kills more than 7 million people worldwide each year. To date, outside of heart transplantation, current clinical treatments cannot regenerate lost heart muscle or restore full function to the damaged heart. There is a critical need to create engineered heart tissues with structural complexity and functional capacity needed to replace damaged heart muscle. The inextricable link between structure and function suggests that hydrogel composites hold tremendous promise as a biomaterial-guided strategy to advance heart muscle tissue engineering. Such composites provide biophysical cues and functionality as a provisional extracellular matrix that hydrogels cannot on their own. This review describes the latest advances in the characterization of these biomaterial systems and using them for heart muscle tissue engineering. The review integrates results across the field to provide new insights on critical features within hydrogel composites and perspectives on the next steps to harnessing these promising biomaterials to faithfully reproduce the complex structure and function of native heart muscle.
Collapse
Affiliation(s)
- Darryl A. Dickerson
- Department of Mechanical and Materials Engineering Florida International University 10555 West Flagler St Miami FL 33174 USA
| |
Collapse
|
45
|
Kuo CW, Pratiwi FW, Liu YT, Chueh DY, Chen P. Revealing the nanometric structural changes in myocardial infarction models by time-lapse intravital imaging. Front Bioeng Biotechnol 2022; 10:935415. [PMID: 36051583 PMCID: PMC9424828 DOI: 10.3389/fbioe.2022.935415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the development of bioinspired nanomaterials for therapeutic applications, it is very important to validate the design of nanomaterials in the disease models. Therefore, it is desirable to visualize the change of the cells in the diseased site at the nanoscale. Heart diseases often start with structural, morphological, and functional alterations of cardiomyocyte components at the subcellular level. Here, we developed straightforward technique for long-term real-time intravital imaging of contracting hearts without the need of cardiac pacing and complex post processing images to understand the subcellular structural and dynamic changes in the myocardial infarction model. A two-photon microscope synchronized with electrocardiogram signals was used for long-term in vivo imaging of a contracting heart with subcellular resolution. We found that the structural and dynamic behaviors of organelles in cardiomyocytes closely correlated with heart function. In the myocardial infarction model, sarcomere shortening decreased from ∼15% (healthy) to ∼8% (diseased) as a result of impaired cardiac function, whereas the distances between sarcomeres increased by 100 nm (from 2.11 to 2.21 μm) in the diastolic state. In addition, T-tubule system regularity analysis revealed that T-tubule structures that were initially highly organized underwent significant remodeling. Morphological remodeling and changes in dynamic activity at the subcellular level are essential to maintain heart function after infarction in a heart disease model.
Collapse
Affiliation(s)
- Chiung Wen Kuo
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | | | - Yen-Ting Liu
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Science, Academia Sinica, Taipei, Taiwan
- Institute of Physics, Academia Sinica, Taipei, Taiwan
- *Correspondence: Peilin Chen,
| |
Collapse
|
46
|
Yu X, Zhang Y. A discrete fiber network finite element model of arterial elastin network considering inter-fiber crosslinking property and density. J Mech Behav Biomed Mater 2022; 134:105396. [PMID: 35963022 PMCID: PMC10368519 DOI: 10.1016/j.jmbbm.2022.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Inter-fiber crosslinks within the extracellular matrix (ECM) play important roles in determining the mechanical properties of the fibrous network. Discrete fiber network (DFN) models have been used to study fibrous biological material, however the contribution of inter-fiber crosslinks to the mechanics of the ECM network is not well understood. In this study, a DFN model of arterial elastin network was developed based on measured structural features to study the contribution of inter-fiber crosslinking properties and density to the mechanics and fiber kinematics of the network. The DFN was generated by randomly placing line segments into a given domain following a fiber orientation distribution function obtained from multiphoton microscopy until a desired fiber areal fraction was reached. Intersections between the line segments were treated as crosslinks. The generated DFN model was then incorporated into an ABAQUS finite element model to simulate the network under equi- and nonequi-biaxial deformation. The inter-fiber crosslinks were modeled using connector elements with either zero (pin joint) or infinite (weld joint) rotational stiffness. Furthermore, inter-fiber crosslinking density was systematically reduced and its effect on both network- and fiber-level mechanics was studied. The DFN model showed good fitting and predicting capabilities of the stress-strain behavior of the elastin network. While the pin and weld joints do not seem to have noticeable effect on the network stress-strain behavior, the crosslinking properties can affect the local fiber mechanics and kinematics. Overall, our study suggests that inter-fiber crosslinking properties are important to the multiscale mechanics and fiber kinematics of the ECM network.
Collapse
|
47
|
Lin Y, Leartprapun N, Luo JC, Adie SG. Light-sheet photonic force optical coherence elastography for high-throughput quantitative 3D micromechanical imaging. Nat Commun 2022; 13:3465. [PMID: 35710790 PMCID: PMC9203576 DOI: 10.1038/s41467-022-30995-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Quantitative characterisation of micro-scale mechanical properties of the extracellular matrix (ECM) and dynamic cell-ECM interactions can significantly enhance fundamental discoveries and their translational potential in the rapidly growing field of mechanobiology. However, quantitative 3D imaging of ECM mechanics with cellular-scale resolution and dynamic monitoring of cell-mediated changes to pericellular viscoelasticity remain a challenge for existing mechanical characterisation methods. Here, we present light-sheet photonic force optical coherence elastography (LS-pfOCE) to address this need by leveraging a light-sheet for parallelised, non-invasive, and localised mechanical loading. We demonstrate the capabilities of LS-pfOCE by imaging the micromechanical heterogeneity of fibrous collagen matrices and perform live-cell imaging of cell-mediated ECM micromechanical dynamics. By providing access to 4D spatiotemporal variations in the micromechanical properties of 3D biopolymer constructs and engineered cellular systems, LS-pfOCE has the potential to drive new discoveries in mechanobiology and contribute to the development of novel biomechanics-based clinical diagnostics and therapies.
Collapse
Affiliation(s)
- Yuechuan Lin
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nichaluk Leartprapun
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Justin C Luo
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Steven G Adie
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
48
|
Revell CK, Jensen OE, Shearer T, Lu Y, Holmes DF, Kadler KE. Collagen fibril assembly: New approaches to unanswered questions. Matrix Biol Plus 2021; 12:100079. [PMID: 34381990 PMCID: PMC8334717 DOI: 10.1016/j.mbplus.2021.100079] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Collagen fibrils are essential for metazoan life. They are the largest, most abundant, and most versatile protein polymers in animals, where they occur in the extracellular matrix to form the structural basis of tissues and organs. Collagen fibrils were first observed at the turn of the 20th century. During the last 40 years, the genes that encode the family of collagens have been identified, the structure of the collagen triple helix has been solved, the many enzymes involved in the post-translational modifications of collagens have been identified, mutations in the genes encoding collagen and collagen-associated proteins have been linked to heritable disorders, and changes in collagen levels have been associated with a wide range of diseases, including cancer. Yet despite extensive research, a full understanding of how cells assemble collagen fibrils remains elusive. Here, we review current models of collagen fibril self-assembly, and how cells might exert control over the self-assembly process to define the number, length and organisation of fibrils in tissues.
Collapse
Affiliation(s)
- Christopher K. Revell
- Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Oliver E. Jensen
- Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Tom Shearer
- Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Yinhui Lu
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - David F. Holmes
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Karl E. Kadler
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
49
|
Kaiser AD, Shad R, Hiesinger W, Marsden AL. A design-based model of the aortic valve for fluid-structure interaction. Biomech Model Mechanobiol 2021; 20:2413-2435. [PMID: 34549354 PMCID: PMC10752438 DOI: 10.1007/s10237-021-01516-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 08/22/2021] [Indexed: 11/27/2022]
Abstract
This paper presents a new method for modeling the mechanics of the aortic valve and simulates its interaction with blood. As much as possible, the model construction is based on first principles, but such that the model is consistent with experimental observations. We require that tension in the leaflets must support a pressure, then derive a system of partial differential equations governing its mechanical equilibrium. The solution to these differential equations is referred to as the predicted loaded configuration; it includes the loaded leaflet geometry, fiber orientations and tensions needed to support the prescribed load. From this configuration, we derive a reference configuration and constitutive law. In fluid-structure interaction simulations with the immersed boundary method, the model seals reliably under physiological pressures and opens freely over multiple cardiac cycles. Further, model closure is robust to extreme hypo- and hypertensive pressures. Then, exploiting the unique features of this model construction, we conduct experiments on reference configurations, constitutive laws and gross morphology. These experiments suggest the following conclusions: (1) The loaded geometry, tensions and tangent moduli primarily determine model function. (2) Alterations to the reference configuration have little effect if the predicted loaded configuration is identical. (3) The leaflets must have sufficiently nonlinear material response to function over a variety of pressures. (4) Valve performance is highly sensitive to free edge length and leaflet height. These conclusions suggest appropriate gross morphology and material properties for the design of prosthetic aortic valves. In future studies, our aortic valve modeling framework can be used with patient-specific models of vascular or cardiac flow.
Collapse
Affiliation(s)
- Alexander D Kaiser
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford, CA, USA.
| | - Rohan Shad
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - William Hiesinger
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Alison L Marsden
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
50
|
Kim J, Mailand E, Ang I, Sakar MS, Bouklas N. A model for 3D deformation and reconstruction of contractile microtissues. SOFT MATTER 2021; 17:10198-10209. [PMID: 33118554 DOI: 10.1039/d0sm01182g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tissue morphogenesis and regeneration are essentially mechanical processes that involve coordination of cellular forces, production and structural remodeling of extracellular matrix (ECM), and cell migration. Discovering the principles of cell-ECM interactions and tissue-scale deformation in mechanically-loaded tissues is instrumental to the development of novel regenerative therapies. The combination of high-throughput three-dimensional (3D) culture systems and experimentally-validated computational models accelerate the study of these principles. In our previous work [E. Mailand, et al., Biophys. J., 2019, 117, 975-986], we showed that prominent surface stresses emerge in constrained fibroblast-populated collagen gels, driving the morphogenesis of fibrous microtissues. Here, we introduce an active material model that allows the embodiment of surface and bulk contractile stresses while maintaining the passive elasticity of the ECM in a 3D setting. Unlike existing models, the stresses are driven by mechanosensing and not by an externally applied signal. The mechanosensing component is incorporated in the model through a direct coupling of the local deformation state with the associated contractile force generation. Further, we propose a finite element implementation to account for large deformations, nonlinear active material response, and surface effects. Simulation results quantitatively capture complex shape changes during tissue formation and as a response to surgical disruption of tissue boundaries, allowing precise calibration of the parameters of the 3D model. The results of this study imply that the organization of the extracellular matrix in the bulk of the tissue may not be a major factor behind the morphogenesis of fibrous tissues at sub-millimeter length scales.
Collapse
Affiliation(s)
- Jaemin Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
| | - Erik Mailand
- Institutes of Mechanical Engineering and Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ida Ang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
| | - Mahmut Selman Sakar
- Institutes of Mechanical Engineering and Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA.
| |
Collapse
|