1
|
Chen DM, Lampert SS, Chen LD, Burger IJ, Kouba CK, Allen PJ, Songsasen N, Roth TL, Kouba AJ. Production of live tiger salamander offspring using cryopreserved sperm. Sci Rep 2025; 15:15702. [PMID: 40325125 PMCID: PMC12053565 DOI: 10.1038/s41598-025-99052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 04/16/2025] [Indexed: 05/07/2025] Open
Abstract
Amphibian conservation breeding programs often rely on assisted reproductive technologies (ART) to produce offspring due to the difficulty of replicating natural reproductive cues under human care. Reproductive management using in-vitro fertilization (IVF) with cryopreserved sperm has been successfully applied to a variety of anurans, yet the approach has seen limited use for internally-fertilizing caudates. This study aimed to test two cryoprotectants, dimethyl formamide (DMFA) and dimethyl sulfoxide (DMSO), in combination with three different sperm extenders, HAM's F-10, diluted HAM's F-10, and 10% Holtfreter's, for the production of salamander larvae from cryopreserved sperm. Fresh sperm was collected from tiger salamanders (n = 12) and diluted with one of three extenders, then subsequently mixed 1:1 with cryoprotectant. Samples were frozen using liquid nitrogen and later thawed to be applied in IVF. The diluted HAM's and DMFA treatment resulted in the highest (p < 0.05) fertilization rate, with over 40% of eggs cleaving. The DMFA treatments resulted in 87 hatched offspring, while DMSO treatments resulted in only one offspring. This research highlights the potential of biobanking to produce internally-fertilizing salamander larvae, with DMFA being the likely preferred sperm cryoprotectant. These findings can inform conservation breeding programs by increasing caudate population sustainability through genetic management, facilitated by ART.
Collapse
Affiliation(s)
- Devin M Chen
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Thompson Hall, 775 Stone Boulevard, Mississippi State, MS, 39762, USA
| | - Shaina S Lampert
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, 402 Dorman Hall, Mississippi State, MS, 39762, USA
| | - Li-Dunn Chen
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, 402 Dorman Hall, Mississippi State, MS, 39762, USA
| | - Isabella J Burger
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Thompson Hall, 775 Stone Boulevard, Mississippi State, MS, 39762, USA
| | - Carrie K Kouba
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, 402 Dorman Hall, Mississippi State, MS, 39762, USA
| | - Peter J Allen
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Thompson Hall, 775 Stone Boulevard, Mississippi State, MS, 39762, USA
| | - Nucharin Songsasen
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Terri L Roth
- Center for Conservation and Research of Endangered Wildlife, Cincinnati Zoo and Botanical Garden, 3400 Vine Street, Cincinnati, OH, 45220, USA
| | - Andrew J Kouba
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Thompson Hall, 775 Stone Boulevard, Mississippi State, MS, 39762, USA.
| |
Collapse
|
2
|
Tisza BB, Járomi L, Háhn J, Bérczi B, Horváth-Sarródi A, Gubicskóné Kisbenedek A, Gerencsér G. Possible Genotoxic Effects of Post-Harvest Fungicides Applied on Citrus Peels: Imazalil, Pyrimethanil, Thiabendazole and Their Mixtures. Foods 2025; 14:1264. [PMID: 40238500 PMCID: PMC11989162 DOI: 10.3390/foods14071264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Post-harvest fungicides are frequently used on citrus peels to reduce post-harvest fungal contamination during the storage and transport of products. Despite these positive effects, fungicides can pose health risks to consumers. The aim of our study was to perform a genotoxicological risk assessment of imazalil, pyrimethanil, thiabendazole and their mixtures used as post-harvest treatments. A Salmonella mutagenicity Ames test and comet assay were performed to detect reverse mutation and assess DNA damage. Base-pair, frameshift mutations and metabolic activity were analyzed using the Ames test. In the comet assay, lymphocytes were treated with fungicides for 4 and 24 h. Thiabendazole was found to induce both frameshift and base-pair mutations in the Ames test despite the mutagenicity of both imzalil and pyrimethanil (p < 0.05). DNA-strand breaks were observed in lymphocytes, mainly with dimethyl-sulfoxide solvent fungicides (p < 0.05). The long-term exposure and consumption of fruits and vegetables treated with fungicides can increase the risks of developing genotoxic tumors. Our findings raise new questions about the health risks of fungicides and their mixtures to consumers. Further investigations are essential to explore the genotoxicological effects of fungicides on citrus peels.
Collapse
Affiliation(s)
- Boglárka Bernadett Tisza
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - Luca Járomi
- Department of Public Health Medicine, Medical School, University of Pecs, 7624 Pécs, Hungary; (B.B.); (A.H.-S.); (G.G.)
| | - Judit Háhn
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Bálint Bérczi
- Department of Public Health Medicine, Medical School, University of Pecs, 7624 Pécs, Hungary; (B.B.); (A.H.-S.); (G.G.)
| | - Andrea Horváth-Sarródi
- Department of Public Health Medicine, Medical School, University of Pecs, 7624 Pécs, Hungary; (B.B.); (A.H.-S.); (G.G.)
| | - Andrea Gubicskóné Kisbenedek
- Institute of Nutrition Sciences and Dietetics, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - Gellért Gerencsér
- Department of Public Health Medicine, Medical School, University of Pecs, 7624 Pécs, Hungary; (B.B.); (A.H.-S.); (G.G.)
- Preclinical Research Center, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
3
|
Krog LS, Kihara S, Mota-Santiago P, Foderà V, Bērziņš K, Boyd BJ. Low-frequency Raman spectroscopy as a new tool for understanding the behaviour of ionisable compounds in dispersed mesophases. J Colloid Interface Sci 2025; 683:210-220. [PMID: 39673934 DOI: 10.1016/j.jcis.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
HYPOTHESIS Low-frequency Raman (LFR) spectroscopy is proposed as a novel non-destructive methodology to probe pH-related phase transitions in self-assembled lipid particles. In this case, dispersed lipid mesophases were composed of ionisable oleic acid (OA) or nicergoline (NG) in monoolein (MO). The sensitivity of LFR spectroscopy to low-energy intermolecular vibrations was hypothesised to be due to structural transformation in ionisable dispersed mesophases upon changes in pH. METHOD/EXPERIMENT Phase transitions of dispersed mesophases of MO mixed with OA or NG were induced by varying the pH of the aqueous buffer. The structural transformations were studied using LFR spectroscopy, recording the corresponding changes in the vibrational density of states (VDOS) upon changes in pH and analysed using principal component analysis (PCA). The results were correlated with structural transitions observed in simultaneous small-angle X-ray scattering (SAXS) measurements. FINDINGS The intensity of the VDOS signal of MO + OA mesophases scaled with phase-specific transformations, such as from the bi-continuous cubic Im3¯m phase (V2) or lamellar-based vesicles to the reversed hexagonal p6m phase (H2). For NG subtle changes in the lattice parameter of the V2 phase of NG + MO mesophases coincided with the apparent dissociation constant (pKaapp) of NG, however, slight variations between the pKaapp of NG determined by equilibrated samples analysed using SAXS and non-equilibrated samples analysed using LFR suggest structural hysteresis upon changes in the protonation state of NG. This approach offers an efficient method for studying the phase behaviour of lipid systems under varying pH and potentially other conditions such as temperature.
Collapse
Affiliation(s)
- Lasse S Krog
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Shinji Kihara
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Pablo Mota-Santiago
- MAX IV Laboratory, Lund University, 118, Lund 22100, Sweden; Division of Solid Mechanics, Lund University, 118, Lund 22100, Sweden
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kārlis Bērziņš
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville 3052, VIC Australia.
| |
Collapse
|
4
|
William N, Acker JP. Innovations in red blood cell preservation. Blood Rev 2025:101283. [PMID: 40074611 DOI: 10.1016/j.blre.2025.101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
The global infrastructure supporting nearly 100 million transfusions annually relies on the ability to store red cell concentrates (RCCs) for up to 42 days at hypothermic temperatures or indefinitely at low sub-zero temperatures. While these methods are generally effective, there is both an opportunity and, in specific settings, a need to refine storage techniques that have remained largely unchanged since the 1980s. Recent research has identified ways to address limitations that were not fully understood when these methods were first implemented in blood banks, with much of it focusing on modifying conventional storage strategies, while some studies explore alternative approaches. In this review, we explore the current state of RBC preservation and the future prospects for advancing both short- and long-term storage strategies.
Collapse
Affiliation(s)
- Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Viana JVDS, Oliveira LRMD, Rodrigues LLV, Moura YBF, Pereira ABM, Alves PV, Silva HVR, Pereira AF. No synergistic effect of extracellular cryoprotectants with dimethyl sulfoxide in the conservation of northern tiger cat fibroblasts. Cryobiology 2025; 118:105169. [PMID: 39577602 DOI: 10.1016/j.cryobiol.2024.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/13/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
The success of somatic cell cryobanks is dependent on establishing reproducible cryopreservation methodologies. We supposed that associated extracellular cryoprotectants (sucrose and L-proline) with 2.5 or 10 % dimethyl sulfoxide (Me2SO) could guarantee better northern tiger cat cells quality rates after thawing when compared to Me2SO alone. Therefore, we evaluated the effects of sucrose or L-proline with 2.5 or 10 % Me2SO on the cryopreservation of northern tiger cat fibroblasts. Somatic cells were also cryopreserved with 2.5 % or 10 % Me2SO alone. All cells were analyzed for morphology, membrane integrity, proliferative activity, metabolism, apoptosis classification, reactive oxygen species (ROS) levels, and mitochondrial membrane potential (ΔΨm). Regardless of the cryoprotective solution, cryopreservation did not affect morphology, membrane integrity after culture, proliferative activity, and metabolism (P > 0.05). However, immediately after thawing, 2.5 % Me2SO with L-proline and 10 % Me2SO promoted higher rates of membrane integrity when compared to the other cryopreserved groups (P < 0.05). Interestingly, cells cryopreserved with 10 % Me2SO maintained ROS levels similar to non-cryopreserved cells (P > 0.05). However, the percentage of viable cells evaluated by apoptosis classification was reduced when using 10 % Me2SO with L-proline compared to non-cryopreserved groups (P < 0.05). Additionally, ΔΨm was altered in all cryopreserved groups (P < 0.05). In summary, sucrose and L-proline were less effective in cryopreservation of northern tiger cat fibroblasts in the presence of 2.5 % or 10 % Me2SO. Also, 10 % Me2SO appears to be the most suitable cryoprotectant for the formation of cryobanks of this species.
Collapse
Affiliation(s)
- João Vitor da Silva Viana
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoro, RN, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Cooperman B, McMurray M. Roles for the canonical polarity machinery in the de novo establishment of polarity in budding yeast spores. Mol Biol Cell 2025; 36:ar28. [PMID: 39841544 PMCID: PMC11974964 DOI: 10.1091/mbc.e24-07-0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/02/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
The yeast Saccharomyces cerevisiae buds at sites predetermined by cortical landmarks deposited during prior budding. During mating between haploid cells in the lab, external pheromone cues override the cortical landmarks to drive polarization and cell fusion. By contrast, in haploid gametes (called spores) produced by meiosis, a predetermined polarity site drives initial polarized morphogenesis independent of mating partner location. Spore membranes are made de novo so existing cortical landmarks were unknown, as were the mechanisms by which the spore polarity site is made and how it works. We find that the landmark canonically required for distal budding, Bud8, stably marks the spore polarity site along with Bud5, a GEF for the GTPase Rsr1 that canonically links cortical landmarks to the conserved Cdc42 polarity machinery. Cdc42 and other GTPase regulators arrive at the site during its biogenesis, after spore membrane closure but apparently at the site where membrane synthesis began, and then these factors leave, pointing to the presence of discrete phases of maturation. Filamentous actin may be required for initial establishment of the site, but thereafter Bud8 accumulates independent of actin filaments. These results suggest a distinct polarization mechanism that may provide insights into gamete polarization in other organisms.
Collapse
Affiliation(s)
- Benjamin Cooperman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
7
|
Jose A, Chathangad SN, Sivadas P, Barik D, Kannan K, Das SL, Sadhukhan S, Porel M. Dithiocarbamate-Based Sequence-Defined Oligomers as Promising Membrane-Disrupting Antibacterial Agents: Design, Activity, and Mechanism. ACS APPLIED BIO MATERIALS 2025; 8:1547-1558. [PMID: 39882634 DOI: 10.1021/acsabm.4c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The emerging prevalence of antimicrobial resistance demands cutting-edge therapeutic agents to treat bacterial infections. We present a synthetic strategy to construct sequence-defined oligomers (SDOs) by using dithiocarbamate (DTC). The antibacterial activity of the synthesized library of SDOs was studied using a Gram-positive B. subtilis and a Gram-negative E. coli. Among SDOs, Dec (with C10 aliphatic chain) was found to be the most promising antibacterial agent exhibiting a minimum inhibitory concentration (MIC) of 3 μg/mL against B. subtilis. Structure-activity relationship studies led to a 400-fold improvement in the MIC within the SDO library. The mode of action of the SDOs was elucidated on a model system, where bacterial membranes mimicking giant unilamellar vesicles (GUVs) were exposed to the SDOs. Membrane disruption and pore formation were found to be the key mechanisms through which SDOs act. In addition, scanning electron microscopy (SEM) and confocal laser scanning microscopy analysis of Dec-treated bacteria confirmed the loss of cell membrane integrity. Finally, the hemolysis assay with SDOs revealed their excellent selectivity toward bacterial cells. Taken together, we developed a modular platform for the synthesis of SDOs having promising antibacterial activity and superior selectivity toward bacteria, with the membrane disruption mode of action confirmed via studies on the model GUV system and SEM analysis.
Collapse
Affiliation(s)
- Anna Jose
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
| | - Shabin N Chathangad
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
- Physical and Chemical Biology Laboratory, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
| | - Palliyil Sivadas
- Physical and Chemical Biology Laboratory, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
| | - Debashis Barik
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
| | - Karthika Kannan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
- Physical and Chemical Biology Laboratory, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
| | - Sovan Lal Das
- Physical and Chemical Biology Laboratory, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
- Department of Mechanical Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
- Physical and Chemical Biology Laboratory, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
| | - Mintu Porel
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
- Environmental Sciences and Sustainable Engineering Centre, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India
| |
Collapse
|
8
|
Cooperman B, McMurray M. Roles for the canonical polarity machinery in the de novo establishment of polarity in budding yeast spores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.29.610423. [PMID: 39257763 PMCID: PMC11383998 DOI: 10.1101/2024.08.29.610423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The yeast Saccharomyces cerevisiae buds at sites pre-determined by cortical landmarks deposited during prior budding. During mating between haploid cells in the lab, external pheromone cues override the cortical landmarks to drive polarization and cell fusion. By contrast, in haploid gametes (called spores) produced by meiosis, a pre-determined polarity site drives initial polarized morphogenesis independent of mating partner location. Spore membranes are made de novo so existing cortical landmarks were unknown, as were the mechanisms by which the spore polarity site is made and how it works. We find that the landmark canonically required for distal budding, Bud8, stably marks the spore polarity site along with Bud5, a GEF for the GTPase Rsr1 that canonically links cortical landmarks to the conserved Cdc42 polarity machinery. Cdc42 and other GTPase regulators arrive at the site during its biogenesis, after spore membrane closure but apparently at the site where membrane synthesis began, and then these factors leave, pointing to the presence of discrete phases of maturation. Filamentous actin may be required for initial establishment of the site, but thereafter Bud8 accumulates independent of actin filaments. These results suggest a distinct polarization mechanism that may provide insights into gamete polarization in other organisms.
Collapse
Affiliation(s)
- Benjamin Cooperman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
9
|
Dcunha R, Aravind A, Bhaskar S, Mutalik S, Mutalik S, Kalthur SG, Kumar A, Hegde P, Adiga SK, Zhao Y, Kannan N, Prasad TSK, Kalthur G. Enhanced cell survival in prepubertal testicular tissue cryopreserved with membrane lipids and antioxidants rich cryopreservation medium. Cell Tissue Res 2025; 399:97-117. [PMID: 39585364 PMCID: PMC11742869 DOI: 10.1007/s00441-024-03930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
The present study explores the advantages of enriching the freezing medium with membrane lipids and antioxidants in improving the outcome of prepubertal testicular tissue cryopreservation. For the study, testicular tissue from Swiss albino mice of prepubertal age group (2 weeks) was cryopreserved by slow freezing method either in control freezing medium (CFM; containing DMSO and FBS in DMEM/F12) or test freezing medium (TFM; containing soy lecithin, phosphatidylserine, phosphatidylethanolamine, cholesterol, vitamin C, sodium selenite, DMSO and FBS in DMEM/F12 medium) and stored in liquid nitrogen for at least one week. The tissues were thawed and enzymatically digested to assess viability, DNA damage, and oxidative stress in the testicular cells. The results indicate that TFM significantly mitigated freeze-thaw-induced cell death, DNA damage, and lipid peroxidation compared to tissue cryopreserved in CFM. Further, a decrease in Cyt C, Caspase-3, and an increase in Gpx4 mRNA transcripts were observed in tissues frozen with TFM. Spermatogonial germ cells (SGCs) collected from tissues frozen with TFM exhibited higher cell survival and superior DNA integrity compared to those frozen in CFM. Proteomic analysis revealed that SGCs experienced a lower degree of freeze-thaw-induced damage when cryopreserved in TFM, as evident from an increase in the level of proteins involved in mitigating the heat stress response, transcriptional and translational machinery. These results emphasize the beneficial role of membrane lipids and antioxidants in enhancing the cryosurvival of prepubertal testicular tissue offering a significant stride towards improving the clinical outcome of prepubertal testicular tissue cryopreservation.
Collapse
Affiliation(s)
- Reyon Dcunha
- Division of Reproductive Genetics, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Smitha Bhaskar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalasandra, Yelahanka, Bengaluru, 560065, Karnataka, India
| | - Sadhana Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalasandra, Yelahanka, Bengaluru, 560065, Karnataka, India
| | - Padmaraj Hegde
- Department of Urology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Satish Kumar Adiga
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Yulian Zhao
- Department of Obstetrics and Gynecology and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
10
|
Kumar S, Islam R, O'Connor W, Melvin SD, Leusch FDL, Luengen A, MacFarlane GR. A metabolomic analysis on the toxicological effects of the universal solvent, dimethyl sulfoxide. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110073. [PMID: 39522855 DOI: 10.1016/j.cbpc.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Dimethyl sulfoxide (DMSO) is a solvent used to dissolve a variety of organic compounds. It is presumed to be non-toxic at concentrations below 1 % v/v, although several studies have demonstrated that low dose DMSO exposure can alter cellular biochemistry. This study evaluated the toxicity of DMSO at 0.0002 % v/v to the Sydney Rock oyster, Saccostrea glomerata, following 7d of exposure. Metabolites were chosen as the toxicity endpoints because they can be used as energy sources and counteract contaminant-induced stress. Relative to seawater controls, exposure to DMSO caused a 74 % significant change in metabolites in the female digestive gland, including decreases in most amino acids, carbohydrates, nicotinamides, and lipids. The female gonad showed a 43 % significant change in metabolites, with decreases in amino acids and carbohydrates, but increases in lipids. The male digestive gland showed a 29 % significant change in metabolites, with increases in lipids. The decline in metabolites in the female digestive gland, but not in the male digestive gland, may be due to their differential metabolic demands. Furthermore, pathway impact analysis revealed that DMSO exposure altered energy metabolism, disturbed osmotic balance, and induced oxidative stress in oysters. Because the effects of DMSO are not uniform across gender and tissue, use of DMSO as a solvent will confound metabolomic experimental results when comparisons among sexes and/or tissues are integral to the experimental design. There is a risk of incomplete dissolution of contaminants unless carrier solvents are used. Therefore, in practice, a solvent control along with a water control is recommended for experimentation.
Collapse
Affiliation(s)
- Sazal Kumar
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rafiquel Islam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Wayne O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Steve D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, QLD 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, QLD 4222, Australia
| | - Allison Luengen
- Department of Environmental Science, University of San Francisco, San Francisco, CA 94117, United States
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
11
|
Gaburjakova J, Domsicova M, Poturnayova A, Gaburjakova M. Flecainide Specifically Targets the Monovalent Countercurrent Through the Cardiac Ryanodine Receptor, While a Dominant Opposing Ca 2+/Ba 2+ Current Is Present. Int J Mol Sci 2024; 26:203. [PMID: 39796059 PMCID: PMC11719481 DOI: 10.3390/ijms26010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na+ channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca2+ release from the sarcoplasmic reticulum (SR). However, it has been proposed that charge-compensating countercurrent from the cytosol to SR lumen plays a critical role, and its reduction may indeed suppress excessive diastolic SR Ca2+ release through RyR2 channels in CPVT. Monitoring single-channel properties, we examined whether flecainide can target intracellular pathways for charge-balancing currents carried by RyR2 and SR Cl- channels under cell-like conditions. Particularly, the Tris+ countercurrent flowed through the RyR2 channel simultaneously with a dominant reverse Ca2+/Ba2+ current. We demonstrate that flecainide blocked the RyR2-mediated countercurrent without affecting channel activity. In contrast, the SR Cl- channel was completely resistant to flecainide. Based on these findings, it is reasonable to propose that the primary intracellular target of flecainide in vivo is the RyR2-mediated countercurrent.
Collapse
Affiliation(s)
| | | | | | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia; (J.G.); (M.D.); (A.P.)
| |
Collapse
|
12
|
Queirós-Reis L, Alvites R, Maurício AC, Brancale A, Bassetto M, Mesquita JR. Disrupting SARS-CoV-2 Spike Protein Activity: A Virtual Screening and Binding Assay Study. Int J Mol Sci 2024; 26:151. [PMID: 39796007 PMCID: PMC11720127 DOI: 10.3390/ijms26010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a respiratory virus that emerged in late 2019 and rapidly spread worldwide, causing the COVID-19 pandemic. The spike glycoprotein (S protein) plays a crucial role in viral target recognition and entry by interacting with angiotensin, converting enzyme 2 (ACE2), the functional receptor for the virus, via its receptor binding domain (RBD). The RBD availability for this interaction can be influenced by external factors, such as fatty acids. Linoleic acid (LA), a free fatty acid, has been shown to bind the S protein, modulating the viral infection by reducing initial target recognition. LA interacts with the fatty acid binding pocket (FABP), a potential drug target against SARS-CoV-2. In this study, we aimed to exploit the FABP as a drug target by performing a docking-based virtual screening with a library of commercially available, drug-like compounds. The virtual hits identified were then assessed in in vitro assays for the inhibition of the virus-host interaction and cytotoxicity. Binding assays targeting the spike-ACE2 interaction identified multiple compounds with inhibitory activity and low cytotoxicity.
Collapse
Affiliation(s)
- Luís Queirós-Reis
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (L.Q.-R.); (R.A.); (A.C.M.)
| | - Rui Alvites
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (L.Q.-R.); (R.A.); (A.C.M.)
- Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Advanced Polytechnic and University Cooperative, University Institute of Health Sciences (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Ana Colette Maurício
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (L.Q.-R.); (R.A.); (A.C.M.)
- Animal Science Study Centre (CECA), University of Porto Agroenvironment, Technologies and Sciences Institute (ICETA), 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Andrea Brancale
- Department of Organic Chemistry, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3BN, UK;
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| | - João R. Mesquita
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; (L.Q.-R.); (R.A.); (A.C.M.)
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 4050-091 Porto, Portugal
| |
Collapse
|
13
|
Tian Y, Li X, Chen Y, Hu X, Liu Y, Luo H, Jing G. Swimming Modes of Bacteria Escaping from a Soft Confined Space. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39565220 DOI: 10.1021/acs.langmuir.4c03808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Navigating through soft and highly confined environments is crucial for bacteria moving within living organisms' tissues, yet this topic has been less explored. In our study, we experimentally harnessed the unique biconcave geometry of red blood cells (RBCs) to enable real-time visualization of swimming Escherichia coli interacting with soft RBCs. Our findings show that RBCs adhering to a rigid surface can enclose spaces comparable to the size of bacteria, effectively entrapping them. Remarkably, we found that bacteria can escape from this extremely confined space through three newly defined escape modes: Bundling, Unbundling, and Flipping, each mode relying on the specific states of bacterial flagella. A quantitative analysis uncovers significant differences among these modes in terms of scattering angle, escaping speed, and trapping duration. We used two methods to alter the rigidity and adhesion strength of RBCs, and we studied their effects on the detailed bacterial escape process. Our results contribute to the knowledge of bacterial migration in soft, confined spaces, thereby enhancing our understanding of similar processes in biological tissue environments.
Collapse
Affiliation(s)
- Yangguang Tian
- School of Physics, Northwest University, 710127 Xi'An, China
| | - Xinlei Li
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, 710032 Xi'An, China
| | - Yaozhen Chen
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, 710032 Xi'An, China
| | - Xingbin Hu
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, 710032 Xi'An, China
| | - Yanan Liu
- School of Physics, Northwest University, 710127 Xi'An, China
| | - Hao Luo
- School of Physics, Northwest University, 710127 Xi'An, China
| | - Guangyin Jing
- School of Physics, Northwest University, 710127 Xi'An, China
| |
Collapse
|
14
|
Marques BLM, Passos TS, Dantas AI, de Lima MAA, Moreira SMG, Rodrigues VM, do Nascimento Dantas MR, Lopes PS, Gomes APB, da Silva Fernandes R, Júnior FHX, Sousa Júnior FCD, de Assis CF. Nanoencapsulation of quinoa oil enhanced the antioxidant potential and inhibited digestive enzymes. Food Res Int 2024; 196:115066. [PMID: 39614496 DOI: 10.1016/j.foodres.2024.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 12/01/2024]
Abstract
Quinoa oil is rich in unsaturated fatty acids and vitamin E, but its instability limits its application in food, pharmaceutical, and cosmetic products. Nanoencapsulation emerges as a promising strategy to promote water dispersibility, preserve and enhance functional properties, and increase the bioavailability of bioactive compounds. This study encapsulated quinoa oil through O/W emulsification, using porcine gelatin (OG) and isolated whey protein (OWG) as encapsulating agents. The particles were characterized by different physical and chemical methods and evaluated in vitro for cytotoxicity using Chinese hamster ovary (CHO) cells, human hepatocarcinoma cells (HepG2) and epithelial cells, and bioactive potential through the determination of Total Antioxidant Capacity (CAT) (acidic and neutral media) and iron chelation, and inhibition of digestive enzymes (α-amylase and amyloglucosidase). OG and OWG particles presented smooth surfaces, with an average size between 161 ± 7 and 264 ± 6 nm, with a polydispersity index of 0.11 ± 0.03 and 0.130 ± 0.04, encapsulation efficiency of 74 ± 1.47 % and 83 ± 2.92 %, and water dispersibility >70 %, respectively. Free and nanoencapsulated quinoa oil did not show cytotoxic effects (cell viability >70 %). Nanoencapsulation promoted the enhancement of the antioxidant activity of quinoa oil in the range of 50-63 % in a neutral medium and 96-153 % in an acidic medium than free oil (p < 0.05). OG and OWG also enhanced the inhibition of the enzymes α-amylase (by 5-7 %) and amyloglucosidase (6-9 times more) than free oil (p < 0.05). The results showed that nanoencapsulation increased the potential for quinoa oil application, enabling the development of innovative products.
Collapse
Affiliation(s)
- Bruna Lorena Meneses Marques
- Pharmaceutical Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Thaís Souza Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Alyne Ingrydid Dantas
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Malu Andrade Alves de Lima
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Susana Margarida Gomes Moreira
- Department of Cell Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Victor M Rodrigues
- Department of Cell Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Marina R do Nascimento Dantas
- Department of Cell Biology and Genetics, Center of Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Patrícia Santos Lopes
- Departament of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Ana Paula Barreto Gomes
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Francisco Canindé de Sousa Júnior
- Pharmaceutical Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Cristiane Fernandes de Assis
- Pharmaceutical Sciences Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
15
|
Święciło A, Januś E, Krzepiłko A, Skowrońska M. The effect of DMSO on Saccharomyces cerevisiae yeast with different energy metabolism and antioxidant status. Sci Rep 2024; 14:21974. [PMID: 39304697 DOI: 10.1038/s41598-024-72400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
We studied the effect of dimethyl sulfoxide (DMSO) on the biochemical and physiological parameters of S. cerevisiae yeast cells with varied energy metabolism and antioxidant status. The wild-type cells of varied genetic backgrounds and their isogenic mutants with impaired antioxidant defences (Δsod mutants) or response to environmental stress (ESR) (Δmsn2, Δmsn4 and double Δmsn2msn4 mutants) were used. Short-term exposure to DMSO even at a wide range of concentrations (2-20%) had little effect on the metabolic activity of the yeast cells and the stability of their cell membranes, but induced free radicals production and clearly altered their proliferative activity. Cells of the Δsod1 mutant showed greater sensitivity to DMSO in these conditions. DMSO at concentrations from 4 to 10-14% (depending on the strain and genetic background) activated the ESR programme. The effects of long-term exposure to DMSO were mainly depended on the type of energy metabolism and antioxidant system efficiency. Yeast cells with reduced antioxidant system efficiency and/or aerobic respiration were more susceptible to the toxic effects of DMSO than cells with a wild-type phenotype and respiro-fermentative or fully fermentative metabolism. These studies suggest a key role of stress response programs in both the processes of cell adaptation to small doses of this xenobiotic and the processes related to its toxicity resulting from large doses or chronic exposure to DMSO.
Collapse
Affiliation(s)
- Agata Święciło
- Department of Environmental Microbiology, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069, Lublin, Poland.
| | - Ewa Januś
- Department of Cattle Breeding and Genetic Resources Conservation, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Anna Krzepiłko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Monika Skowrońska
- Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| |
Collapse
|
16
|
Lu J, Teleanu F, Zou H, Zhang C, Hollingsworth A, Jerschow A. Conformational Landscape of NADH and Ion Binding in Water/DMSO Mixtures via 31P NMR Spectroscopy. J Phys Chem B 2024; 128:8504-8511. [PMID: 39018118 PMCID: PMC11382270 DOI: 10.1021/acs.jpcb.4c03162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
This study reports on the conformational states of nicotinamide adenine dinucleotide (NADH) in water/DMSO mixtures and examines the influence of ion binding. We observe evidence of conformational changes through a series of NMR techniques, including 31P NMR relaxation (R1 and R2), chemical exchange saturation transfer (CEST), and diffusion-ordered spectroscopy (DOSY) experiments. The observed variation of the conformational states is indicative of the solvent's influence on NADH's structural flexibility. The experimental findings, in combination with viscosity data, are shown to be in line with findings from earlier molecular dynamics studies. The reported observations emphasize the critical role of the solvent environment in determining the conformational states of NADH and similar molecules with relevance for the biophysiological context. The results found herein can help in studying the biophysical behavior of NADH and similar biomolecules and their associated metabolic pathways under various solvent conditions.
Collapse
Affiliation(s)
- Jiaqi Lu
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Florin Teleanu
- Department of Chemistry, New York University, New York, New York 10003, United States
- Interdisciplinary School of Doctoral Studies, University of Bucharest, Bucharest 010041, Romania
- Biophysics and Biomedical Application Laboratory, Extreme Light Infrastructure Nuclear Physics, IFIN-HH, Măgurele 77125, Romania
| | - Huijing Zou
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Chengtong Zhang
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Andrew Hollingsworth
- Department of Physics, New York University, New York, New York 10003, United States
| | - Alexej Jerschow
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
17
|
Alkali IM, Colombo M, De Iorio T, Piotrowska A, Rodak O, Kulus MJ, Niżański W, Dziegiel P, Luvoni GC. Vitrification of feline ovarian tissue: Comparison of protocols based on equilibration time and temperature. Theriogenology 2024; 224:163-173. [PMID: 38776704 DOI: 10.1016/j.theriogenology.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Global contraction of biodiversity pushed most members of Felidae into threatened or endangered list except the domestic cat (Felis catus) thence preferred as the best model for conservation studies. One of the emerging conservation strategies is vitrification of ovarian tissue which is field-friendly but not yet standardized. Thus, our main goal was to establish a suitable vitrification protocol for feline ovarian tissue in field condition. Feline ovarian tissue fragments were punched with biopsy punch (1.5 mm diameter) and divided into 4 groups. Group 1 was fresh control (Fr), while the other three were exposed to 3 vitrification protocols (VIT_CT, VIT_RT1 and VIT_RT2). VIT_CT involved two step equilibrations in solutions containing dimethyl sulfoxide (DMSO) and ethylene glycol (EG) for 10 min each at 4 °C. VIT_RT1 involved three step equilibration in solutions containing DMSO, EG, polyvinylpyrrolidone and sucrose for 14 min in total at room temperature, while in VIT_RT2 all conditions remained the same as in VIT_RT1 except equilibration timing which was reduced by half. After vitrification and warming, fragments were morphologically evaluated and then cultured for six days. Subsequently, follicular morphology, cellular proliferation (expression of Ki-67, MCM-7) and apoptosis (expression of caspase-3) were evaluated, and data obtained were analysed using generalised linear mixed model and chi square tests. Proportions of intact follicles were higher in Fr (P = 0.0001) and VIT_RT2 (P = 0.0383) in comparison to the other protocols both post warming and after the six-day culture. Generally, most follicles remained at primordial state which was confirmed by the low expression of Ki-67, MCM-7 markers. In conclusion, VIT_RT2 protocol, which has lower equilibration time at room temperature has proven superior thus recommended for vitrification of feline ovarian tissue.
Collapse
Affiliation(s)
- Isa Mohammed Alkali
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy; Department of Theriogenology, University of Maiduguri, Maiduguri, Nigeria.
| | - Martina Colombo
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy.
| | - Teresina De Iorio
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy; Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Research Center "Zootechny and Aquaculture", Via Salaria, 31, 00015, Monterotondo, RM, Italy.
| | - Aleksandra Piotrowska
- Department of Histology and Embryology, Wrocław Medical University, ul. Chalubinskiego 6a, 50-368, Wrocław, Poland.
| | - Olga Rodak
- Department of Histology and Embryology, Wrocław Medical University, ul. Chalubinskiego 6a, 50-368, Wrocław, Poland.
| | - Michał Jerzy Kulus
- Division of Ultrastructural Research, Wroclaw Medical University, 50-368, Wrocław, Poland.
| | - Wojciech Niżański
- Department of Reproduction and Clinic for Farm Animals, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 49, 50-366, Wrocław, Poland.
| | - Piotr Dziegiel
- Department of Histology and Embryology, Wrocław Medical University, ul. Chalubinskiego 6a, 50-368, Wrocław, Poland.
| | - Gaia Cecilia Luvoni
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università, 6, 26900, Lodi, Italy.
| |
Collapse
|
18
|
Dehghan Z, Darya G, Mehdinejadiani S, Derakhshanfar A. Comparison of two methods of sperm- and testis-mediated gene transfer in production of transgenic animals: A systematic review. Anim Genet 2024; 55:328-343. [PMID: 38361185 DOI: 10.1111/age.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/19/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Transgenic (Tg) animal technology is one of the growing areas in biology. Various Tg technologies, each with its own advantages and disadvantages, are available for generating Tg animals. These include zygote microinjection, electroporation, viral infection, embryonic stem cell or spermatogonial stem cell-mediated production of Tg animals, sperm-mediated gene transfer (SMGT), and testis-mediated gene transfer (TMGT). However, there are currently no comprehensive studies comparing SMGT and TMGT methods, selecting appropriate gene delivery carriers (such as nanoparticles and liposomes), and determining the optimal route for gene delivery (SMGT and TMGT) for producing Tg animal. Here we aim to provide a comprehensive assessment comparing SMGT and TMGT methods, and to introduce the best carriers and gene transfer methods to sperm and testis to generate Tg animals in different species. From 2010 to 2022, 47 studies on SMGT and 25 studies on TMGT have been conducted. Mice and rats were the most commonly used species in SMGT and TMGT. Regarding the SMGT approach, nanoparticles, streptolysin-O, and virus packaging were found to be the best gene transfer methods for generating Tg mice. In the TMGT method, the best gene transfer methods for generating Tg mice and rats were virus packaging, dimethyl sulfoxide, electroporation, and liposome. Our study has shown that the efficiency of producing Tg animals varies depending on the species, gene carrier, and method of gene transfer.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Darya
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayesteh Mehdinejadiani
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Derakhshanfar
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Tunçer Çağlayan S, Gurbanov R. Modulation of bacterial membranes and cellular macromolecules by dimethyl sulfoxide: A dose-dependent study providing novel insights. Int J Biol Macromol 2024; 267:131581. [PMID: 38615866 DOI: 10.1016/j.ijbiomac.2024.131581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Using Escherichia coli as a model, this manuscript delves into the intricate interactions between dimethyl sulfoxide (DMSO) and membranes, cellular macromolecules, and the effects on various aspects of bacterial physiology. Given DMSO's wide-ranging use as a solvent in microbiology, we investigate the impacts of both non-growth inhibitory (1.0 % and 2.5 % v/v) and slightly growth-inhibitory (5.0 % v/v) concentrations of DMSO. The results demonstrate that DMSO causes alterations in bacterial membrane potential, influences the electrochemical characteristics of the cell surface, and exerts substantial effects on the composition and structure of cellular biomolecules. Genome-wide gene expression data from DMSO-treated E. coli was used to further investigate and bolster the results. The findings of this study provide valuable insights into the complex relationship between DMSO and biological systems, with potential implications in drug delivery and cellular manipulation. However, it is essential to exercise caution when utilizing DMSO to enhance the solubility and delivery of bioactive compounds, as even at low concentrations, DMSO exerts non-inert effects on cellular macromolecules and processes.
Collapse
Affiliation(s)
- Sinem Tunçer Çağlayan
- Vocational School of Health Services, Department of Medical Services and Techniques, Bilecik Şeyh Edebali University, 11100 Bilecik, Turkey.
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11100 Bilecik, Turkey; Central Research Laboratory, Bilecik Şeyh Edebali University, 11100 Bilecik, Turkey
| |
Collapse
|
20
|
Hofmann K, Hofmann S, Weigl F, Mai J, Schreiner S. DMSO and Its Role in Differentiation Impact Efficacy of Human Adenovirus (HAdV) Infection in HepaRG Cells. Viruses 2024; 16:633. [PMID: 38675973 PMCID: PMC11054035 DOI: 10.3390/v16040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Differentiated HepaRG cells are popular in vitro cell models for hepatotoxicity studies. Their differentiation is usually supported by the addition of dimethyl sulfoxide (DMSO), an amphipathic solvent widely used in biomedicine, for example, in potential novel therapeutic drugs and cryopreservation of oocytes. Recent studies have demonstrated drastic effects, especially on epigenetics and extracellular matrix composition, induced by DMSO, making its postulated inert character doubtful. In this work, the influence of DMSO and DMSO-mediated modulation of differentiation on human adenovirus (HAdV) infection of HepaRG cells was investigated. We observed an increase in infectivity of HepaRG cells by HAdVs in the presence of 1% DMSO. However, this effect was dependent on the type of medium used for cell cultivation, as cells in William's E medium showed significantly stronger effects compared with those cultivated in DMEM. Using different DMSO concentrations, we proved that the impact of DMSO on infectability was dose-dependent. Infection of cells with a replication-deficient HAdV type demonstrated that the mode of action of DMSO was based on viral entry rather than on viral replication. Taken together, these results highlight the strong influence of the used cell-culture medium on the performed experiments as well as the impact of DMSO on infectivity of HepaRG cells by HAdVs. As this solvent is widely used in cell culture, those effects must be considered, especially in screening of new antiviral compounds.
Collapse
Affiliation(s)
- Katharina Hofmann
- Institute of Virology, School of Medicine, Technical University of Munich, 80333 München, Germany
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (K.H.)
| | - Samuel Hofmann
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Franziska Weigl
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (K.H.)
| | - Julia Mai
- Institute of Virology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, 80333 München, Germany
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany;
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, 30625 Hannover, Germany
- Institute of Virology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
21
|
de Vries A, Goloviznina K, Reiter M, Salanne M, Lukatskaya MR. Solvation-Tuned Photoacid as a Stable Light-Driven pH Switch for CO 2 Capture and Release. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1308-1317. [PMID: 38385123 PMCID: PMC10877570 DOI: 10.1021/acs.chemmater.3c02435] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 02/23/2024]
Abstract
Photoacids are organic molecules that release protons under illumination, providing spatiotemporal control of the pH. Such light-driven pH switches offer the ability to cyclically alter the pH of the medium and are highly attractive for a wide variety of applications, including CO2 capture. Although photoacids such as protonated merocyanine can enable fully reversible pH cycling in water, they have a limited chemical stability against hydrolysis (<24 h). Moreover, these photoacids have low solubility, which limits the pH-switching ability in a buffered solution such as dissolved CO2. In this work, we introduce a simple pathway to dramatically increase stability and solubility of photoacids by tuning their solvation environment in binary solvent mixtures. We show that a preferential solvation of merocyanine by aprotic solvent molecules results in a 60% increase in pH modulation magnitude when compared to the behavior in pure water and can withstand stable cycling for >350 h. Our results suggest that a very high stability of merocyanine photoacids can be achieved in the right solvent mixtures, offering a way to bypass complex structural modifications of photoacid molecules and serving as the key milestone toward their application in a photodriven CO2 capture process.
Collapse
Affiliation(s)
- Anna de Vries
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Kateryna Goloviznina
- Sorbonne
Université, CNRS, Physico-Chimie des Électrolytes et
Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Manuel Reiter
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Mathieu Salanne
- Sorbonne
Université, CNRS, Physico-Chimie des Électrolytes et
Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris, France
| | - Maria R. Lukatskaya
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
22
|
Berikkhanova K, Taigulov E, Bokebaev Z, Kusainov A, Tanysheva G, Yedrissov A, Seredin G, Baltabayeva T, Zhumadilov Z. Drug-loaded erythrocytes: Modern approaches for advanced drug delivery for clinical use. Heliyon 2024; 10:e23451. [PMID: 38192824 PMCID: PMC10772586 DOI: 10.1016/j.heliyon.2023.e23451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Scientific organizations worldwide are striving to create drug delivery systems that provide a high local concentration of a drug in pathological tissue without side effects on healthy organs in the body. Important physiological properties of red blood cells (RBCs), such as frequent renewal ability, good oxygen carrying ability, unique shape and membrane flexibility, allow them to be used as natural carriers of drugs in the body. Erythrocyte carriers derived from autologous blood are even more promising drug delivery systems due to their immunogenic compatibility, safety, natural uniqueness, simple preparation, biodegradability and convenience of use in clinical practice. This review is focused on the achievements in the clinical application of targeted drug delivery systems based on osmotic methods of loading RBCs, with an emphasis on advancements in their industrial production. This article describes the basic methods used for encapsulating drugs into erythrocytes, key strategic approaches to the clinical use of drug-loaded erythrocytes obtained by hypotonic hemolysis. Moreover, clinical trials of erythrocyte carriers for the targeted delivery are discussed. This article explores the recent advancements and engineering approaches employed in the encapsulation of erythrocytes through hypotonic hemolysis methods, as well as the most promising inventions in this field. There is currently a shortage of reviews focused on the automation of drug loading into RBCs; therefore, our work fills this gap. Finally, further prospects for the development of engineering and technological solutions for the automatic production of drug-loaded RBCs were studied. Automated devices have the potential to provide the widespread production of RBC-encapsulated therapeutic drugs and optimize the process of targeted drug delivery in the body. Furthermore, they can expedite the widespread introduction of this innovative treatment method into clinical practice, thereby significantly expanding the effectiveness of treatment in both surgery and all areas of medicine.
Collapse
Affiliation(s)
- Kulzhan Berikkhanova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
| | - Erlan Taigulov
- University Medical Center, Nazarbayev University, Astana, 010000, Kazakhstan
- Astana Medical University, Astana, 010000, Kazakhstan
| | - Zhanybek Bokebaev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
- Astana Medical University, Astana, 010000, Kazakhstan
| | - Aidar Kusainov
- Semey State Medical University, Semey, 071400, Kazakhstan
| | | | - Azamat Yedrissov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
| | - German Seredin
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
| | - Tolkyn Baltabayeva
- Scientific-Production Center of Transfusiology, Astana, 010000, Kazakhstan
| | - Zhaxybay Zhumadilov
- Departament of Surgery, School of Medicine, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
| |
Collapse
|
23
|
Zöller K, Karlegger A, Truszkowska M, Stengel D, Bernkop-Schnürch A. Fluorescent hydrophobic ion pairs: A powerful tool to investigate cellular uptake of hydrophobic drug complexes via lipid-based nanocarriers. J Colloid Interface Sci 2024; 654:174-188. [PMID: 37839235 DOI: 10.1016/j.jcis.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
HYPOTHESIS Hydrophobic ion pairs (HIPs) between two fluorescent components and incorporation into nanoemulsions (NE) allows tracking in cellular uptake studies. EXPERIMENTS HIPs were formed between propidium iodide and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-PE), azure A chloride and NBD-PE or coumarin 343 and 4-(4-dihexadecylaminostyryl)-N-methylpyridinium iodide) (DiA). Fluorescence spectra of the resulting complexes were recorded. HIPs were loaded into zwitterionic NE and their size, stability in different media, haemolytic properties and cytotoxicity were evaluated. Furthermore, cellular uptake at 37 °C and 4 °C was investigated via flow cytometry and confocal microscopy. FINDINGS HIP-formation increased lipophilicity of the hydrophilic model drugs. NE exhibited a size between 80 and 150 nm and were not toxic in concentrations up to 0.1 % but showed high haemolytic properties. Cellular uptake of propidium, azure A and coumarin 343 were 8-fold, 115-fold and 1.3-fold improved by the formation of HIPs and up to 59-fold, 120-fold and 50-fold by incorporating these HIPs in NE, respectively. Lower uptake was observed at 4 °C. In case of propidium/ NBD-PE and azure A/ NBD-PE HIPs, propidium and azure A were delivered into the cytosol, whereas NBD-PE was unable to enter cells. In case of coumarin 343/ DiA HIPs, both components accumulated in the cell membrane. Therefore, HIPs between two fluorescent compounds are a powerful tool to investigate cellular uptake of hydrophobic complexes via nanocarriers by visualization of their cellular distribution.
Collapse
Affiliation(s)
- Katrin Zöller
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Anna Karlegger
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martyna Truszkowska
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Daniel Stengel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
24
|
El Kamouh M, Brionne A, Sayyari A, Laurent A, Labbé C. Cryopreservation effect on DNA methylation profile in rainbow trout spermatozoa. Sci Rep 2023; 13:19029. [PMID: 37923780 PMCID: PMC10624875 DOI: 10.1038/s41598-023-44803-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023] Open
Abstract
Spermatozoa are the cells that are most commonly used for cryopreservation of valuable genetic resources in aquaculture. It is known that fish spermatozoa transmit to the embryo not only their genetic but also their epigenetic profile, especially DNA methylation. Therefore, any alteration of the DNA methylation profile in spermatozoa induces the risk of transmitting epigenetic alterations to the offspring. The aim of this study was to assess the effect of cryopreservation on DNA methylation in rainbow trout spermatozoa. To trigger variable cellular response after freezing-thawing, spermatozoa from mature males were cryopreserved with dimethyl sulfoxide, methanol or glycerol as cryoprotectant. We observed that dimethyl sulfoxide was the best to preserve thawed spermatozoa functions. Methanol only slightly preserved all the cellular parameters, while glycerol failed to protect motility and fertilization ability. The consequences on DNA methylation were assessed using Reduced Representation Bisulfite Sequencing (RRBS). Sperm cryopreservation did not thoroughly impact DNA methylation, although 335-564 differentially methylated cytosines were characterized depending on the cryoprotectant. Very few of them were shared between cryoprotectants, and no correlation with the extent of cellular damage was found. Our study showed that DNA methylation was only slightly altered after sperm cryopreservation, and this may render further analysis of the risk for the progeny very challenging.
Collapse
Affiliation(s)
| | | | - Amin Sayyari
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Audrey Laurent
- INRAE, Fish Physiology and Genomics, UR 1037, Rennes, France.
| | - Catherine Labbé
- INRAE, Fish Physiology and Genomics, UR 1037, Rennes, France.
| |
Collapse
|
25
|
Tejedera-Villafranca A, Montolio M, Ramón-Azcón J, Fernández-Costa JM. Mimicking sarcolemmal damage in vitro: a contractile 3D model of skeletal muscle for drug testing in Duchenne muscular dystrophy. Biofabrication 2023; 15:045024. [PMID: 37725998 DOI: 10.1088/1758-5090/acfb3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Duchenne muscular dystrophy (DMD) is the most prevalent neuromuscular disease diagnosed in childhood. It is a progressive and wasting disease, characterized by a degeneration of skeletal and cardiac muscles caused by the lack of dystrophin protein. The absence of this crucial structural protein leads to sarcolemmal fragility, resulting in muscle fiber damage during contraction. Despite ongoing efforts, there is no cure available for DMD patients. One of the primary challenges is the limited efficacy of current preclinical tools, which fail in modeling the biological complexity of the disease. Human-based three-dimensional (3D) cell culture methods appear as a novel approach to accelerate preclinical research by enhancing the reproduction of pathophysiological processes in skeletal muscle. In this work, we developed a patient-derived functional 3D skeletal muscle model of DMD that reproduces the sarcolemmal damage found in the native DMD muscle. These bioengineered skeletal muscle tissues exhibit contractile functionality, as they responded to electrical pulse stimulation. Sustained contractile regimes induced the loss of myotube integrity, mirroring the pathological myotube breakdown inherent in DMD due to sarcolemmal instability. Moreover, damaged DMD tissues showed disease functional phenotypes, such as tetanic fatigue. We also evaluated the therapeutic effect of utrophin upregulator drug candidates on the functionality of the skeletal muscle tissues, thus providing deeper insight into the real impact of these treatments. Overall, our findings underscore the potential of bioengineered 3D skeletal muscle technology to advance DMD research and facilitate the development of novel therapies for DMD and related neuromuscular disorders.
Collapse
Affiliation(s)
- Ainoa Tejedera-Villafranca
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| | - Marisol Montolio
- Duchenne Parent Project España, E28032 Madrid, Spain
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, E08027 Barcelona, Spain
| | - Javier Ramón-Azcón
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain
- Institució Catalana de Reserca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, E08010 Barcelona, Spain
| | - Juan M Fernández-Costa
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/Baldiri Reixac 10-12, E08028 Barcelona, Spain
| |
Collapse
|
26
|
Belliveau NM, Footer MJ, Akdoǧan E, van Loon AP, Collins SR, Theriot JA. Whole-genome screens reveal regulators of differentiation state and context-dependent migration in human neutrophils. Nat Commun 2023; 14:5770. [PMID: 37723145 PMCID: PMC10507112 DOI: 10.1038/s41467-023-41452-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in humans and provide a critical early line of defense as part of our innate immune system. We perform a comprehensive, genome-wide assessment of the molecular factors critical to proliferation, differentiation, and cell migration in a neutrophil-like cell line. Through the development of multiple migration screen strategies, we specifically probe directed (chemotaxis), undirected (chemokinesis), and 3D amoeboid cell migration in these fast-moving cells. We identify a role for mTORC1 signaling in cell differentiation, which influences neutrophil abundance, survival, and migratory behavior. Across our individual migration screens, we identify genes involved in adhesion-dependent and adhesion-independent cell migration, protein trafficking, and regulation of the actomyosin cytoskeleton. This genome-wide screening strategy, therefore, provides an invaluable approach to the study of neutrophils and provides a resource that will inform future studies of cell migration in these and other rapidly migrating cells.
Collapse
Affiliation(s)
- Nathan M Belliveau
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Matthew J Footer
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Emel Akdoǧan
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA
| | - Aaron P van Loon
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
27
|
Cheburkanov V, Du J, Brogan DM, Berezin MY, Yakovlev VV. Toward peripheral nerve mechanical characterization using Brillouin imaging spectroscopy. NEUROPHOTONICS 2023; 10:035007. [PMID: 37635849 PMCID: PMC10460255 DOI: 10.1117/1.nph.10.3.035007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
Significance Peripheral nerves are viscoelastic tissues with unique elastic characteristics. Imaging of peripheral nerve elasticity is important in medicine, particularly in the context of nerve injury and repair. Elasticity imaging techniques provide information about the mechanical properties of peripheral nerves, which can be useful in identifying areas of nerve damage or compression, as well as assessing the success of nerve repair procedures. Aim We aim to assess the feasibility of Brillouin microspectroscopy for peripheral nerve imaging of elasticity, with the ultimate goal of developing a new diagnostic tool for peripheral nerve injury in vivo. Approach Viscoelastic properties of the peripheral nerve were evaluated with Brillouin imaging spectroscopy. Results An external stress exerted on the fixed nerve resulted in a Brillouin shift. Quantification of the shift enabled correlation of the Brillouin parameters with nerve elastic properties. Conclusions Brillouin microscopy provides sufficient sensitivity to assess viscoelastic properties of peripheral nerves.
Collapse
Affiliation(s)
- Vsevolod Cheburkanov
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Junwei Du
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
- Washington University, Institute of Materials Science and Engineering, St. Louis, Missouri, United States
| | - David M. Brogan
- Washington University School of Medicine, Department of Orthopedic Surgery, St. Louis, Missouri, United States
| | - Mikhail Y. Berezin
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
- Washington University, Institute of Materials Science and Engineering, St. Louis, Missouri, United States
| | - Vladislav V. Yakovlev
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| |
Collapse
|
28
|
Kumaran A, Bhagwat A, Jain R, Dandekar P. Comparison between carbohydrate and salt-based macromolecular crowders for cell preservation at higher temperatures. 3 Biotech 2023; 13:184. [PMID: 37193324 PMCID: PMC10182916 DOI: 10.1007/s13205-023-03571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
In this investigation, the macromolecular crowding effect of a carbohydrate-based polymer, pullulan, and a salt-based polymer, poly-(4-styrenesulfonic-acid) sodium salt (PSS) was compared for the storage of A549 lung carcinoma cells, at temperatures greater than that of liquid nitrogen storage tanks. A DoE-CCD response surface model was used to optimise medium compositions comprising DMSO and a macromolecular crowder (MMC; pullulan, PSS and their combinations). The effect of adding MMCs was evaluated in terms of post-preservation viability, apoptotic population and growth curve analysis. The optimised medium consisting of 10% DMSO and 3% pullulan in the basal medium (BM) could facilitate long-term cell preservation for 90 days at - 80 °C, resulting in cell viability of ∼83%. The results also showed a significant decrease in the apoptotic population at all time points for the optimised composition of the freezing medium. These results indicated that adding 3% pullulan to the freezing medium improved the post-thaw viability and reduced the apoptotic cell population. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03571-6.
Collapse
Affiliation(s)
- Akash Kumaran
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Mumbai, India
| | - Advait Bhagwat
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Mumbai, India
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
29
|
Conceição CJF, Moe E, Ribeiro PA, Raposo M. Liposome Formulations for the Strategic Delivery of PARP1 Inhibitors: Development and Optimization. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101613. [PMID: 37242030 DOI: 10.3390/nano13101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
The development of a lipid nano-delivery system was attempted for three specific poly (ADP-ribose) polymerase 1 (PARP1) inhibitors: Veliparib, Rucaparib, and Niraparib. Simple lipid and dual lipid formulations with 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1'-glycerol) sodium salt (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) were developed and tested following the thin-film method. DPPG-encapsulating inhibitors presented the best fit in terms of encapsulation efficiency (>40%, translates into concentrations as high as 100 µM), zeta potential values (below -30 mV), and population distribution (single population profile). The particle size of the main population of interest was ~130 nm in diameter. Kinetic release studies showed that DPPG-encapsulating PARP1 inhibitors present slower drug release rates than liposome control samples, and complex drug release mechanisms were identified. DPPG + Veliparib/Niraparib presented a combination of diffusion-controlled and non-Fickian diffusion, while anomalous and super case II transport was verified for DPPG + Rucaparib. Spectroscopic analysis revealed that PARP1 inhibitors interact with the DPPG lipid membrane, promoting membrane water displacement from hydration centers. A preferential membrane interaction with lipid carbonyl groups was observed through hydrogen bonding, where the inhibitors' protonated amine groups may be the major players in the PARP1 inhibitor encapsulation mode.
Collapse
Affiliation(s)
- Carlota J F Conceição
- CEFITEC, Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elin Moe
- Institute of Chemical and Biological Technology (ITQB NOVA), The New University of Lisbon, 2780-157 Oeiras, Portugal
- Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Paulo A Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
30
|
Choosing an Optimal Solvent Is Crucial for Obtaining Cell-Penetrating Peptide Nanoparticles with Desired Properties and High Activity in Nucleic Acid Delivery. Pharmaceutics 2023; 15:pharmaceutics15020396. [PMID: 36839718 PMCID: PMC9963036 DOI: 10.3390/pharmaceutics15020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are highly promising transfection agents that can deliver various compounds into living cells, including nucleic acids (NAs). Positively charged CPPs can form non-covalent complexes with negatively charged NAs, enabling simple and time-efficient nanoparticle preparation. However, as CPPs have substantially different chemical and physical properties, their complexation with the cargo and characteristics of the resulting nanoparticles largely depends on the properties of the surrounding environment, i.e., solution. Here, we show that the solvent used for the initial dissolving of a CPP determines the properties of the resulting CPP particles formed in an aqueous solution, including the activity and toxicity of the CPP-NA complexes. Using different biophysical methods such as dynamic light scattering (DLS), atomic force microscopy (AFM), transmission and scanning electron microscopy (TEM and SEM), we show that PepFect14 (PF14), a cationic amphipathic CPP, forms spherical particles of uniform size when dissolved in organic solvents, such as ethanol and DMSO. Water-dissolved PF14, however, tends to form micelles and non-uniform aggregates. When dissolved in organic solvents, PF14 retains its α-helical conformation and biological activity in cell culture conditions without any increase in cytotoxicity. Altogether, our results indicate that by using a solvent that matches the chemical nature of the CPP, the properties of the peptide-cargo particles can be tuned in the desired way. This can be of critical importance for in vivo applications, where CPP particles that are too large, non-uniform, or prone to aggregation may induce severe consequences.
Collapse
|
31
|
Rice KL, Chan CM, Kelu JJ, Miller AL, Webb SE. A Role for Two-Pore Channel Type 2 (TPC2)-Mediated Regulation of Membrane Contact Sites During Zebrafish Notochord Biogenesis? CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231211409. [PMID: 38028019 PMCID: PMC10658360 DOI: 10.1177/25152564231211409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
We have previously shown that in the developing trunk of zebrafish embryos, two-pore channel type 2 (TPC2)-mediated Ca2+ release from endolysosomes plays a role in the formation of the skeletal slow muscle. In addition, TPC2-mediated Ca2+ signaling is required for axon extension and the establishment of synchronized activity in the primary motor neurons. Here, we report that TPC2 might also play a role in the development of the notochord of zebrafish embryos. For example, when tpcn2 was knocked down or out, increased numbers of small vacuoles were formed in the inner notochord cells, compared with the single large vacuole in the notochord of control embryos. This abnormal vacuolation was associated with embryos displaying attenuated body axis straightening. We also showed that TPC2 has a distinct pattern of localization in the notochord in embryos at ∼24 hpf. Finally, we conducted RNAseq to identify differentially expressed genes in tpcn2 mutants compared to wild-type controls, and found that those involved in actin filament severing, cellular component morphogenesis, Ca2+ binding, and structural constituent of cytoskeleton were downregulated in the mutants. Together, our data suggest that TPC2 activity plays a key role in notochord biogenesis in zebrafish embryos.
Collapse
Affiliation(s)
- Keira L. Rice
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Ching Man Chan
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Jeffrey J. Kelu
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Andrew L. Miller
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Sarah E. Webb
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| |
Collapse
|
32
|
Bhuin S, Sharma P, Chakraborty P, Kulkarni OP, Chakravarty M. Solid-state emitting twisted π-conjugate as AIE-active DSE-gen: in vitro anticancer properties against FaDu and 4T1 with biocompatibility and bioimaging. J Mater Chem B 2022; 11:188-203. [PMID: 36477106 DOI: 10.1039/d2tb02078e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dual-state emissive fluorogens (DSE-gens) are currently defining their importance as a transpiring tool in biological and biomedical applications. This work focuses on designing and synthesizing indole-anthracene-based solid-state emitting twisted π-conjugates using a metal-free protocol to achieve AIE-active DSE-gens, expanding their scope in biological applications. Special effort has been made to introduce proficient and photo/thermostable DSE-gens that inhibit cancer but not normal cells. Here, the lead DSE-gen initially detects cancer and normal cells by bioimaging; however, it could also confirm and distinguish cancer cells from normal cells by its abated fluorescence signal after killing cancer cells. In contrast, the fluorescence signals for a normal cell remain unscathed. Surprisingly, these molecules displayed decent anticancer properties against FaDu and 4T1 but not MCF-7 cell lines. From a series of newly designed indole-based molecules, we report one single 2,3,4-trimethoxybenzene-linked DSE-gen (the lead), exhibiting high ROS generation, less haemolysis, and less cytotoxicity than doxorubicin (DOX) for normal cells, crucial parameters for a biocompatible in vitro anticancer probe. Thus, we present a potentially applicable anticancer drug, offering a bioactive material with bioimaging efficacy and a way to detect dead cancer cells selectively. The primary mechanism behind the identified outcomes is deciphered with the support of experimental (steady-state and time-resolved fluorescence, biological assays, cellular uptake) and molecular docking studies.
Collapse
Affiliation(s)
- Shouvik Bhuin
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus Jawahar Nagar, Shamirpet, Hyderabad, Telangana, 500078, India.
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus Jawahar Nagar, Shamirpet, Hyderabad, Telangana, 500078, India
| | - Purbali Chakraborty
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus Jawahar Nagar, Shamirpet, Hyderabad, Telangana, 500078, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus Jawahar Nagar, Shamirpet, Hyderabad, Telangana, 500078, India
| | - Manab Chakravarty
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus Jawahar Nagar, Shamirpet, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
33
|
Monocytic Cell Adhesion to Oxidised Ligands: Relevance to Cardiovascular Disease. Biomedicines 2022; 10:biomedicines10123083. [PMID: 36551839 PMCID: PMC9775297 DOI: 10.3390/biomedicines10123083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Atherosclerosis, the major cause of vascular disease, is an inflammatory process driven by entry of blood monocytes into the arterial wall. LDL normally enters the wall, and stimulates monocyte adhesion by forming oxidation products such as oxidised phospholipids (oxPLs) and malondialdehyde. Adhesion molecules that bind monocytes to the wall permit traffic of these cells. CD14 is a monocyte surface receptor, a cofactor with TLR4 forming a complex that binds oxidised phospholipids and induces inflammatory changes in the cells, but data have been limited for monocyte adhesion. Here, we show that under static conditions, CD14 and TLR4 are implicated in adhesion of monocytes to solid phase oxidised LDL (oxLDL), and also that oxPL and malondialdehyde (MDA) adducts are involved in adhesion to oxLDL. Similarly, monocytes bound to heat shock protein 60 (HSP60), but this could be through contaminating lipopolysaccharide. Immunohistochemistry on atherosclerotic human arteries demonstrated increased endothelial MDA adducts and HSP60, but endothelial oxPL was not detected. We propose that monocytes could bind to MDA in endothelial cells, inducing atherosclerosis. Monocytes and platelets synergized in binding to oxLDL, forming aggregates; if this occurs at the arterial surface, they could precipitate thrombosis. These interactions could be targeted by cyclodextrins and oxidised phospholipid analogues for therapy.
Collapse
|
34
|
Wilburn D, Fletcher E, Ismaeel A, Miserlis D, Zechmann B, Koutakis P. Chemical and cryo-collection of muscle samples for transmission electron microscopy using Methacarn and dimethyl sulfoxide ✰. Ultramicroscopy 2022; 241:113600. [PMID: 35988477 PMCID: PMC9511158 DOI: 10.1016/j.ultramic.2022.113600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 08/10/2022] [Indexed: 01/24/2023]
Abstract
Muscle samples are commonly chemically fixed or frozen immediately upon collection for biochemical and morphological analysis. Certain fixatives such as glutaraldehyde and osmium tetroxide are widely used for transmission electron microscopy (TEM) and lead to adequate preservation of muscle ultrastructure, but do not preserve the molecular features of samples. Methacarn is suggested to be a preferable chemical fixative for light microscopy because it maintains immunohistological features of samples. However, the efficacy of methacarn to preserve ultrastructural features as a primary chemical fixative for TEM is currently unclear. Additionally, cryo-preservation of samples for TEM analysis involves freezing processes such as plunge freezing, slam freezing, or high pressure freezing. High pressure freezing is the considered the gold standard but requires costly equipment and may not be a viable option for many labs collecting tissue samples from remote locations. Dimethyl sulfoxide (DMSO) is a commonly used cryoprotectant that may allow for better structural preservation of samples by impairing ice damage that occurs during plunge/snap freezing. We aimed to assess the effectiveness of methacarn as a primary chemical fixative and determine the effect of pre-coating samples with DMSO before plunge/snap freezing tissues to be prepared for TEM. The micrographs of the methcarn-fixed samples indicate a loss of Z-disk integrity, intermyofibrillar space, mitochondria structure, and lipids. Ultimately, methacarn is not a viable primary fixative for tissue sample preparation for TEM. Similarly, liquid nitrogen freezing of samples wrapped in aluminum foil produced non-uniform Z-disk alignments that appeared smeared with swollen mitochondria. DMSO coating before freezing appears to lessen the alterations to contractile and mitochondrial morphological structures. DMSO appears to be useful for preserving the ultrastructure of sarcomeres if samples are covered before freezing.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, 254-710-2911, B.207 Baylor Science Building, One Bear Place #97388, 76798-7388, Waco, TX 76706, USA
| | - Emma Fletcher
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Bernd Zechmann
- Department of Biology, Baylor University, Waco, TX 76706, USA; Center for Microscopy and Imaging, Baylor University, Waco, Texas 76706, USA
| | | |
Collapse
|
35
|
Ekpo MD, Boafo GF, Xie J, Liu X, Chen C, Tan S. Strategies in developing dimethyl sulfoxide (DMSO)-free cryopreservation protocols for biotherapeutics. Front Immunol 2022; 13:1030965. [PMID: 36275725 PMCID: PMC9579275 DOI: 10.3389/fimmu.2022.1030965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | | | | | | | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
36
|
Dzhagan V, Kapush O, Plokhovska S, Buziashvili A, Pirko Y, Yeshchenko O, Yukhymchuk V, Yemets A, Zahn DRT. Plasmonic colloidal Au nanoparticles in DMSO: a facile synthesis and characterisation. RSC Adv 2022; 12:21591-21599. [PMID: 35975078 PMCID: PMC9346627 DOI: 10.1039/d2ra03605c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
We report a new pathway for the synthesis of plasmonic gold nanoparticles (Au NPs) in a bio-compatible medium. A modified room temperature approach based on the standard Turkevich synthesis, using sodium citrate as a reducing and stabilizing agent, results in a highly stable colloidal suspension of Au NPs in dimethyl sulfoxide (DMSO). The mean NP size of about 15 nm with a fairly low size distribution is revealed by scanning electron microscopy. The stability test through UV-vis absorption spectroscopy indicates no sign of aggregation for months. The Au NPs are also characterized by X-ray photoelectron, Raman scattering, and FTIR spectroscopies. The stabilisation mechanism of the Au NPs in DMSO is concluded to be similar to that of NPs synthesized in water. The Au NPs obtained in this work are applicable as SERS substrates, as proved by common analytes. In terms of bio-applications, they do not possess such side-effects as pronounced antibacterial activity, based on the tests performed on non-pathogenic Gram-positive or Gram-negative bacteria.
Collapse
Affiliation(s)
- Volodymyr Dzhagan
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine Kyiv Ukraine
- Physics Department, Taras Shevchenko National University of Kyiv 01601 Kyiv Ukraine
| | - Olga Kapush
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine Kyiv Ukraine
| | - Svitlana Plokhovska
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine 04123 Kyiv Ukraine
| | - Anastasiya Buziashvili
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine 04123 Kyiv Ukraine
| | - Yaroslav Pirko
- Department of Population Genetics, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine Osypovskogo str., 2a Kyiv 04123 Ukraine
| | - Oleg Yeshchenko
- Physics Department, Taras Shevchenko National University of Kyiv 01601 Kyiv Ukraine
| | - Volodymyr Yukhymchuk
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine Kyiv Ukraine
| | - Alla Yemets
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine 04123 Kyiv Ukraine
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology 09107 Chemnitz Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology 09107 Chemnitz Germany
| |
Collapse
|
37
|
Semeraro EF, Marx L, Mandl J, Letofsky-Papst I, Mayrhofer C, Frewein MPK, Scott HL, Prévost S, Bergler H, Lohner K, Pabst G. Lactoferricins impair the cytosolic membrane of Escherichia coli within a few seconds and accumulate inside the cell. eLife 2022; 11:e72850. [PMID: 35670565 PMCID: PMC9352351 DOI: 10.7554/elife.72850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/06/2022] [Indexed: 12/29/2022] Open
Abstract
We report the real-time response of Escherichia coli to lactoferricin-derived antimicrobial peptides (AMPs) on length scales bridging microscopic cell sizes to nanoscopic lipid packing using millisecond time-resolved synchrotron small-angle X-ray scattering. Coupling a multiscale scattering data analysis to biophysical assays for peptide partitioning revealed that the AMPs rapidly permeabilize the cytosolic membrane within less than 3 s-much faster than previously considered. Final intracellular AMP concentrations of ∼80-100 mM suggest an efficient obstruction of physiologically important processes as the primary cause of bacterial killing. On the other hand, damage of the cell envelope and leakage occurred also at sublethal peptide concentrations, thus emerging as a collateral effect of AMP activity that does not kill the bacteria. This implies that the impairment of the membrane barrier is a necessary but not sufficient condition for microbial killing by lactoferricins. The most efficient AMP studied exceeds others in both speed of permeabilizing membranes and lowest intracellular peptide concentration needed to inhibit bacterial growth.
Collapse
Affiliation(s)
- Enrico F Semeraro
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Lisa Marx
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Johannes Mandl
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Ilse Letofsky-Papst
- Institute of Electron Microscopy and Nanoanalysis and Center for Electron Microscopy, Graz University of Technology, NAWI GrazGrazAustria
| | | | - Moritz PK Frewein
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
- Institut Laue-LangevinGrenobleFrance
| | - Haden L Scott
- Center for Environmental Biotechnology, University of TennesseeKnoxvilleUnited States
- Shull Wollan Center, Oak Ridge National LaboratoryOak RidgeUnited States
| | | | - Helmut Bergler
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Karl Lohner
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, NAWI GrazGrazAustria
- BioTechMed GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| |
Collapse
|
38
|
Towards the Development of Standardized Bioassays for Corals: Acute Toxicity of the UV Filter Benzophenone-3 to Scleractinian Coral Larvae. TOXICS 2022; 10:toxics10050244. [PMID: 35622657 PMCID: PMC9146638 DOI: 10.3390/toxics10050244] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/28/2022]
Abstract
Coral reefs have been declining globally at a historically unprecedented rate. Ultraviolet (UV) filters used in sunscreens may contribute to this decline at local scales, which has already led to bans on various organic UV filters in some regions. However, the underlying studies for these bans demonstrated significant flaws in the experimental design due to a lack of validated and standardized testing methods for corals. This study aimed to investigate options for the development of a standard acute toxicity test for the larval stage of scleractinian corals. Planula larvae of two brooding (Leptastrea purpurea and Tubastraea faulkneri) and two spawning (Acropora digitifera and A. millepora) species were exposed to the organic UV filter benzophenone-3 (BP3) for 48 h under static conditions. We observed interspecific variations in toxicity, with A. digitifera being the most sensitive (LC50 = 0.75 µg L−1) and T. faulkneri the least sensitive (LC50 = 2951.24 µg L−1) species. Inhibition of settlement was found to be a useful endpoint leading to an EC50 of 1.84 µg L−1 in L. purpurea larvae. Although the analytical challenges of measuring lipophilic substances in small volume test setups remain, the here applied test design and selected endpoints are suitable for further validation and subsequent standardization.
Collapse
|
39
|
Mizuno M, Matsuzaki T, Ozeki N, Katano H, Koga H, Takebe T, Yoshikawa HY, Sekiya I. Cell membrane fluidity and ROS resistance define DMSO tolerance of cryopreserved synovial MSCs and HUVECs. Stem Cell Res Ther 2022; 13:177. [PMID: 35505370 PMCID: PMC9066911 DOI: 10.1186/s13287-022-02850-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/21/2022] [Indexed: 01/12/2023] Open
Abstract
Objectives Synovial mesenchymal stem cells (MSCs) have high freeze–thaw tolerance, whereas human umbilical vein endothelial cells (HUVECs) have low freezing tolerance. The differences in cell type-specific freeze–thaw tolerance and the mechanisms involved are unclear. This study thus aimed to identify the biological and physical factors involved in the differences in freeze–thaw tolerance between MSCs and HUVECs. Materials and methods For biological analysis, MSC and HUVEC viability after freeze-thawing and alteration of gene expression in response to dimethyl sulfoxide (DMSO, a cryoprotectant) were quantitatively evaluated. For physical analysis, the cell membrane fluidity of MSCs and HUVECs before and after DMSO addition was assessed using a histogram for generalized polarization frequency. Results HUVECs showed lower live cell rates and higher gene expression alteration related to extracellular vesicles in response to DMSO than MSCs. Fluidity measurements revealed that the HUVEC membrane was highly fluidic and sensitive to DMSO compared to that of MSCs. Addition of CAY10566, an inhibitor of stearoyl-coA desaturase (SCD1) that produces highly fluidic desaturated fatty acids, decreased the fluidity of HUVECs and increased their tolerance to DMSO. The combination of CAY10566 and antioxidant glutathione (GSH) treatment improved HUVEC viability from 57 to 69%. Membrane fluidity alteration may thus contribute to pore-induced DMSO influx into the cytoplasm and reactive oxygen species production, leading to greater cytotoxicity in HUVECs, which have low antioxidant capacity. Conclusions Differences in freeze–thaw tolerance originate from differences in the cell membranes with respect to fluidity and antioxidant capacity. These findings provide a basis for analyzing cell biology and membrane-physics to establish appropriate long-term preservation methods aimed at promoting transplantation therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02850-y.
Collapse
Affiliation(s)
- Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45, Bunkyo-ku, Yushima, Tokyo, 113-8510, Japan.
| | - Takahisa Matsuzaki
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, 255, Shimo-okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.,Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Nobutake Ozeki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45, Bunkyo-ku, Yushima, Tokyo, 113-8510, Japan
| | - Hisako Katano
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45, Bunkyo-ku, Yushima, Tokyo, 113-8510, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University (TMDU), 1-5-45, Bunkyo-ku, Yushima, Tokyo, 113-8519, Japan
| | - Takanori Takebe
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Organoid Medicine Project, T-CiRA Joint Program, Fujisawa, Kanagawa, Japan.,Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA.,The Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hiroshi Y Yoshikawa
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, 255, Shimo-okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.,Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita City, Osaka, 565-0871, Japan.,Department of Chemistry, Saitama University, 255, Shimo-okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45, Bunkyo-ku, Yushima, Tokyo, 113-8510, Japan
| |
Collapse
|
40
|
Li R, Singh R, Kashav T, Yang C, Sharma RD, Lynn AM, Prasad R, Prakash A, Kumar V. Computational Insights of Unfolding of N-Terminal Domain of TDP-43 Reveal the Conformational Heterogeneity in the Unfolding Pathway. Front Mol Neurosci 2022; 15:822863. [PMID: 35548668 PMCID: PMC9083116 DOI: 10.3389/fnmol.2022.822863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
TDP-43 proteinopathies is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The N-terminal domain of TDP-43 (NTD) is important to both TDP-43 physiology and TDP-43 proteinopathy. However, its folding and dimerization process is still poorly characterized. In the present study, we have investigated the folding/unfolding of NTD employing all-atom molecular dynamics (MD) simulations in 8 M dimethylsulfoxide (DMSO) at high temperatures. The MD results showed that the unfolding of the NTD at high temperature evolves through the formation of a number of conformational states differing in their stability and free energy. The presence of structurally heterogeneous population of intermediate ensembles was further characterized by the different extents of solvent exposure of Trp80 during unfolding. We suggest that these non-natives unfolded intermediate ensembles may facilitate NTD oligomerization and subsequently TDP-43 oligomerization, which might lead to the formation of irreversible pathological aggregates, characteristics of disease pathogenesis.
Collapse
Affiliation(s)
- Ruiting Li
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Ruhar Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tara Kashav
- Department of Life Science, Central University of South Bihar, Gaya, India
| | - ChunMin Yang
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Ravi Datta Sharma
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India
| | - Andrew M. Lynn
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Gurgaon, India
- *Correspondence: Vijay Kumar Amresh Prakash
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, India
- *Correspondence: Vijay Kumar Amresh Prakash
| |
Collapse
|
41
|
Malajczuk CJ, Stachura SS, Hendry JO, Mancera RL. Redefining the Molecular Interplay between Dimethyl Sulfoxide, Lipid Bilayers, and Dehydration. J Phys Chem B 2022; 126:2513-2529. [PMID: 35344357 DOI: 10.1021/acs.jpcb.2c00353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The potentially damaging action of dimethyl sulfoxide (DMSO) on phospholipid bilayers remains a matter of controversy. We have conducted a series of long-scale molecular dynamics simulations of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers at various levels of hydration in the presence of variable quantities of DMSO. These simulations provide evidence for a non-destructive dehydrating mechanism of action for DMSO on DOPC bilayers across a wide concentration range and levels of hydration. Specifically, under full- and low-hydration conditions, the bilayer underwent a minor lateral contraction, coinciding with surface dehydration in the presence of dilute DMSO solutions (XDMSO < 0.3). At higher DMSO concentrations, this bilayer structure was retained despite a progressive deterioration of the hydration structure at the interface. A similar convergence of bilayer structural properties was observed under dehydration conditions for 0.3 < XDMSO < 0.7. Destabilization occurred for dehydrated bilayers in the presence of XDMSO ≥ 0.7, suggesting the existence of a DMSO concentration and/or dehydration threshold. However, such DMSO concentrations far exceed those established as toxic to other cellular components. Our findings represent a computational model for DMSO-DOPC interactions that is consistent with a range of experimental characterizations, offering new molecular insights into the cryoprotective mechanisms of action of DMSO.
Collapse
Affiliation(s)
- Chris J Malajczuk
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Sławomir S Stachura
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - James O Hendry
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
42
|
Su T, Sun Y, Han L, Cai W, Shao X. Revealing the interactions of water with cryoprotectant and protein by near-infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120417. [PMID: 34600324 DOI: 10.1016/j.saa.2021.120417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Taking formamide (FA) as a model compound of protein, the water structure in the ternary mixtures of dimethyl sulfoxide (DMSO)-water-FA was studied by near-infrared (NIR) spectroscopy. The interaction of DMSO and water, and the effect of FA on the interaction, were analyzed with the help of chemometric methods. Continuous wavelet transform (CWT) was used to enhance the resolution of the spectra. A peak at 6437 cm-1 depicting the interaction of DMSO and water through hydrogen bonding (SO…HO) was observed in the transformed spectra. When FA exists in the mixture, the intensity of the peak decreases with the increase of formamide content, showing that FA may replace the water to form the hydrogen bond of SO and HN. In addition, temperature-dependent NIR spectroscopy was used to analyze the effect of the three components on the spectral variation with temperature. Analyzing the spectral data by alternating trilinear decomposition (ATLD) and multiple linear regression, two varying spectral features were obtained that are related to water and DMSO, but no spectral feature was found that significantly varies with the content of FA. The result implies that DMSO is still the key component to prevent the water from icing, although FA may reduce slightly the anti-freezing effect.
Collapse
Affiliation(s)
- Tao Su
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China
| | - Yan Sun
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China
| | - Li Han
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China.
| |
Collapse
|
43
|
Chen F, He J, Manandhar P, Yang Y, Liu P, Gu N. Gauging surface charge distribution of live cell membrane by ionic current change using scanning ion conductance microscopy. NANOSCALE 2021; 13:19973-19984. [PMID: 34825684 DOI: 10.1039/d1nr05230f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The distribution of surface charge and potential of cell membrane plays an indispensable role in cellular activities. However, probing surface charge of live cells under physiological conditions, until recently, remains an arduous challenge owing to the lack of effective methods. Scanning ion conductance microscopy (SICM) is an emerging imaging technique for imaging a live cell membrane in its native state. Here, we introduce a simple SICM based imaging technique to effectively map the surface charge contrast distribution of soft substrates including cell membranes by utilizing the higher surface charge sensitivity of the ionic current when the nanopipette tip is close to the substrate with a relatively high current change. This technique was assessed on charged model substrates made of polydimethylsiloxane, and the surface charge sensitivity of ionic current change was supported by finite element method simulations. With this method, we can distinguish the surface charge difference between the cell membrane and the supporting collagen matrix. We also observed the surface charge change induced by the small membrane damage after 1% dimethyl sulfoxide (DMSO) treatment. This new SICM technique provides opportunities to study interfacial and cell membrane processes with high spatial resolution.
Collapse
Affiliation(s)
- Feng Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, People's Republic of China
- Physics Department, Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA.
| | - Jin He
- Physics Department, Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA.
| | - Prakash Manandhar
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Yizi Yang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Peidang Liu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China.
| | - Ning Gu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, People's Republic of China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China.
| |
Collapse
|
44
|
Chaudhary S, Ashok A, Wise AS, Rana NA, Kritikos AE, Lindner E, Singh N. β-Cleavage of the prion protein in the human eye: Implications for the spread of infectious prions and human ocular disorders. Exp Eye Res 2021; 212:108787. [PMID: 34624335 DOI: 10.1016/j.exer.2021.108787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
Recently, we reported β-cleavage of the prion protein (PrPC) in human ocular tissues. Here, we explored whether this is unique to the human eye, and its functional implications. A comparison of the cleavage pattern of PrPC in human ocular tissues with common nocturnal and diurnal animals revealed mainly β-cleavage in humans, and mostly full-length PrPC in animal retinas. Soluble FL PrPC and N-terminal fragment (N2) released from β-cleavage was observed in the aqueous and vitreous humor (AH & VH). Expression of human PrPC in ARPE-19 cells, a human retinal pigmented epithelial cell line, also showed β-cleaved PrPC. Surprisingly, β-cleavage was not altered by a variety of insults, including oxidative stress, suggesting a unique role of this cleavage in the human eye. It is likely that β-cleaved C- or N-terminal fragments of PrPC protect from various insults unique to the human eye. On the contrary, β-cleaved C-terminus of PrPC is susceptible to conversion to the pathological PrP-scrapie form, and includes the binding sites for β1-integrin and amyloid-β, molecules implicated in several ocular disorders. Considering the species and tissue-specific cleavage of PrPC, our data suggest re-evaluation of prion infectivity and other ocular disorders of the human eye conducted in mouse models.
Collapse
Affiliation(s)
- Suman Chaudhary
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ajay Ashok
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Aaron S Wise
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Neil A Rana
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Alexander E Kritikos
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ewald Lindner
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036, Graz, Austria
| | - Neena Singh
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
45
|
Hassell DS, Steingesser MG, Denney AS, Johnson CR, McMurray MA. Chemical rescue of mutant proteins in living Saccharomyces cerevisiae cells by naturally occurring small molecules. G3-GENES GENOMES GENETICS 2021; 11:6323229. [PMID: 34544143 PMCID: PMC8496222 DOI: 10.1093/g3journal/jkab252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/29/2021] [Indexed: 11/14/2022]
Abstract
Intracellular proteins function in a complex milieu wherein small molecules influence protein folding and act as essential cofactors for enzymatic reactions. Thus protein function depends not only on amino acid sequence but also on the concentrations of such molecules, which are subject to wide variation between organisms, metabolic states, and environmental conditions. We previously found evidence that exogenous guanidine reverses the phenotypes of specific budding yeast septin mutants by binding to a WT septin at the former site of an Arg side chain that was lost during fungal evolution. Here, we used a combination of targeted and unbiased approaches to look for other cases of "chemical rescue" by naturally occurring small molecules. We report in vivo rescue of hundreds of Saccharomyces cerevisiae mutants representing a variety of genes, including likely examples of Arg or Lys side chain replacement by the guanidinium ion. Failed rescue of targeted mutants highlight features required for rescue, as well as key differences between the in vitro and in vivo environments. Some non-Arg mutants rescued by guanidine likely result from "off-target" effects on specific cellular processes in WT cells. Molecules isosteric to guanidine and known to influence protein folding had a range of effects, from essentially none for urea, to rescue of a few mutants by DMSO. Strikingly, the osmolyte trimethylamine-N-oxide rescued ∼20% of the mutants we tested, likely reflecting combinations of direct and indirect effects on mutant protein function. Our findings illustrate the potential of natural small molecules as therapeutic interventions and drivers of evolution.
Collapse
Affiliation(s)
- Daniel S Hassell
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marc G Steingesser
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ashley S Denney
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Courtney R Johnson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
46
|
Heterogeneous Off-Target Effects of Ultra-Low Dose Dimethyl Sulfoxide (DMSO) on Targetable Signaling Events in Lung Cancer In Vitro Models. Int J Mol Sci 2021; 22:ijms22062819. [PMID: 33802212 PMCID: PMC8001778 DOI: 10.3390/ijms22062819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
Targetable alterations in cancer offer novel opportunities to the drug discovery process. However, pre-clinical testing often requires solubilization of these drugs in cosolvents like dimethyl sulfoxide (DMSO). Using a panel of cell lines commonly used for in vitro drug screening and pre-clinical testing, we explored the DMSO off-target effects on functional signaling networks, drug targets, and downstream substrates. Eight Non-Small Cell Lung Cancer (NSCLC) cell lines were incubated with three concentrations of DMSO (0.0008%, 0.002%, and 0.004% v/v) over time. Expression and activation levels of 187 proteins, of which 137 were kinases and downstream substrates, were captured using the Reverse Phase Protein Array (RPPA). The DMSO effect was heterogeneous across cell lines and varied based on concentration, exposure time, and cell line. Of the 187 proteins measured, all were statistically different in at least one comparison at the highest DMSO concentration, followed by 99.5% and 98.9% at lower concentrations. Only 46% of the proteins were found to be statistically different in more than 5 cell lines, indicating heterogeneous response across models. These cell line specific alterations modulate response to in vitro drug screening. Ultra-low DMSO concentrations have broad and heterogeneous effects on targetable signaling proteins. Off-target effects need to be carefully evaluated in pre-clinical drug screening and testing.
Collapse
|
47
|
Marx L, Semeraro EF, Mandl J, Kremser J, Frewein MP, Malanovic N, Lohner K, Pabst G. Bridging the Antimicrobial Activity of Two Lactoferricin Derivatives in E. coli and Lipid-Only Membranes. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:625975. [PMID: 35047906 PMCID: PMC8757871 DOI: 10.3389/fmedt.2021.625975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
We coupled the antimicrobial activity of two well-studied lactoferricin derivatives, LF11-215 and LF11-324, in Escherichia coli and different lipid-only mimics of its cytoplasmic membrane using a common thermodynamic framework for peptide partitioning. In particular, we combined an improved analysis of microdilution assays with ζ-potential measurements, which allowed us to discriminate between the maximum number of surface-adsorbed peptides and peptides fully partitioned into the bacteria. At the same time, we measured the partitioning of the peptides into vesicles composed of phosphatidylethanolamine (PE), phosphatidylgylcerol (PG), and cardiolipin (CL) mixtures using tryptophan fluorescence and determined their membrane activity using a dye leakage assay and small-angle X-ray scattering. We found that the vast majority of LF11-215 and LF11-324 readily enter inner bacterial compartments, whereas only 1-5% remain surface bound. We observed comparable membrane binding of both peptides in membrane mimics containing PE and different molar ratios of PG and CL. The peptides' activity caused a concentration-dependent dye leakage in all studied membrane mimics; however, it also led to the formation of large aggregates, part of which contained collapsed multibilayers with sandwiched peptides in the interstitial space between membranes. This effect was least pronounced in pure PG vesicles, requiring also the highest peptide concentration to induce membrane permeabilization. In PE-containing systems, we additionally observed an effective shielding of the fluorescent dyes from leakage even at highest peptide concentrations, suggesting a coupling of the peptide activity to vesicle fusion, being mediated by the intrinsic lipid curvatures of PE and CL. Our results thus show that LF11-215 and LF11-324 effectively target inner bacterial components, while the stored elastic stress makes membranes more vulnerable to peptide translocation.
Collapse
Affiliation(s)
- Lisa Marx
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Enrico F. Semeraro
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Johannes Mandl
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Johannes Kremser
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Moritz P. Frewein
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
- Soft Matter Science and Support Group, Institut Laue-Langevin, Grenoble, France
| | - Nermina Malanovic
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Karl Lohner
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Georg Pabst
- Department of Biophysics, Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| |
Collapse
|
48
|
Kundu S, Malik S, Ghosh M, Nandi S, Pyne A, Debnath A, Sarkar N. A Comparative Study on DMSO-Induced Modulation of the Structural and Dynamical Properties of Model Bilayer Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2065-2078. [PMID: 33529530 DOI: 10.1021/acs.langmuir.0c03037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modulating the structures and properties of biomembranes via permeation of small amphiphilic molecules is immensely important, having diverse applications in cell biology, biotechnology, and pharmaceuticals, because their physiochemical and biological interactions lead to new pathways for transdermal drug delivery and administration. In this work, we have elucidated the role of dimethyl sulfoxide (DMSO), broadly used as a penetration-enhancing agent and cryoprotective agent on model lipid membranes, using a combination of fluorescence microscopy and time-resolved fluorescence spectroscopy. Spatially resolved fluorescence lifetime imaging microscopy (FLIM) has been employed to unravel how the fluidity of the DMSO-induced bilayer regulates the structural alteration of the vesicles. Moreover, we have also shown that the dehydration effect of DMSO leads to weakening of the hydrogen bond between lipid headgroups and water molecules and results in faster solvation dynamics as demonstrated by femtosecond time-resolved fluorescence spectroscopy. It has been gleaned that the water dynamics becomes faster because bilayer rigidity decreases in the presence of DMSO, which is also supported by time-resolved rotational anisotropy measurements. The enhanced diffusivity and increased membrane fluidity in the presence of DMSO are further ratified at the single-molecule level through fluorescence correlation spectroscopy (FCS) measurements. Our results indicate that while the presence of DMSO significantly affects the 1,2-dimyristoyl-rac-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl-rac-glycero-3-phosphatidylcholine (DPPC) bilayers, it has a weak effect on 1,2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol (DMPG) vesicles, which might explain the preferential interaction of DMSO with the positively charged choline group present in DMPC and DPPC vesicles. The experimental findings have also been further verified with molecular dynamics simulation studies. Moreover, it has been observed that DMSO is likely to have a differential effect on heterogeneous bilayer membranes depending on the structure and composition of their headgroups. Our results illuminate the importance of probing the lipid structure and composition of cellular membranes in determining the effects of cryoprotective agents.
Collapse
Affiliation(s)
- Sangita Kundu
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Sheeba Malik
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Sourav Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, Rajasthan, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|