1
|
Magro G, Laterza V, Tosto F. Leigh Syndrome: A Comprehensive Review of the Disease and Present and Future Treatments. Biomedicines 2025; 13:733. [PMID: 40149709 PMCID: PMC11940177 DOI: 10.3390/biomedicines13030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Leigh syndrome (LS) is a severe neurodegenerative condition with an early onset, typically during early childhood or infancy. The disorder exhibits substantial clinical and genetic diversity. From a clinical standpoint, Leigh syndrome showcases a broad range of irregularities, ranging from severe neurological issues to minimal or no discernible abnormalities. The central nervous system is most affected, resulting in psychomotor retardation, seizures, nystagmus, ophthalmoparesis, optic atrophy, ataxia, dystonia, or respiratory failure. Some patients also experience involvement of the peripheral nervous system, such as polyneuropathy or myopathy, as well as non-neurological anomalies, such as diabetes, short stature, hypertrichosis, cardiomyopathy, anemia, renal failure, vomiting, or diarrhea (Leigh-like syndrome). Mutations associated with Leigh syndrome impact genes in both the mitochondrial and nuclear genomes. Presently, LS remains without a cure and shows limited response to various treatments, although certain case reports suggest potential improvement with supplements. Ongoing preclinical studies are actively exploring new treatment approaches. This review comprehensively outlines the genetic underpinnings of LS, its current treatment methods, and preclinical investigations, with a particular focus on treatment.
Collapse
Affiliation(s)
- Giuseppe Magro
- Department of Neuroscience, “Giovanni Paolo II” Hospital, 88100 Lamezia Terme, Italy
| | - Vincenzo Laterza
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Federico Tosto
- Department of Neuroscience, “Giovanni Paolo II” Hospital, 88100 Lamezia Terme, Italy
| |
Collapse
|
2
|
Wang X, Rong C, Leng W, Niu P, He Z, Wang G, Qi X, Zhao D, Li J. Effect and mechanism of Dichloroacetate in the treatment of stroke and the resolution strategy for side effect. Eur J Med Res 2025; 30:148. [PMID: 40025562 PMCID: PMC11874805 DOI: 10.1186/s40001-025-02399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
Stroke is a serious disease that leads to high morbidity and mortality, and ischemic stroke accounts for more than 80% of strokes. At present, the only effective drug recombinant tissue plasminogen activator is limited by its indications, and its clinical application rate is not high. Therefore, it is urgent to develop effective new drugs according to the pathological mechanism. In the hypoxic state after ischemic stroke, anaerobic glycolysis has become the main way to provide energy to the brain. This process is essential for the maintenance of important brain functions and has important implications for recovery after stroke. However, acidosis caused by anaerobic glycolysis and lactic acid accumulation is an important pathological process after ischemic stroke. Dichloroacetate (DCA) is an orphan drug that has been used for decades to treat children with genetic mitochondrial diseases. Some studies have confirmed the role of DCA in stroke, but the conclusions are conflicting because some believe that DCA is not effective for ischemic stroke and may aggravate hemorrhagic stroke. This study reviews these studies and finds that DCA has a good effect on ischemic stroke. DCA can protect ischemic stroke by improving oxidative stress, reducing neuroinflammation, inhibiting apoptosis, protecting blood-brain barrier, and regulating metabolism. We also describe the differences in the outcomes of DCA in the treatment of ischemic stroke and the reasons why DCA aggravate hemorrhagic stroke. In addition, DCA, as a water disinfection byproduct, has been concerned about its toxicity. We describe the causes and solutions of peripheral neuropathy caused by DCA. In summary, this study analyzes the neuroprotective mechanism of DCA in ischemic stroke and the contradiction of the different research results, and discusses the causes and solutions of its adverse effects.
Collapse
Affiliation(s)
- Xu Wang
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Chunshu Rong
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Wei Leng
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Ping Niu
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Ziqiao He
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Gaihua Wang
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Xin Qi
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Dexi Zhao
- Department of Encephalopathy, Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
3
|
Zhang S, Gong Y, Cen J, Pei Z, Wei A, Luo Z, Zhao X, Mao G, Zhang X, Xu Q, Sun M, Meng WQ. Dichloroacetate protects against sulfur mustard-induced neurotoxicity via the PDK/PDH axis and Akt/Nrf2 pathway. Free Radic Biol Med 2025; 229:154-167. [PMID: 39827920 DOI: 10.1016/j.freeradbiomed.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Sulfur mustard (SM) is a major toxic chemical threat to public health. Mitochondrial dysfunction is considered a critical contributing factor to mustard agent-induced damage. The brain is vulnerable to SM, which can lead to various types of acute and long-term psychiatric distress after exposure, but the neurotoxic mechanisms of SM, let alone drug candidates for antidotes, are seldom studied. In this study, we employed a library of mitochondrion-targeted compounds to screen for antidotes for SM-induced neurotoxicity. Our data revealed that dichloroacetate (DCA) noticeably reduced neuronal death and helped maintain the normal morphology and function of mitochondria both in vitro and in vivo. Further experiments revealed that DCA protected neurons by inhibiting pyruvate dehydrogenase kinase (PDK), thus upregulating pyruvate dehydrogenase (PDH) and activating the protein kinase B (Akt)/Nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. Overall, our results indicated that DCA could protect against SM-induced neurotoxicity through the PDK/PDH axis and the Akt/Nrf2 pathway, suggesting that DCA is a potentially novel antidote for SM poisoning.
Collapse
Affiliation(s)
- Shanshan Zhang
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yin Gong
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China; College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jinfeng Cen
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhipeng Pei
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Anying Wei
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China; College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Zimeng Luo
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xuan Zhao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Guanchao Mao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xinkang Zhang
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Qingqiang Xu
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Mingxue Sun
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Wen-Qi Meng
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Starosta RT, Larson AA, Meeks NJL, Gracie S, Friederich MW, Gaughan SM, Baker PR, Knupp KG, Michel CR, Reisdorph R, Hock DH, Stroud DA, Wood T, Van Hove JLK. An integrated multi-omics approach allowed ultra-rapid diagnosis of a deep intronic pathogenic variant in PDHX and precision treatment in a neonate critically ill with lactic acidosis. Mitochondrion 2024; 79:101973. [PMID: 39413893 PMCID: PMC11578067 DOI: 10.1016/j.mito.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
The diagnosis of mitochondrial disorders is complex. Rapid whole genome sequencing is a first line test for critically ill neonates and infants allowing rapid diagnosis and treatment. Standard genomic technology and bioinformatic pipelines still have an incomplete diagnostic yield requiring complementary approaches. There are currently limited options for rapid additional tests to continue a diagnostic work-up after a negative rapid whole-genome sequencing result, reflecting a gap in clinical practice. Multi-modal integrative diagnostic approaches derived from systems biology including proteomics and transcriptomics show promise in suspected mitochondrial disorders. In this article, we report the case of a neonate who presented with severe lactic acidosis on the second day of life, for whom an initial report of ultra-rapid genome sequencing was negative. The patient was started on dichloroacetate as an emergency investigational new drug (eIND), with a sharp decline in lactic acid levels and clinical stabilization. A proteomics-based approach identified a complete absence of PDHX protein, leading to a re-review of the genome data for the PDHX gene in which a homozygous deep intronic pathogenic variant was identified. Subsequent testing in the following months confirmed the diagnosis with deficient pyruvate dehydrogenase enzyme activity, reduced protein levels of E3-binding protein, and confirmed by mRNA sequencing to lead to the inclusion of a cryptic exon and a premature stop codon. This case highlights the power of rapid proteomics in guiding genomic analysis. It also shows a promising role for dichloroacetate treatment in controlling lactic acidosis related to PDHX-related pyruvate dehydrogenase complex deficiency.
Collapse
Affiliation(s)
- Rodrigo T Starosta
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Austin A Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Naomi J L Meeks
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Sara Gracie
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Sommer M Gaughan
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Peter R Baker
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Kelly G Knupp
- Department of Pediatrics, Section of Pediatric Neurology, University of Colorado, Aurora, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Tim Wood
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
5
|
Bunik VI. A challenging interplay between basic research, technologies and medical education to provide therapies based on disease mechanisms. Front Med (Lausanne) 2024; 11:1464672. [PMID: 39228799 PMCID: PMC11368752 DOI: 10.3389/fmed.2024.1464672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Affiliation(s)
- Victoria I. Bunik
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Department of Biochemistry, Sechenov University, Moscow, Russia
| |
Collapse
|
6
|
Yang X, Zhang X, Shen K, Wang Z, Liu G, Huang K, He Z, Li Y, Hou Z, Lv S, Zhang C, Yang H, Liu S, Ke Y. Cuproptosis-related genes signature and validation of differential expression and the potential targeting drugs in temporal lobe epilepsy. Front Pharmacol 2023; 14:1033859. [PMID: 37435496 PMCID: PMC10330702 DOI: 10.3389/fphar.2023.1033859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction: Temporal lobe epilepsy (TLE) is the most common subtype of epilepsy in adults and is characterized by neuronal loss, gliosis, and sprouting mossy fibers in the hippocampus. But the mechanism underlying neuronal loss has not been fully elucidated. A new programmed cell death, cuproptosis, has recently been discovered; however, its role in TLE is not clear. Methods: We first investigated the copper ion concentration in the hippocampus tissue. Then, using the Sample dataset and E-MTAB-3123 dataset, we analyzed the features of 12 cuproptosis-related genes in TLEs and controls using the bioinformatics tools. Then, the expression of the key cuproptosis genes were confirmed using real-time PCR and immunohistochemical staining (IHC). Finally, the Enrichr database was used to screen the small molecules and drugs targeting key cuproptosis genes in TLE. Results: The Sample dataset displayed four differentially expressed cuproptosis-related genes (DECRGs; LIPT1, GLS, PDHA1, and CDKN2A) while the E-MTAB-3123 dataset revealed seven DECRGs (LIPT1, DLD, FDX1, GLS, PDHB, PDHA1, and DLAT). Remarkably, only LIPT1 was uniformly upregulated in both datasets. Additionally, these DECRGs are implicated in the TCA cycle and pyruvate metabolism-both crucial for cell cuproptosis-as well as various immune cell infiltrations, especially macrophages and T cells, in the TLE hippocampus. Interestingly, DECRGs were linked to most infiltrating immune cells during TLE's acute phase, but this association considerably weakened in the latent phase. In the chronic phase, DECRGs were connected with several T-cell subclasses. Moreover, LIPT1, FDX1, DLD, and PDHB were related to TLE identification. PCR and IHC further confirmed LIPT1 and FDX1's upregulation in TLE compared to controls. Finally, using the Enrichr database, we found that chlorzoxazone and piperlongumine inhibited cell cuproptosis by targeting LIPT1, FDX1, DLD, and PDHB. Conclusion: Our findings suggest that cuproptosis is directly related to TLE. The signature of cuproptosis-related genes presents new clues for exploring the roles of neuronal death in TLE. Furthermore, LIPT1 and FDX1 appear as potential targets of neuronal cuproptosis for controlling TLE's seizures and progression.
Collapse
Affiliation(s)
- Xiaolin Yang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaoqing Zhang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Kaifeng Shen
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhongke Wang
- Department of Neurosurgery, Armed Police Hospital, Chongqing, China
| | - Guolong Liu
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Kaixuan Huang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zeng He
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yang Li
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhi Hou
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Shengqing Lv
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Chunqing Zhang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Shiyong Liu
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Yanyan Ke
- Department of Neurosurgery, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Horvath R, Medina J, Reilly MM, Shy ME, Zuchner S. Peripheral neuropathy in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:99-116. [PMID: 36813324 DOI: 10.1016/b978-0-12-821751-1.00014-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondria are essential for the health and viability of both motor and sensory neurons and their axons. Processes that disrupt their normal distribution and transport along axons will likely cause peripheral neuropathies. Similarly, mutations in mtDNA or nuclear encoded genes result in neuropathies that either stand alone or are part of multisystem disorders. This chapter focuses on the more common genetic forms and characteristic clinical phenotypes of "mitochondrial" peripheral neuropathies. We also explain how these various mitochondrial abnormalities cause peripheral neuropathy. In a patient with a neuropathy either due to a mutation in a nuclear or an mtDNA gene, clinical investigations aim to characterize the neuropathy and make an accurate diagnosis. In some patients, this may be relatively straightforward, where a clinical assessment and nerve conduction studies followed by genetic testing is all that is needed. In others, multiple investigations including a muscle biopsy, CNS imaging, CSF analysis, and a wide range of metabolic and genetic tests in blood and muscle may be needed to establish diagnosis.
Collapse
Affiliation(s)
- Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, John van Geest Centre for Brain Repair, Cambridge, United Kingdom.
| | - Jessica Medina
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
8
|
Zhou FQ. Pyruvate as a Potential Beneficial Anion in Resuscitation Fluids. Front Med (Lausanne) 2022; 9:905978. [PMID: 35991638 PMCID: PMC9382911 DOI: 10.3389/fmed.2022.905978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
There have been ongoing debates about resuscitation fluids because each of the current fluids has its own disadvantages. The debates essentially reflect an embarrassing clinical status quo that all fluids are not quite ideal in most clinical settings. Therefore, a novel fluid that overcomes the limitations of most fluids is necessary for most patients, particularly diabetic and older patients. Pyruvate is a natural potent antioxidant/nitrosative and anti-inflammatory agent. Exogenous pyruvate as an alkalizer can increase cellular hypoxia and anoxia tolerance with the preservation of classic glycolytic pathways and the reactivation of pyruvate dehydrogenase activity to promote oxidative metabolism and reverse the Warburg effect, robustly preventing and treating hypoxic lactic acidosis, which is one of the fatal complications in critically ill patients. In animal studies and clinical reports, pyruvate has been shown to play a protective role in multi-organ functions, especially the heart, brain, kidney, and intestine, demonstrating a great potential to improve patient survival. Pyruvate-enriched fluids including crystalloids and colloids and oral rehydration solution (ORS) may be ideal due to the unique beneficial properties of pyruvate relative to anions in contemporary existing fluids, such as acetate, bicarbonate, chloride, citrate, lactate, and even malate. Preclinical studies have demonstrated that pyruvate-enriched saline is superior to 0.9% sodium chloride. Moreover, pyruvate-enriched Ringer’s solution is advantageous over lactated Ringer’s solution. Furthermore, pyruvate as a carrier in colloids, such as hydroxyethyl starch 130/0.4, is more beneficial than its commercial counterparts. Similarly, pyruvate-enriched ORS is more favorable than WHO-ORS in organ protection and shock resuscitation. It is critical that pay attention first to improving abnormal saline with pyruvate for ICU patients. Many clinical trials with a high dose of intravenous or oral pyruvate were conducted over the past half century, and results indicated its effectiveness and safety in humans. The long-term instability of pyruvate aqueous solutions and para-pyruvate cytotoxicity is not a barrier to the pharmaceutical manufacturing of pyruvate-enriched fluids for ICU patients. Clinical trials with sodium pyruvate-enriched solutions are urgently warranted.
Collapse
|
9
|
Adant I, Bird M, Decru B, Windmolders P, Wallays M, de Witte P, Rymen D, Witters P, Vermeersch P, Cassiman D, Ghesquière B. Pyruvate and uridine rescue the metabolic profile of OXPHOS dysfunction. Mol Metab 2022; 63:101537. [PMID: 35772644 PMCID: PMC9287363 DOI: 10.1016/j.molmet.2022.101537] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Primary mitochondrial diseases (PMD) are a large, heterogeneous group of genetic disorders affecting mitochondrial function, mostly by disrupting the oxidative phosphorylation (OXPHOS) system. Understanding the cellular metabolic re-wiring occurring in PMD is crucial for the development of novel diagnostic tools and treatments, as PMD are often complex to diagnose and most of them currently have no effective therapy. Objectives To characterize the cellular metabolic consequences of OXPHOS dysfunction and based on the metabolic signature, to design new diagnostic and therapeutic strategies. Methods In vitro assays were performed in skin-derived fibroblasts obtained from patients with diverse PMD and validated in pharmacological models of OXPHOS dysfunction. Proliferation was assessed using the Incucyte technology. Steady-state glucose and glutamine tracing studies were performed with LC-MS quantification of cellular metabolites. The therapeutic potential of nutritional supplements was evaluated by assessing their effect on proliferation and on the metabolomics profile. Successful therapies were then tested in a in vivo lethal rotenone model in zebrafish. Results OXPHOS dysfunction has a unique metabolic signature linked to an NAD+/NADH imbalance including depletion of TCA intermediates and aspartate, and increased levels of glycerol-3-phosphate. Supplementation with pyruvate and uridine fully rescues this altered metabolic profile and the subsequent proliferation deficit. Additionally, in zebrafish, the same nutritional treatment increases the survival after rotenone exposure. Conclusions Our findings reinforce the importance of the NAD+/NADH imbalance following OXPHOS dysfunction in PMD and open the door to new diagnostic and therapeutic tools for PMD. OXPHOS deficiency causes a distinct metabolic profile linked to a NAD+/NADH imbalance. Depleted intracellular aspartic acid is a potential biomarker for OXPHOS dysfunction. Therapy with pyruvate and uridine corrects the metabolic profile of OXPHOS deficiency. Pyruvate and uridine treatment increases survival in a lethal rotenone zebrafish model.
Collapse
Affiliation(s)
- Isabelle Adant
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium; Metabolomics Expertise Center, Center for Cancer Biology, CCB-VIB, VIB, Leuven, 3000, Belgium
| | - Matthew Bird
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium; Metabolomics Expertise Center, Center for Cancer Biology, CCB-VIB, VIB, Leuven, 3000, Belgium; Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Bram Decru
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium; Metabolomics Expertise Center, Center for Cancer Biology, CCB-VIB, VIB, Leuven, 3000, Belgium
| | - Petra Windmolders
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium
| | - Marie Wallays
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Daisy Rymen
- Metabolic Centre, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Peter Witters
- Metabolic Centre, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, 3000, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, 3000, Belgium
| | - David Cassiman
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, 3000, Belgium; Metabolic Centre, University Hospitals Leuven, Leuven, 3000, Belgium.
| | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, CCB-VIB, VIB, Leuven, 3000, Belgium; Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
10
|
Akaba Y, Takahashi S, Takeguchi R, Tanaka R, Nabatame S, Saitsu H, Matsumoto N. Phenotypic overlap between pyruvate dehydrogenase complex deficiency and FOXG1 syndrome. Clin Case Rep 2021; 9:1711-1715. [PMID: 33768920 PMCID: PMC7981633 DOI: 10.1002/ccr3.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 11/12/2022] Open
Abstract
Pyruvate dehydrogenase complex (PDHC) deficiency is a mitochondrial disorder. We report two cases of PDHC deficiency with clinical symptoms and brain imaging findings reminiscent of FOXG1 syndrome, suggesting a phenotypic overlap of these disorders.
Collapse
Affiliation(s)
- Yuichi Akaba
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| | - Satoru Takahashi
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| | - Ryo Takeguchi
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| | - Ryosuke Tanaka
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| | - Shin Nabatame
- Department of PediatricsGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Hirotomo Saitsu
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Naomichi Matsumoto
- Department of Human GeneticsGraduate School of MedicineYokohama City UniversityYokohamaJapan
| |
Collapse
|
11
|
Regulation of Mitochondrial Function by Epac2 Contributes to Acute Inflammatory Hyperalgesia. J Neurosci 2021; 41:2883-2898. [PMID: 33593853 DOI: 10.1523/jneurosci.2368-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Gαs-coupled receptors signaling through cAMP provide a key mechanism for the sensitization of nociceptive sensory neurons, and the cAMP effector Epac has been implicated in the transition from acute to chronic pain. Epac exerts its effects through Rap1 and protein kinase C (PKC). To identify targets of Epac-PKC signaling in sensory neurons of the mouse dorsal root ganglion (DRG), we profiled PKC substrate proteins phosphorylated in response to the activation of Epac with the proinflammatory prostaglandin E2 (PGE2). A prominent Epac-dependent phospho-protein band induced by PGE2 was identified by mass spectrometry as the mitochondrial enzyme pyruvate dehydrogenase (Pdha1). In dissociated DRG from both males and females, the recruitment of Pdha1 to phospho-protein fractions was rapidly induced by PGE2 and prevented by selective inhibition of Epac2. Epac activation increased mitochondrial respiration, consistent with an increase in Pdha1 function mediated by Epac2. Hindpaw injection of PGE2 induced heat hyperalgesia in males and females, but Pdha1 phosphorylation occurred only in males. Hyperalgesia was attenuated in males but not in females by systemic inhibition of Epac2, and also by a mitochondrial membrane potential uncoupler, dinitrophenol, supporting a role for mitochondrial regulation in acute hyperalgesia. These findings identify a mechanism for the regulation of mitochondrial function by Epac2 that contributes to acute inflammatory hyperalgesia in male mice. Systemic administration of the cyclooxygenase 2 inhibitor celecoxib suppressed both PGE2-induced heat hyperalgesia and Pdha1 phosphorylation in DRG of males but not females, suggesting that prostaglandin synthesis within the DRG mediates the phosphorylation of Pdha1 in response to hindpaw insult.SIGNIFICANCE STATEMENT There has been extensive investigation of mitochondrial dysfunction as a causative factor in neuropathic pain disorders. In contrast, results reported here implicate enhanced mitochondrial function as a contributing factor in the development of acute inflammatory hyperalgesia. We describe a mechanism in which Epac2 activation by prostaglandin receptors leads to phosphorylation of pyruvate dehydrogenase and an increase in mitochondrial respiration in peripheral sensory neurons. Although Epac2 activation leads to Pdha1 (pyruvate dehydrogenase) phosphorylation in dissociated neurons from mice of both sexes, induction of this pathway in vivo by hindpaw insult is restricted to males and appears to require intraganglionic prostaglandin synthesis. These findings support a model in which Gs-coupled receptor modulation of mitochondrial function promotes acute nociceptive signaling and inflammatory hyperalgesia.
Collapse
|
12
|
Tiet MY, Lin Z, Gao F, Jennings MJ, Horvath R. Targeted Therapies for Leigh Syndrome: Systematic Review and Steps Towards a 'Treatabolome'. J Neuromuscul Dis 2021; 8:885-897. [PMID: 34308912 PMCID: PMC8673543 DOI: 10.3233/jnd-210715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Leigh syndrome (LS) is the most frequent paediatric clinical presentation of mitochondrial disease. The clinical phenotype of LS is highly heterogeneous. Though historically the treatment for LS is largely supportive, new treatments are on the horizon. Due to the rarity of LS, large-scale interventional studies are scarce, limiting dissemination of information of therapeutic options to the wider scientific and clinical community. OBJECTIVE We conducted a systematic review of pharmacological therapies of LS following the guidelines for FAIR-compliant datasets. METHODS We searched for interventional studies within Clincialtrials.gov and European Clinical trials databases. Randomised controlled trials, observational studies, case reports and case series formed part of a wider MEDLINE search. RESULTS Of the 1,193 studies initially identified, 157 met our inclusion criteria, of which 104 were carried over into our final analysis. Treatments for LS included very few interventional trials using EPI-743 and cysteamine bitartrate. Wider literature searches identified case series and reports of treatments repleting glutathione stores, reduction of oxidative stress and restoration of oxidative phosphorylation. CONCLUSIONS Though interventional randomised controlled trials have begun for LS, the majority of evidence remains in case reports and case series for a number of treatable genes, encoding cofactors or transporter proteins of the mitochondria. Our findings will form part of the international expert-led Solve-RD efforts to assist clinicians initiating treatments in patients with treatable variants of LS.
Collapse
Affiliation(s)
- May Yung Tiet
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Zhiyuan Lin
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Fei Gao
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Matthew James Jennings
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Barcelos I, Shadiack E, Ganetzky RD, Falk MJ. Mitochondrial medicine therapies: rationale, evidence, and dosing guidelines. Curr Opin Pediatr 2020; 32:707-718. [PMID: 33105273 PMCID: PMC7774245 DOI: 10.1097/mop.0000000000000954] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Primary mitochondrial disease is a highly heterogeneous but collectively common inherited metabolic disorder, affecting at least one in 4300 individuals. Therapeutic management of mitochondrial disease typically involves empiric prescription of enzymatic cofactors, antioxidants, and amino acid and other nutrient supplements, based on biochemical reasoning, historical experience, and consensus expert opinion. As the field continues to rapidly advance, we review here the preclinical and clinical evidence, and specific dosing guidelines, for common mitochondrial medicine therapies to guide practitioners in their prescribing practices. RECENT FINDINGS Since publication of Mitochondrial Medicine Society guidelines for mitochondrial medicine therapies management in 2009, data has emerged to support consideration for using additional therapeutic agents and discontinuation of several previously used agents. Preclinical animal modeling data have indicated a lack of efficacy for vitamin C as an antioxidant for primary mitochondrial disease, but provided strong evidence for vitamin E and N-acetylcysteine. Clinical data have suggested L-carnitine may accelerate atherosclerotic disease. Long-term follow up on L-arginine use as prophylaxis against or acute treatment for metabolic strokes has provided more data supporting its clinical use in individuals with mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome and Leigh syndrome. Further, several precision therapies have been developed for specific molecular causes and/or shared clinical phenotypes of primary mitochondrial disease. SUMMARY We provide a comprehensive update on mitochondrial medicine therapies based on current evidence and our single-center clinical experience to support or refute their use, and provide detailed dosing guidelines, for the clinical management of mitochondrial disease. The overarching goal of empiric mitochondrial medicines is to utilize therapies with favorable benefit-to-risk profiles that may stabilize and enhance residual metabolic function to improve cellular resiliency and slow clinical disease progression and/or prevent acute decompensation.
Collapse
Affiliation(s)
- Isabella Barcelos
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Edward Shadiack
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca D. Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Alqahtani F, Imran I, Pervaiz H, Ashraf W, Perveen N, Rasool MF, Alasmari AF, Alharbi M, Samad N, Alqarni SA, Al-Rejaie SS, Alanazi MM. Non-pharmacological Interventions for Intractable Epilepsy. Saudi Pharm J 2020; 28:951-962. [PMID: 32792840 PMCID: PMC7414058 DOI: 10.1016/j.jsps.2020.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
In 30% of epileptic individuals, intractable epilepsy represents a problem for the management of seizures and severely affects the patient's quality of life due to pharmacoresistance with commonly used antiseizure drugs (ASDs). Surgery is not the best option for all resistant patients due to its post-surgical consequences. Therefore, several alternative or complementary therapies have scientifically proven significant therapeutic potential for the management of seizures in intractable epilepsy patients with seizure-free occurrences. Various non-pharmacological interventions include metabolic therapy, brain stimulation therapy, and complementary therapy. Metabolic therapy works out by altering the energy metabolites and include the ketogenic diets (KD) (that is restricted in carbohydrates and mimics the metabolic state of the body as produced during fasting and exerts its antiepileptic effect) and anaplerotic diet (which revives the level of TCA cycle intermediates and this is responsible for its effect). Neuromodulation therapy includes vagus nerve stimulation (VNS), responsive neurostimulation therapy (RNS) and transcranial magnetic stimulation therapy (TMS). Complementary therapies such as biofeedback and music therapy have demonstrated promising results in pharmacoresistant epilepsies. The current emphasis of the review article is to explore the different integrated mechanisms of various treatments for adequate seizure control, and their limitations, and supportive pieces of evidence that show the efficacy and tolerability of these non-pharmacological options.
Collapse
Key Words
- ASDs, Antiepileptic drugs
- ATP, Adenosine triphosphate
- Anaplerotic diet
- BBB, Blood-brain barrier
- CKD, Classic ketogenic diet
- CSF, Cerebrospinal fluid
- EEG, Electroencephalography
- EMG, Electromyography
- GABA, Gamma-aminobutyric acid
- Intractable epilepsy
- KB, Ketone bodies
- KD, Ketogenic diet
- Ketogenic diet
- LC, Locus coeruleus
- LCFA, Long-chain fatty acids
- MAD, Modified Atkin's diet
- MCT, Medium-chain triglyceride
- MEP, Maximal evoked potential
- Music therapy
- NTS, Nucleus tractus solitaries
- PPAR, Peroxisome proliferator-activated receptor
- PUFAs, Polyunsaturated fatty acids
- RNS, Responsive neurostimulation
- ROS, reactive oxygen species
- SMR, Sensorimotor rhythm
- TCA, Tricarboxylic acid cycle
- TMS, Transcranial magnetic stimulation
- Transcranial magnetic stimulation Biofeedback therapy
- VNS, Vagus nerve stimulation
- Vagus nerve stimulation
Collapse
Affiliation(s)
- Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Hafsa Pervaiz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Nadia Perveen
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Saleh Abdullah Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Mufadhe Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Josef F. The Spectrum of Neuromuscular Disorders Admitted to a Pediatric Intensive Care Unit Is Broader Than Anticipated. J Child Neurol 2020; 35:300-301. [PMID: 31868086 DOI: 10.1177/0883073819894852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Finsterer Josef
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria
| |
Collapse
|
16
|
Li M, Zhou S, Chen C, Ma L, Luo D, Tian X, Dong X, Zhou Y, Yang Y, Cui Y. Therapeutic potential of pyruvate therapy for patients with mitochondrial diseases: a systematic review. Ther Adv Endocrinol Metab 2020; 11:2042018820938240. [PMID: 32695307 PMCID: PMC7350055 DOI: 10.1177/2042018820938240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mitochondrial disease is a term used to describe a set of heterogeneous genetic diseases caused by impaired structure or function of mitochondria. Pyruvate therapy for mitochondrial disease is promising from a clinical point of view. METHODS According to PRISMA guidelines, the following databases were searched to identify studies regarding pyruvate therapy for mitochondrial disease: PubMed, EMBASE, Cochrane Library, and Clinicaltrials. The search was up to April 2019. The endpoints were specific biomarkers (plasma level of lactate, plasma level of pyruvate, L/P ratio) and clinical rating scales [Japanese mitochondrial disease-rating scale (JMDRS), Newcastle Mitochondrial Disease Adult Scale (NMDAS), and others]. Two researchers independently screened articles, extracted data, and assessed the quality of the studies. RESULTS A total of six studies were included. Considerable differences were noted between studies in terms of study design, patient information, and outcome measures. The collected evidence may indicate an effective potential of pyruvate therapy on the improvement of mitochondrial disease. The majority of the common adverse events of pyruvate therapy were diarrhea and short irritation of the stomach. CONCLUSION Pyruvate therapy with no serious adverse events may be a potential therapeutic candidate for patients with incurable mitochondrial diseases, such as Leigh syndrome. However, recent evidence taken from case series and case reports, and theoretical supports of basic research are not sufficient. The use of global registries to collect patient data and more adaptive trial designs with larger numbers of participants are necessary to clarify the efficacy of pyruvate therapy.
Collapse
Affiliation(s)
- Min Li
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Chaoyang Chen
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Lingyun Ma
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Daohuang Luo
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Xin Tian
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Xiu Dong
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Ying Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | | | | |
Collapse
|
17
|
Koga Y, Povalko N, Inoue E, Nashiki K, Tanaka M. Biomarkers and clinical rating scales for sodium pyruvate therapy in patients with mitochondrial disease. Mitochondrion 2019; 48:11-15. [PMID: 30738201 DOI: 10.1016/j.mito.2019.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/19/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Biomarkers and two clinical rating scales-the Japanese mitochondrial disease-rating scale (JMDRS) and Newcastle mitochondrial disease adult scale (NMDAS)-are clinically used when treating patients with mitochondrial disease. We explored the biomarker(s) and clinical rating scale(s) that are appropriate in preparing the protocol for a future clinical trial of sodium pyruvate (SP) therapy. A 48-week, prospective, single-centre, exploratory, clinical study enrolled 11 Japanese adult patients with genetically, biochemically, and clinically confirmed mitochondrial disease; they had intractable lactic acidosis and received SP (0.5 g/kg t.i.d. PO). Plasma concentrations of lactate and pyruvate, lateral ventricular levels of lactate, and serum concentrations of growth differentiation factor 15 (GDF15) and fibroblast growth factor 21 were measured at baseline and at weeks 12 and 48 of SP therapy. At week 48, plasma lactate (P = .004), the lactate/pyruvate ratio (P = .012), serum GDF15 (P = .020), and lateral ventricular lactate (P = .038) decreased significantly from the baseline values; the JMDRS and NMDAS scores did not decrease significantly, although the NMDAS overall score showed a strong tendency (P = .059). Two patients with end-stage MELAS at baseline died during SP therapy. The present study showed significant decreases in plasma and lateral ventricular lactate, the L/P ratio, and serum GDF15. Therefore, the protocol for a future clinical study of SP therapy in this patient population needs to include plasma and lateral ventricular lactate, the L/P ratio, and serum GDF15 as diagnostic indicators, and exclude patients with end-stage mitochondrial disease.
Collapse
Affiliation(s)
- Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan.
| | - Nataliya Povalko
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan; Institute of Fundamental Medicine and Biology, OpenLab Gene and Cell Technology, Kazan Federal University, Kazan Respublika Tatarstan, Russia
| | - Eisuke Inoue
- Division of Medical Informatics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazutaka Nashiki
- Center for Diagnostic Imaging, Kurume University Hospital, Kurume, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| |
Collapse
|
18
|
Recent topics: the diagnosis, molecular genesis, and treatment of mitochondrial diseases. J Hum Genet 2018; 64:113-125. [PMID: 30459337 DOI: 10.1038/s10038-018-0528-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022]
Abstract
Mitochondrial diseases are inherited metabolic diseases based on disorders of energy production. The expansion of exome analyses has led to the discovery of many pathogenic nuclear genes associated with these diseases, and research into the pathogenesis of metabolic diseases has progressed. In cases of Leigh syndrome, it is desirable to perform both biochemical and genetic analyses, and pathogenic gene mutations have been identified in over half of the cases analyzed this way. Tandem mass screening and organic acid analyses of urine can sometimes provide important information that leads to the identification of pathogenic genes. Our comprehensive gene analyses have led to the discovery of several novel genes for mitochondrial diseases. Indeed, we reported that GTPBP3 and QRSL1 are involved in mitochondrial DNA maturation. In 2017, as a result of international collaboration, we also identified that mutations in ATAD3 and C1QBP cause mitochondrial disease. Given the varied pathogeneses, treatments for mitochondrial diseases should be specifically tailored to the mutated gene. Clinical trials of sodium pyruvate, 5-aminolevulinic acid with sodium ferrous citrate, and taurine as a treatment for mitochondrial disease have begun in Japan. Given that some mitochondrial diseases may respond well to certain treatments if the pathogenic gene can be identified, an early genetic diagnosis is crucial. Additionally, in Japan, prenatal diagnoses for mitochondrial diseases caused by nuclear genes have been achieved for genes shown to be pathogenic. Treatment and management approaches, including prenatal diagnoses, specifically tailored to the various phenotypes and pathologies of mitochondrial diseases are expected to become increasingly available.
Collapse
|
19
|
Sahenk Z, Yalvac ME, Amornvit J, Arnold WD, Chen L, Shontz KM, Lewis S. Efficacy of exogenous pyruvate in Trembler J mouse model of Charcot-Marie-Tooth neuropathy. Brain Behav 2018; 8:e01118. [PMID: 30239155 PMCID: PMC6192403 DOI: 10.1002/brb3.1118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Classic Charcot-Marie-Tooth (CMT) neuropathies including those with Schwann cell genetic defects exhibit a length-dependent process affecting the distal axon. Energy deprivation in the distal axon has been the proposed mechanism accounting for length-dependent distal axonal degeneration. We hypothesized that pyruvate, an intermediate glycolytic product, could restore nerve function, supplying lost energy to the distal axon. METHODS To test this possibility, we supplied pyruvate to the drinking water of the Trembler-J (TrJ ) mouse and assessed efficacy based on histology, electrophysiology, and functional outcomes. Pyruvate outcomes were compared with untreated TrJ controls alone or adeno-associated virus mediated NT-3 gene therapy (AAV1.NT-3)/pyruvate combinatorial approach. RESULTS Pyruvate supplementation resulted increased myelinated fiber (MF) densities and myelin thickness in sciatic nerves. Combining pyruvate with proven efficacy from AAV1.tMCK.NT-3 gene therapy provided additional benefits showing improved compound muscle action potential amplitudes and nerve conduction velocities compared to pyruvate alone cohort. The end point motor performance of both the pyruvate and the combinatorial therapy cohorts was better than untreated TrJ controls. In a unilateral sciatic nerve crush paradigm, pyruvate supplementation improved myelin-based outcomes in both regenerating and the contralateral uncrushed nerves. CONCLUSIONS This proof of principle study demonstrates that exogenous pyruvate alone or as adjunct therapy in TrJ may have clinical implications and is a candidate therapy for CMT neuropathies without known treatment.
Collapse
Affiliation(s)
- Zarife Sahenk
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
- Department of Pediatrics and NeurologyNationwide Children’s Hospital and The Ohio State UniversityColumbusOhio
- Department of Pathology and Laboratory MedicineNationwide Children’s HospitalColumbusOhio
- Department of NeurologyThe Ohio State UniversityColumbusOhio
| | - Mehmet E. Yalvac
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| | - Jakkrit Amornvit
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
- King Chulalongkorn Memorial HospitalChulalongkorn UniversityBangkokThailand
- Department of Medicine, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - William David Arnold
- Department of NeurologyThe Ohio State UniversityColumbusOhio
- Department of Physical Medicine and RehabilitationThe Ohio State University ColumbusOhio
| | - Lei Chen
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| | - Kimberly M. Shontz
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| | - Sarah Lewis
- Center for Gene TherapyThe Research Institute at Nationwide Children’s HospitalColumbusOhio
| |
Collapse
|
20
|
McDonald T, Puchowicz M, Borges K. Impairments in Oxidative Glucose Metabolism in Epilepsy and Metabolic Treatments Thereof. Front Cell Neurosci 2018; 12:274. [PMID: 30233320 PMCID: PMC6127311 DOI: 10.3389/fncel.2018.00274] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
There is mounting evidence that oxidative glucose metabolism is impaired in epilepsy and recent work has further characterized the metabolic mechanisms involved. In healthy people eating a traditional diet, including carbohydrates, fats and protein, the major energy substrate in brain is glucose. Cytosolic glucose metabolism generates small amounts of energy, but oxidative glucose metabolism in the mitochondria generates most ATP, in addition to biosynthetic precursors in cells. Energy is crucial for the brain to signal "normally," while loss of energy can contribute to seizure generation by destabilizing membrane potentials and signaling in the chronic epileptic brain. Here we summarize the known biochemical mechanisms that contribute to the disturbance in oxidative glucose metabolism in epilepsy, including decreases in glucose transport, reduced activity of particular steps in the oxidative metabolism of glucose such as pyruvate dehydrogenase activity, and increased anaplerotic need. This knowledge justifies the use of alternative brain fuels as sources of energy, such as ketones, TCA cycle intermediates and precursors as well as even medium chain fatty acids and triheptanoin.
Collapse
Affiliation(s)
- Tanya McDonald
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Wang Y, Huang Y, Yang J, Zhou FQ, Zhao L, Zhou H. Pyruvate is a prospective alkalizer to correct hypoxic lactic acidosis. Mil Med Res 2018; 5:13. [PMID: 29695298 PMCID: PMC5918562 DOI: 10.1186/s40779-018-0160-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/05/2018] [Indexed: 12/12/2022] Open
Abstract
Type A lactic acidosis resulted from hypoxic mitochondrial dysfunction is an independent predictor of mortality for critically ill patients. However, current therapeutic agents are still in shortage and can even be harmful. This paper reviewed data regarding lactic acidosis treatment and recommended that pyruvate might be a potential alkalizer to correct type A lactic acidosis in future clinical practice. Pyruvate is a key energy metabolic substrate and a pyruvate dehydrogenase (PDH) activator with several unique beneficial biological properties, including anti-oxidant and anti-inflammatory effects and the ability to activate the hypoxia-inducible factor-1 (HIF-1α) - erythropoietin (EPO) signal pathway. Pyruvate preserves glucose metabolism and cellular energetics better than bicarbonate, lactate, acetate and malate in the efficient correction of hypoxic lactic acidosis and shows few side effects. Therefore, application of pyruvate may be promising and safe as a novel therapeutic strategy in hypoxic lactic acidosis correction accompanied with multi-organ protection in critical care patients.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Ya Huang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
- Department of Transfusion, Hainan Branch of PLA General Hospital, Sanya, 572013, Hainan, China
| | - Jing Yang
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Fang-Qiang Zhou
- Fresenius Dialysis Centers at Chicago, Rolling Meadows Facility, Chicago, IL, 60008, USA
- Shanghai Sandai Pharmaceutical R&D Co, Shanghai, 201203, China
| | - Lian Zhao
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Hong Zhou
- Institute of Transfusion Medicine, Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
22
|
Dichloroacetate treatment improves mitochondrial metabolism and reduces brain injury in neonatal mice. Oncotarget 2017; 7:31708-22. [PMID: 27153546 PMCID: PMC5077971 DOI: 10.18632/oncotarget.9150] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/22/2016] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to evaluate the effect of dichloroacetate (DCA) treatment for brain injury in neonatal mice after hypoxia ischemia (HI) and the possible molecular mechanisms behind this effect. Postnatal day 9 male mouse pups were subjected to unilateral HI, DCA was injected intraperitoneally immediately after HI, and an additional two doses were administered at 24 h intervals. The pups were sacrificed 72 h after HI. Brain injury, as indicated by infarction volume, was reduced by 54.2% from 10.8 ± 1.9 mm3 in the vehicle-only control group to 5.0 ± 1.0 mm3 in the DCA-treated group at 72 h after HI (p = 0.008). DCA treatment also significantly reduced subcortical white matter injury as indicated by myelin basic protein staining (p = 0.018). Apoptotic cell death in the cortex, as indicated by counting the cells that were positive for apoptosis-inducing factor (p = 0.018) and active caspase-3 (p = 0.021), was significantly reduced after DCA treatment. The pyruvate dehydrogenase activity and the amount of acetyl-CoA in mitochondria was significantly higher after DCA treatment and HI (p = 0.039, p = 0.024). In conclusion, DCA treatment reduced neonatal mouse brain injury after HI, and this appears to be related to the elevated activation of pyruvate dehydrogenase and subsequent increase in mitochondrial metabolism as well as reduced apoptotic cell death.
Collapse
|
23
|
Popova I, Malkov A, Ivanov AI, Samokhina E, Buldakova S, Gubkina O, Osypov A, Muhammadiev RS, Zilberter T, Molchanov M, Paskevich S, Zilberter M, Zilberter Y. Metabolic correction by pyruvate halts acquired epilepsy in multiple rodent models. Neurobiol Dis 2017; 106:244-254. [PMID: 28709994 DOI: 10.1016/j.nbd.2017.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 01/22/2023] Open
Abstract
Metabolic intervention strategy of epilepsy treatment has been gaining broader attention due to accumulated evidence that hypometabolism, manifested in humans as reduced brain glucose consumption, is a principal factor in acquired epilepsy. Therefore, targeting deficient energy metabolism may be an effective approach for treating epilepsy. To confront this pathology we utilized pyruvate, which besides being an anaplerotic mitochondrial fuel possesses a unique set of neuroprotective properties as it: (i) is a potent reactive oxygen species scavenger; (ii) abates overactivation of Poly [ADP-ribose] polymerase 1 (PARP-1); (iii) facilitates glutamate efflux from the brain; (iv) augments brain glycogen stores; (v) is anti-inflammatory; (vi) prevents neuronal hyperexcitability; and (vii) normalizes the cytosolic redox state. In vivo, chronic oral pyruvate administration completely abolished established epileptic phenotypes in three accepted and fundamentally different rodent acquired epilepsy models. Our study reports metabolic correction by pyruvate as a potentially highly effective treatment of acquired epilepsies.
Collapse
Affiliation(s)
- I Popova
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - A Malkov
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - A I Ivanov
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France
| | - E Samokhina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - S Buldakova
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France
| | - O Gubkina
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France
| | - A Osypov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - R S Muhammadiev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | | | - M Molchanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - S Paskevich
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - M Zilberter
- Neuronal Oscillations Lab, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Y Zilberter
- Aix Marseille Université, Inserm, INS UMR_S 1106, 13005 Marseille, France.
| |
Collapse
|
24
|
Neuroprotective Effect of Creatine and Pyruvate on Enzyme Activities of Phosphoryl Transfer Network and Oxidative Stress Alterations Caused by Leucine Administration in Wistar Rats. Neurotox Res 2017; 32:575-584. [DOI: 10.1007/s12640-017-9762-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 01/25/2023]
|
25
|
|
26
|
Nagasaka H, Komatsu H, Inui A, Nakacho M, Morioka I, Tsukahara H, Kaji S, Hirayama S, Miida T, Kondou H, Ihara K, Yagi M, Kizaki Z, Bessho K, Kodama T, Iijima K, Saheki T, Yorifuji T, Honda A. Circulating tricarboxylic acid cycle metabolite levels in citrin-deficient children with metabolic adaptation, with and without sodium pyruvate treatment. Mol Genet Metab 2017; 120:207-212. [PMID: 28041819 DOI: 10.1016/j.ymgme.2016.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022]
Abstract
Citrin deficiency causes adult-onset type II citrullinemia (CTLN-2), which later manifests as severe liver steatosis and life-threatening encephalopathy. Long-standing energy deficit of the liver and brain may predispose ones to CTLN-2. Here, we compared the energy-driving tricarboxylic acid (TCA) cycle and fatty acid β-oxidation cycle between 22 citrin-deficient children (age, 3-13years) with normal liver functions and 37 healthy controls (age, 5-13years). TCA cycle analysis showed that basal plasma citrate and α-ketoglutarate levels were significantly higher in the affected than the control group (p<0.01). Conversely, basal plasma fumarate and malate levels were significantly lower than those for the control (p<0.001). The plasma level of 3-OH-butyrate derived from fatty acid β-oxidation was significantly higher in the affected group (p<0.01). Ten patients underwent sodium pyruvate therapy. However, this therapy did not correct or attenuate such deviations in both cycles. Sodium pyruvate therapy significantly increased fasting insulin secretion (p<0.01); the fasting sugar level remained unchanged. Our results suggest that citrin-deficient children show considerable deviations of TCA cycle metabolite profiles that are resistant to sodium pyruvate treatment. Thus, long-standing and considerable TCA cycle dysfunction might be a pivotal metabolic background of CTLN-2 development.
Collapse
Affiliation(s)
- Hironori Nagasaka
- Department of Pediatrics, Takarazuka City Hospital, 4-5-1, Kohama, Takarazuka 665-0827, Japan.
| | - Haruki Komatsu
- Department of Pediatrics, Toho University Sakura Medical Center, 564-1, Shimoshizu, Sakura 285-8741, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, 3-6-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-0012, Japan
| | - Mariko Nakacho
- Department of Pediatrics, Takarazuka City Hospital, 4-5-1, Kohama, Takarazuka 665-0827, Japan
| | - Ichiro Morioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-Cho, Kita-ku, Okayama 700-8558, Japan
| | - Shunsaku Kaji
- Department of Pediatrics, Tsuyama-Chuo Hospital, 1756 Kawasaki, Tsuyama City, Okayama 708-0841, Japan
| | - Satoshi Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroki Kondou
- Department of Pediatrics, Kindai University Nara Hospital, 1248-1, Otoda-cho, Ikoma, Nara 630-0293, Japan
| | - Kenji Ihara
- Department of Pediatrics, Kyushu University Graduate School of Medical Science, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Pediatrics, Oita University, Faculty of Medicine, 1-1. Idaigaoka, Hasama-machi, Yufu -city 879-5593, Japan
| | - Mariko Yagi
- Department of Pediatrics, Nikoniko House Medical & Welfare Center, 14-1, Azanakaichiriyama, Shimotanigami, Yamada-cho, Kita-ku, Kobe 651-1102, Japan
| | - Zenro Kizaki
- Department of Pediatrics, Kyoto Cross-Red Hospital, 15-749 Honmachi, Higashiyama-ku, Kyoto 230-0012, Japan
| | - Kazuhiko Bessho
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takeyori Saheki
- Department of Molecular Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima, Osaka 534-0021, Japan
| | - Akira Honda
- Joint Research Center and Division of Gastroenterology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami, Ibaraki 300-0395, Japan
| |
Collapse
|
27
|
Mizuguchi Y, Hatakeyama H, Sueoka K, Tanaka M, Goto YI. Low dose resveratrol ameliorates mitochondrial respiratory dysfunction and enhances cellular reprogramming. Mitochondrion 2017; 34:43-48. [PMID: 28093354 DOI: 10.1016/j.mito.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 01/05/2023]
Abstract
Mitochondrial disease is associated with a wide variety of clinical presentations, even among patients carrying heteroplasmic mitochondrial DNA (mtDNA) mutations, probably because of variations in mutant mtDNA proportions at the tissue and organ levels. Although several case reports and clinical trials have assessed the effectiveness of various types of drugs and supplements for the treatment of mitochondrial diseases, there are currently no cures for these conditions. In this study, we demonstrated for the first time that low dose resveratrol (RSV) ameliorated mitochondrial respiratory dysfunction in patient-derived fibroblasts carrying homoplasmic mtDNA mutations. Furthermore, low dose RSV also facilitated efficient cellular reprogramming of the patient-derived fibroblasts into induced pluripotent stem cells, partly due to improved cellular viability. Our results highlight the potential of RSV as a new therapeutic drug candidate for the treatment of mitochondrial diseases.
Collapse
Affiliation(s)
- Yuki Mizuguchi
- Department of Obstetrics and Gynecology, Keio University, School of Medicine, Tokyo 160-0016, Japan; Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Hideyuki Hatakeyama
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| | - Kou Sueoka
- Department of Obstetrics and Gynecology, Keio University, School of Medicine, Tokyo 160-0016, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University, School of Medicine, Tokyo 160-0016, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
28
|
Neurophysiological profile of peripheral neuropathy associated with childhood mitochondrial disease. Mitochondrion 2016; 30:162-7. [PMID: 27475922 DOI: 10.1016/j.mito.2016.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Peripheral nerve involvement is common in mitochondrial disease but often unrecognised due to the prominent central nervous system features. Identification of the underlying neuropathy may assist syndrome classification, targeted genetic testing and rehabilitative interventions. METHODS Clinical data and the results of nerve conduction studies were obtained retrospectively from the records of four tertiary children's hospital metabolic disease, neuromuscular or neurophysiology services. Nerve conductions studies were also performed prospectively on children attending a tertiary metabolic disease service. Results were classified and analysed according to the underlying genetic cause. RESULTS Nerve conduction studies from 27 children with mitochondrial disease were included in the study (mitochondrial DNA (mtDNA) - 7, POLG - 7, SURF1 - 10, PDHc deficiency - 3). Four children with mtDNA mutations had a normal study while three had mild abnormalities in the form of an axonal sensorimotor neuropathy when not acutely unwell. One child with MELAS had a severe acute axonal motor neuropathy during an acute stroke-like episode that resolved over 12months. Five children with POLG mutations and disease onset beyond infancy had a sensory ataxic neuropathy with an onset in the second decade of life, while the two infants with POLG mutations had a demyelinating neuropathy. Seven of the 10 children with SURF1 mutations had a demyelinating neuropathy. All three children with PDHc deficiency had an axonal sensorimotor neuropathy. Unlike CMT, the neuropathy associated with mitochondrial disease was not length-dependent. CONCLUSIONS This is the largest study to date of peripheral neuropathy in genetically- classified childhood mitochondrial disease. Characterising the underlying neuropathy may assist with the diagnosis of the mitochondrial syndrome and should be an integral part of the assessment of children with suspected mitochondrial disease.
Collapse
|
29
|
Shinoda Y, Tagashira H, Bhuiyan MS, Hasegawa H, Kanai H, Fukunaga K. Haloperidol aggravates transverse aortic constriction-induced heart failure via mitochondrial dysfunction. J Pharmacol Sci 2016; 131:172-83. [PMID: 27435383 DOI: 10.1016/j.jphs.2016.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/20/2022] Open
Abstract
Haloperidol is an antipsychotic drug that inhibits the dopamine D2 receptor among others. Haloperidol also binds the sigma-1 receptor (σ1R) and inhibits it irreversibly. A serious outcome of haloperidol treatment of schizophrenia patients is death due to sudden cardiac failure. Although the cause remains unclear, we hypothesized that these effects were mediated by chronic haloperidol inhibition of cardiac σ1R. To test this, we treated neonatal rat cardiomyocytes with haloperidol, exposed them to angiotensin II and assessed hypertrophy, σ1R expression, mitochondrial Ca(2+) transport and ATP levels. In this context, haloperidol treatment altered mitochondrial Ca(2+) transport resulting in decreased ATP content by inactivating cardiac σ1R and/or reducing its expression. We also performed transverse aortic constriction (TAC) and then treated mice with haloperidol. After two weeks, haloperidol-treated mice showed enhanced heart failure marked by deteriorated cardiac function, reduced ATP production and increasing mortality relative to TAC only mice. ATP supplementation via sodium pyruvate rescued phenotypes seen in haloperidol-treated TAC mice. We conclude that σ1R inactivation or downregulation in response to haloperidol treatment impairs mitochondrial Ca(2+) mobilization, depleting ATP depletion from cardiomyocytes. These findings suggest a novel approach to mitigate haloperidol-related adverse effects in schizophrenia patients by ATP supplementation.
Collapse
Affiliation(s)
- Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Japan
| | - Hideaki Tagashira
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Japan
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Hideyuki Hasegawa
- Department of Electrical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aramaki-Aoba, Aoba-ku, Sendai, Japan; Department of Electrical Engineering, Graduate School of Engineering, Tohoku University, 6-6 Aramaki-Aoba, Aoba-ku, Sendai, Japan
| | - Hiroshi Kanai
- Department of Electrical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aramaki-Aoba, Aoba-ku, Sendai, Japan; Department of Electrical Engineering, Graduate School of Engineering, Tohoku University, 6-6 Aramaki-Aoba, Aoba-ku, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Japan.
| |
Collapse
|
30
|
Darbandi S, Darbandi M, Khorshid HRK, Sadeghi MR, Al-Hasani S, Agarwal A, Shirazi A, Heidari M, Akhondi MM. Experimental strategies towards increasing intracellular mitochondrial activity in oocytes: A systematic review. Mitochondrion 2016; 30:8-17. [PMID: 27234976 DOI: 10.1016/j.mito.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The mitochondrial complement is critical in sustaining the earliest stages of life. To improve the Assisted Reproductive Technology (ART), current methods of interest were evaluated for increasing the activity and copy number of mitochondria in the oocyte cell. METHODS This covered the researches from 1966 to September 2015. RESULTS The results provided ten methods that can be studied individually or simultaneously. CONCLUSION Though the use of these techniques generated great concern about heteroplasmy observation in humans, it seems that with study on these suggested methods there is real hope for effective treatments of old oocyte or oocytes containing mitochondrial problems in the near future.
Collapse
Affiliation(s)
- Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | | | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Safaa Al-Hasani
- Reproductive Medicine Unit, University of Schleswig-Holstein, Luebeck, Germany.
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahnaz Heidari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. M.@avicenna.ar.ir
| | - Mohammad Mehdi Akhondi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
31
|
Pliss L, Jatania U, Patel MS. Beneficial effect of feeding a ketogenic diet to mothers on brain development in their progeny with a murine model of pyruvate dehydrogenase complex deficiency. Mol Genet Metab Rep 2016; 7:78-86. [PMID: 27331005 PMCID: PMC4901178 DOI: 10.1016/j.ymgmr.2016.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 12/12/2022] Open
Abstract
Pyruvate dehydrogenase complex (PDC) deficiency is a major inborn error of oxidative metabolism of pyruvate in the mitochondria causing congenital lactic acidosis and primarily structural and functional abnormalities of the central nervous system. To provide an alternate source of acetyl-CoA derived from ketone bodies to the developing brain, a formula high in fat content is widely employed as a treatment. In the present study we investigated efficacy of a high-fat diet given to mothers during pregnancy and lactation on lessening of the impact of PDC deficiency on brain development in PDC-deficient female progeny. Methods A murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene was employed in this study. Results Maternal consumption of a high-fat diet during pregnancy and lactation had no effect on number of live-birth, body growth, tissue PDC activity levels, as well as the in vitro rates of glucose oxidation and fatty acid biosynthesis by the developing brain of PDC-deficient female offspring during the postnatal age 35 days, as compared to the PDC-deficient progeny born to dams on a chow diet. Interestingly, brain weight was normalized in PDC-deficient progeny of high fat-fed mothers with improvement in impairment in brain structure deficit whereas brain weight was significantly decreased and was associated with greater cerebral structural defects in progeny of chow-fed mothers as compared to control progeny of mothers fed either a chow or high fat diet. Conclusion The findings provide for the first time experimental support for beneficial effects of a ketogenic diet during the prenatal and early postnatal periods on the brain development of PDC-deficient mammalian progeny.
Collapse
Key Words
- Brain development
- E18, embryonic day 18
- Glucose metabolism
- HF, high fat
- High fat diet
- LC, laboratory chow
- Mouse model
- P15, postnatal day 15
- PDC, pyruvate dehydrogenase complex
- PDH, pyruvate dehydrogenase
- PDHA1, human gene that encodes α subunit of PDH
- Pdha1, murine orthologue of PDHA1
- Prenatal treatment
- Pyruvate dehydrogenase complex deficiency
- flox8, Pdha1 floxed allele
- wt, wild-type Pdha1 allele
- Δex8, Pdha1 null allele
Collapse
Affiliation(s)
- Lioudmila Pliss
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Urvi Jatania
- Department of Exercise and Nutrition, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Mulchand S. Patel
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
- Corresponding author at: Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 140 Farber Hall, Buffalo, NY 14214, USA.Department of BiochemistryJacobs School of Medicine and Biomedical SciencesUniversity at Buffalo140 Farber HallBuffaloNY14214USA
| |
Collapse
|
32
|
Gerards M, Sallevelt SCEH, Smeets HJM. Leigh syndrome: Resolving the clinical and genetic heterogeneity paves the way for treatment options. Mol Genet Metab 2016; 117:300-12. [PMID: 26725255 DOI: 10.1016/j.ymgme.2015.12.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/31/2022]
Abstract
Leigh syndrome is a progressive neurodegenerative disorder, affecting 1 in 40,000 live births. Most patients present with symptoms between the ages of three and twelve months, but adult onset Leigh syndrome has also been described. The disease course is characterized by a rapid deterioration of cognitive and motor functions, in most cases resulting in death due to respiratory failure. Despite the high genetic heterogeneity of Leigh syndrome, patients present with identical, symmetrical lesions in the basal ganglia or brainstem on MRI, while additional clinical manifestations and age of onset varies from case to case. To date, mutations in over 60 genes, both nuclear and mitochondrial DNA encoded, have been shown to cause Leigh syndrome, still explaining only half of all cases. In most patients, these mutations directly or indirectly affect the activity of the mitochondrial respiratory chain or pyruvate dehydrogenase complex. Exome sequencing has accelerated the discovery of new genes and pathways involved in Leigh syndrome, providing novel insights into the pathophysiological mechanisms. This is particularly important as no general curative treatment is available for this devastating disorder, although several recent studies imply that early treatment might be beneficial for some patients depending on the gene or process affected. Timely, gene-based personalized treatment may become an important strategy in rare, genetically heterogeneous disorders like Leigh syndrome, stressing the importance of early genetic diagnosis and identification of new genes/pathways. In this review, we provide a comprehensive overview of the most important clinical manifestations and genes/pathways involved in Leigh syndrome, and discuss the current state of therapeutic interventions in patients.
Collapse
Affiliation(s)
- Mike Gerards
- Department of Clinical Genetics, Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands; Maastricht Center for Systems Biology (MaCSBio), Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Suzanne C E H Sallevelt
- Department of Clinical Genetics, Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Clinical Genetics, Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
33
|
|
34
|
Kuroha Y, Tada M, Kawachi I, Nishizawa M, Matsubara N, Koike R. [Effect of sodium pyruvate on exercise intolerance and muscle weakness due to mitochondrial myopathy: a case report]. Rinsho Shinkeigaku 2015; 55:412-416. [PMID: 26103814 DOI: 10.5692/clinicalneurol.cn-000652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the case of a 19-year-old woman who had been suffering from general fatigue and exercise intolerance since 15 years old. At 18 years old, she experienced muscle weakness and myalgia of the calves. Six months later, she was admitted to our hospital. She showed muscle weakness of the neck and proximal limbs, and myalgia of the calves was prominent. Serum levels of creatine kinase (CK) and lactic acid were elevated, as was the level of lactic acid in cerebrospinal fluid. T2-weighted and short-inversion-time inversion recovery (STIR) imaging of the lower limbs showed hyperintensity on bilateral gastrocnemius muscles, and the region revealed Gd enhancement. Based on histopathological findings from muscle and identification of a m.3271T>C point mutation, mitochondrial myopathy was diagnosed. Rest and administration of vitamins B1 and B2, coenzyme Q10, and L-carnitine improved serum CK levels; however, exercise intolerance, myalgia, and lactic acidemia remained. Sodium pyruvate was then administered, and lactic acid levels, exercise intolerance, and findings on magnetic resonance imaging improved. Sodium pyruvate could prove effective in addressing both elevated serum lactic acid levels and exercise intolerance in mitochondrial disease.
Collapse
Affiliation(s)
- Yasuko Kuroha
- Department of Neurology, Nishi-Niigata Chuo National Hospital
| | | | | | | | | | | |
Collapse
|
35
|
Fujita Y, Ito M, Kojima T, Yatsuga S, Koga Y, Tanaka M. GDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mitochondrial diseases. Mitochondrion 2015; 20:34-42. [DOI: 10.1016/j.mito.2014.10.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/02/2014] [Accepted: 10/29/2014] [Indexed: 01/15/2023]
|
36
|
Reid CA, Mullen S, Kim TH, Petrou S. Epilepsy, energy deficiency and new therapeutic approaches including diet. Pharmacol Ther 2014; 144:192-201. [PMID: 24924701 DOI: 10.1016/j.pharmthera.2014.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 02/08/2023]
Abstract
Metabolic dysfunction leading to epilepsy is well recognised. Dietary therapy, in particular the ketogenic diet, is now considered an effective option. Recent genetic studies have highlighted the central role that metabolism can play in setting seizure susceptibility. Here we discuss various metabolic disorders implicated in epilepsy focusing on energy deficiency due to genetic and environmental causes. We argue that low, uncompensated brain glucose levels can precipitate seizures. We will also explore mechanisms of disease and therapy in an attempt to identify common metabolic pathways involved in modulating seizure susceptibility. Finally, newer therapeutic approaches based on diet manipulation in the context of energy deficiency are discussed.
Collapse
Affiliation(s)
- Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| | - Saul Mullen
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Tae Hwan Kim
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia; Centre for Neural Engineering, The University of Melbourne, Parkville, Melbourne, Australia; Department of Electrical Engineering, The University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
37
|
Fujii T, Nozaki F, Saito K, Hayashi A, Nishigaki Y, Murayama K, Tanaka M, Koga Y, Hiejima I, Kumada T. Efficacy of pyruvate therapy in patients with mitochondrial disease: a semi-quantitative clinical evaluation study. Mol Genet Metab 2014; 112:133-8. [PMID: 24830361 DOI: 10.1016/j.ymgme.2014.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Disorders of oxidative phosphorylation (OXPHOS) cause an increase in the NADH/NAD(+) ratio, which impairs the glycolysis pathway. Treatment with pyruvate is expected to decrease the ratio and thereby restore glycolysis. There are some case reports on the efficacy of pyruvate treatment for mitochondrial diseases. However, few of these reports assessed their results using a standardized scale. METHODS We monitored 4 bedridden patients with OXPHOS disorders who continued therapies of 0.5-1.0 g/kg/day of sodium pyruvate for more than 12 months. The efficacies of these treatments were evaluated with the Newcastle Pediatric Mitochondrial Disease Scale and the Gross Motor Function Measure with 88 items. RESULTS The ages of the patients at the treatment initiation ranged from 8-100 months. Of the 4 patients, 3 exhibited improvements within 1-3 months from the initiation of treatment. Among these 3 patients, one maintained the improvement for over 2 years. The remaining 2 regressed 3-6 months after the initiation of treatment. The blood lactate/pyruvate ratios did not correlate with the efficacy of treatment. CONCLUSION Pyruvate was effective even in bedridden patients with OXPHOS disorders, at least in the short term. Clinical trials with more patients and less severe disabilities are necessary to evaluate the long-term efficacy of this treatment. Biomarkers other than lactate and pyruvate need to be identified to biochemically monitor the efficacy of this treatment.
Collapse
Affiliation(s)
- Tatsuya Fujii
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan.
| | - Fumihito Nozaki
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan
| | - Keiko Saito
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan
| | - Anri Hayashi
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan
| | - Yutaka Nishigaki
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakane-cho, Itabashi, Tokyo 173-0015, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori, Chiba 266-0007, Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakane-cho, Itabashi, Tokyo 173-0015, Japan
| | - Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | - Ikuko Hiejima
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan
| | - Tomohiro Kumada
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Shiga 524-0022, Japan
| |
Collapse
|
38
|
Avula S, Parikh S, Demarest S, Kurz J, Gropman A. Treatment of mitochondrial disorders. Curr Treat Options Neurol 2014; 16:292. [PMID: 24700433 DOI: 10.1007/s11940-014-0292-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT While numerous treatments for mitochondrial disorders have been suggested, relatively few have undergone controlled clinical trials. Treatment of these disorders is challenging, as only symptomatic therapy is available. In this review we will focus on newer drugs and treatment trials in mitochondrial diseases, with a special focus on medications to avoid in treating epilepsy and ICU patient with mitochondrial disease, which has not been included in such a review. Readers are also referred to the opinion statement in A Modern Approach to the Treatment of Mitochondrial Disease published in Current Treatment Options in Neurology 2009. Many of the supplements used for treatment were reviewed in the previous abstract, and dosing guidelines were provided. The focus of this review is on items not previously covered in depth, and our discussion includes more recently studied compounds as well as any relevant updates on older compounds . We review a variety of vitamins and xenobiotics, including dichloroacetate (DCA), arginine, coenzyme Q10, idebenone, EPI-743, and exercise training. Treatment of epilepsy, which is a common feature in many mitochondrial phenotypes, warrants special consideration due to the added toxicity of certain medications, and we provide a discussion of these unique treatment challenges. Interesting, however, with only a few exceptions, the treatment strategies for epilepsy in mitochondrial cytopathies are the same as for epilepsy without mitochondrial dysfunction. We also discuss intensive care management, building upon similar reviews, adding new dimensions, and demonstrating the complexity of overall care of these patients.
Collapse
Affiliation(s)
- Sreenivas Avula
- Department of Neurology, Cleveland Clinic, Cleveland, OH, USA,
| | | | | | | | | |
Collapse
|
39
|
Finsterer J, Zarrouk Mahjoub S. Mitochondrial epilepsy in pediatric and adult patients. Acta Neurol Scand 2013; 128:141-52. [PMID: 23480231 DOI: 10.1111/ane.12122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 01/04/2023]
Abstract
Few data are available about the difference between epilepsy in pediatric mitochondrial disorders (MIDs) and adult MIDs. This review focuses on the differences between pediatric and adult mitochondrial epilepsy with regard to seizure type, seizure frequency, and underlying MID. A literature search via Pubmed using the keywords 'mitochondrial', 'epilepsy', 'seizures', 'adult', 'pediatric', and all MID acronyms, was carried out. Frequency of mitochondrial epilepsy strongly depends on the type of MID included and is higher in pediatric compared to adult patients. In pediatric patients, mitochondrial epilepsy is more frequent due to mutations in nDNA-located than mtDNA-located genes and vice versa in adults. In pediatric patients, mitochondrial epilepsy is associated with a syndromic phenotype in half of the patients and in adults more frequently with a non-syndromic phenotype. In pediatric patients, focal seizures are more frequent than generalized seizures and vice versa in adults. Electro-clinical syndromes are more frequent in pediatric MIDs compared to adult MIDs. Differences between pediatric and adult mitochondrial epilepsy concern the onset of epilepsy, frequency of epilepsy, seizure type, type of electro-clinical syndrome, frequency of syndromic versus non-syndromic MIDs, and the outcome. To optimize management of mitochondrial epilepsy, it is essential to differentiate between early and late-onset forms.
Collapse
Affiliation(s)
| | - S. Zarrouk Mahjoub
- Laboratory of Biochemistry; UR ‘Human Nutrition and Metabolic Disorders’ Faculty of Medicine Monastir; Tunisia
| |
Collapse
|
40
|
Ferriero R, Manco G, Lamantea E, Nusco E, Ferrante MI, Sordino P, Stacpoole PW, Lee B, Zeviani M, Brunetti-Pierri N. Phenylbutyrate therapy for pyruvate dehydrogenase complex deficiency and lactic acidosis. Sci Transl Med 2013; 5:175ra31. [PMID: 23467562 DOI: 10.1126/scitranslmed.3004986] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lactic acidosis is a buildup of lactic acid in the blood and tissues, which can be due to several inborn errors of metabolism as well as nongenetic conditions. Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. Phosphorylation of specific serine residues of the E1α subunit of PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We found that phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of PDK. Phenylbutyrate given to C57BL/6 wild-type mice results in a significant increase in PDHC enzyme activity and a reduction of phosphorylated E1α in brain, muscle, and liver compared to saline-treated mice. By means of recombinant enzymes, we showed that phenylbutyrate prevents phosphorylation of E1α through binding and inhibition of PDK, providing a molecular explanation for the effect of phenylbutyrate on PDHC activity. Phenylbutyrate increases PDHC activity in fibroblasts from PDHC-deficient patients harboring various molecular defects and corrects the morphological, locomotor, and biochemical abnormalities in the noa(m631) zebrafish model of PDHC deficiency. In mice, phenylbutyrate prevents systemic lactic acidosis induced by partial hepatectomy. Because phenylbutyrate is already approved for human use in other diseases, the findings of this study have the potential to be rapidly translated for treatment of patients with PDHC deficiency and other forms of primary and secondary lactic acidosis.
Collapse
Affiliation(s)
- Rosa Ferriero
- Telethon Institute of Genetics and Medicine, Naples 80131, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zilberter M, Ivanov A, Ziyatdinova S, Mukhtarov M, Malkov A, Alpár A, Tortoriello G, Botting CH, Fülöp L, Osypov AA, Pitkänen A, Tanila H, Harkany T, Zilberter Y. Dietary energy substrates reverse early neuronal hyperactivity in a mouse model of Alzheimer's disease. J Neurochem 2013; 125:157-71. [PMID: 23241062 DOI: 10.1111/jnc.12127] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 01/25/2023]
Abstract
Deficient energy metabolism and network hyperactivity are the early symptoms of Alzheimer's disease (AD). In this study, we show that administration of exogenous oxidative energy substrates (OES) corrects neuronal energy supply deficiency that reduces the amyloid-beta-induced abnormal neuronal activity in vitro and the epileptic phenotype in AD model in vivo. In vitro, acute application of protofibrillar amyloid-β1-42 (Aβ1-42) induced aberrant network activity in wild-type hippocampal slices that was underlain by depolarization of both the neuronal resting membrane potential and GABA-mediated current reversal potential. Aβ1-42 also impaired synaptic function and long-term potentiation. These changes were paralleled by clear indications of impaired energy metabolism, as indicated by abnormal NAD(P)H signaling induced by network activity. However, when glucose was supplemented with OES pyruvate and 3-beta-hydroxybutyrate, Aβ1-42 failed to induce detrimental changes in any of the above parameters. We administered the same OES as chronic supplementation to a standard diet to APPswe/PS1dE9 transgenic mice displaying AD-related epilepsy phenotype. In the ex-vivo slices, we found neuronal subpopulations with significantly depolarized resting and GABA-mediated current reversal potentials, mirroring abnormalities we observed under acute Aβ1-42 application. Ex-vivo cortex of transgenic mice fed with standard diet displayed signs of impaired energy metabolism, such as abnormal NAD(P)H signaling and strongly reduced tolerance to hypoglycemia. Transgenic mice also possessed brain glycogen levels twofold lower than those of wild-type mice. However, none of the above neuronal and metabolic dysfunctions were observed in transgenic mice fed with the OES-enriched diet. In vivo, dietary OES supplementation abated neuronal hyperexcitability, as the frequency of both epileptiform discharges and spikes was strongly decreased in the APPswe/PS1dE9 mice placed on the diet. Altogether, our results suggest that early AD-related neuronal malfunctions underlying hyperexcitability and energy metabolism deficiency can be prevented by dietary supplementation with native energy substrates.
Collapse
Affiliation(s)
- Misha Zilberter
- Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kami K, Fujita Y, Igarashi S, Koike S, Sugawara S, Ikeda S, Sato N, Ito M, Tanaka M, Tomita M, Soga T. Metabolomic profiling rationalized pyruvate efficacy in cybrid cells harboring MELAS mitochondrial DNA mutations. Mitochondrion 2012; 12:644-53. [PMID: 22884939 DOI: 10.1016/j.mito.2012.07.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Pyruvate treatment was found to alleviate clinical symptoms of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome and is highly promising therapeutic. Using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS), we measured time-changes of 161 intracellular and 85 medium metabolites to elucidate metabolic effects of pyruvate treatment on cybrid human 143B osteosarcoma cells harboring normal (2SA) and MELAS mutant (2SD) mitochondria. The results demonstrated dramatic and sustainable effects of pyruvate administration on the energy metabolism of 2SD cells, corroborating pyruvate as a metabolically rational treatment regimen for improving symptoms associated with MELAS and possibly other mitochondrial diseases.
Collapse
Affiliation(s)
- Kenjiro Kami
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Among the various central nervous system (CNS) manifestations of mitochondrial disorders (MIDs), cognitive impairment is increasingly recognized and diagnosed (mitochondrial cognitive dysfunction). Aim of the review was to summarize recent findings concerning the aetiology, pathogenesis, diagnosis and treatment of cognitive decline in MIDs. Among syndromic MIDs due to mitochondrial DNA (mtDNA) mutations, cognitive impairment occurs in patients with mitochondrial encephalopathy, lactic acidosis and stroke-like episodes syndrome, myoclonus epilepsy with ragged-red fibres syndrome, mitochondrial chronic progressive external ophthalmoplegia, Kearns-Sayre syndrome, neuropathy, ataxia and retinitis pigmentosa syndrome and maternally inherited diabetes and deafness. Among syndromic MIDs due to nuclear DNA (nDNA) mutations, cognitive decline has been reported in myo-neuro-gastro-intestinal encephalopathy, mitochondrial recessive ataxia syndrome, spinocerebellar ataxia with encephalopathy, Mohr-Tranebjaerg syndrome, leuko-encephalopathy; brain and spinal cord involvement and lactic acidosis, CMT2, Wolfram syndrome, Wolf-Hirschhorn syndrome and Leigh syndrome. In addition to syndromic MIDs, a large number of non-syndromic MIDs due to mtDNA as well as nDNA mutations have been reported, which present with cognitive impairment as the sole or one among several other CNS manifestations of a MID. Delineation of mitochondrial cognitive impairment from other types of cognitive impairment is essential to guide the optimal management of these patients. Treatment of mitochondrial cognitive impairment is largely limited to symptomatic and supportive measures. Cognitive impairment may be a CNS manifestation of syndromic as well as non-syndromic MIDs. Correct diagnosis of mitochondrial cognitive impairment is a prerequisite for the optimal management of these patients.
Collapse
Affiliation(s)
- J. Finsterer
- Danube University Krems; Krems and Krankenanstalt Rudolfstiftung; Vienna; Austria
| |
Collapse
|
44
|
Finsterer J, Zarrouk Mahjoub S. Epilepsy in mitochondrial disorders. Seizure 2012; 21:316-21. [DOI: 10.1016/j.seizure.2012.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/04/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022] Open
|
45
|
Kovac S, Abramov AY, Walker MC. Energy depletion in seizures: anaplerosis as a strategy for future therapies. Neuropharmacology 2012; 69:96-104. [PMID: 22659085 DOI: 10.1016/j.neuropharm.2012.05.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/08/2012] [Accepted: 05/11/2012] [Indexed: 01/11/2023]
Abstract
Seizure activity can lead to energy failure and neuronal injury, resulting in neurological and cognitive sequelae. Moreover, mutations affecting genes encoding for proteins that maintain energy homeostasis within the cell often result in an epileptic phenotype, implying that energy failure can contribute to epileptogenesis. Indeed, there is evidence to indicate that the efficacy of the ketogenic diet, a treatment for refractory epilepsy, can be partly explained by its effect on increasing energetic substrates. The ATP level, reflecting the energy level of a cell, is maintained by the potential gradient across the mitochondrial membrane. This potential gradient is maintained by NADH/H(+) equivalents, produced by reactions within the tricarboxylic acid cycle (TCA-cycle). Anaplerosis, the replenishment of TCA-cycle substrates, therefore represents an appealing strategy to address energy failure such as occurs in seizures. There is accumulating evidence that pyruvate, a classical anaplerotic substrate, has seizure suppressive effects and protects against seizure induced cell death. This review summarizes the evidence for the contribution of TCA cycle deficits in generating seizures. We highlight the role for TCA substrate supplementation in protecting against seizures and seizure induced cell death, and propose that these are important targets for future translational research addressing energy depletion in seizures. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Stjepana Kovac
- UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG London, UK.
| | | | | |
Collapse
|
46
|
Mancuso M, Orsucci D, Filosto M, Simoncini C, Siciliano G. Drugs and mitochondrial diseases: 40 queries and answers. Expert Opin Pharmacother 2012; 13:527-43. [DOI: 10.1517/14656566.2012.657177] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|