1
|
Park HY, Lee S, Koo SJ, Li Z, Seo E, Lee E, An SK. Epigenetic modulation of social cognition: exploring the impact of methylation in brain-derived neurotrophic factor and oxytocin receptor genes across sex. Sci Rep 2025; 15:3412. [PMID: 39870696 PMCID: PMC11772775 DOI: 10.1038/s41598-025-86770-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
Social cognition, which ranges from recognizing social cues to intricate inferential reasoning, is influenced by environmental factors and epigenetic mechanisms. Notably, methylation variations in stress-related genes like brain-derived neurotrophic factor (BDNF) and the oxytocin receptor (OXTR) are linked to distinct social cognitive functions and exhibit sex-specific differences. This study investigates how these methylation differences affect social cognition across sexes, focusing on both perceptual and inferential cognitive levels. Social cognitive abilities were assessed using the Korean version of the Reading the Mind in the Eyes Test (K-RMET) and Brune's story-based Theory of Mind tasks (ToM-PST). DNA methylation levels in BDNF and OXTR were analyzed for correlations with performance on these cognitive tasks in a cohort of male and female participants. A moderation model was applied to determine if sex moderates the relationship between social cognition and DNA methylation. No significant overall correlation was found between social cognition and DNA methylation across participants. However, sex-specific correlations were identified, including a negative impact of BDNF methylation on K-RMET scores in males, and a similar effect of OXTR methylation on ToM-PST scores in females. The findings underscore the complex relationship between epigenetic modifications and social cognition, revealing sex-specific effects and highlighting the importance of considering sex in epigenetic studies of social cognition. This research contributes to understanding how epigenetic factors, influenced by sex, shape social cognitive processes and supports the need for sex-specific therapeutic approaches.
Collapse
Affiliation(s)
- Hye Yoon Park
- Department of Psychiatry, Yonsei University College of Medicine, Yongin Severance Hospital, Yongin, Republic of Korea
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suonaa Lee
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Se Jun Koo
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Zhenxu Li
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunchong Seo
- Yonseialways Psychiatry Clinic, Seoul, Republic of Korea
| | - Eun Lee
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Suk Kyoon An
- Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Psychiatry, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea.
- Graduate Program in Cognitive Science, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
D'Addario C, Di Bartolomeo M. Epigenetic Control in Schizophrenia. Subcell Biochem 2025; 108:191-215. [PMID: 39820863 DOI: 10.1007/978-3-031-75980-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Schizophrenia is a severe and complex psychiatric condition ranking among the top 15 leading causes of disability worldwide. Despite the well-established heritability component, a complex interplay between genetic and environmental risk factors plays a key role in the development of schizophrenia and psychotic disorders in general. This chapter covers all the clinical evidence showing how the analysis of the epigenetic modulation in schizophrenia might be relevant to understand the pathogenesis of schizophrenia as well as potentially useful to develop new pharmacotherapies.
Collapse
Affiliation(s)
- Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
3
|
Nance MG, Sullivan KM, Puglia MH. The impact of the early environment on oxytocin receptor epigenetics and potential therapeutic implications. Pediatr Res 2024:10.1038/s41390-024-03563-z. [PMID: 39548294 DOI: 10.1038/s41390-024-03563-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 11/17/2024]
Abstract
Oxytocin research is rapidly evolving and increasingly reveals that epigenetic modifications to the oxytocin receptor gene (OXTR) are functional, plastic, and reliable components of oxytocinergic system function. This review outlines how OXTR epigenetics are shaped by the early life environment, impact social-developmental outcomes, and have strong potential to serve as therapeutic targets. We first establish the malleability of OXTR epigenetics in infancy in both animal models and humans through research demonstrating the impact of the early life environment on OXTR DNA methylation (OXTRm) and subsequent social behavior. Next, we detail how OXTRm serves as a predictive mechanism for neurodevelopmental outcomes in animal models of social behavior such as the prairie vole, and summarize the role of OXTRm in psychiatric disorders, emotional processing, and attachment behavior in humans. We discuss the potential of further OXTRm research to improve oxytocin therapeutics by highlighting how a deeper knowledge of OXTRm could improve the therapeutic potential of exogenous oxytocin, how OXTRm may impact additional cellular mechanisms with therapeutic potential including control of the perinatal GABA switch, and how early life therapies may target the tuning of endogenous OXTRm. Finally, we review limitations of previous oxytocin research and make recommendations for future research. IMPACT: Previous research into oxytocin therapeutics has been hampered by methodological difficulties that may be improved by assay of the oxytocin receptor gene (OXTR) and its methylation (OXTRm) Key sites of OXTRm modification link early life exposures to developmental and behavioral outcomes OXTRm appears to have a critical period of development in early life Epigenetic modification of the oxytocin receptor gene could serve as a powerful target for therapeutic interventions.
Collapse
Affiliation(s)
- Madelyn G Nance
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Kelsey M Sullivan
- Department of Pediatrics, Division of Neonatology, University of Virginia, Charlottesville, VA, USA.
| | - Meghan H Puglia
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Evenepoel M, Moerkerke M, Daniels N, Chubar V, Claes S, Turner J, Vanaudenaerde B, Willems L, Verhaeghe J, Prinsen J, Steyaert J, Boets B, Alaerts K. Endogenous oxytocin levels in children with autism: Associations with cortisol levels and oxytocin receptor gene methylation. Transl Psychiatry 2023; 13:235. [PMID: 37391413 DOI: 10.1038/s41398-023-02524-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023] Open
Abstract
Alterations in the brain's oxytocinergic system have been suggested to play an important role in the pathophysiology of autism spectrum disorder (ASD), but insights from pediatric populations are sparse. Here, salivary oxytocin was examined in the morning (AM) and afternoon (PM) in school-aged children with (n = 80) and without (n = 40) ASD (boys/girls 4/1), and also characterizations of DNA methylation (DNAm) of the oxytocin receptor gene (OXTR) were obtained. Further, cortisol levels were assessed to examine links between the oxytocinergic system and hypothalamic-pituitary-adrenal (HPA) axis signaling. Children with ASD displayed altered (diminished) oxytocin levels in the morning, but not in the afternoon, after a mildly stress-inducing social interaction session. Notably, in the control group, higher oxytocin levels at AM were associated with lower stress-induced cortisol at PM, likely reflective of a protective stress-regulatory mechanism for buffering HPA stress activity. In children with ASD, on the other hand, a significant rise in oxytocin levels from the morning to the afternoon was associated with a higher stress-induced cortisol release in the afternoon, likely reflective of a more reactive stress regulatory release of oxytocin for reactively coping with heightened HPA activity. Regarding epigenetic modifications, no overall pattern of OXTR hypo- or hypermethylation was evident in ASD. In control children, a notable association between OXTR methylation and levels of cortisol at PM was evident, likely indicative of a compensatory downregulation of OXTR methylation (higher oxytocin receptor expression) in children with heightened HPA axis activity. Together, these observations bear important insights into altered oxytocinergic signaling in ASD, which may aid in establishing relevant biomarkers for diagnostic and/or treatment evaluation purposes targeting the oxytocinergic system in ASD.
Collapse
Affiliation(s)
- Margaux Evenepoel
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, Belgium
- KU Leuven, Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Matthijs Moerkerke
- KU Leuven, Leuven Autism Research (LAuRes), Leuven, Belgium
- KU Leuven, Department of Neurosciences, Center for Developmental Psychiatry, Leuven, Belgium
| | - Nicky Daniels
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, Belgium
- KU Leuven, Leuven Autism Research (LAuRes), Leuven, Belgium
| | | | - Stephan Claes
- University Psychiatric Centre, KU Leuven, Leuven, Belgium
| | - Jonathan Turner
- Luxembourg Institute of Health, Department of Infection and Immunity, Esch sur Alzette, Luxembourg
| | - Bart Vanaudenaerde
- KU Leuven, Department of Chronic Illness and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery, Leuven, Belgium
| | - Lynn Willems
- KU Leuven, Department of Chronic Illness and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery, Leuven, Belgium
| | - Johan Verhaeghe
- KU Leuven, Department of Development and Regeneration, Research Group Woman and Child, Leuven, Belgium
| | - Jellina Prinsen
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, Belgium
- KU Leuven, Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Jean Steyaert
- KU Leuven, Leuven Autism Research (LAuRes), Leuven, Belgium
- KU Leuven, Department of Neurosciences, Center for Developmental Psychiatry, Leuven, Belgium
| | - Bart Boets
- KU Leuven, Leuven Autism Research (LAuRes), Leuven, Belgium
- KU Leuven, Department of Neurosciences, Center for Developmental Psychiatry, Leuven, Belgium
| | - Kaat Alaerts
- KU Leuven, Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, Leuven, Belgium.
- KU Leuven, Leuven Autism Research (LAuRes), Leuven, Belgium.
| |
Collapse
|
5
|
Giel KE, Schag K, Leehr EJ, Mack I, Schuster LS, Wiegand A, Zipfel S, Hallschmid M, Nieratschker V. OXTR DNA methylation differentiates men on the obesity spectrum with and without binge eating disorder. Clin Epigenetics 2022; 14:108. [PMID: 36042529 PMCID: PMC9429727 DOI: 10.1186/s13148-022-01318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The neuropeptide oxytocin (OXT) plays a role in the regulation of eating behavior and metabolism. OXT functioning is altered in patients with eating and weight disorders, and a variant of the oxytocin receptor gene (OXTR) has been associated with impulsive eating behavior as it is seen in patients with binge eating disorder (BED). Gene × environment interactions could play a role in BED. One mechanism mediating this interaction is the epigenetic alteration of gene expression. We therefore investigated if DNA methylation of the OXTR differs between individuals with obesity depending on a comorbid BED. We analyzed DNA methylation of the OXTR in peripheral blood of 227 individuals on the obesity spectrum (mean age: 40.3 ± 13.1 yrs; mean BMI: 38.6 ± 7.3 kg/m2), 130 of which were diagnosed with BED. RESULTS There were no overall differences in OXTR methylation between participants with and those without BED (p > 0.05), while both subgroups were comparable regarding age and body mass index (BMI), but significantly differed in sex distribution (p = 0.035). We found no relationship between mean DNA methylation and BMI or self-reported eating disorder (ED) pathology. Analyzing potential sex differences revealed a significantly lower OXTR DNA methylation in male participants with BED as compared to those without BED (p = 0.017). No such difference was found in the female subsample (p > 0.05). CONCLUSIONS Clinically significant binge eating pathology might be associated with lower OXTR DNA methylation exclusively in males. The differential DNA methylation of OXTR in males with BED supports the view that BED represents a phenotype within the obesity spectrum that is characterized by specific vulnerability factors. A better understanding of the epigenetic underpinnings of the OXT system might contribute to the refinement of OXT administration approaches as potential interventions in eating and weight disorders.
Collapse
Affiliation(s)
- Katrin Elisabeth Giel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Osianderstr. 5, 72076, Tübingen, Germany. .,Centre of Excellence for Eating Disorders (KOMET), Osianderstr. 5, 72076, Tübingen, Germany.
| | - Kathrin Schag
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Osianderstr. 5, 72076, Tübingen, Germany.,Centre of Excellence for Eating Disorders (KOMET), Osianderstr. 5, 72076, Tübingen, Germany
| | - Elisabeth Johanna Leehr
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Straße 11, 48149, Münster, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Osianderstr. 5, 72076, Tübingen, Germany.,Centre of Excellence for Eating Disorders (KOMET), Osianderstr. 5, 72076, Tübingen, Germany
| | - Lea-Sarah Schuster
- Department of Psychiatry and Psychotherapy, Medical University Hospital Tübingen, Calwerstraße 14, 72076, Tübingen, Germany
| | - Ariane Wiegand
- Department of Psychiatry and Psychotherapy, Medical University Hospital Tübingen, Calwerstraße 14, 72076, Tübingen, Germany
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Osianderstr. 5, 72076, Tübingen, Germany.,Centre of Excellence for Eating Disorders (KOMET), Osianderstr. 5, 72076, Tübingen, Germany
| | - Manfred Hallschmid
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Otfried-Müller-Straße 25, 72076, Tübingen, Germany.,German Center for Diabetes Research (DZD), Otfried-Müller-Straße 10, 72076, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Otfried-Müller-Straße 10, 72076, Tübingen, Germany
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, Medical University Hospital Tübingen, Calwerstraße 14, 72076, Tübingen, Germany
| |
Collapse
|
6
|
Heseding HM, Jahn K, Eberlein CK, Wieting J, Maier HB, Proskynitopoulos PJ, Glahn A, Bleich S, Frieling H, Deest M. Distinct promoter regions of the oxytocin receptor gene are hypomethylated in Prader-Willi syndrome and in Prader-Willi syndrome associated psychosis. Transl Psychiatry 2022; 12:246. [PMID: 35688807 PMCID: PMC9187685 DOI: 10.1038/s41398-022-02014-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/12/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder caused by a loss of usually paternally expressed, maternally imprinted genes located on chromosome 15q11-q13. Individuals with PWS display a specific behavioral phenotype and have a higher susceptibility than the general population for certain psychiatric conditions, especially psychosis. An impairment of the oxytocin system has been described in Prader-Willi syndrome, but has not yet been investigated in detail on the epigenetic level. Recent studies have pointed out altered methylation patterns of the oxytocin receptor gene (OXTR) in various psychiatric disorders, including psychosis. In this study, we investigated methylation rates of CpG dinucleotides in the promoter region of the oxytocin receptor gene via bisulfite-sequencing using DNA extracted from peripheral blood samples of 31 individuals with PWS and 14 controls matched for age, sex, and BMI. Individuals with PWS show significantly lower methylation in the intron 1 region of the OXTR than neurotypical controls (p = 0.012). Furthermore, male PWS subjects with psychosis show significantly lower methylation of the OXTR exon 1 region than those without psychosis (p = 0.002). Transcription factor binding site analysis revealed E2F1 as a transcription factor potentially binding to the exon 1 region. E2F1 is physiologically regulated by Necdin, an anti-apoptotic protein whose corresponding gene is located within the PWS locus. This study provides evidence of a disruption of the Oxytocin system on an epigenetic level in PWS in general and in individuals with PWS and psychosis.
Collapse
Affiliation(s)
- Hannah M. Heseding
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Kirsten Jahn
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Christian K. Eberlein
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Jelte Wieting
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Hannah B. Maier
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Phileas J. Proskynitopoulos
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexander Glahn
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Stefan Bleich
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Helge Frieling
- grid.10423.340000 0000 9529 9877Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Maximilian Deest
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
7
|
Ludwig B, Carlberg L, Kienesberger K, Swoboda P, Swoboda MMM, Bernegger A, Koller R, Inaner M, Fuxjäger M, Zotter M, Schmelzle N, Senft B, Meisner L, Fischer-Hansal D, Huber J, Schoenthaler S, Kapusta ND, Haslacher H, Aigner M, Weinhaeusel A, Kasper S, Schosser A. Oxytocin receptor gene methylation as a molecular marker for severity of depressive symptoms in affective disorder patients. BMC Psychiatry 2022; 22:381. [PMID: 35672748 PMCID: PMC9172116 DOI: 10.1186/s12888-022-04031-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Oxytocin (OXT) is a neuropeptide and hormone involved in emotional functioning and also seems to play a role in moderating the stress response. Both preclinical and clinical studies point to an increased methylation status of the Oxytocin receptor (OXTR) promoter region with concomitant deficits in social, cognitive and emotional functioning. We hypothesize that methylation levels (%) of the oxytocin receptor promoter region correlate with the severity of depression symptoms and/or with the severity of childhood trauma within this present sample of affective disorder patients. METHODOLOGY Eight hundred forty six (846) affective disorder patients of Central European origin were recruited at the Department of Psychiatry and Psychotherapy of the Medical University Vienna, the Karl Landsteiner University for Health and Science and Zentren für seelische Gesundheit, BBRZ-Med Leopoldau. Psychiatric assessment included a semi-structured diagnostic interview (Schedules for Clinical Assessment in Neuropsychiatry), the Hamilton Depression Scale and the Childhood Trauma Questionnaire. Concomitantly DNA samples of peripheral blood cells were collected for Multiplexed and Sensitive DNA Methylation Testing. RESULTS Our data suggests a positive but not significant association between OXTR promoter Exons 1-3 methylation levels and severity of depression symptoms as well as severity of emotional neglect in affective disorder patients and no association with childhood trauma. CONCLUSIONS Our findings contribute to elucidate the role of OXTR in affective disorders, but further longitudinal studies in particular are necessary to broaden the current state of knowledge.
Collapse
Affiliation(s)
- Birgit Ludwig
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Laura Carlberg
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Klemens Kienesberger
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Patrick Swoboda
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marleen M. M. Swoboda
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria ,Department of Psychiatry and Psychotherapy, Karl Landsteiner University for Health and Science, Tulln, Austria
| | - Alexandra Bernegger
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria ,grid.490543.f0000 0001 0124 884XSt. John of God Hospital, Vienna, Austria
| | - Romina Koller
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Michelle Inaner
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Monika Fuxjäger
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Melanie Zotter
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria ,grid.503049.bZentren Für Seelische Gesundheit, BBRZ-Med, Vienna, Austria
| | - Nicolas Schmelzle
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Birgit Senft
- grid.503049.bZentren Für Seelische Gesundheit, BBRZ-Med, Vienna, Austria
| | - Lisa Meisner
- grid.503049.bZentren Für Seelische Gesundheit, BBRZ-Med, Vienna, Austria
| | | | - Jasmin Huber
- grid.4332.60000 0000 9799 7097Health & Environment Department, Molecular Diagnostics Unit, AIT Austrian Institute of Technology, Vienna, Austria
| | - Silvia Schoenthaler
- grid.4332.60000 0000 9799 7097Health & Environment Department, Molecular Diagnostics Unit, AIT Austrian Institute of Technology, Vienna, Austria
| | - Nestor D. Kapusta
- grid.22937.3d0000 0000 9259 8492Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- grid.22937.3d0000 0000 9259 8492Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Aigner
- Department of Psychiatry and Psychotherapy, Karl Landsteiner University for Health and Science, Tulln, Austria
| | - Andreas Weinhaeusel
- grid.4332.60000 0000 9799 7097Health & Environment Department, Molecular Diagnostics Unit, AIT Austrian Institute of Technology, Vienna, Austria
| | - Siegfried Kasper
- grid.22937.3d0000 0000 9259 8492Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria ,grid.22937.3d0000 0000 9259 8492Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Alexandra Schosser
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria. .,Zentren Für Seelische Gesundheit, BBRZ-Med, Vienna, Austria. .,Faculty of Medicine, Sigmund Freud University, Vienna, Austria. .,Arbeitsgemeinschaft Für Verhaltensmodifikation, Salzburg, Austria.
| |
Collapse
|
8
|
Epigenomic Modifications in Modern and Ancient Genomes. Genes (Basel) 2022; 13:genes13020178. [PMID: 35205223 PMCID: PMC8872240 DOI: 10.3390/genes13020178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Epigenetic changes have been identified as a major driver of fundamental metabolic pathways. More specifically, the importance of epigenetic regulatory mechanisms for biological processes like speciation and embryogenesis has been well documented and revealed the direct link between epigenetic modifications and various diseases. In this review, we focus on epigenetic changes in animals with special attention on human DNA methylation utilizing ancient and modern genomes. Acknowledging the latest developments in ancient DNA research, we further discuss paleoepigenomic approaches as the only means to infer epigenetic changes in the past. Investigating genome-wide methylation patterns of ancient humans may ultimately yield in a more comprehensive understanding of how our ancestors have adapted to the changing environment, and modified their lifestyles accordingly. We discuss the difficulties of working with ancient DNA in particular utilizing paleoepigenomic approaches, and assess new paleoepigenomic data, which might be helpful in future studies.
Collapse
|
9
|
Subtypes of schizophrenia identified by multi-omic measures associated with dysregulated immune function. Mol Psychiatry 2021; 26:6926-6936. [PMID: 34588622 DOI: 10.1038/s41380-021-01308-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/08/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023]
Abstract
Epigenetic modifications are plausible molecular sources of phenotypic heterogeneity across schizophrenia patients. The current study investigated biological heterogeneity in schizophrenia using peripheral epigenetic profiles to delineate illness subtypes independent of their phenomenological manifestations. We applied epigenome-wide profiling with a DNA methylation array from blood samples of 63 schizophrenia patients and 59 healthy controls. Non-negative matrix factorization (NMF) and k-means clustering were performed to identify DNA methylation-related patient subtypes. The validity of the partition was tested by assessing the profile of the T cell receptor (TCR) repertoires. The uniqueness of the identified subtypes in relation to brain structural and clinical measures were evaluated. Two distinct patterns of DNA methylation profiles were identified in patients. One subtype (60.3% of patients) showed relatively limited changes in methylation levels and cell composition compared to controls, while a second subtype (39.7% of patients) exhibited widespread methylation level alterations among genes enriched in immune cell activity, as well as a higher proportion of neutrophils and lower proportion of lymphocytes. Differentiation of the two patient subtypes was validated by TCR repertoires, which paralleled the partition based on DNA methylation profiles. The subtype with widespread methylation modifications had higher symptom severity, performed worse on cognitive measures, and displayed greater reductions in fractional anisotropy of white matter tracts and evidence of gray matter thickening compared to the other subtype. Identification of a distinct subtype of schizophrenia with unique molecular, cerebral, and clinical features provide a novel parcellation of the schizophrenia syndrome with potential to guide development of individualized therapeutics.
Collapse
|
10
|
Magwai T, Shangase KB, Oginga FO, Chiliza B, Mpofana T, Xulu KR. DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells 2021; 10:2890. [PMID: 34831111 PMCID: PMC8616184 DOI: 10.3390/cells10112890] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by dissociation of thoughts, idea, identity, and emotions. It has no central pathophysiological mechanism and precise diagnostic markers. Despite its high heritability, there are also environmental factors implicated in the development of schizophrenia. Epigenetic factors are thought to mediate the effects of environmental factors in the development of the disorder. Epigenetic modifications like DNA methylation are a risk factor for schizophrenia. Targeted gene approach studies attempted to find candidate gene methylation, but the results are contradictory. Genome-wide methylation studies are insufficient in literature and the available data do not cover different populations like the African populations. The current genome-wide studies have limitations related to the sample and methods used. Studies are required to control for these limitations. Integration of DNA methylation, gene expression, and their effects are important in the understanding of the development of schizophrenia and search for biomarkers. There are currently no precise and functional biomarkers for the disorder. Several epigenetic markers have been reported to be common in functional and peripheral tissue. This makes the peripheral tissue epigenetic changes a surrogate of functional tissue, suggesting common epigenetic alteration can be used as biomarkers of schizophrenia in peripheral tissue.
Collapse
Affiliation(s)
- Thabo Magwai
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
- National Health Laboratory Service, Department of Chemical Pathology, University of Kwa-Zulu Natal, Durban 4085, South Africa
| | - Khanyiso Bright Shangase
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwa-Zulu Natal, Durban 4001, South Africa;
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Khethelo Richman Xulu
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| |
Collapse
|
11
|
Lee YJ, Lin HT, Chaudhary MA, Lee YC, Wang DC. Effects of Prenatal Phthalate Exposure and Childhood Exercise on Maternal Behaviors in Female Rats at Postpartum: A Role of Oxtr Methylation in the Hypothalamus. Int J Mol Sci 2021; 22:9847. [PMID: 34576011 PMCID: PMC8465903 DOI: 10.3390/ijms22189847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Both the detrimental effect of prenatal exposure to di-(2-ethylhexyl)-phthalate (DEHP) and the beneficial effects of physical exercise on brain functions have been reported. The oxytocin pathway has been implicated in the onset of maternal behaviors. Epigenetic modification of the oxytocin receptor gene (OXTR) through DNA methylation has been associated with the pathogenesis of neuropsychiatric disorders. The purpose of this study was to investigate the effects of prenatal DEHP exposure on oxytocin-regulated maternal behaviors and to examine the protective effect of exercise. Pregnant rats (F0) were fed with vehicle or DEHP during gestation and the offspring females (F1) were assessed for their maternal behaviors by pup retrieval test at postpartum. The results showed that reduced pup retrieval activities without significant alteration of stress responses were observed in the prenatally DEHP-exposed females. Prenatal DEHP exposure decreased the expressions of oxytocin, Oxtr mRNA, and oxytocin receptor, and increased Oxtr methylation in the hypothalamus of postpartum female rats. There were no significant effects of exercise on behavioral, biochemical, and epigenetic measurements. These results suggest that prenatal DEHP exposure has a long-term adverse effect on maternal behaviors; Oxtr hyper-methylation may be a potential epigenetic mechanism for this alteration, which cannot be prevented by physical exercise during childhood.
Collapse
Affiliation(s)
- Yi-Ju Lee
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-J.L.); (H.-T.L.)
| | - Hwai-Ting Lin
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-J.L.); (H.-T.L.)
- Ph. D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Muhammad Asad Chaudhary
- Ph. D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yi-Ching Lee
- Department of Food and Beverage Services, Tainan University of Technology, Tainan 710302, Taiwan;
| | - Dean-Chuan Wang
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-J.L.); (H.-T.L.)
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
12
|
Riccardi C, Montemagni C, Del Favero E, Bellino S, Brasso C, Rocca P. Pharmacological Treatment for Social Cognition: Current Evidence. Int J Mol Sci 2021; 22:7457. [PMID: 34299076 PMCID: PMC8307511 DOI: 10.3390/ijms22147457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022] Open
Abstract
Cognitive impairment is currently considered a core feature of schizophrenia (SZ) and is gaining attention as a fundamental therapeutic target. Standard treatment for SZ involves the use of antipsychotics that are successfully used to control positive symptoms and disorganized behaviour. However, it is still unclear whether they are effective on social cognition (SC) impairment. Furthermore, different medications are currently being studied to improve SC in patients with SZ. A literature search on this topic was conducted using the PubMed database. All kinds of publications (i.e., reviews, original contributions and case reports) written in English and published in the last 15 years were included. The aim of our literature review is to draw a picture of the current state of the pharmacological treatment of SC impairment in SZ.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Rocca
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10100 Turin, Italy; (C.R.); (C.M.); (E.D.F.); (S.B.); (C.B.)
| |
Collapse
|
13
|
Danoff JS, Wroblewski KL, Graves AJ, Quinn GC, Perkeybile AM, Kenkel WM, Lillard TS, Parikh HI, Golino HF, Gregory SG, Carter CS, Bales KL, Connelly JJ. Genetic, epigenetic, and environmental factors controlling oxytocin receptor gene expression. Clin Epigenetics 2021; 13:23. [PMID: 33516250 PMCID: PMC7847178 DOI: 10.1186/s13148-021-01017-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/19/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The neuropeptide oxytocin regulates mammalian social behavior. Disruptions in oxytocin signaling are a feature of many psychopathologies. One commonly studied biomarker for oxytocin involvement in psychiatric diseases is DNA methylation at the oxytocin receptor gene (OXTR). Such studies focus on DNA methylation in two regions of OXTR, exon 3 and a region termed MT2 which overlaps exon 1 and intron 1. However, the relative contribution of exon 3 and MT2 in regulating OXTR gene expression in the brain is currently unknown. RESULTS Here, we use the prairie vole as a translational animal model to investigate genetic, epigenetic, and environmental factors affecting Oxtr gene expression in a region of the brain that has been shown to drive Oxtr related behavior in the vole, the nucleus accumbens. We show that the genetic structure of Oxtr in prairie voles resembles human OXTR. We then studied the effects of early life experience on DNA methylation in two regions of a CpG island surrounding the Oxtr promoter: MT2 and exon 3. We show that early nurture in the form of parental care results in DNA hypomethylation of Oxtr in both MT2 and exon 3, but only DNA methylation in MT2 is associated with Oxtr gene expression. Network analyses indicate that CpG sites in the 3' portion of MT2 are most highly associated with Oxtr gene expression. We also identify two novel SNPs in exon 3 of Oxtr in prairie voles and a novel alternative transcript originating from the third intron of the gene. Expression of the novel alternative transcript is associated with genotype at SNP KLW2. CONCLUSIONS These results identify putative regulatory features of Oxtr in prairie voles which inform future studies examining OXTR in human social behaviors and disorders. These studies indicate that in prairie voles, DNA methylation in MT2, particularly in the 3' portion, is more predictive of Oxtr gene expression than DNA methylation in exon 3. Similarly, in human temporal cortex, we find that DNA methylation in the 3' portion of MT2 is associated with OXTR expression. Together, these results suggest that among the CpG sites studied, DNA methylation of MT2 may be the most reliable indicator of OXTR gene expression. We also identify novel features of prairie vole Oxtr, including SNPs and an alternative transcript, which further develop the prairie vole as a translational model for studies of OXTR.
Collapse
Affiliation(s)
- Joshua S Danoff
- Department of Psychology, University of Virginia, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA, 22904, USA
| | - Kelly L Wroblewski
- Department of Psychology, University of Virginia, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA, 22904, USA
| | - Andrew J Graves
- Department of Psychology, University of Virginia, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA, 22904, USA
| | - Graham C Quinn
- Department of Psychology, University of Virginia, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA, 22904, USA
| | - Allison M Perkeybile
- The Kinsey Institute, Indiana University, 150 S Woodlawn Avenue, Bloomington, IN, 47405, USA
| | - William M Kenkel
- The Kinsey Institute, Indiana University, 150 S Woodlawn Avenue, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, University of Delaware, 105 The Green, Newark, DE, 19716, USA
| | - Travis S Lillard
- Department of Psychology, University of Virginia, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA, 22904, USA
| | - Hardik I Parikh
- Division of Infectious Diseases and International Health, University of Virginia, 345 Crispell Drive, Charlottesville, VA, 22908, USA
- Research Computing, University of Virginia, 560 Ray C. Hunt Drive, Charlottesville, VA, 22903, USA
| | - Hudson F Golino
- Department of Psychology, University of Virginia, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA, 22904, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 N Duke St, Durham, NC, 27701, USA
| | - C Sue Carter
- The Kinsey Institute, Indiana University, 150 S Woodlawn Avenue, Bloomington, IN, 47405, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Jessica J Connelly
- Department of Psychology, University of Virginia, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA, 22904, USA.
| |
Collapse
|
14
|
Wheater ENW, Stoye DQ, Cox SR, Wardlaw JM, Drake AJ, Bastin ME, Boardman JP. DNA methylation and brain structure and function across the life course: A systematic review. Neurosci Biobehav Rev 2020; 113:133-156. [PMID: 32151655 PMCID: PMC7237884 DOI: 10.1016/j.neubiorev.2020.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/01/2023]
Abstract
MRI has enhanced our capacity to understand variations in brain structure and function conferred by the genome. We identified 60 studies that report associations between DNA methylation (DNAm) and human brain structure/function. Forty-three studies measured candidate loci DNAm; seventeen measured epigenome-wide DNAm. MRI features included region-of-interest and whole-brain structural, diffusion and functional imaging features. The studies report DNAm-MRI associations for: neurodevelopment and neurodevelopmental disorders; major depression and suicidality; alcohol use disorder; schizophrenia and psychosis; ageing, stroke, ataxia and neurodegeneration; post-traumatic stress disorder; and socio-emotional processing. Consistency between MRI features and differential DNAm is modest. Sources of bias: variable inclusion of comparator groups; different surrogate tissues used; variation in DNAm measurement methods; lack of control for genotype and cell-type composition; and variations in image processing. Knowledge of MRI features associated with differential DNAm may improve understanding of the role of DNAm in brain health and disease, but caution is required because conventions for linking DNAm and MRI data are not established, and clinical and methodological heterogeneity in existing literature is substantial.
Collapse
Affiliation(s)
- Emily N W Wheater
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom
| | - David Q Stoye
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom
| | - Simon R Cox
- Department of Psychology, University of Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | - James P Boardman
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, United Kingdom; Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
15
|
Fujisawa TX, Nishitani S, Takiguchi S, Shimada K, Smith AK, Tomoda A. Oxytocin receptor DNA methylation and alterations of brain volumes in maltreated children. Neuropsychopharmacology 2019; 44:2045-2053. [PMID: 31071720 PMCID: PMC6898679 DOI: 10.1038/s41386-019-0414-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/07/2019] [Accepted: 04/26/2019] [Indexed: 11/09/2022]
Abstract
Although oxytocin (OXT) plays an important role in secure attachment formation with a primary caregiver, which is impaired in many children with childhood maltreatment (CM), epigenetic regulation in response to CM is a key factor in brain development during childhood. To address this issue, we first investigated differences in salivary DNA methylation of the oxytocin receptor (OXTR) between CM and Non-CM groups of Japanese children (CM: n = 44; Non-CM: n = 41) and its impact on brain structures in subgroup analysis using brain imaging and full clinical data (CM: n = 24; Non-CM: n = 31). As a result, we observed that the CM group showed higher CpG 5,6 methylation than did the Non-CM group and confirmed negative correlations of gray matter volume (GMV) in the left orbitofrontal cortex (OFC) with CpG 5,6 methylation. In addition, the CM group showed significantly lower GMV in the left OFC than did the Non-CM group. Furthermore, as a result of examining the relationship between GMV in the left OFC and psychiatric symptoms in CM, we observed a negative association with insecure attachment style and also confirmed the mediation effect of left-OFC GMV reduction on the relationship between OXTR methylation and insecure attachment style. These results suggest that any modulation of the oxytocin signaling pathway induced by OXTR hypermethylation at CpG 5,6 leads to atypical development of the left OFC, resulting in distorted attachment formation in children with CM.
Collapse
Affiliation(s)
- Takashi X. Fujisawa
- 0000 0001 0692 8246grid.163577.1Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Shota Nishitani
- 0000 0001 0941 6502grid.189967.8Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA USA ,0000 0001 0941 6502grid.189967.8Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Shinichiro Takiguchi
- grid.413114.2Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Koji Shimada
- 0000 0001 0692 8246grid.163577.1Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Alicia K. Smith
- 0000 0001 0941 6502grid.189967.8Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA USA ,0000 0001 0941 6502grid.189967.8Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan. .,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan.
| |
Collapse
|
16
|
Bang M, Kang JI, Kim SJ, Park JY, Kim KR, Lee SY, Park K, Lee E, Lee SK, An SK. Reduced DNA Methylation of the Oxytocin Receptor Gene Is Associated With Anhedonia-Asociality in Women With Recent-Onset Schizophrenia and Ultra-high Risk for Psychosis. Schizophr Bull 2019; 45:1279-1290. [PMID: 31220321 PMCID: PMC6812051 DOI: 10.1093/schbul/sbz016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Negative symptoms are recognized as a fundamental feature of schizophrenia throughout the disease course. Epigenetic alterations in the oxytocin receptor gene (OXTR) may be a key mechanism involved in social-emotional disturbances of schizophrenia. Here, we investigated OXTR methylation and its association with clinical and brain network connectivity phenotypes of negative symptoms, particularly anhedonia-asociality, in individuals with recent-onset schizophrenia (ROS) and at ultrahigh risk (UHR) for psychosis. Sixty-four ROS (39 women), 46 UHR (19 women), and 98 healthy individuals (52 women) participated in this study. OXTR methylation was quantified using the pyrosequencing method. A subset of participants (16 ROS, 23 UHR, and 33 healthy controls [HCs]) underwent a 5.5-minute resting-state functional magnetic resonance imaging to determine the relationship between OXTR methylation and the striatal-amygdala network functional connectivity (FC) underlying anhedonia-asociality. Both men and women with ROS and UHR showed significantly decreased OXTR methylation compared to HCs. In women with ROS and UHR, decreased OXTR methylation showed a significant correlation with increased anhedonia-asociality. FC of the striatal-amygdala network, positively associated with the severity of anhedonia-asociality, showed an inverse correlation with OXTR methylation. This study suggests that epigenetic alterations of OXTR, which can be detected before the development of full-blown psychosis, confer susceptibility to schizophrenia and play a crucial role in the manifestation of anhedonia-asociality, particularly in women.
Collapse
Affiliation(s)
- Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jee In Kang
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Joo Kim
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Young Park
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea,Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Ran Kim
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Young Lee
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea,Department of Psychiatry, Cheil General Hospital and Women’s Healthcare Center, Dankook University College of Medicine, Seoul, Republic of Korea
| | - Kyungmee Park
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Lee
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suk Kyoon An
- Department of Psychiatry, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea,Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea,Graduate Program in Cognitive Science, Yonsei University, Seoul, Republic of Korea,To whom correspondence should be addressed; tel: +82-2-2228-1585, fax: +82-2-313-0891, e-mail:
| |
Collapse
|
17
|
Worley NB, Dumais KM, Yuan JC, Newman LE, Alonso AG, Gillespie TC, Hobbs NJ, Breedlove SM, Jordan CL, Bredewold R, Veenema AH. Oestrogen and androgen receptor activation contribute to the masculinisation of oxytocin receptors in the bed nucleus of the stria terminalis of rats. J Neuroendocrinol 2019; 31:e12760. [PMID: 31233647 DOI: 10.1111/jne.12760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/29/2022]
Abstract
Oxytocin (OT) often regulates social behaviours in sex-specific ways, and this may be a result of sex differences in the brain OT system. Adult male rats show higher OT receptor (OTR) binding in the posterior bed nucleus of the stria terminalis (pBNST) than adult female rats. In the present study, we investigated the mechanisms that lead to this sex difference. First, we found that male rats have higher OTR mRNA expression in the pBNST than females at postnatal day (P) 35 and P60, which demonstrates the presence of the sex difference in OTR binding density at message level. Second, the sex difference in OTR binding density in the pBNST was absent at P0 and P3, but was present by P5. Third, systemic administration of the oestrogen receptor (ER) antagonist fulvestrant at P0 and P1 dose-dependently reduced OTR binding density in the pBNST of 5-week-old male rats, but did not eliminate the sex difference in OTR binding density. Fourth, pBNST-OTR binding density was lower in androgen receptor (AR) deficient genetic male rats compared to wild-type males, but higher compared to wild-type females. Finally, systemic administration of the histone deacetylase inhibitor valproic acid at P0 and P1 did not alter pBNST-OTR binding density in 5-week-old male and female rats. Interestingly, neonatal ER antagonism, AR deficiency, and neonatal valproic acid treatment each eliminated the sex difference in pBNST size. Overall, we demonstrate a role for neonatal ER and AR activation in setting up the sex difference in OTR binding density in the pBNST, which may underlie sexual differentiation of the pBNST and social behaviour.
Collapse
Affiliation(s)
- Nicholas B Worley
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - Kelly M Dumais
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - Jingting C Yuan
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - Laura E Newman
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - Andrea G Alonso
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - Tessa C Gillespie
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - Nicholas J Hobbs
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - S Marc Breedlove
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Cynthia L Jordan
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Remco Bredewold
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Alexa H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
18
|
Lancaster K, Goldbeck L, Puglia MH, Morris JP, Connelly JJ. DNA methylation of OXTR is associated with parasympathetic nervous system activity and amygdala morphology. Soc Cogn Affect Neurosci 2019; 13:1155-1162. [PMID: 30257007 PMCID: PMC6234329 DOI: 10.1093/scan/nsy086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Oxytocin has anxiolytic properties whose mechanisms of action are still being identified. DNA methylation in the promoter region of the oxytocin receptor gene (OXTR), an epigenetic modification that putatively reflects a downtuning of the oxytocin system, has previously been implicated in the regulation of fear-related responses through the amygdala. In this study, we attempted to characterize the relationship between methylation of OXTR and anxiogenesis using two distinct endophenotypes: autonomic nervous system activity and subcortical brain structure. In 79 participants, we found that increased OXTR methylation is associated with attenuated resting parasympathetic tone, measured using high-frequency heart rate variability. Further, we found that this relationship is mediated by brain morphology, such that OXTR methylation is associated with increased gray matter of the central amygdala which is, in turn, associated with decreased parasympathetic tone. These results further our understanding of epigenetic regulation of the human oxytocin system and its role in anxiogenesis.
Collapse
|
19
|
Luckhaus C, Juckel G, Hurlemann R. [Oxytocin in schizophrenia : Evidence for an etiological and therapeutic relevance of the social neuromodulator]. DER NERVENARZT 2019; 90:277-284. [PMID: 30215130 DOI: 10.1007/s00115-018-0615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neurobiological results from animal models as well as biochemical and genetic findings in patients indicate that the oxytocin (OT) system may be dysfunctional in schizophrenia. On this pathogenetic basis transnasally administered OT (tnOT) could be an innovative treatment option for schizophrenia. Experimental data from animal studies are also suggestive of a particular effectiveness in treatment-resistant schizophrenia. To date, clinical data on tnOT treatment of schizophrenia patients does not unequivocally support a general therapeutic effect on the psychopathology but suggests positive effects on higher integrated social cognitive performance, such as empathy and mentalization. In particular, tnOT augmentation of a social cognitive skills training resulted in a marked and lasting treatment effect; however, numerous person- and context-dependent variables can potentially moderate individual effects of OT and may even reverse effects in certain constellations. Most clinical studies so far have not systematically accounted and controlled for these factors with the probable result of larger variance of recorded treatment effects and lower likelihood of ascertaining positive effectiveness. Furthermore, there is still a gap of knowledge on dose response relations and central nervous system (CNS) permeation in man following tnOT administration. This review aims to give a concise overview on the evidence for the etiological relevance of the neurohormone OT and its treatment potential in schizophrenia.
Collapse
Affiliation(s)
- C Luckhaus
- Klinik für Psychiatrie, Psychotherapie und Präventivmedizin der Ruhr-Universität Bochum, LWL-Universitätsklinikum Bochum, Alexandrinenstr 1-3, 44791, Bochum, Deutschland.
| | - G Juckel
- Klinik für Psychiatrie, Psychotherapie und Präventivmedizin der Ruhr-Universität Bochum, LWL-Universitätsklinikum Bochum, Alexandrinenstr 1-3, 44791, Bochum, Deutschland
| | - R Hurlemann
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Bonn, Sigmund-Freud-Straße 25, 53105, Bonn, Deutschland
| |
Collapse
|
20
|
Oxytocin receptor gene methylation in male and female PTSD patients and trauma-exposed controls. Eur Neuropsychopharmacol 2019; 29:147-155. [PMID: 30415783 DOI: 10.1016/j.euroneuro.2018.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 09/30/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
Abstract
Oxytocin receptor gene (OXTR) DNA-methylation levels have been associated with trauma-exposure, mood- and anxiety disorders, and social processes relevant to posttraumatic stress disorder (PTSD). We hypothesized that OXTR methylation may play a role in the neurobiological underpinnings of PTSD. In the current study, we compared OXTR methylation between PTSD patients (n = 31, 14 females) and trauma-exposed controls (n = 36, 19 females). Additionally, the association between OXTR methylation and PTSD symptom severity and amygdala reactivity to an emotional faces task was assessed, as a neural hallmark of PTSD. DNA-methylation was investigated in the CpG island located at exon 3 of the OXTR, previously associated with OXTR expression. We observed a significant interaction between PTSD-status, sex and CpG-position on methylation levels. Post-hoc testing revealed that methylation levels at two specific CpG-sites were significantly higher in PTSD females compared to female trauma-exposed controls and PTSD males (CpGs Chr3:8809437, Chr3:8809413). No significant differences in methylation were observed between male PTSD patients and controls. Furthermore, within PTSD females, methylation in these CpG-sites was positively associated with anhedonia symptoms and with left amygdala responses to negative emotional faces, although this was no longer significant after stringent correction for multiple-comparisons. Though the modest size of the current sample is an important limitation, we are the first to report on OXTR methylation in PTSD, replicating previously observed (sex-specific) associations of OXTR methylation with other psychiatric disorders.
Collapse
|
21
|
Towers AJ, Tremblay MW, Chung L, Li XL, Bey AL, Zhang W, Cao X, Wang X, Wang P, Duffney LJ, Siecinski SK, Xu S, Kim Y, Kong X, Gregory S, Xie W, Jiang YH. Epigenetic dysregulation of Oxtr in Tet1-deficient mice has implications for neuropsychiatric disorders. JCI Insight 2018; 3:120592. [PMID: 30518695 DOI: 10.1172/jci.insight.120592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023] Open
Abstract
OXTR modulates a variety of behaviors in mammals, including social memory and recognition. Genetic and epigenetic dysregulation of OXTR has been suggested to be implicated in neuropsychiatric disorders, including autism spectrum disorder (ASD). While the involvement of DNA methylation is suggested, the mechanism underlying epigenetic regulation of OXTR is largely unknown. This has hampered the experimental design and interpretation of the results of epigenetic studies of OXTR in neuropsychiatric disorders. From the generation and characterization of a new line of Tet1 mutant mice - by deleting the largest coding exon 4 (Tet1Δe4) - we discovered for the first time to our knowledge that Oxtr has an array of mRNA isoforms and a complex transcriptional regulation. Select isoforms of Oxtr are significantly reduced in the brain of Tet1Δe4-/- mice. Accordingly, CpG islands of Oxtr are hypermethylated during early development and persist into adulthood. Consistent with the reduced express of OXTR, Tet1Δe4-/- mice display impaired maternal care, social behavior, and synaptic responses to oxytocin stimulation. Our findings elucidate a mechanism mediated by TET1 protein in regulating Oxtr expression by preventing DNA hypermethylation of Oxtr. The discovery of epigenetic dysregulation of Oxtr in TET1-deficient mouse brain supports the necessity of a reassessment of existing findings and a value of future studies of OXTR in neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Leeyup Chung
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Xin-Lei Li
- Department of Pediatrics, Duke University, Durham, North Carolina, USA.,Laboratory of Molecular Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alexandra L Bey
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | - Wenhao Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinyu Cao
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Xiaoming Wang
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Ping Wang
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Lara J Duffney
- Department of Pediatrics, Duke University, Durham, North Carolina, USA.,Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | | | - Sonia Xu
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Yuna Kim
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Xiangyin Kong
- Laboratory of Molecular Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simon Gregory
- University Program in Genetics and Genomics and.,Department of Neurology and Duke Molecular Physiology Institute
| | - Wei Xie
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yong-Hui Jiang
- University Program in Genetics and Genomics and.,Department of Pediatrics, Duke University, Durham, North Carolina, USA.,Department of Neurobiology, Duke University, Durham, North Carolina, USA.,Duke Institute for Brain Sciences, and.,Program in Cellular and Molecular Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
22
|
Epigenetic Modification of OXTR is Associated with Openness to Experience. PERSONALITY NEUROSCIENCE 2018; 1:e7. [PMID: 32435727 PMCID: PMC7219679 DOI: 10.1017/pen.2018.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/03/2018] [Indexed: 12/11/2022]
Abstract
Oxytocin is a neuropeptide known to influence social and cognitive processing across several mammalian species. There currently exists a mixed and controversial pattern of evidence that oxytocin pathway genes confer individual differences in social cognition and personality in humans. Inconsistencies across studies may in part be explained by the presence of intermediary, epigenetic, variables that exist between genotype and phenotype. This study was designed to investigate the association between epigenetic modification of the Oxytocin Receptor Gene (OXTR), via DNA methylation, and Big-5 personality traits. Genetic data were collected via saliva samples and analyzed to quantify DNA methylation within the promoter region of OXTR. The results indicate that Openness to Experience is associated with OXTR DNA methylation, while controlling for the remaining Big-5 personality dimensions (Neuroticism, Extraversion, Agreeableness, and Conscientiousness) and sex and age. This finding provides additional support for models associating oxytocin with individual differences in personality and identity in humans.
Collapse
|
23
|
Guzel D, Yazici AB, Pek TM, Doganay S, Simsek ABS, Saglam K, Turan C, Yazici E. Atrial natriuretic peptide and posterior pituitary neurohormone changes in patients with acute schizophrenia. Neuropsychiatr Dis Treat 2018; 14:1855-1860. [PMID: 30038496 PMCID: PMC6052919 DOI: 10.2147/ndt.s169619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Interactions between neuropeptides and psychiatric disorders have been investigated for many years. The aim of this study was to evaluate oxytocin (OXT), arginine-vasopressin (AVP), and atrial natriuretic peptide (ANP) and assess their interactions with each other, as well as investigate these changes with the manifestations of schizophrenia. PARTICIPANTS AND METHODS Thirty-four individuals having acute schizophrenia and 24 healthy individuals as the control group were included in the study. Positive and Negative Syndrome Scales, Global Assessment of Functionality score, and Clinical Global Impression (CGI) scores were measured. Serum hormone levels were analyzed using enzyme-linked immunosorbent assay and were compared with the clinical findings. RESULTS OXT levels were significantly lower and AVP levels were significantly higher in patients having acute schizophrenia than the control group. OXT was negatively correlated with Positive and Negative Syndrome Scales positive score and CGI score, while it was positively correlated with Global Assessment of Functionality score. AVP was negatively correlated with CGI score. ANP levels of the patients having schizophrenia were lower than the control group; however, there was no significant correlation with clinical findings. CONCLUSION The obtained data indicate that the AVP level was higher, but OXT and ANP levels were lower in the patients having acute schizophrenia. Specifically OXT is related with reduced disease severity and increased functionality.
Collapse
Affiliation(s)
- Derya Guzel
- Department of Physiology, School of Medicine, Sakarya University, Sakarya, Turkey
| | - Ahmet Bulent Yazici
- Department of Psychiatry, School of Medicine, Sakarya University, Sakarya, Turkey,
| | - Tugba Mutu Pek
- Department of Psychiatry, School of Medicine, Sakarya University, Sakarya, Turkey,
| | - Songul Doganay
- Department of Physiology, School of Medicine, Sakarya University, Sakarya, Turkey
| | | | - Kadir Saglam
- Department of Physiology, School of Medicine, Sakarya University, Sakarya, Turkey
| | - Caglar Turan
- Department of Psychiatry, School of Medicine, Sakarya University, Sakarya, Turkey,
| | - Esra Yazici
- Department of Psychiatry, School of Medicine, Sakarya University, Sakarya, Turkey,
| |
Collapse
|
24
|
Maud C, Ryan J, McIntosh JE, Olsson CA. The role of oxytocin receptor gene (OXTR) DNA methylation (DNAm) in human social and emotional functioning: a systematic narrative review. BMC Psychiatry 2018; 18:154. [PMID: 29843655 PMCID: PMC5975530 DOI: 10.1186/s12888-018-1740-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/11/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The neuropeptide Oxytocin (OXT) plays a central role in birthing, mother-infant bonding and a broad range of related social behaviours in mammals. More recently, interest has extended to epigenetic programming of genes involved in oxytocinergic neurotransmission. This review brings together early findings in a rapidly developing field of research, examining relationships between DNA methylation (DNAm) of the Oxytocin Receptor Gene (OXTR) and social and emotional behaviour in human populations. METHOD A systematic search across Web of Knowledge/Science, Scopus, Medline and EMBASE captured all published studies prior to June 2017 examining the association between OXTR DNAm and human social and emotional outcomes. Search terms included 'oxytocin gene' or 'oxytocin receptor gene' and 'epigenetics' or 'DNA methylation'. Any article with a focus on social and emotional functioning was then identified from this set by manual review. RESULTS Nineteen studies met eligibility criteria. There was considerable heterogeneity of study populations, tissue samples, instrumentation, measurement, and OXTR site foci. Only three studies examined functional consequences of OXTR DNAm on gene expression and protein synthesis. Increases in OXTR DNAm were associated with callous-unemotional traits in youth, social cognitive deficits in Autistic Spectrum Disorder (ASD), rigid thinking in anorexia nervosa, affect regulation problems, and problems with facial and emotional recognition. In contrast, reductions in DNAm were associated with perinatal stress, postnatal depression, social anxiety and autism in children. CONCLUSIONS Consistent with an emerging field of inquiry, there is not yet sufficient evidence to draw conclusions about the role of OXTR DNAm in human social and emotional behaviour. However, taken together, findings point to increased OXTR DNAm in general impairments in social, cognitive and emotional functioning, and decreased OXTR DNAm in specific patterns of impairment related to mood and anxiety disorders (but not in all). Future progress in this field would be enhanced by adequately powered designs, greater phenotypic precision, and methodological improvements including longitudinal studies with multiple time-points to facilitate causal inference.
Collapse
Affiliation(s)
- Catherine Maud
- Deakin University Geelong, Centre for Social and Early Emotional Development, Faculty of Health, School of Psychology, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| | - Joanne Ryan
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, 3052, Australia.,Department of Epidemiology and Preventative Medicine, School of Public Health and Preventative Medicine, Monash University, Prahran, VIC, 3004, Australia
| | - Jennifer E McIntosh
- Deakin University Geelong, Centre for Social and Early Emotional Development, Faculty of Health, School of Psychology, 221 Burwood Highway, Burwood, VIC, 3125, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia
| | - Craig A Olsson
- Deakin University Geelong, Centre for Social and Early Emotional Development, Faculty of Health, School of Psychology, 221 Burwood Highway, Burwood, VIC, 3125, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, 3052, Australia
| |
Collapse
|
25
|
Liu C, Jiao C, Wang K, Yuan N. DNA Methylation and Psychiatric Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:175-232. [PMID: 29933950 DOI: 10.1016/bs.pmbts.2018.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
DNA methylation has been an important area of research in the study of molecular mechanism to psychiatric disorders. Recent evidence has suggested that abnormalities in global methylation, methylation of genes, and pathways could play a role in the etiology of many forms of mental illness. In this article, we review the mechanisms of DNA methylation, including the genetic and environmental factors affecting methylation changes. We report and discuss major findings regarding DNA methylation in psychiatric patients, both within the context of global methylation studies and gene-specific methylation studies. Finally, we discuss issues surrounding data quality improvement, the limitations of current methylation analysis methods, and the possibility of using DNA methylation-based treatment for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Chunyu Liu
- University of Illinois, Chicago, IL, United States; School of Life Science, Central South University, Changsha, China.
| | - Chuan Jiao
- School of Life Science, Central South University, Changsha, China
| | - Kangli Wang
- School of Life Science, Central South University, Changsha, China
| | - Ning Yuan
- Hunan Brain Hospital, Changsha, China
| |
Collapse
|
26
|
Ebner NC, Lin T, Muradoglu M, Weir DH, Plasencia GM, Lillard TS, Pournajafi-Nazarloo H, Cohen RA, Sue Carter C, Connelly JJ. Associations between oxytocin receptor gene (OXTR) methylation, plasma oxytocin, and attachment across adulthood. Int J Psychophysiol 2018; 136:22-32. [PMID: 29410310 DOI: 10.1016/j.ijpsycho.2018.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 11/23/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
The neuropeptide oxytocin (OT) has been implicated in a wide range of affiliative processes. OT exerts its functions via OT receptors, which are encoded by the oxytocin receptor gene (OXTR). Epigenetic modification of OXTR through the process of DNA methylation has been associated with individual differences in behavioral phenotypes. Specifically, lower levels of OXTR methylation have been linked to better social and affective functioning. However, research on epigenetic mechanisms of OXTR is scarce in non-clinical populations, and even less is known about epigenetic variability across adulthood. The present study assessed methylation levels at OXTR CpG site -934 and plasma OT levels in 22 young (20-31 years, M = 23.6) and 34 older (63-80 years, M = 71.4) participants. Lower levels of OXTR methylation and higher plasma OT levels were associated with less self-reported attachment anxiety in young but not older participants, with largely independent contributions of OXTR methylation and plasma OT levels. In contrast, in the overall sample, lower levels of OXTR methylation were associated with higher self-reported attachment avoidance. Age analysis suggested that these results were largely driven by young adults. Plasma OT levels were unrelated to attachment avoidance. Taken together, these findings support the emerging notion in the literature that epigenetic properties of OXTR, in addition to endogenous OT levels, are related to adult attachment. Further, the age effects observed in the associations between OXTR methylation, plasma OT, and adult attachment emphasize the importance of adopting a developmental perspective when studying properties of the OT system and their relation to affiliative processes. Findings contribute to growing evidence suggesting that epigenetic modification of genes regulating OT pathways and endogenous OT levels are associated with the way people form and maintain intimate social relationships.
Collapse
Affiliation(s)
- Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA; Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.
| | - Tian Lin
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Melis Muradoglu
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Devon H Weir
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Gabriela M Plasencia
- Stritch School of Medicine, Loyola University of Chicago, 2160 S 1st Ave, Maywood, IL 60153, USA
| | - Travis S Lillard
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | | | - Ronald A Cohen
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Jessica J Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
27
|
Veras AB, Getz M, Froemke RC, Nardi AE, Alves GS, Walsh-Messinger J, Chao MV, Kranz TM, Malaspina D. Rare missense coding variants in oxytocin receptor (OXTR) in schizophrenia cases are associated with early trauma exposure, cognition and emotional processing. J Psychiatr Res 2018; 97:58-64. [PMID: 29190530 DOI: 10.1016/j.jpsychires.2017.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 10/24/2022]
Abstract
BACKGROUND Oxytocin is a peptide hormone that influences the integration of social cognition with behavior and affect regulation. Oxytocin also prominently directs the transition of neuronal GABA neurotransmission from excitatory to inhibitory after birth. The oxytocin receptor (OXTR) is linked to schizophrenia, a heterogeneous syndrome. Relationships of OXTR polymorphisms with specific clinical features could aid in evaluating any role of oxytocin in the pathogenesis of schizophrenia. METHOD Schizophrenia cases with rare missense coding OXTR single nucleotide variants (SNVs) were identified from a well-characterized sample of cases and controls who were assessed for symptoms, cognition and early life trauma. RESULTS Five of 48 cases showed rare OXTR variants. Compared to the other cases they had less severe negative symptoms (deficits in emotional expression and motivation) and less severe general psychopathology scores (depression and anxiety). They demonstrated lower nonverbal (performance) than verbal intelligence due to deficient perceptual organization and slow processing speed. They also reported greater early trauma exposure (physical and sexual abuse and emotional trauma). CONCLUSION Cases carrying rare OXTR SNVs had less negative and affective symptoms than other cases, but similar psychotic symptoms, along with specific cognitive deficits. The clinical characterization of these cases occurred in association with environmental exposure to early trauma, especially sexual abuse, which may have influenced the expression of schizophrenia in subjects harboring specific SNVs in the OXTR.
Collapse
Affiliation(s)
- Andre B Veras
- Departments of Psychiatry, Neuroscience and Genetics, Icahn School of Medicine at Mt. Sinai Medical Center, New York, NY, USA; Translational Research Group on Mental Health (GPTranSMe), Dom Bosco Catholic University, Campo Grande, MS, Brazil; Laboratory of Panic and Respiration (LabPR-UFRJ), Psychiatry Institute of Federal University of Rio de Janeiro (IPUB-UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Mara Getz
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Robert C Froemke
- Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology and Neuroscience/Physiology, New York University, NY, USA
| | - Antonio Egidio Nardi
- Laboratory of Panic and Respiration (LabPR-UFRJ), Psychiatry Institute of Federal University of Rio de Janeiro (IPUB-UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Julie Walsh-Messinger
- Department of Psychology, University of Dayton, Dayton, OH, USA; Department of Psychiatry, Wright State University Boonshoft School of Medicine, Dayton, OH, USA
| | - Moses V Chao
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University, New York, NY, USA
| | - Thorsten M Kranz
- Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology and Neuroscience/Physiology, New York University, NY, USA; Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University, New York, NY, USA
| | - Dolores Malaspina
- Departments of Psychiatry, Neuroscience and Genetics, Icahn School of Medicine at Mt. Sinai Medical Center, New York, NY, USA
| |
Collapse
|
28
|
Aghajani M, Klapwijk ET, Colins OF, Ziegler C, Domschke K, Vermeiren RRJM, van der Wee NJA. Interactions Between Oxytocin Receptor Gene Methylation and Callous-Unemotional Traits Impact Socioaffective Brain Systems in Conduct-Disordered Offenders. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:379-391. [PMID: 29628070 DOI: 10.1016/j.bpsc.2017.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND The developmental trajectory of psychopathy seemingly begins early in life and includes the presence of callous-unemotional (CU) traits (e.g., perturbed socioaffective reactivity and empathy, callousness) in youths with conduct disorder (CD). Whereas oxytocin receptor gene methylation (OXTRMeth) and its downstream neuromodulatory effects are deemed relevant to CU traits, nothing is known of how OXTRMeth interacts with CU traits to impact socioaffective brain systems in youngsters with CD. METHODS Hence, we uniquely probed OXTRMeth × CU trait interactions on corticolimbic activity and amygdala subregional connections during recognition and resonance of distressing socioaffective stimuli (angry and fearful faces), in juvenile offenders with CD (n = 39) versus matched healthy control youths (n = 27). RESULTS Relative to healthy control youths, elevated OXTRMeth and CU levels in youths with CD essentially interacted to predict frontoparietal hyperactivity and amygdalo-frontoparietal disconnection during task performance. Specifically, increasing OXTRMeth and CU levels in youths with CD interactively predicted midcingulate hyperactivity during both emotion conditions, with insular, temporoparietal, and precuneal hyperactivity additionally emerging during emotion recognition. Interactions between high OXTRMeth and CU levels in youths with CD additionally predicted centromedial amygdala decoupling from ventromedial/orbitofrontal regions during emotion recognition, along with basolateral amygdala decoupling from precuneal and temporoparietal cortices during emotion resonance. CONCLUSIONS These results uniquely suggest that interactions between OXTRMeth and CU traits in youths with CD may affect brain systems critical to decoding and integrating socioaffective information. Developmental models of CU traits and psychopathy could thus possibly advance by further examining OXTR epigenetic effects, which may hold promise for indicated prevention and personalized treatment by targeting oxytocinergic function.
Collapse
Affiliation(s)
- Moji Aghajani
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands.
| | - Eduard T Klapwijk
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Brain and Development Research Center, Institute of Psychology, Leiden University, Leiden, the Netherlands
| | - Olivier F Colins
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Christiane Ziegler
- Department of Psychiatry and Psychotherapy, University Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Psychiatry, University of Würzburg, Würzburg, Germany
| | | | - Robert R J M Vermeiren
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Nic J A van der Wee
- Department of Pschiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
29
|
Kader F, Ghai M, Maharaj L. The effects of DNA methylation on human psychology. Behav Brain Res 2017; 346:47-65. [PMID: 29237550 DOI: 10.1016/j.bbr.2017.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/01/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023]
Abstract
DNA methylation is a fundamental epigenetic modification in the human genome; pivotal in development, genomic imprinting, X inactivation, chromosome stability, gene expression and methylation aberrations are involved in an array of human diseases. Methylation at promoters is associated with transcriptional repression, whereas gene body methylation is generally associated with gene expression. Extrinsic factors such as age, diets and lifestyle affect DNA methylation which consequently alters gene expression. Stress, anxiety, depression, life satisfaction, emotion among numerous other psychological factors also modify DNA methylation patterns. This correlation is frequently investigated in four candidate genes; NR3C1, SLC6A4, BDNF and OXTR, since regulation of these genes directly impact responses to social situations, stress, threats, behaviour and neural functions. Such studies underpin the hypothesis that DNA methylation is involved in deviant human behaviour, psychological and psychiatric conditions. These candidate genes may be targeted in future to assess the correlation between methylation, social experiences and long-term behavioural phenotypes in humans; and may potentially serve as biomarkers for therapeutic intervention.
Collapse
Affiliation(s)
- Farzeen Kader
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| | - Meenu Ghai
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| | - Leah Maharaj
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| |
Collapse
|
30
|
Gouin JP, Zhou QQ, Booij L, Boivin M, Côté SM, Hébert M, Ouellet-Morin I, Szyf M, Tremblay RE, Turecki G, Vitaro F. Associations among oxytocin receptor gene (OXTR) DNA methylation in adulthood, exposure to early life adversity, and childhood trajectories of anxiousness. Sci Rep 2017; 7:7446. [PMID: 28785027 PMCID: PMC5547144 DOI: 10.1038/s41598-017-07950-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 07/06/2017] [Indexed: 12/17/2022] Open
Abstract
Recent models propose deoxyribonucleic acid methylation of key neuro-regulatory genes as a molecular mechanism underlying the increased risk of mental disorder associated with early life adversity (ELA). The goal of this study was to examine the association of ELA with oxytocin receptor gene (OXTR) methylation among young adults. Drawing from a 21-year longitudinal cohort, we compared adulthood OXTR methylation frequency of 46 adults (23 males and 23 females) selected for high or low ELA exposure based on childhood socioeconomic status and exposure to physical and sexual abuse during childhood and adolescence. Associations between OXTR methylation and teacher-rated childhood trajectories of anxiousness were also assessed. ELA exposure was associated with one significant CpG site in the first intron among females, but not among males. Similarly, childhood trajectories of anxiousness were related to one significant CpG site within the promoter region among females, but not among males. This study suggests that females might be more sensitive to the impact of ELA on OXTR methylation than males.
Collapse
Affiliation(s)
- J P Gouin
- Department of Psychology, Concordia University, Montreal, Canada.
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada.
| | - Q Q Zhou
- Department of Psychology, Concordia University, Montreal, Canada
| | - L Booij
- Department of Psychology, Concordia University, Montreal, Canada
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Canada
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
| | - M Boivin
- Research Unit on Children's Psychosocial Maladjustment (GRIP), Laval University, Québec, Canada
- Institute of Genetic, Neurobiological, and Social Foundations of Child Development, Tomsk State University, Tomsk, Russian Federation
- School of Psychology, Laval University, Québec, Canada
| | - S M Côté
- Department of Social and Preventive Medicine, University of Montreal, Montreal, Canada
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
- Bordeaux Population Health Research Center, INSERM and Bordeaux University, Bordeaux, France
| | - M Hébert
- Department of Sexology, Université du Québec à Montréal, Montreal, Canada
| | - I Ouellet-Morin
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
- Department of Criminology, University of Montreal, Montreal, Canada
| | - M Szyf
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - R E Tremblay
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
- Departments of Pediatrics and Psychology, University of Montreal, Montreal, Canada
- School of Public Health, University College Dublin, Dublin, Ireland
| | - G Turecki
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - F Vitaro
- Research Unit on Children's Psychosocial Maladjustment (GRIP), University of Montreal, Montreal, Canada
- School of Psychoeducation, University of Montreal, Montreal, Canada
| |
Collapse
|
31
|
Schmitt A, Martins-de-Souza D, Akbarian S, Cassoli JS, Ehrenreich H, Fischer A, Fonteh A, Gattaz WF, Gawlik M, Gerlach M, Grünblatt E, Halene T, Hasan A, Hashimoto K, Kim YK, Kirchner SK, Kornhuber J, Kraus TFJ, Malchow B, Nascimento JM, Rossner M, Schwarz M, Steiner J, Talib L, Thibaut F, Riederer P, Falkai P. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World J Biol Psychiatry 2017; 18:330-356. [PMID: 27782767 DOI: 10.1080/15622975.2016.1224929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Despite progress in identifying molecular pathophysiological processes in schizophrenia, valid biomarkers are lacking for both the disease and treatment response. METHODS This comprehensive review summarises recent efforts to identify molecular mechanisms on the level of protein and gene expression and epigenetics, including DNA methylation, histone modifications and micro RNA expression. Furthermore, it summarises recent findings of alterations in lipid mediators and highlights inflammatory processes. The potential that this research will identify biomarkers of schizophrenia is discussed. RESULTS Recent studies have not identified clear biomarkers for schizophrenia. Although several molecular pathways have emerged as potential candidates for future research, a complete understanding of these metabolic pathways is required to reveal better treatment modalities for this disabling condition. CONCLUSIONS Large longitudinal cohort studies are essential that pair a thorough phenotypic and clinical evaluation for example with gene expression and proteome analysis in blood at multiple time points. This approach might identify biomarkers that allow patients to be stratified according to treatment response and ideally also allow treatment response to be predicted. Improved knowledge of molecular pathways and epigenetic mechanisms, including their potential association with environmental influences, will facilitate the discovery of biomarkers that could ultimately be effective tools in clinical practice.
Collapse
Affiliation(s)
- Andrea Schmitt
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany.,b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Daniel Martins-de-Souza
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil.,c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Schahram Akbarian
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Juliana S Cassoli
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Hannelore Ehrenreich
- e Clinical Neuroscience , Max Planck Institute of Experimental Medicine, DFG Centre for Nanoscale Microscopy & Molecular Physiology of the Brain , Göttingen , Germany
| | - Andre Fischer
- f Research Group for Epigenetics in Neurodegenerative Diseases , German Centre for Neurodegenerative Diseases (DZNE), Göttingen , Germany.,g Department of Psychiatry and Psychotherapy , University Medical Centre Göttingen , Germany
| | - Alfred Fonteh
- h Neurosciences , Huntington Medical Research Institutes , Pasadena , CA , USA
| | - Wagner F Gattaz
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Michael Gawlik
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany
| | - Manfred Gerlach
- j Centre for Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University of Würzburg , Germany
| | - Edna Grünblatt
- i Department of Psychiatry and Psychotherapy , University of Würzburg , Germany.,k Department of Child and Adolescent Psychiatry and Psychotherapy , Psychiatric Hospital, University of Zürich , Switzerland.,l Neuroscience Centre Zurich , University of Zurich and the ETH Zurich , Switzerland.,m Zurich Centre for Integrative Human Physiology , University of Zurich , Switzerland
| | - Tobias Halene
- d Division of Psychiatric Epigenomics, Departments of Psychiatry and Neuroscience , Mount Sinai School of Medicine , New York , USA
| | - Alkomiet Hasan
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Kenij Hashimoto
- n Division of Clinical Neuroscience , Chiba University Centre for Forensic Mental Health , Chiba , Japan
| | - Yong-Ku Kim
- o Department of Psychiatry , Korea University, College of Medicine , Republic of Korea
| | | | - Johannes Kornhuber
- p Department of Psychiatry and Psychotherapy , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | | | - Berend Malchow
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Juliana M Nascimento
- c Laboratory of Neuroproteomics, Department of Biochemistry , Institute of Biology University of Campinas (UNICAMP), Campinas , SP , Brazil
| | - Moritz Rossner
- r Department of Psychiatry, Molecular and Behavioural Neurobiology , LMU Munich , Germany.,s Research Group Gene Expression , Max Planck Institute of Experimental Medicine , Göttingen , Germany
| | - Markus Schwarz
- t Institute for Laboratory Medicine, LMU Munich , Germany
| | - Johann Steiner
- u Department of Psychiatry , University of Magdeburg , Magdeburg , Germany
| | - Leda Talib
- b Laboratory of Neuroscience (LIM27) , Institute of Psychiatry, University of Sao Paulo , Sao Paulo , Brazil
| | - Florence Thibaut
- v Department of Psychiatry , University Hospital Cochin (site Tarnier), University of Paris-Descartes, INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Peter Riederer
- w Center of Psychic Health; Department of Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Germany
| | - Peter Falkai
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | | |
Collapse
|
32
|
Oxytocin effects in schizophrenia: Reconciling mixed findings and moving forward. Neurosci Biobehav Rev 2017; 80:36-56. [PMID: 28506922 DOI: 10.1016/j.neubiorev.2017.05.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 12/22/2022]
Abstract
Schizophrenia is a severe mental illness that causes major functional impairment. Current pharmacologic treatments are inadequate, particularly for addressing negative and cognitive symptoms of the disorder. Oxytocin, a neuropeptide known to moderate social behaviors, has been investigated as a potential therapeutic for schizophrenia in recent years. Results have been decidedly mixed, leading to controversy regarding oxytocin's utility. In this review, we outline several considerations for interpreting the extant literature and propose a focused agenda for future work that builds on the most compelling findings regarding oxytocin effects in schizophrenia to date. Specifically, we examine underlying causes of heterogeneity in randomized clinical trials (RCTs) conducted thus far and highlight the complexity of the human oxytocin system. We then review evidence of oxytocin's effects on specific deficits in schizophrenia, arguing for further study using objective, precise outcome measures in order to determine whether oxytocin has the potential to improve functional impairment in schizophrenia.
Collapse
|
33
|
Abstract
Schizophrenia is a highly heritable psychiatric condition that displays a complex phenotype. A multitude of genetic susceptibility loci have now been identified, but these fail to explain the high heritability estimates of schizophrenia. In addition, epidemiologically relevant environmental risk factors for schizophrenia may lead to permanent changes in brain function. In conjunction with genetic liability, these environmental risk factors-likely through epigenetic mechanisms-may give rise to schizophrenia, a clinical syndrome characterized by florid psychotic symptoms and moderate to severe cognitive impairment. These pathophysiological features point to the involvement of epigenetic processes. Recently, a wave of studies examining aberrant DNA modifications in schizophrenia was published. This chapter aims to comprehensively review the current findings, from both candidate gene studies and genome-wide approaches, on DNA methylation changes in schizophrenia.
Collapse
|
34
|
Alfimova MV, Kondratiev NV, Golimbet VE. Results and promises of genetics of cognitive impairment in schizophrenia: epigenetic approaches. Zh Nevrol Psikhiatr Im S S Korsakova 2017. [DOI: 10.17116/jnevro201711721130-135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Labad J, Gutiérrez-Zotes A, Creus M, Montalvo I, Cabezas Á, Solé M, Ortega L, Algora MJ, Sánchez-Gistau V, Vilella E. Hypothalamic-pituitary-adrenal axis measures and cognitive abilities in early psychosis: Are there sex differences? Psychoneuroendocrinology 2016; 72:54-62. [PMID: 27344379 DOI: 10.1016/j.psyneuen.2016.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Measures of hypothalamic-pituitary-adrenal (HPA) axis activity such as increased diurnal cortisol levels or a blunted cortisol awakening response (CAR) have been associated with cognitive impairments in people with psychotic disorders. We aimed to explore whether there are sex differences in the relationship between HPA axis measures and cognition in early psychosis (EP). METHODS 60 EP outpatients and 50 healthy subjects (HS) were assessed with the MATRICS Consensus Cognitive Battery. Saliva cortisol levels were determined at the neuropsychological assessment and on another day at 6 sampling times: awakening; 30' and 60' post-awakening; and 10:00h, 23:00h and 10:00h the day after the administration of 0.25mg of dexamethasone, which occurred at 23:00h. Three HPA axis measures were calculated: CAR, cortisol diurnal slope and cortisol suppression ratio of the dexamethasone suppression test (DST). Multiple linear regression analyses were conducted to explore the relationship between HPA axis measures and cognitive tasks while adjusting for covariates (education level, smoking, cannabis use, and cortisol levels at the cognitive assessment). Interactions between female sex, EP diagnosis and HPA axis measures were examined. RESULTS An increased CAR was associated with a poorer cognitive performance in EP women in processing speed and verbal memory. In contrast, a more flattened diurnal cortisol slope was associated with poorer functioning in the spatial working memory of EP women. DST suppression ratio was associated with better visual memory, without sex differences. CONCLUSIONS Our study suggests that there are sex differences in the relationship between HPA axis measures and cognitive abilities in EP.
Collapse
Affiliation(s)
- Javier Labad
- Corporació Sanitària Parc Taulí, I3PT, Universitat Autònoma de Barcelona. CIBERSAM, Sabadell, Spain.
| | - Alfonso Gutiérrez-Zotes
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili. CIBERSAM, Reus, Spain
| | - Marta Creus
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili. CIBERSAM, Reus, Spain
| | - Itziar Montalvo
- Corporació Sanitària Parc Taulí, I3PT, Universitat Autònoma de Barcelona. CIBERSAM, Sabadell, Spain
| | - Ángel Cabezas
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili. CIBERSAM, Reus, Spain
| | - Montse Solé
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili. CIBERSAM, Reus, Spain
| | - Laura Ortega
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili. CIBERSAM, Reus, Spain
| | - Maria José Algora
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili. CIBERSAM, Reus, Spain
| | - Vanessa Sánchez-Gistau
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili. CIBERSAM, Reus, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili. CIBERSAM, Reus, Spain
| |
Collapse
|
36
|
Grove TB, Burghardt KJ, Kraal AZ, Dougherty RJ, Taylor SF, Ellingrod VL. Oxytocin Receptor (OXTR) Methylation and Cognition in Psychotic Disorders. MOLECULAR NEUROPSYCHIATRY 2016; 2:151-160. [PMID: 27867940 DOI: 10.1159/000448173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/30/2016] [Indexed: 01/17/2023]
Abstract
Previous reports have identified an association between cognitive impairment and genetic variation in psychotic disorders. In particular, this association may be related to abnormal regulation of genes responsible for broad cognitive functions such as the oxytocin receptor (OXTR). Within psychotic disorders, it is unknown if OXTR methylation, which can have important implications for gene regulation, is related to cognitive function. The current study examined peripheral blood OXTR methylation and general cognition in people with schizophrenia, schizoaffective disorder, and psychotic disorder not otherwise specified (N = 101). Using hierarchical multiple regression analysis, methylation at the Chr3:8767638 site was significantly associated with composite cognitive performance independent of demographic and medication factors while controlling for multiple testing in this combined diagnostic sample (adjusted p = 0.023).
Collapse
Affiliation(s)
- Tyler B Grove
- Department of Psychology, University of Michigan, Ann Arbor, Mich., USA
| | - Kyle J Burghardt
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Mich., USA
| | - A Zarina Kraal
- Department of Psychology, University of Michigan, Ann Arbor, Mich., USA
| | - Ryan J Dougherty
- Luskin School of Public Affairs, University of California, Los Angeles, Los Angeles, Calif.,USA
| | - Stephan F Taylor
- Department of Psychology, University of Michigan, Ann Arbor, Mich., USA; Department of Psychiatry, University of Michigan, Ann Arbor, Mich., USA
| | - Vicki L Ellingrod
- Department of Psychology, University of Michigan, Ann Arbor, Mich., USA; Department of Psychiatry, University of Michigan, Ann Arbor, Mich., USA; College of Pharmacy, University of Michigan, Ann Arbor, Mich., USA
| |
Collapse
|
37
|
Abstract
Across many mammalian species there exist genetic and biological systems that facilitate the tendency to be social. Oxytocin is a neuropeptide involved in social-approach behaviors in humans and others mammals. Although there exists a large, mounting body of evidence showing that oxytocin signaling genes are associated with human sociability, very little is currently known regarding the way the structural gene for oxytocin (OXT) confers individual differences in human sociability. In this study, we undertook a comprehensive approach to investigate the association between epigenetic modification of OXT via DNA methylation, and overt measures of social processing, including self-report, behavior, and brain function and structure. Genetic data were collected via saliva samples and analyzed to target and quantify DNA methylation across the promoter region of OXT We observed a consistent pattern of results across sociability measures. People that exhibit lower OXT DNA methylation (presumably linked to higher OXT expression) display more secure attachment styles, improved ability to recognize emotional facial expressions, greater superior temporal sulcus activity during two social-cognitive functional MRI tasks, and larger fusiform gyrus gray matter volume than people that exhibit higher OXT DNA methylation. These findings provide empirical evidence that epigenetic modification of OXT is linked to several overt measures of sociability in humans and serve to advance progress in translational social neuroscience research toward a better understanding of the evolutionary and genetic basis of normal and abnormal human sociability.
Collapse
|
38
|
Cariaga-Martinez A, Saiz-Ruiz J, Alelú-Paz R. From Linkage Studies to Epigenetics: What We Know and What We Need to Know in the Neurobiology of Schizophrenia. Front Neurosci 2016; 10:202. [PMID: 27242407 PMCID: PMC4862989 DOI: 10.3389/fnins.2016.00202] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/25/2016] [Indexed: 01/15/2023] Open
Abstract
Schizophrenia is a complex psychiatric disorder characterized by the presence of positive, negative, and cognitive symptoms that lacks a unifying neuropathology. In the present paper, we will review the current understanding of molecular dysregulation in schizophrenia, including genetic and epigenetic studies. In relation to the latter, basic research suggests that normal cognition is regulated by epigenetic mechanisms and its dysfunction occurs upon epigenetic misregulation, providing new insights into missing heritability of complex psychiatric diseases, referring to the discrepancy between epidemiological heritability and the proportion of phenotypic variation explained by DNA sequence difference. In schizophrenia the absence of consistently replicated genetic effects together with evidence for lasting changes in gene expression after environmental exposures suggest a role of epigenetic mechanisms. In this review we will focus on epigenetic modifications as a key mechanism through which environmental factors interact with individual's genetic constitution to affect risk of psychotic conditions throughout life.
Collapse
Affiliation(s)
- Ariel Cariaga-Martinez
- Laboratory for Neuroscience of Mental Disorders Elena Pessino, Department of Medicine and Medical Specialties, School of Medicine, Alcalá University Madrid, Spain
| | - Jerónimo Saiz-Ruiz
- Department of Psychiatry, Ramón y Cajal Hospital, IRYCISMadrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid, Spain
| | - Raúl Alelú-Paz
- Laboratory for Neuroscience of Mental Disorders Elena Pessino, Department of Medicine and Medical Specialties, School of Medicine, Alcalá UniversityMadrid, Spain; Department of Psychiatry, Ramón y Cajal Hospital, IRYCISMadrid, Spain
| |
Collapse
|