1
|
Ambhore NS, Balraj P, Pabelick CM, Prakash YS, Sathish V. Estrogen receptors differentially modifies lamellipodial and focal adhesion dynamics in airway smooth muscle cell migration. Mol Cell Endocrinol 2024; 579:112087. [PMID: 37827228 PMCID: PMC10842142 DOI: 10.1016/j.mce.2023.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Sex-steroid signaling, especially estrogen, has a paradoxical impact on regulating airway remodeling. In our previous studies, we demonstrated differential effects of 17β-estradiol (E2) towards estrogen receptors (ERs: α and β) in regulating airway smooth muscle (ASM) cell proliferation and extracellular matrix (ECM) production. However, the role of ERs and their signaling on ASM migration is still unexplored. In this study, we examined how ERα versus ERβ affects the mitogen (Platelet-derived growth factor, PDGF)-induced human ASM cell migration as well as the underlying mechanisms involved. We used Lionheart-FX automated microscopy and transwell assays to measure cell migration and found that activating specific ERs had differential effects on PDGF-induced ASM cell migration. Pharmacological activation of ERβ or shRNA mediated knockdown of ERα and specific activation of ERβ blunted PDGF-induced cell migration. Furthermore, specific ERβ activation showed inhibition of actin polymerization by reducing the F/G-actin ratio. Using Zeiss confocal microscopy coupled with three-dimensional algorithmic ZEN-image analysis showed an ERβ-mediated reduction in PDGF-induced expressions of neural Wiskott-Aldrich syndrome protein (N-WASP) and actin-related proteins-2/3 (Arp2/3) complex, thereby inhibiting actin-branching and lamellipodia. In addition, ERβ activation also reduces the clustering of actin-binding proteins (vinculin and paxillin) at the leading edge of ASM cells. However, cells treated with E2 or ERα agonists do not show significant changes in actin/lamellipodial dynamics. Overall, these findings unveil the significance of ERβ activation in regulating lamellipodial and focal adhesion dynamics to regulate ASM cell migration and could be a novel target to blunt airway remodeling.
Collapse
Affiliation(s)
| | - Premanand Balraj
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
2
|
Marzagalli M, Pelizzoni G, Fedi A, Vitale C, Fontana F, Bruno S, Poggi A, Dondero A, Aiello M, Castriconi R, Bottino C, Scaglione S. A multi-organ-on-chip to recapitulate the infiltration and the cytotoxic activity of circulating NK cells in 3D matrix-based tumor model. Front Bioeng Biotechnol 2022; 10:945149. [PMID: 35957642 PMCID: PMC9358021 DOI: 10.3389/fbioe.2022.945149] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
The success of immunotherapeutic approaches strictly depends on the immune cells interaction with cancer cells. While conventional in vitro cell cultures under-represent the complexity and dynamic crosstalk of the tumor microenvironment, animal models do not allow deciphering the anti-tumor activity of the human immune system. Therefore, the development of reliable and predictive preclinical models has become crucial for the screening of immune-therapeutic approaches. We here present an organ-on-chip organ on chips (OOC)-based approach for recapitulating the immune cell Natural Killer (NK) migration under physiological fluid flow, infiltration within a 3D tumor matrix, and activation against neuroblastoma cancer cells in a humanized, fluid-dynamic environment. Circulating NK cells actively initiate a spontaneous "extravasation" process toward the physically separated tumor niche, retaining their ability to interact with matrix-embedded tumor cells, and to display a cytotoxic effect (tumor cell apoptosis). Since NK cells infiltration and phenotype is correlated with prognosis and response to immunotherapy, their phenotype is also investigated: most importantly, a clear decrease in CD16-positive NK cells within the migrated and infiltrated population is observed. The proposed immune-tumor OOC-based model represents a promising approach for faithfully recapitulating the human pathology and efficiently employing the immunotherapies testing, eventually in a personalized perspective. An immune-organ on chip to recapitulate the tumor-mediated infiltration of circulating immune cells within 3D tumor model.
Collapse
Affiliation(s)
| | - Giorgia Pelizzoni
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza Della Scienza, Milan, Italy
| | - Arianna Fedi
- National Research Council, CNR-IEIIT, Genoa, Italy
| | - Chiara Vitale
- National Research Council, CNR-IEIIT, Genoa, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Silvia Bruno
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | |
Collapse
|
3
|
Chabaud M, Paillon N, Gaus K, Hivroz C. Mechanobiology of antigen‐induced T cell arrest. Biol Cell 2020; 112:196-212. [DOI: 10.1111/boc.201900093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/19/2020] [Accepted: 03/29/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Mélanie Chabaud
- Institut Curie‐PSL Research University INSERM U932 Paris France
- EMBL Australia Node in Single Molecule Science, School of Medical SciencesUniversity of New South Wales Sydney NSW Australia
- ARC Centre of Excellence in Advanced Molecular ImagingUniversity of New South Wales Sydney NSW Australia
| | - Noémie Paillon
- Institut Curie‐PSL Research University INSERM U932 Paris France
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical SciencesUniversity of New South Wales Sydney NSW Australia
- ARC Centre of Excellence in Advanced Molecular ImagingUniversity of New South Wales Sydney NSW Australia
| | - Claire Hivroz
- Institut Curie‐PSL Research University INSERM U932 Paris France
| |
Collapse
|
4
|
Liu H, Li X, Wei T, Xu S, Chen S, Cheng SH, Sun D. Precise Drug Delivery by Using PLGA-Based Microspheres and Optical Manipulators. IEEE Trans Nanobioscience 2019; 19:192-202. [PMID: 31831429 DOI: 10.1109/tnb.2019.2958820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The accurate delivery of precise amounts of drugs to a specific location can considerably affect various clinical applications. The precise control of drug amount and position is crucial to a successful drug delivery. This paper proposes the use of poly(lactide-co-glycolicacid) (PLGA)-based microspheres to contain precise amounts of drugs and an optical tweezer manipulator to transport these drug-containing microspheres to their targeted sites in vivo. The drugs were delivered by the PLGA-based microspheres to the yolk sac of zebrafish embryos, and a sustained drug release was observed to examine the anti-angiogenesis and angiogenesis activities. The PLGA-based microspheres degraded in zebrafish, thereby verifying that these microspheres can be used as drug carriers in vivo to ensure good biocompatibility and biodegradation. The proposed precise drug delivery approach can be used in protein tests and drug property characterization in vivo.
Collapse
|
5
|
Gou X, E JC, Yang H, Sun D. Combined Single-Cell Manipulation and Chemomechanical Modeling to Probe Cell Migration Mechanism During Cell-to-Cell Interaction. IEEE Trans Biomed Eng 2019; 67:1474-1482. [PMID: 31484106 DOI: 10.1109/tbme.2019.2938569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spatial presentations of chemical and mechanical information are key parameters for cell migration. However, previous theoretical and experimental studies focus on probing the mechanisms caused by a single type of stimulus, while ignoring the synergetic effects, especially for single cell migration during cell-to-cell interaction. Here we develop a chemomechanical model to assess the biochemical and biophysical modulators of single cell migration during cell-to-cell interaction. This model considers the stimulation of chemoattractant concentration gradient, influence of dynamic adhesion strength and relative motion between cells. The model is validated with single cell manipulation of leukemia cancer cell on stromal cell layer using optical tweezers. Both the modeling and experimental results demonstrate that cell migration velocity caused by chemotaxis can be biased by dynamic adhesion force, which is related to the retrograde flow of stromal cell layer. Besides, the biophysical modulators can influence the effect of drug treatment for specific signaling pathway. Our work provides a quantitative description of single cell migration in a complex environment that is close to realistic in vivo situation and is useful for further exploration of cell signaling pathway during cell-to-cell interactions for investigation of potential therapeutic strategy.
Collapse
|
6
|
TCR-pMHC kinetics under force in a cell-free system show no intrinsic catch bond, but a minimal encounter duration before binding. Proc Natl Acad Sci U S A 2019; 116:16943-16948. [PMID: 31315981 DOI: 10.1073/pnas.1902141116] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The T cell receptor (TCR)-peptide-MHC (pMHC) interaction is the only antigen-specific interaction during T lymphocyte activation. Recent work suggests that formation of catch bonds is characteristic of activating TCR-pMHC interactions. However, whether this binding behavior is an intrinsic feature of the molecular bond, or a consequence of more complex multimolecular or cellular responses, remains unclear. We used a laminar flow chamber to measure, first, 2D TCR-pMHC dissociation kinetics of peptides of various activating potency in a cell-free system in the force range (6 to 15 pN) previously associated with catch-slip transitions and, second, 2D TCR-pMHC association kinetics, for which the method is well suited. We did not observe catch bonds in dissociation, and the off-rate measured in the 6- to 15-pN range correlated well with activation potency, suggesting that formation of catch bonds is not an intrinsic feature of the TCR-pMHC interaction. The association kinetics were better explained by a model with a minimal encounter duration rather than a standard on-rate constant, suggesting that membrane fluidity and dynamics may strongly influence bond formation.
Collapse
|
7
|
Abstract
T cells initiate and regulate adaptive immune responses that can clear infections. To do this, they use their T cell receptors (TCRs) to continually scan the surfaces of other cells for cognate peptide antigens presented on major histocompatibility complexes (pMHCs). Experimental work has established that as few 1-10 pMHCs are sufficient to activate T cells. This sensitivity is remarkable in light of a number of factors, including the observation that the TCR and pMHC are short molecules relative to highly abundant long surface molecules, such as CD45, that can hinder initial binding, and moreover, the TCR/pMHC interaction is of weak affinity with solution lifetimes of approximately 1 second. Here, we review experimental and mathematical work that has contributed to uncovering molecular mechanisms of T cell sensitivity. We organize the mechanisms by where they act in the pathway to activate T cells, namely mechanisms that (a) promote TCR/pMHC binding, (b) induce rapid TCR signaling, and (c) amplify TCR signaling. We discuss work showing that high sensitivity reduces antigen specificity unless molecular feedbacks are invoked. We conclude by summarizing a number of open questions.
Collapse
Affiliation(s)
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Meng K, Yang H, Wang Y, Sun D. Modeling and Control of Single-Cell Migration Induced by a Chemoattractant-Loaded Microbead. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:427-439. [PMID: 29990216 DOI: 10.1109/tcyb.2017.2776105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cell migration plays an essential role in cancer cell study. Investigation of a novel method for controlling cell migration movement can help develop new therapeutic strategies. In this paper, a chemoattractant-loaded microbead, which is controlled by optical tweezers, is used to stimulate a target cell to accomplish automated migration along a desired path while avoiding obstacles. Models of both tweezers-bead and bead-cell interactions are investigated. A dual closed-loop control strategy is proposed, which includes an inner tweezers-bead control loop and an outer bead-cell control loop. A proportional-integral feedback plus feedforward controller is used to control the inner loop, and an active disturbance rejection controller is used for the outer loop, which can address the cell migration modeling errors and unknown external disturbances. A traffic rule based on interference-clearing mechanism is also proposed to reduce external disturbances on the system by preventing other particles from interfering with the migration process. The effectiveness of the proposed control approach is verified by simulations and experiments on migrating leukemia cancer cells.
Collapse
|
9
|
Bastings MMC, Hermans TM, Spiering AJH, Kemps EWL, Albertazzi L, Kurisinkal EE, Dankers PYW. Quantifying Guest-Host Dynamics in Supramolecular Assemblies to Analyze Their Robustness. Macromol Biosci 2018; 19:e1800296. [DOI: 10.1002/mabi.201800296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/15/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Maartje M. C. Bastings
- Institute for Complex Molecular Systems; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
- Department of Biomedical Engineering; Laboratory of Chemical Biology; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
- Institute of Materials & Interfaculty Bioengineering Institute; School of Engineering; Programmable Biomaterials Laboratory; École Polytechnique Fédérale de Lausanne; Station 12, MXC 340, 1015 Lausanne Switzerland
| | - Thomas M. Hermans
- Institute for Complex Molecular Systems; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
- Department of Biomedical Engineering; Laboratory of Chemical Biology; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
- CNRS, Institut de Science and d'Ingénierie Supramoléculaires; University of Strasbourg; UMR 7006, F-67000 Strasbourg France
| | - A. J. H. Spiering
- Institute for Complex Molecular Systems; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
- Department of Chemical Engineering and Chemistry; Laboratory for Macromolecular and Organic Chemistry; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
| | - Erwin W. L. Kemps
- Department of Biomedical Engineering; Laboratory of Chemical Biology; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
| | - Lorenzo Albertazzi
- Institute for Complex Molecular Systems; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
- Department of Biomedical Engineering; Laboratory of Chemical Biology; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
| | - Eva E. Kurisinkal
- Institute of Materials & Interfaculty Bioengineering Institute; School of Engineering; Programmable Biomaterials Laboratory; École Polytechnique Fédérale de Lausanne; Station 12, MXC 340, 1015 Lausanne Switzerland
| | - Patricia Y. W. Dankers
- Institute for Complex Molecular Systems; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
- Department of Biomedical Engineering; Laboratory of Chemical Biology; Eindhoven University of Technology; PO Box 513, 5600 MB Eindhoven The Netherlands
| |
Collapse
|
10
|
Physiological Hypoxia (Physioxia) Impairs the Early Adhesion of Single Lymphoma Cell to Marrow Stromal Cell and Extracellular Matrix. Optical Tweezers Study. Int J Mol Sci 2018; 19:ijms19071880. [PMID: 29949925 PMCID: PMC6073489 DOI: 10.3390/ijms19071880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/29/2022] Open
Abstract
Adhesion is critical for the maintenance of cellular structures as well as intercellular communication, and its dysfunction occurs prevalently during cancer progression. Recently, a growing number of studies indicated the ability of oxygen to regulate adhesion molecules expression, however, the influence of physiological hypoxia (physioxia) on cell adhesion remains elusive. Thus, here we aimed: (i) to develop an optical tweezers based assay to precisely evaluate single diffuse large B-cell lymphoma (DLBCL) cell adhesion to neighbor cells (mesenchymal stromal cells) and extracellular matrix (Matrigel) under normoxia and physioxia; and, (ii) to explore the role of integrins in adhesion of single lymphoma cell. We identified the pronouncedly reduced adhesive properties of lymphoma cell lines and primary lymphocytes B under physioxia to both stromal cells and Matrigel. Corresponding effects were shown in bulk adhesion assays. Then we emphasized that impaired β1, β2 integrins, and cadherin-2 expression, studied by confocal microscopy, account for reduction in lymphocyte adhesion in physioxia. Additionally, the blockade studies conducted with anti-integrin antibodies have revealed the critical role of integrins in lymphoma adhesion. To summarize, the presented approach allows for precise confirmation of the changes in single cell adhesion properties provoked by physiological hypoxia. Thus, our findings reveal an unprecedented role of using physiologically relevant oxygen conditioning and single cell adhesion approaches when investigating tumor adhesion in vitro.
Collapse
|
11
|
Ma D, Wang R, Chen S, Luo T, Chow YT, Sun D. Microfluidic platform for probing cancer cells migration property under periodic mechanical confinement. BIOMICROFLUIDICS 2018; 12:024118. [PMID: 29755635 PMCID: PMC5924377 DOI: 10.1063/1.5030135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/17/2018] [Indexed: 05/04/2023]
Abstract
Cancer cell migration and invasion, which are involved in tumour metastasis, are hard to predict and control. Numerous studies have demonstrated that physical cues influence cancer cell migration and affect tumour metastasis. In this study, we proposed the use of a microchannel chip equipped with a number of vertical constrictions to produce periodic compression forces on cells passing through narrow channels. The chip with repeated vertical confinement was applied on adherent MHCC-97L liver cancer cells and suspended OCI-AML leukaemia cells to determine the migration ability of these cancer cells. Given the stimulation of the periodic mechanical confinement on-chip, the migration ability of cancer cells was promoted. Moreover, the migration speed increased as the stimulation was enhanced. Both AFM nanoindentation and optical stretching tests on cancer cells were performed to measure their mechanical property. After confinement stimulation, the cancer cells possessed higher deformability and lower stiffness than non-stimulating cells. The confinement stimulation altered the cell cytoskeleton, which governs the migration speed. This phenomenon was determined through gene expression analysis. The proposed on-chip cell migration assays will help characterise the migration property of cancer cells and benefit the development of new therapeutic strategies for metastasis.
Collapse
Affiliation(s)
- Dongce Ma
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Ran Wang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Shuxun Chen
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Tao Luo
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yu-Ting Chow
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Dong Sun
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
12
|
Optimizing the speed of single infrared-laser-induced thermocapillary flows micromanipulation by using design of experiments. JOURNAL OF MICRO-BIO ROBOTICS 2017. [DOI: 10.1007/s12213-017-0097-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Hou J, Luo T, Ng KL, Leung AYH, Liang R, Sun D. Characterization of Drug Effect on Leukemia Cells Through Single Cell Assay With Optical Tweezers and Dielectrophoresis. IEEE Trans Nanobioscience 2016; 15:820-827. [DOI: 10.1109/tnb.2016.2616160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF. Biomaterials 2016; 116:145-157. [PMID: 27918936 DOI: 10.1016/j.biomaterials.2016.11.053] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/26/2016] [Accepted: 11/27/2016] [Indexed: 01/07/2023]
Abstract
Angiogenic capacity of biomaterials is a key asset to drive vascular ingrowth during tissue repair and regeneration. Here we design a unique angiogenic microcarrier based on sol-gel derived mesoporous silica. The microspheres offer a potential angiogenic stimulator, Si ion, 'intrinsically' within the chemical structure. Furthermore, the highly mesoporous nature allows the loading and release of angiogenic growth factor 'extrinsically'. The Si ion is released from the microcarriers at therapeutic ranges (over a few ppm per day), which indeed up-regulates the expression of hypoxia inducing factor 1α (HIF1α) and stabilizes it by blocking HIF-prolyl hydroxylase 2 (PHD2) in HUVECs. This in turn activates the expression of a series of proangiogenic molecules, including bFGF, VEGF, and eNOS. VEGF is incorporated effectively within the mesopores of microcarriers and is then released continuously over a couple of weeks. The Si ion and VEGF released from the microcarriers synergistically stimulate endothelial cell functions, such as cell migration, chemotactic homing, and tubular networking. Furthermore, in vivo neo-blood vessel sprouting in chicken chorioallantoic membrane model is significantly promoted by the Si/VEGF releasing microcarriers. The current study demonstrates the synergized effects of Si ion and angiogenic growth factor through a biocompatible mesoporous microsphere delivery platform, and the concept provided here may open the door to a new co-delivery system of utilizing ions with growth factors for tissue repair and regeneration.
Collapse
|
15
|
Dustin ML, Choudhuri K. Signaling and Polarized Communication Across the T Cell Immunological Synapse. Annu Rev Cell Dev Biol 2016; 32:303-325. [PMID: 27501450 DOI: 10.1146/annurev-cellbio-100814-125330] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cells express a somatically recombined antigen receptor (αβTCR) that is calibrated during development to respond to changes in peptides displayed by major histocompatibility complex proteins (pMHC) on the surface of antigen-presenting cells (APC). A key characteristic of pMHC for adaptive immunity is the ability to sample internal states of cells and tissues to sensitively detect changes associated with infection, cell derangement, or tissue injury. Physical T cell-APC contact sets up an axis for polarization of TCR, adhesion molecules, kinases, cytoskeletal elements, and organelles inherent in this mode of juxtacrine signaling. The discovery of further lateral organization of the TCR and adhesion molecules into radially symmetric compartments, the immunological synapse, revealed an intersecting plane of symmetry and potential for regulated symmetry breaking to control duration of T cell-APC interactions. In addition to organizing signaling machinery, the immunological synapse directs the polarized transport and secretion of cytokines and cytolytic agents across the synaptic cleft and is a site for the generation and exocytic release of bioactive microvesicles that can functionally affect recipient APC and other cells in the environment. This machinery is coopted by retroviruses, and human immune deficiency virus-1 may even use antigen-specific synapses for infection of healthy T cells. Here, we discuss recent advances in the molecular and cell biological mechanisms of immunological synapse assembly and signaling and its role in intercellular communication across the synaptic cleft.
Collapse
Affiliation(s)
- Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom;
| | - Kaushik Choudhuri
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5620;
| |
Collapse
|
16
|
Camley BA, Zimmermann J, Levine H, Rappel WJ. Collective Signal Processing in Cluster Chemotaxis: Roles of Adaptation, Amplification, and Co-attraction in Collective Guidance. PLoS Comput Biol 2016; 12:e1005008. [PMID: 27367541 PMCID: PMC4930173 DOI: 10.1371/journal.pcbi.1005008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/30/2016] [Indexed: 11/30/2022] Open
Abstract
Single eukaryotic cells commonly sense and follow chemical gradients, performing chemotaxis. Recent experiments and theories, however, show that even when single cells do not chemotax, clusters of cells may, if their interactions are regulated by the chemoattractant. We study this general mechanism of "collective guidance" computationally with models that integrate stochastic dynamics for individual cells with biochemical reactions within the cells, and diffusion of chemical signals between the cells. We show that if clusters of cells use the well-known local excitation, global inhibition (LEGI) mechanism to sense chemoattractant gradients, the speed of the cell cluster becomes non-monotonic in the cluster's size-clusters either larger or smaller than an optimal size will have lower speed. We argue that the cell cluster speed is a crucial readout of how the cluster processes chemotactic signals; both amplification and adaptation will alter the behavior of cluster speed as a function of size. We also show that, contrary to the assumptions of earlier theories, collective guidance does not require persistent cell-cell contacts and strong short range adhesion. If cell-cell adhesion is absent, and the cluster cohesion is instead provided by a co-attraction mechanism, e.g. chemotaxis toward a secreted molecule, collective guidance may still function. However, new behaviors, such as cluster rotation, may also appear in this case. Co-attraction and adaptation allow for collective guidance that is robust to varying chemoattractant concentrations while not requiring strong cell-cell adhesion.
Collapse
Affiliation(s)
- Brian A. Camley
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Juliane Zimmermann
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Wouter-Jan Rappel
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
17
|
Hivroz C, Saitakis M. Biophysical Aspects of T Lymphocyte Activation at the Immune Synapse. Front Immunol 2016; 7:46. [PMID: 26913033 PMCID: PMC4753286 DOI: 10.3389/fimmu.2016.00046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/31/2016] [Indexed: 11/21/2022] Open
Abstract
T lymphocyte activation is a pivotal step of the adaptive immune response. It requires the recognition by T-cell receptors (TCR) of peptides presented in the context of major histocompatibility complex molecules (pMHC) present at the surface of antigen-presenting cells (APCs). T lymphocyte activation also involves engagement of costimulatory receptors and adhesion molecules recognizing ligands on the APC. Integration of these different signals requires the formation of a specialized dynamic structure: the immune synapse. While the biochemical and molecular aspects of this cell–cell communication have been extensively studied, its mechanical features have only recently been addressed. Yet, the immune synapse is also the place of exchange of mechanical signals. Receptors engaged on the T lymphocyte surface are submitted to many tensile and traction forces. These forces are generated by various phenomena: membrane undulation/protrusion/retraction, cell mobility or spreading, and dynamic remodeling of the actomyosin cytoskeleton inside the T lymphocyte. Moreover, the TCR can both induce force development, following triggering, and sense and convert forces into biochemical signals, as a bona fide mechanotransducer. Other costimulatory molecules, such as LFA-1, engaged during immune synapse formation, also display these features. Moreover, T lymphocytes themselves are mechanosensitive, since substrate stiffness can modulate their response. In this review, we will summarize recent studies from a biophysical perspective to explain how mechanical cues can affect T lymphocyte activation. We will particularly discuss how forces are generated during immune synapse formation; how these forces affect various aspects of T lymphocyte biology; and what are the key features of T lymphocyte response to stiffness.
Collapse
Affiliation(s)
- Claire Hivroz
- Institut Curie Section Recherche, Paris, France; INSERM U932, Paris, France; PSL Research University, Paris, France
| | - Michael Saitakis
- Institut Curie Section Recherche, Paris, France; INSERM U932, Paris, France; PSL Research University, Paris, France
| |
Collapse
|
18
|
Dustin ML. T cells have a light touch. Biophys J 2015; 108:2089-90. [PMID: 25954864 DOI: 10.1016/j.bpj.2015.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022] Open
Affiliation(s)
- Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Headington, Oxfordshire, United Kingdom.
| |
Collapse
|