1
|
Alcaraz A, Nieva JL. Viroporins: discovery, methods of study, and mechanisms of host-membrane permeabilization. Q Rev Biophys 2025; 58:e1. [PMID: 39806799 DOI: 10.1017/s0033583524000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites. Through mechanisms not fully understood, expression of viroporins facilitates virion assembly/release from infected cells, and subverts the cell physiology, contributing to cytopathogenicity. Compounds that interact with viroporins and interfere with their membrane-permeabilizing activity in vitro, are known to inhibit virus production. Moreover, viroporin-defective viruses comprise a source of live attenuated vaccines that prevent infection by notorious human and livestock pathogens. This review dives into the origin and evolution of the viroporin concept, summarizes some of the methodologies used to characterize the structure-function relationships of these important virulence factors, and attempts to classify them on biophysical grounds attending to their mechanisms of ion/solute transport across membranes.
Collapse
Affiliation(s)
- Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, Castellón, Spain
| | - José L Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
2
|
Devantier K, Kjær VMS, Griffin S, Kragelund BB, Rosenkilde MM. Advancing the field of viroporins-Structure, function and pharmacology: IUPHAR Review 39. Br J Pharmacol 2024; 181:4450-4490. [PMID: 39224966 DOI: 10.1111/bph.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
Viroporins possess important potential as antiviral targets due to their critical roles during virus life cycles, spanning from virus entry to egress. Although the antiviral amantadine targets the M2 viroporin of influenza A virus, successful progression of other viroporin inhibitors into clinical use remains challenging. These challenges relate in varying proportions to a lack of reliable full-length 3D-structures, difficulties in functionally characterising individual viroporins, and absence of verifiable direct binding between inhibitor and viroporin. This review offers perspectives to help overcome these challenges. We provide a comprehensive overview of the viroporin family, including their structural and functional features, highlighting the moldability of their energy landscapes and actions. To advance the field, we suggest a list of best practices to aspire towards unambiguous viroporin identification and characterisation, along with considerations of potential pitfalls. Finally, we present current and future scenarios of, and prospects for, viroporin targeting drugs.
Collapse
Affiliation(s)
- Kira Devantier
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Viktoria M S Kjær
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Griffin
- Leeds Institute of Medical Research, St James' University Hospital, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Breitinger U, Sedky CA, Sticht H, Breitinger HG. Patch-clamp studies and cell viability assays suggest a distinct site for viroporin inhibitors on the E protein of SARS-CoV-2. Virol J 2023; 20:142. [PMID: 37422646 PMCID: PMC10329798 DOI: 10.1186/s12985-023-02095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 06/08/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND SARS-CoV-2 has caused a worldwide pandemic since December 2019 and the search for pharmaceutical targets against COVID-19 remains an important challenge. Here, we studied the envelope protein E of SARS-CoV and SARS-CoV-2, a highly conserved 75-76 amino acid viroporin that is crucial for virus assembly and release. E protein channels were recombinantly expressed in HEK293 cells, a membrane-directing signal peptide ensured transfer to the plasma membrane. METHODS Viroporin channel activity of both E proteins was investigated using patch-clamp electrophysiology in combination with a cell viability assay. We verified inhibition by classical viroporin inhibitors amantadine, rimantadine and 5-(N,N-hexamethylene)-amiloride, and tested four ivermectin derivatives. RESULTS Classical inhibitors showed potent activity in patch-clamp recordings and viability assays. In contrast, ivermectin and milbemycin inhibited the E channel in patch-clamp recordings but displayed only moderate activity on the E protein in the cell viability assay, which is also sensitive to general cytotoxic activity of the tested compounds. Nemadectin and ivermectin aglycon were inactive. All ivermectin derivatives were cytotoxic at concentrations > 5 µM, i.e. below the level required for E protein inhibition. CONCLUSIONS This study demonstrates direct inhibition of the SARS-CoV-2 E protein by classical viroporin inhibitors. Ivermectin and milbemycin inhibit the E protein channel but their cytotoxicity argues against clinical application.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo, 11835, Egypt.
| | - Christine Adel Sedky
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo, 11835, Egypt
| | - Heinrich Sticht
- Division of Bioinformatics, Institute for Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Georg Breitinger
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo, 11835, Egypt
| |
Collapse
|
4
|
Fam MS, Sedky CA, Turky NO, Breitinger HG, Breitinger U. Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites. Sci Rep 2023; 13:5328. [PMID: 37005439 PMCID: PMC10067842 DOI: 10.1038/s41598-023-31764-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
SARS-CoV-2 has been responsible for the major worldwide pandemic of COVID-19. Despite the enormous success of vaccination campaigns, virus infections are still prevalent and effective antiviral therapies are urgently needed. Viroporins are essential for virus replication and release, and are thus promising therapeutic targets. Here, we studied the expression and function of recombinant ORF3a viroporin of SARS-CoV-2 using a combination of cell viability assays and patch-clamp electrophysiology. ORF3a was expressed in HEK293 cells and transport to the plasma membrane verified by a dot blot assay. Incorporation of a membrane-directing signal peptide increased plasma membrane expression. Cell viability tests were carried out to measure cell damage associated with ORF3a activity, and voltage-clamp recordings verified its channel activity. The classical viroporin inhibitors amantadine and rimantadine inhibited ORF3a channels. A series of ten flavonoids and polyphenolics were studied. Kaempferol, quercetin, epigallocatechin gallate, nobiletin, resveratrol and curcumin were ORF3a inhibitors, with IC50 values ranging between 1 and 6 µM, while 6-gingerol, apigenin, naringenin and genistein were inactive. For flavonoids, inhibitory activity could be related to the pattern of OH groups on the chromone ring system. Thus, the ORF3a viroporin of SARS-CoV-2 may indeed be a promising target for antiviral drugs.
Collapse
Affiliation(s)
- Marina Sherif Fam
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo, New Cairo, 11835, Egypt
| | - Christine Adel Sedky
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo, New Cairo, 11835, Egypt
| | - Nancy Osama Turky
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo, New Cairo, 11835, Egypt
| | - Hans-Georg Breitinger
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo, New Cairo, 11835, Egypt
| | - Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
5
|
Breitinger U, Farag NS, Sticht H, Breitinger HG. Viroporins: Structure, function, and their role in the life cycle of SARS-CoV-2. Int J Biochem Cell Biol 2022; 145:106185. [PMID: 35219876 PMCID: PMC8868010 DOI: 10.1016/j.biocel.2022.106185] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Viroporins are indispensable for viral replication. As intracellular ion channels they disturb pH gradients of organelles and allow Ca2+ flux across ER membranes. Viroporins interact with numerous intracellular proteins and pathways and can trigger inflammatory responses. Thus, they are relevant targets in the search for antiviral drugs. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) underlies the world-wide pandemic of COVID-19, where an effective therapy is still lacking despite impressive progress in the development of vaccines and vaccination campaigns. Among the 29 proteins of SARS-CoV-2, the E- and ORF3a proteins have been identified as viroporins that contribute to the massive release of inflammatory cytokines observed in COVID-19. Here, we describe structure and function of viroporins and their role in inflammasome activation and cellular processes during the virus replication cycle. Techniques to study viroporin function are presented, with a focus on cellular and electrophysiological assays. Contributions of SARS-CoV-2 viroporins to the viral life cycle are discussed with respect to their structure, channel function, binding partners, and their role in viral infection and virus replication. Viroporin sequences of new variants of concern (α–ο) of SARS-CoV-2 are briefly reviewed as they harbour changes in E and 3a proteins that may affect their function.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Noha S Farag
- Department of Microbiology and Immunology, German University in Cairo, New Cairo, Egypt
| | - Heinrich Sticht
- Division of Bioinformatics, Institute for Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
6
|
Bioinformatics Analysis Identifies a Small ORF in the Genome of Fish Nidoviruses of Genus Oncotshavirus Predicted to Encode a Novel Integral Protein. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Genome sequence analysis of Atlantic salmon bafinivirus (ASBV) revealed a small open reading frame (ORF) predicted to encode a Type I membrane protein with an N-terminal cleaved signal sequence (110 aa), likely an envelope (E) protein. Bioinformatic analyses showed that the predicted protein is strikingly similar to the coronavirus E protein in structure. This is the first report to identify a putative E protein ORF in the genome of members of the Oncotshavirus genus (subfamily Piscavirinae, family Tobaniviridae, order Nidovirales) and, if expressed would be the third family (after Coronaviridae and Arteriviridae) within the order to have the E protein as a major structural protein.
Collapse
|
7
|
Breitinger U, Ali NKM, Sticht H, Breitinger HG. Inhibition of SARS CoV Envelope Protein by Flavonoids and Classical Viroporin Inhibitors. Front Microbiol 2021; 12:692423. [PMID: 34305855 PMCID: PMC8297954 DOI: 10.3389/fmicb.2021.692423] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV), an enveloped single-stranded positive-sense RNA virus, is a member of the genus Betacoronavirus, family Coronaviridae. The SARS-CoV envelope protein E is a small (∼8.4 kDa) channel-forming membrane protein whose sequence is highly conserved between SARS-CoV and SARS-CoV-2. As a viroporin, it is involved in various aspects of the virus life cycle including assembly, budding, envelope formation, virus release, and inflammasome activation. Here, SARS-CoV E protein was recombinantly expressed in HEK293 cells and channel activity and the effects of viroporin inhibitors studied using patch-clamp electrophysiology and a cell viability assay. We introduced a membrane-directing signal peptide to ensure transfer of recombinant E protein to the plasma membrane. E protein expression induced transmembrane currents that were blocked by various inhibitors. In an ion-reduced buffer system, currents were proton-dependent and blocked by viroporin inhibitors rimantadine and amantadine. I-V relationships of recombinant E protein were not pH-dependent in a classical buffer system with high extracellular Na+ and high intracellular K+. E-protein mediated currents were inhibited by amantadine and rimantadine, as well as 5-(N,N-hexamethylene)amiloride (HMA). We tested a total of 10 flavonoids, finding inhibitory activity of varying potency. Epigallocatechin and quercetin were most effective, with IC50 values of 1.5 ± 0.1 and 3.7 ± 0.2 nM, respectively, similar to the potency of rimantadine (IC50 = 1.7 ± 0.6 nM). Patch-clamp results were independently verified using a modified cell viability assay for viroporin inhibitors. These results contribute to the development of novel antiviral drugs that suppress virus activity and proliferation.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Nourhan K M Ali
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
8
|
Breitinger U, Farag NS, Ali NKM, Ahmed M, El-Azizi MA, Breitinger HG. Cell viability assay as a tool to study activity and inhibition of hepatitis C p7 channels. J Gen Virol 2021; 102. [PMID: 33709903 DOI: 10.1099/jgv.0.001571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The p7 viroporin of the hepatitis C virus (HCV) forms an intracellular proton-conducting transmembrane channel in virus-infected cells, shunting the pH of intracellular compartments and thus helping virus assembly and release. This activity is essential for virus infectivity, making viroporins an attractive target for drug development. The protein sequence and drug sensitivity of p7 vary between the seven major genotypes of the hepatitis C virus, but the essential channel activity is preserved. Here, we investigated the effect of several inhibitors on recombinant HCV p7 channels corresponding to genotypes 1a-b, 2a-b, 3a and 4a using patch-clamp electrophysiology and cell-based assays. We established a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based cell viability assay for recombinant p7 expressed in HEK293 cells to assess channel activity and its sensitivity to inhibitors. The results from the cell viability assay were consistent with control measurements using established assays of haemadsorption and intracellular pH, and agreed with data from patch-clamp electrophysiology. Hexamethylene amiloride (HMA) was the most potent inhibitor of p7 activity, but possessed cytotoxic activity at higher concentrations. Rimantadine was active against p7 of all genotypes, while amantadine activity was genotype-dependent. The alkyl-chain iminosugars NB-DNJ, NN-DNJ and NN-DGJ were tested and their activity was found to be genotype-specific. In the current study, we introduce cell viability assays as a rapid and cost-efficient technique to assess viroporin activity and identify channel inhibitors as potential novel antiviral drugs.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Noha S Farag
- Department of Microbiology and Immunology, German University in Cairo, New Cairo, Egypt
| | - Nourhan K M Ali
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Marwa Ahmed
- Present address: Institute of Biochemistry and Biophysics Friedrich-Schiller-University Jena, Hans-Knöll-Str. 2, D-07745, Jena, Germany.,Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Mohamed A El-Azizi
- Department of Microbiology and Immunology, German University in Cairo, New Cairo, Egypt
| | | |
Collapse
|
9
|
Shaw J, Gosain R, Kalita MM, Foster TL, Kankanala J, Mahato DR, Abas S, King BJ, Scott C, Brown E, Bentham MJ, Wetherill L, Bloy A, Samson A, Harris M, Mankouri J, Rowlands DJ, Macdonald A, Tarr AW, Fischer WB, Foster R, Griffin S. Rationally derived inhibitors of hepatitis C virus (HCV) p7 channel activity reveal prospect for bimodal antiviral therapy. eLife 2020; 9:e52555. [PMID: 33169665 PMCID: PMC7714397 DOI: 10.7554/elife.52555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
Since the 1960s, a single class of agent has been licensed targeting virus-encoded ion channels, or 'viroporins', contrasting the success of channel blocking drugs in other areas of medicine. Although resistance arose to these prototypic adamantane inhibitors of the influenza A virus (IAV) M2 proton channel, a growing number of clinically and economically important viruses are now recognised to encode essential viroporins providing potential targets for modern drug discovery. We describe the first rationally designed viroporin inhibitor with a comprehensive structure-activity relationship (SAR). This step-change in understanding not only revealed a second biological function for the p7 viroporin from hepatitis C virus (HCV) during virus entry, but also enabled the synthesis of a labelled tool compound that retained biological activity. Hence, p7 inhibitors (p7i) represent a unique class of HCV antiviral targeting both the spread and establishment of infection, as well as a precedent for future viroporin-targeted drug discovery.
Collapse
Affiliation(s)
- Joseph Shaw
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Rajendra Gosain
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Monoj Mon Kalita
- Institute of Biophotonics, National Yang-Ming UniversityTaipeiTaiwan
| | - Toshana L Foster
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Jayakanth Kankanala
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - D Ram Mahato
- Institute of Biophotonics, National Yang-Ming UniversityTaipeiTaiwan
| | - Sonia Abas
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Barnabas J King
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Queen's Medical CentreNottinghamUnited Kingdom
| | - Claire Scott
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Emma Brown
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Matthew J Bentham
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Laura Wetherill
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Abigail Bloy
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Adel Samson
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
| | - Mark Harris
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Jamel Mankouri
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Andrew Macdonald
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Alexander W Tarr
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Queen's Medical CentreNottinghamUnited Kingdom
| | | | - Richard Foster
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Stephen Griffin
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| |
Collapse
|
10
|
Sebak AA, Gomaa IEO, ElMeshad AN, Farag MH, Breitinger U, Breitinger HG, AbdelKader MH. Distinct Proteins in Protein Corona of Nanoparticles Represent a Promising Venue for Endogenous Targeting - Part I: In vitro Release and Intracellular Uptake Perspective. Int J Nanomedicine 2020; 15:8845-8862. [PMID: 33204091 PMCID: PMC7667594 DOI: 10.2147/ijn.s273713] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Protein corona (PC) deposition on nanoparticles (NPs) in biological systems contributes to a great extent to NPs' fates; their targeting potential, the interaction with different biological systems and the subsequent functions. PC - when properly tuned - can serve as a potential avenue for optimization of NPs' use in cancer therapy. Methods Poly-lactic co-glycolic acid (PLGA)-based NPs exhibiting different physicochemical properties were fabricated and characterized. The PC makeup of these NPs were qualitatively and quantitatively analyzed by Western blot and Bradford assay, respectively. The effect of PC on the release of NPs' cargos and the intracellular uptake into B16F10 melanoma cells has been studied. Results The composition of NPs (polymeric PLGA NPs vs lipid-polymer hybrid NPs) and the conjugation of an active targeting ligand (cRGDyk peptide) represented the major determinants of the PC makeup of NPs. The in vitro release of the loaded cargos from the NPs depended on the PC and the presence of serum proteins in the release medium. Higher cumulative release has been recorded in the presence of proteins in the case of peptide conjugated NPs, cNPs, while the unconjugated formulations, uNPs, showed an opposite pattern. NPs intracellular uptake studies revealed important roles of distinct serum and cellular proteins on the extent of NPs' accumulation in melanoma cells. For example, the abundance of vitronectin (VN) protein from serum has been positively related to the intracellular accumulation of the NPs. Conclusion Careful engineering of nanocarriers can modulate the recruitment of some proteins suggesting a potential use for achieving endogenous targeting to overcome the current limitations of targeted delivery of chemotherapeutic agents.
Collapse
Affiliation(s)
- Aya Ahmed Sebak
- Pharmaceutical Technology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo City, Egypt
| | - Iman Emam Omar Gomaa
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Aliaa Nabil ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Mahmoud Hussien Farag
- Pharmaceutical Technology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo City, Egypt
| | - Ulrike Breitinger
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo City, Egypt
| | - Hans-Georg Breitinger
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo City, Egypt
| | - Mahmoud Hashem AbdelKader
- National Institute of Laser Enhanced Sciences (NILES), Cairo University (CU), Giza, Egypt.,European University in Egypt (EUE), New Administrative Capital, Cairo, Egypt
| |
Collapse
|
11
|
Farag NS, Breitinger U, Breitinger HG, El Azizi MA. Viroporins and inflammasomes: A key to understand virus-induced inflammation. Int J Biochem Cell Biol 2020; 122:105738. [PMID: 32156572 PMCID: PMC7102644 DOI: 10.1016/j.biocel.2020.105738] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
The article provides a summary on cellular receptors involved in virus immunity. It summarizes key findings on viroporins, a novel class of viral proteins and their role in the virus life cycle and host cell interactions. It presents an overview of the current understanding of inflammasomes complex activation, with special focus on NLRP3. It discusses the correlation between viroporins and inflammasomes activation and aggravated inflammatory cytokines production.
Viroporins are virus encoded proteins that alter membrane permeability and can trigger subsequent cellular signals. Oligomerization of viroporin subunits results in formation of a hydrophilic pore which facilitates ion transport across host cell membranes. These viral channel proteins may be involved in different stages of the virus infection cycle. Inflammasomes are large multimolecular complexes best recognized for their ability to control activation of caspase-1, which in turn regulates the maturation of interleukin-1 β (IL-1β) and interleukin 18 (IL-18). IL-1β was originally identified as a pro-inflammatory cytokine able to induce both local and systemic inflammation and a febrile reaction in response to infection or injury. Excessive production of IL-1β is associated with autoimmune and inflammatory diseases. Microbial derivatives, bacterial pore-forming toxins, extracellular ATP and other pathogen-associated molecular patterns trigger activation of NLRP3 inflammasomes. Recent studies have reported that viroporin activity is capable of inducing inflammasome activity and production of IL-1β, where NLRP3 is shown to be regulated by fluxes of K+, H+ and Ca2+ in addition to reactive oxygen species, autophagy and endoplasmic reticulum stress. The aim of this review is to present an overview of the key findings on viroporin activity with special emphasis on their role in virus immunity and as possible activators of inflammasomes.
Collapse
Affiliation(s)
- N S Farag
- Department of Microbiology and Immunology, German University inCairo, New Cairo, Egypt.
| | - U Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - H G Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - M A El Azizi
- Department of Microbiology and Immunology, German University inCairo, New Cairo, Egypt
| |
Collapse
|
12
|
Pang S, Zhao R, Wang S, Wang J. Cyclopeptides design as blockers against HCV p7 channel in silico. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1641604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shichao Pang
- Department of Statistics, School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Rongcheng Zhao
- Cangzhou Central Hospital, Cardiovascular Ward I, Cangzhou, People’s Republic of China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Jingfang Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai, People’s Republic of China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Soares HR, Ferreira-Fernandes M, Almeida AI, Marchel M, Alves PM, Coroadinha AS. Enhancing Hepatitis C virus pseudoparticles infectivity through p7NS2 cellular expression. J Virol Methods 2019; 274:113714. [PMID: 31412271 DOI: 10.1016/j.jviromet.2019.113714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/27/2022]
Abstract
Hepatitis C pseudoparticles (HCVpp) are used to evaluate HCV cell entry while screening for neutralizing antibodies induced upon vaccination or while screening for new antiviral drugs. In this work we explore the stable production of HCVpp aiming to reduce the variability associated with transient productions. The performance of stably produced HCVpp was assessed by evaluating the influence of Human Serum and the impact of CD81 cellular expression on the infectivity of HCVpp. After evaluating the performance of stably produced HCVpp we studied the effect of co-expressing p7NS2 openreading frame (ORF) on HCVpp infectivity. Our data clearly shows an enhanced infectivity of HCVppp7NS2. Even though the exact mechanism was not completely elucidated, the enhanced infectivity of HCVppp7NS2 is neither a result of an increase production of virus particles nor a result from increased envelope density. The inhibitory effect of p7 inhibitory molecules such as rimantadine suggests a direct contribution of p7 ion channel for the enhanced infectivity of HCVppp7NS2 which is coherent with a pH-dependent cell entry mechanism. In conclusion, we report the establishment of a stable production system of HCVpp with enhanced infectivity through the overexpression of p7NS2 ORF contributing to improve HCV entry assessment assays widely used in antiviral drug discovery and vaccine development.
Collapse
Affiliation(s)
- Hugo R Soares
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marina Ferreira-Fernandes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana I Almeida
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Mateusz Marchel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana S Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
14
|
Re-evaluating the p7 viroporin structure. Nature 2018; 562:E8-E18. [DOI: 10.1038/s41586-018-0561-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 07/16/2018] [Indexed: 11/08/2022]
|
15
|
Shiryaev VA, Radchenko EV, Palyulin VA, Zefirov NS, Bormotov NI, Serova OA, Shishkina LN, Baimuratov MR, Bormasheva KM, Gruzd YA, Ivleva EA, Leonova MV, Lukashenko AV, Osipov DV, Osyanin VA, Reznikov AN, Shadrikova VA, Sibiryakova AE, Tkachenko IM, Klimochkin YN. Molecular design, synthesis and biological evaluation of cage compound-based inhibitors of hepatitis C virus p7 ion channels. Eur J Med Chem 2018; 158:214-235. [PMID: 30218908 DOI: 10.1016/j.ejmech.2018.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/04/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Abstract
The hepatitis C caused by the hepatitis C virus (HCV) is an acute and/or chronic liver disease ranging in severity from a mild brief ailment to a serious lifelong illness that affects up to 3% of the world population and imposes significant and increasing social, economic, and humanistic burden. Over the past decade, its treatment was revolutionized by the development and introduction into clinical practice of the direct acting antiviral (DAA) agents targeting the non-structural viral proteins NS3/4A, NS5A, and NS5B. However, the current treatment options still have important limitations, thus, the development of new classes of DAAs acting on different viral targets and having better pharmacological profile is highly desirable. The hepatitis C virus p7 viroporin is a relatively small hydrophobic oligomeric viral ion channel that plays a critical role during virus assembly and maturation, making it an attractive and validated target for the development of the cage compound-based inhibitors. Using the homology modeling, molecular dynamics, and molecular docking techniques, we have built a representative set of models of the hepatitis C virus p7 ion channels (Gt1a, Gt1b, Gt1b_L20F, Gt2a, and Gt2b), analyzed the inhibitor binding sites, and identified a number of potential broad-spectrum inhibitor structures targeting them. For one promising compound, the binding to these targets was additionally confirmed and the binding modes and probable mechanisms of action were clarified by the molecular dynamics simulations. A number of compounds were synthesized, and the tests of their antiviral activity (using the BVDV model) and cytotoxicity demonstrate their potential therapeutic usefulness and encourage further more detailed studies. The proposed approach is also suitable for the design of broad-spectrum ligands interacting with other multiple labile targets including various viroporins.
Collapse
Affiliation(s)
- Vadim A Shiryaev
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia.
| | - Eugene V Radchenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Vladimir A Palyulin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Nikolay S Zefirov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Nikolay I Bormotov
- State Research Center of Virology and Biotechnology 'Vector', Koltsovo, Novosibirsk Region, 630559, Russia
| | - Olga A Serova
- State Research Center of Virology and Biotechnology 'Vector', Koltsovo, Novosibirsk Region, 630559, Russia
| | - Larisa N Shishkina
- State Research Center of Virology and Biotechnology 'Vector', Koltsovo, Novosibirsk Region, 630559, Russia
| | - Marat R Baimuratov
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Kseniya M Bormasheva
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Yulia A Gruzd
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Elena A Ivleva
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Marina V Leonova
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Anton V Lukashenko
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Dmitry V Osipov
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Vitaliy A Osyanin
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Alexander N Reznikov
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Vera A Shadrikova
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Anastasia E Sibiryakova
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Ilya M Tkachenko
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Yuri N Klimochkin
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| |
Collapse
|
16
|
Mandour YM, Breitinger U, Ma C, Wang J, Boeckler FM, Breitinger HG, Zlotos DP. Symmetric dimeric adamantanes for exploring the structure of two viroporins: influenza virus M2 and hepatitis C virus p7. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1019-1031. [PMID: 29750015 PMCID: PMC5933338 DOI: 10.2147/dddt.s157104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Adamantane-based compounds have been identified to interfere with the ion-channel activity of viroporins and thereby inhibit viral infection. To better understand the difference in the inhibition mechanism of viroporins, we synthesized symmetric dimeric adamantane analogs of various alkyl-spacer lengths. Methods Symmetric dimeric adamantane derivatives were synthesized where two amantadine or rimantadine molecules were linked by various alkyl-spacers. The inhibitory activity of the compounds was studied on two viroporins: the influenza virus M2 protein, expressed in Xenopus oocytes, using the two-electrode voltage-clamp technique, and the hepatitis C virus (HCV) p7 channels for five different genotypes (1a, 1b, 2a, 3a, and 4a) expressed in HEK293 cells using whole-cell patch-clamp recording techniques. Results Upon testing on M2 protein, dimeric compounds showed significantly lower inhibitory activity relative to the monomeric amantadine. The lack of channel blockage of the dimeric amantadine and rimantadine analogs against M2 wild type and M2-S31N mutant was consistent with previously proposed drug-binding mechanisms and further confirmed that the pore-binding model is the pharmacologically relevant drug-binding model. On the other hand, these dimers showed similar potency to their respective monomeric analogs when tested on p7 protein in HCV genotypes 1a, 1b, and 4a while being 700-fold and 150-fold more potent than amantadine in genotypes 2a and 3a, respectively. An amino group appears to be important for inhibiting the ion-channel activity of p7 protein in genotype 2a, while its importance was minimal in all other genotypes. Conclusion Symmetric dimeric adamantanes can be considered a prospective class of p7 inhibitors that are able to address the differences in adamantane sensitivity among the various genotypes of HCV.
Collapse
Affiliation(s)
| | - Ulrike Breitinger
- Department of Biochemistry, The German University in Cairo, Cairo, Egypt
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Frank M Boeckler
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, German University in Cairo
| |
Collapse
|
17
|
Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev 2018; 118:3559-3607. [PMID: 29488756 PMCID: PMC5896743 DOI: 10.1021/acs.chemrev.7b00570] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents.
Collapse
Affiliation(s)
- Christophe Chipot
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - François Dehez
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
| | - Jason R. Schnell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | - Laurent J. Catoire
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Bruno Miroux
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Edmund R. S. Kunji
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Gianluigi Veglia
- Department
of Biochemistry, Molecular Biology, and Biophysics, and Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy A. Cross
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Paul Schanda
- Université
Grenoble Alpes, CEA, CNRS, IBS, Grenoble F-38000, France
| |
Collapse
|
18
|
Denolly S, Mialon C, Bourlet T, Amirache F, Penin F, Lindenbach B, Boson B, Cosset FL. The amino-terminus of the hepatitis C virus (HCV) p7 viroporin and its cleavage from glycoprotein E2-p7 precursor determine specific infectivity and secretion levels of HCV particle types. PLoS Pathog 2017; 13:e1006774. [PMID: 29253880 PMCID: PMC5749900 DOI: 10.1371/journal.ppat.1006774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/02/2018] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV) encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP). HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus.
Collapse
Affiliation(s)
- Solène Denolly
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Chloé Mialon
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Thomas Bourlet
- GIMAP, EA 3064, Faculté de Médecine, Université de Saint-Etienne, Univ Lyon, Saint Etienne, France
| | - Fouzia Amirache
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François Penin
- IBCP—Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Univ Lyon, Lyon, France
| | - Brett Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States of America
| | - Bertrand Boson
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François-Loïc Cosset
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
19
|
The p7 viroporin of the hepatitis C virus contributes to liver inflammation by stimulating production of Interleukin-1β. Biochim Biophys Acta Mol Basis Dis 2017; 1863:712-720. [DOI: 10.1016/j.bbadis.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
|