1
|
Fernandez FX, Perlis ML. Animal models of human insomnia. J Sleep Res 2023; 32:e13845. [PMID: 36748845 PMCID: PMC10404637 DOI: 10.1111/jsr.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023]
Abstract
Insomnia disorder (chronic sleep continuity disturbance) is a debilitating condition affecting 5%-10% of the adult population worldwide. To date, researchers have attempted to model insomnia in animals through breeding strategies that create pathologically short-sleeping individuals or with drugs and environmental contexts that directly impose sleeplessness. While these approaches have been invaluable for identifying insomnia susceptibility genes and mapping the neural networks that underpin sleep-wake regulation, they fail to capture concurrently several of the core clinical diagnostic features of insomnia disorder in humans, where sleep continuity disturbance is self-perpetuating, occurs despite adequate sleep opportunity, and is often not accompanied by significant changes in sleep duration or architecture. In the present review, we discuss these issues and then outline ways animal models can be used to develop approaches that are more ecologically valid in their recapitulation of chronic insomnia's natural aetiology and pathophysiology. Conditioning of self-generated sleep loss with these methods promises to create a better understanding of the neuroadaptations that maintain insomnia, including potentially within the infralimbic cortex, a substrate at the crossroads of threat habituation and sleep.
Collapse
Affiliation(s)
| | - Michael L. Perlis
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Payet JM, Stevens L, Russo AM, Jaehne EJ, van den Buuse M, Kent S, Lowry CA, Baratta MV, Hale MW. The Role of Dorsal Raphe Nucleus Serotonergic Systems in Emotional Learning and Memory in Male BALB/c Mice. Neuroscience 2023; 534:1-15. [PMID: 37852412 DOI: 10.1016/j.neuroscience.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the first-line pharmacological treatment for a variety of anxiety-, trauma- and stressor-related disorders. Although they are efficacious, therapeutic improvements require several weeks of treatment and are often associated with an initial exacerbation of symptoms. The dorsal raphe nucleus (DR) has been proposed as an important target for the modulation of emotional responses and the therapeutic effects of SSRIs. Using a fear-conditioning paradigm we aimed to understand how SSRIs affect emotional learning and memory, and their effects on serotonergic circuitry. Adult male BALB/c mice were treated with vehicle (n = 16) or the SSRI fluoxetine (18 mg/kg/d) acutely (n = 16), or chronically (21d, n = 16), prior to fear conditioning. Treatment was stopped, and half of the mice (n = 8/treatment group) were exposed to cued fear memory recall 72 h later. Activation of DR serotonergic neurons during fear conditioning (Experiment 1) or fear memory recall (Experiment 2), was measured using dual-label immunohistochemistry for Tph2 and c-Fos. Acute and chronic fluoxetine treatment reduced associative fear learning without affecting memory recall and had opposite effects on anxiety-like behaviour. Acute fluoxetine decreased serotonergic activity in the DR, while chronic treatment led to serotonergic activity that was indistinguishable from that of control levels in DRD and DRV subpopulations. Chronic fluoxetine facilitated fear extinction, which was associated with rostral DRD inhibition. These findings provide further evidence that SSRIs can alter aspects of learning and memory processes and are consistent with a role for discrete populations of DR serotonergic neurons in regulating fear- and anxiety-related behaviours.
Collapse
Affiliation(s)
- Jennyfer M Payet
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Laura Stevens
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Adrian M Russo
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia; Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Stephen Kent
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Christopher A Lowry
- Department of Integrative Physiology and Centre for Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Michael V Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
| | - Matthew W Hale
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Gao JX, Yan G, Li XX, Xie JF, Spruyt K, Shao YF, Hou YP. The Ponto-Geniculo-Occipital (PGO) Waves in Dreaming: An Overview. Brain Sci 2023; 13:1350. [PMID: 37759951 PMCID: PMC10526299 DOI: 10.3390/brainsci13091350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Rapid eye movement (REM) sleep is the main sleep correlate of dreaming. Ponto-geniculo-occipital (PGO) waves are a signature of REM sleep. They represent the physiological mechanism of REM sleep that specifically limits the processing of external information. PGO waves look just like a message sent from the pons to the lateral geniculate nucleus of the visual thalamus, the occipital cortex, and other areas of the brain. The dedicated visual pathway of PGO waves can be interpreted by the brain as visual information, leading to the visual hallucinosis of dreams. PGO waves are considered to be both a reflection of REM sleep brain activity and causal to dreams due to their stimulation of the cortex. In this review, we summarize the role of PGO waves in potential neural circuits of two major theories, i.e., (1) dreams are generated by the activation of neural activity in the brainstem; (2) PGO waves signaling to the cortex. In addition, the potential physiological functions during REM sleep dreams, such as memory consolidation, unlearning, and brain development and plasticity and mood regulation, are discussed. It is hoped that our review will support and encourage research into the phenomenon of human PGO waves and their possible functions in dreaming.
Collapse
Affiliation(s)
- Jin-Xian Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Guizhong Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Xin-Xuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Jun-Fan Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Karen Spruyt
- NeuroDiderot-INSERM, Université de Paris, 75019 Paris, France;
| | - Yu-Feng Shao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
| | - Yi-Ping Hou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Departments of Neuroscience, Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (J.-X.G.); (G.Y.); (X.-X.L.); (J.-F.X.)
- Sleep Medicine Center of Gansu Provincial Hospital, Lanzhou 730000, China
| |
Collapse
|
4
|
Adkins AM, Colby EM, Kim WK, Wellman LL, Sanford LD. Stressor control and regional inflammatory responses in the brain: regulation by the basolateral amygdala. J Neuroinflammation 2023; 20:128. [PMID: 37244986 PMCID: PMC10225081 DOI: 10.1186/s12974-023-02813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023] Open
Abstract
Increasing evidence has connected the development of certain neuropsychiatric disorders, as well as neurodegenerative diseases, to stress-induced dysregulation of the immune system. We have shown that escapable (ES) and inescapable (IS) footshock stress, and memories associated with ES or IS, can differentially alter inflammatory-related gene expression in brain in a region dependent manner. We have also demonstrated that the basolateral amygdala (BLA) regulates stress- and fear memory-induced alterations in sleep, and that differential sleep and immune responses in the brain to ES and IS appear to be integrated during fear conditioning and then reproduced by fear memory recall. In this study, we investigated the role of BLA in influencing regional inflammatory responses within the hippocampus (HPC) and medial prefrontal cortex (mPFC) by optogenetically stimulating or inhibiting BLA in male C57BL/6 mice during footshock stress in our yoked shuttlebox paradigm based on ES and IS. Then, mice were immediately euthanized and RNA extracted from brain regions of interest and loaded into NanoString® Mouse Neuroinflammation Panels for compilation of gene expression profiles. Results showed differential regional effects in gene expression and activated pathways involved in inflammatory-related signaling following ES and IS, and these differences were altered depending on amygdalar excitation or inhibition. These findings demonstrate that the stress-induced immune response, or "parainflammation", is affected by stressor controllability and that BLA influences regional parainflammation to ES or IS in HPC and mPFC. The study illustrates how stress-induced parainflammation can be regulated at the neurocircuit level and suggests that this approach can be useful for uncovering circuit and immune interactions in mediating differential stress outcomes.
Collapse
Affiliation(s)
- Austin M. Adkins
- Sleep Research Laboratory, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23507 USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23507 USA
- Pathology and Anatomy, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23507 USA
| | - Emily M. Colby
- Sleep Research Laboratory, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23507 USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23507 USA
- Pathology and Anatomy, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23507 USA
| | - Woong-Ki Kim
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23507 USA
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, P.O. Box 1980, VA 23507 Norfolk, USA
| | - Laurie L. Wellman
- Sleep Research Laboratory, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23507 USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23507 USA
- Pathology and Anatomy, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23507 USA
| | - Larry D. Sanford
- Sleep Research Laboratory, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23507 USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23507 USA
- Pathology and Anatomy, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23507 USA
| |
Collapse
|
5
|
Sanford LD, Wellman LL, Adkins AM, Guo ML, Zhang Y, Ren R, Yang L, Tang X. Modeling integrated stress, sleep, fear and neuroimmune responses: Relevance for understanding trauma and stress-related disorders. Neurobiol Stress 2023; 23:100517. [PMID: 36793998 PMCID: PMC9923229 DOI: 10.1016/j.ynstr.2023.100517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Sleep and stress have complex interactions that are implicated in both physical diseases and psychiatric disorders. These interactions can be modulated by learning and memory, and involve additional interactions with the neuroimmune system. In this paper, we propose that stressful challenges induce integrated responses across multiple systems that can vary depending on situational variables in which the initial stress was experienced, and with the ability of the individual to cope with stress- and fear-inducing challenges. Differences in coping may involve differences in resilience and vulnerability and/or whether the stressful context allows adaptive learning and responses. We provide data demonstrating both common (corticosterone, SIH and fear behaviors) and distinguishing (sleep and neuroimmune) responses that are associated with an individual's ability to respond and relative resilience and vulnerability. We discuss neurocircuitry regulating integrated stress, sleep, neuroimmune and fear responses, and show that responses can be modulated at the neural level. Finally, we discuss factors that need to be considered in models of integrated stress responses and their relevance for understanding stress-related disorders in humans.
Collapse
Affiliation(s)
- Larry D. Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Laurie L. Wellman
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Austin M. Adkins
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ming-Lei Guo
- Drug Addiction Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ye Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Pace-Schott EF, Seo J, Bottary R. The influence of sleep on fear extinction in trauma-related disorders. Neurobiol Stress 2022; 22:100500. [PMID: 36545012 PMCID: PMC9761387 DOI: 10.1016/j.ynstr.2022.100500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
In Posttraumatic Stress Disorder (PTSD), fear and anxiety become dysregulated following psychologically traumatic events. Regulation of fear and anxiety involves both high-level cognitive processes such as cognitive reattribution and low-level, partially automatic memory processes such as fear extinction, safety learning and habituation. These latter processes are believed to be deficient in PTSD. While insomnia and nightmares are characteristic symptoms of existing PTSD, abundant recent evidence suggests that sleep disruption prior to and acute sleep disturbance following traumatic events both can predispose an individual to develop PTSD. Sleep promotes consolidation in multiple memory systems and is believed to also do so for low-level emotion-regulatory memory processes. Consequently sleep disruption may contribute to the etiology of PTSD by interfering with consolidation in low-level emotion-regulatory memory systems. During the first weeks following a traumatic event, when in the course of everyday life resilient individuals begin to acquire and consolidate these low-level emotion-regulatory memories, those who will develop PTSD symptoms may fail to do so. This deficit may, in part, result from alterations of sleep that interfere with their consolidation, such as REM fragmentation, that have also been found to presage later PTSD symptoms. Here, sleep disruption in PTSD as well as fear extinction, safety learning and habituation and their known alterations in PTSD are first briefly reviewed. Then neural processes that occur during the early post-trauma period that might impede low-level emotion regulatory processes through alterations of sleep quality and physiology will be considered. Lastly, recent neuroimaging evidence from a fear conditioning and extinction paradigm in patient groups and their controls will be considered along with one possible neural process that may contribute to a vulnerability to PTSD following trauma.
Collapse
Affiliation(s)
- Edward F. Pace-Schott
- Massachusetts General Hospital, Department of Psychiatry, Charlestown, MA, USA
- Harvard Medical School, Department of Psychiatry, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Corresponding author. Harvard Medical School, Massachusetts General Hospital - East, CNY 149 13th Street, Charlestown, MA, 02129, USA.
| | - Jeehye Seo
- Massachusetts General Hospital, Department of Psychiatry, Charlestown, MA, USA
- Harvard Medical School, Department of Psychiatry, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Korea University, Department of Brain & Cognitive Engineering, Seongbuk-gu, Seoul, South Korea
| | - Ryan Bottary
- Massachusetts General Hospital, Department of Psychiatry, Charlestown, MA, USA
- Harvard Medical School, Department of Psychiatry, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
7
|
After-effects of acute footshock stress on sleep states and rhythmic masticatory muscle activity during sleep in guinea pigs. Odontology 2022; 110:476-481. [PMID: 35000009 DOI: 10.1007/s10266-021-00679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
This study investigated the effects of acute footshock stress (FS) on the occurrence of rhythmic masticatory muscle activity (RMMA) during sleep in guinea pigs. Animals were prepared for chronic recordings from electroencephalogram, electrooculogram and electromyograms of neck and masseter muscles. The signals were recorded for six hours on the two successive days: the first day with stress-free condition (non-FS condition) and the second day with acute FS (FS condition). Sleep/wake states and RMMA were scored visually. Sleep variables and the frequency of RMMA occurring during non-rapid eye movement (NREM) sleep were compared during 6-h periods between the two conditions. Compared to non-FS condition, the amount of total sleep and NREM sleep significantly reduced during 2 h following the acute FS in the FS condition. Similarly, the frequency of RMMA significantly increased during 2 h following the acute FS for the FS condition compared to non-FS condition. During 2-6 h after FS in the FS condition, sleep variables and the frequency of RMMA did not differ from those without FS in the non-FS condition. These results suggest that acute experimental stress can induce transient changes in sleep-wake states and the occurrence of RMMA in experimental animals.
Collapse
|
8
|
Lo Y, Yi PL, Hsiao YT, Chang FC. Hypocretin in locus coeruleus and dorsal raphe nucleus mediates inescapable footshock stimulation (IFS)-induced REM sleep alteration. Sleep 2021; 45:6490200. [PMID: 34969120 DOI: 10.1093/sleep/zsab301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/12/2021] [Indexed: 11/14/2022] Open
Abstract
Hypocretin (hcrt) is a stress-reacting neuropeptide mediating arousal and energy homeostasis. An inescapable footshock stimulation (IFS) could initiate the hcrt release from the lateral hypothalamus (LHA) and suppresses rapid eye movement (REM) sleep in rodents. However, the effects of the IFS-induced hcrts on REM-off nuclei, the locus coeruleus (LC) and dorsal raphe nucleus (DRN), remained unclear. We hypothesized that the hcrt projections from the LHA to LC or DRN mediate IFS-induced sleep disruption. Our results demonstrated that the IFS increased hcrt expression and the neuronal activities in the LHA, hypothalamus, brainstem, thalamus, and amygdala. Suppressions of REM sleep and slow wave activity during non-REM (NREM) sleep caused by the high expression of hcrts were blocked when a non-specific and dual hcrt receptor antagonist was administered into the LC or DRN. Furthermore, the IFS also caused an elevated innate anxiety, but was limitedly influenced by the hcrt antagonist. This result suggests that the increased hcrt concentrations in the LC and DRN mediate stress-induced sleep disruptions and might partially involve IFS-induced anxiety.
Collapse
Affiliation(s)
- Yun Lo
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan, University, Taipei, Taiwan
| | - Pei-Lu Yi
- Department of Sport Management, College of Tourism, Leisure and Sports, Aletheia, University, New Taipei City, Taiwan
| | - Yi-Tse Hsiao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan, University, Taipei, Taiwan
| | - Fang-Chia Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan, University, Taipei, Taiwan.,Graduate Institute of Brain & Mind Sciences, College of Medicine, National Taiwan, University, Taipei, Taiwan.,Graduate Institute of Acupuncture Science, College of Chinese Medicine, China, Medical University, Taichung, Taiwan.,Department of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Machida M, Sweeten BLW, Adkins AM, Wellman LL, Sanford LD. Basolateral Amygdala Regulates EEG Theta-activity During Rapid Eye Movement Sleep. Neuroscience 2021; 468:176-185. [PMID: 34147563 DOI: 10.1016/j.neuroscience.2021.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022]
Abstract
Pharmacological and optogenetic studies have demonstrated that the basolateral amygdala (BLA) plays a pivotal role in regulating fear-conditioned changes in sleep, in particular, rapid eye movement sleep (REM). However, the linkage between BLA and REM regulation has been minimally examined. In this study, we optogenetically activated or inhibited BLA selectively during spontaneous REM, and determined the effects on REM amounts and on hippocampus regulated EEG-theta (θ) activity. Excitatory (CaMKIIα-hChR2 (E123A)-eYFP-WPRE) or inhibitory (CaMKIIα-eNpHR3.0-eYFP-WPRE) optogenetic constructs were stereotaxically delivered targeting glutamatergic cells in BLA (BLAGlu) of mice. Viral constructs without opsin (CaMKIIα-eYFP-WPRE) were used as controls. All mice were implanted with telemetry transmitters for monitoring electroencephalography (EEG), activity, and body temperature, and with optic cannulas for light delivery to the BLA. BLAGlu were optogenetically activated by blue light (473 nm), or inhibited by green light (532 nm), in 10 s epochs during REM, or non-REM (NREM), in undisturbed mice. Sleep amounts and EEG activity were analyzed. Projections from BLAGlu to neurons in hippocampus were immunohistochemically (IHC) examined. Brief optogenetic activation of BLAGlu during REM immediately reduced EEG theta activity (5-8 Hz, REM-θ), without affecting overall amount and propensity of sleep, while optogenetic inhibition increased REM-θ. Stimulation during NREM had no effect on EEG spectra or sleep. IHC results showed that glutamatergic and GABAergic cells in CA3 of the hippocampus received inputs from BLAGlu projection neurons. Activation of BLAGlu reduced, and inhibition increased, REM-θ without otherwise altering sleep. Optogenetic stimulation of BLAGlu may be useful for systematically manipulating sleep-related amygdalo-hippocampal interactions.
Collapse
Affiliation(s)
- Mayumi Machida
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Brook L W Sweeten
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Austin M Adkins
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Laurie L Wellman
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
10
|
Balakathiresan NS, Bhomia M, Zhai M, Sweeten BLW, Wellman LL, Sanford LD, Knollmann-Ritschel B. MicroRNAs in Basolateral Amygdala Associated with Stress and Fear Memories Regulate Rapid Eye Movement Sleep in Rats. Brain Sci 2021; 11:brainsci11040489. [PMID: 33921465 PMCID: PMC8069888 DOI: 10.3390/brainsci11040489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
Stress-related sleep disturbances are distressing clinical symptoms in posttraumatic stress disorder patients. Intensely stressful events and their memories change rapid eye movement (REM) sleep in animal models. REM sleep varies with individual differences of stress resilience or vulnerability. The basolateral amygdala (BLA) is a primary mediator of the effects of stress and fear memories on sleep. However, the molecular mechanisms in BLA regulating the effects of fear conditioning, shock training (ST) and context re-exposure (CTX) on REM sleep are not well known. MicroRNAs (miRNAs) are small, non-coding RNAs and posttranscriptional gene regulators of diverse biological processes. The aim of this study is to investigate ST- and CTX-altered miRNAs in the BLA of resilience and vulnerable animals and on REM sleep regulation. MiRNAs expression profiles in BLA were generated following ST and CTX using the Taqman Low Density rodent microRNA array. The altered BLA miRNAs expression and REM sleep reduction observed in ST and CTX vulnerable animals. AntagomiR-221 microinjection into BLA for one of the upregulated miRNAs, miR-221 in BLA, attenuated the REM sleep reduction. This study suggests that miRNAs in the BLA may play a significant role in mediating the effects of stress and fear memories on REM sleep.
Collapse
Affiliation(s)
- Nagaraja S. Balakathiresan
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (M.B.); (M.Z.); (B.K.-R.)
- Correspondence:
| | - Manish Bhomia
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (M.B.); (M.Z.); (B.K.-R.)
| | - Min Zhai
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (M.B.); (M.Z.); (B.K.-R.)
| | - Brook L. W. Sweeten
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (B.L.W.S.); (L.L.W.); (L.D.S.)
| | - Laurie L. Wellman
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (B.L.W.S.); (L.L.W.); (L.D.S.)
| | - Larry D. Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA; (B.L.W.S.); (L.L.W.); (L.D.S.)
| | - Barbara Knollmann-Ritschel
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (M.B.); (M.Z.); (B.K.-R.)
| |
Collapse
|
11
|
Ciavarra RP, Machida M, Lundberg PS, Gauronskas P, Wellman LL, Steel C, Aflatooni JO, Sanford LD. Controllable and uncontrollable stress differentially impact pathogenicity and survival in a mouse model of viral encephalitis. J Neuroimmunol 2018; 319:130-141. [PMID: 29580714 DOI: 10.1016/j.jneuroim.2018.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023]
Abstract
Intranasal instillation of vesicular stomatitis virus (VSV) into mice given controllable stress (modeled by escapable foot shock, ES) resulted in enhanced pathogenicity and decreased survival relative to infected mice given uncontrollable stress (modeled by inescapable foot shock, IS) and non-shocked control mice. Survival likely reflected differential cytokine gene expression that may have been regulated by miR146a, a predicted stress-responsive upstream regulator. Controllability also enhanced the accumulation of brain T resident memory cells that persisted long after viral clearance. The unexpected facilitatory effect of ES on antiviral neuroimmune responses and pathogenicity may arise from differential immunoactivating and immunosuppressive effects of uncontrollable and controllable stress.
Collapse
Affiliation(s)
- Richard P Ciavarra
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, United States; Department of Microbiology and Molecular and Cell Biology, Eastern Virginia Medical School, 700 W Olney Road, Norfolk, VA 23501, United States.
| | - Mayumi Machida
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23501, United States
| | - Patric S Lundberg
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, United States
| | - Phillip Gauronskas
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, United States
| | - Laurie L Wellman
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23501, United States
| | - Christina Steel
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, United States
| | - Justin O Aflatooni
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, United States
| | - Larry D Sanford
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23501, United States
| |
Collapse
|
12
|
Murkar ALA, De Koninck J. Consolidative mechanisms of emotional processing in REM sleep and PTSD. Sleep Med Rev 2018; 41:173-184. [PMID: 29628334 DOI: 10.1016/j.smrv.2018.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/19/2018] [Accepted: 03/05/2018] [Indexed: 12/30/2022]
Abstract
Research suggests sleep plays a role in the consolidation of recently acquired memories for long-term storage. rapid eye movement (REM) sleep has been shown to play a complex role in emotional-memory processing, and may be involved in subsequent waking-day emotional reactivity and amygdala responsivity. Interaction of the hippocampus and basolateral amygdala with the medial-prefrontal cortex is associated with sleep-dependent learning and emotional memory processing. REM is also implicated in post-traumatic stress disorder (PTSD), which is characterized by sleep disturbance, heightened reactivity to fearful stimuli, and nightmares. Many suffers of PTSD also exhibit dampened medial-prefrontal cortex activity. However, the effects of PTSD-related brain changes on REM-dependent consolidation or the notion of 'over-consolidation' (strengthening of memory traces to such a degree that they become resistant to extinction) have been minimally explored. Here, we posit that (in addition to sleep architecture changes) the memory functions of REM must also be altered in PTSD. We propose a model of REM-dependent consolidation of learned fear in PTSD and examine how PTSD-related brain changes might interact with fear learning. We argue that reduced efficacy of inhibitory medial-prefrontal pathways may lead to maladaptive processing of traumatic memories in the early stages of consolidation after trauma.
Collapse
Affiliation(s)
- Anthony L A Murkar
- School of Psychology, University of Ottawa, Canada; The Royal's Institute of Mental Health Research affiliated with the University of Ottawa, Canada.
| | - Joseph De Koninck
- School of Psychology, University of Ottawa, Canada; The Royal's Institute of Mental Health Research affiliated with the University of Ottawa, Canada.
| |
Collapse
|
13
|
Machida M, Wellman LL, Fitzpatrick Bs ME, Hallum Bs O, Sutton Bs AM, Lonart G, Sanford LD. Effects of Optogenetic inhibition of BLA on Sleep Brief Optogenetic Inhibition of the Basolateral Amygdala in Mice Alters Effects of Stressful Experiences on Rapid Eye Movement Sleep. Sleep 2017; 40:2982588. [PMID: 28199723 DOI: 10.1093/sleep/zsx020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Study Objectives Stressful events can directly produce significant alterations in subsequent sleep, in particular rapid eye movement sleep (REM); however, the neural mechanisms underlying the process are not fully known. Here, we investigated the role of the basolateral nuclei of the amygdala (BLA) in regulating the effects of stressful experience on sleep. Methods We used optogenetics to briefly inhibit glutamatergic cells in BLA during the presentation of inescapable footshock (IS) and assessed effects on sleep, the acute stress response, and fear memory. c-Fos expression was also assessed in the amygdala and the medial prefrontal cortex (mPFC), both regions involved in coping with stress, and in brain stem regions implicated in the regulation of REM. Results Compared to control mice, peri-shock inhibition of BLA attenuated an immediate reduction in REM after IS and produced a significant overall increase in REM. Moreover, upon exposure to the shock context alone, mice receiving peri-shock inhibition of BLA during training showed increased REM without altered freezing (an index of fear memory) or stress-induced hyperthermia (an index of acute stress response). Inhibition of BLA during REM under freely sleeping conditions enhanced REM only when body temperature was high, suggesting the effect was influenced by stress. Peri-shock inhibition of BLA also led to elevated c-Fos expression in the central nucleus of the amygdala and mPFC and differentially altered c-Fos activity in the selected brain stem regions. Conclusions Glutamatergic cells in BLA can modulate the effects of stress on REM and can mediate effects of fear memory on sleep that can be independent of behavioral fear.
Collapse
Affiliation(s)
| | | | | | | | | | - György Lonart
- Department of Pathology and Anatomy, Eastern Virginia Medical School
| | | |
Collapse
|
14
|
Emotional arousal modulates oscillatory correlates of targeted memory reactivation during NREM, but not REM sleep. Sci Rep 2016; 6:39229. [PMID: 27982120 PMCID: PMC5159847 DOI: 10.1038/srep39229] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/18/2016] [Indexed: 11/23/2022] Open
Abstract
Rapid eye movement (REM) sleep is considered to preferentially reprocess emotionally arousing memories. We tested this hypothesis by cueing emotional vs. neutral memories during REM and NREM sleep and wakefulness by presenting associated verbal memory cues after learning. Here we show that cueing during NREM sleep significantly improved memory for emotional pictures, while no cueing benefit was observed during REM sleep. On the oscillatory level, successful memory cueing during NREM sleep resulted in significant increases in theta and spindle oscillations with stronger responses for emotional than neutral memories. In contrast during REM sleep, solely cueing of neutral (but not emotional) memories was associated with increases in theta activity. Our results do not support a preferential role of REM sleep for emotional memories, but rather suggest that emotional arousal modulates memory replay and consolidation processes and their oscillatory correlates during NREM sleep.
Collapse
|
15
|
Sørensen AT, Cooper YA, Baratta MV, Weng FJ, Zhang Y, Ramamoorthi K, Fropf R, LaVerriere E, Xue J, Young A, Schneider C, Gøtzsche CR, Hemberg M, Yin JC, Maier SF, Lin Y. A robust activity marking system for exploring active neuronal ensembles. eLife 2016; 5. [PMID: 27661450 PMCID: PMC5035142 DOI: 10.7554/elife.13918] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Abstract
Understanding how the brain captures transient experience and converts it into long lasting changes in neural circuits requires the identification and investigation of the specific ensembles of neurons that are responsible for the encoding of each experience. We have developed a Robust Activity Marking (RAM) system that allows for the identification and interrogation of ensembles of neurons. The RAM system provides unprecedented high sensitivity and selectivity through the use of an optimized synthetic activity-regulated promoter that is strongly induced by neuronal activity and a modified Tet-Off system that achieves improved temporal control. Due to its compact design, RAM can be packaged into a single adeno-associated virus (AAV), providing great versatility and ease of use, including application to mice, rats, flies, and potentially many other species. Cre-dependent RAM, CRAM, allows for the study of active ensembles of a specific cell type and anatomical connectivity, further expanding the RAM system's versatility.
Collapse
Affiliation(s)
- Andreas T Sørensen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yonatan A Cooper
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Michael V Baratta
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, United States
| | - Feng-Ju Weng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yuxiang Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Kartik Ramamoorthi
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Robin Fropf
- Department of Genetics, University of Wisconsin-Madison, Madison, United States.,Department of Neurology, University of Wisconsin-Madison, Madison, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, United States
| | - Emily LaVerriere
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Jian Xue
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Andrew Young
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Colleen Schneider
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Casper René Gøtzsche
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Jerry Cp Yin
- Department of Genetics, University of Wisconsin-Madison, Madison, United States.,Department of Neurology, University of Wisconsin-Madison, Madison, United States
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, United States
| | - Yingxi Lin
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
16
|
Wellman LL, Yang L, Sanford LD. Effects of corticotropin releasing factor (CRF) on sleep and temperature following predictable controllable and uncontrollable stress in mice. Front Neurosci 2015; 9:258. [PMID: 26283899 PMCID: PMC4519684 DOI: 10.3389/fnins.2015.00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/10/2015] [Indexed: 02/05/2023] Open
Abstract
Corticotropin releasing factor (CRF) is a major mediator of central nervous system responses to stressors, including alterations in wakefulness and sleep. However, its role in mediating stress-induced alterations in sleep has not been fully delineated. In this study, we assessed the role of CRF and the non-specific CRF antagonist, astressin (AST), in regulating changes in sleep produced by signaled, escapable shock (SES) and signaled inescapable shock (SIS), two stressors that can increase or decrease sleep, respectively. Male BALB/cJ mice were surgically implanted with transmitters (DataSciences ETA10-F20) for recording EEG, activity and core body temperature by telemetry and a cannula for intracerebroventricular (ICV) microinjections. After baseline (Base) sleep recording, mice were presented tones (90 dB, 2 kHz) that started 5.0 s prior to and co-terminated with footshock (0.5 mA; 5.0 s maximum duration). SES mice (n = 9) always received shock but could terminate it by moving to the non-occupied chamber in a shuttlebox. Yoked SIS mice (n = 9) were treated identically, but could not alter shock duration. Training with SES or SIS was conducted over 2 days to stabilize responses. Afterwards, the mice received saline, CRF [0.4 μg (0.42 mM) or AST (1.0 μg (1.4 mM)] prior to SES or SIS. Sleep was analyzed over 20 h post-stress recordings. After administration of saline, REM was significantly greater in SES mice than in SIS mice whereas after CRF or AST, REM was similar in both groups. Total 20 h NREM did not vary across condition or group. However, after administration of saline and CRF, NREM episode duration was significantly decreased, and NREM episode number significantly increased, in SIS mice compared to SES animals. SES and SIS mice showed similar stress induced hyperthermia (SIH) across all conditions. These data demonstrate that CRF can mediate stress-induced changes in sleep independently of SIH, an index of hypothalamic-pituitary-adrenal axis activation.
Collapse
Affiliation(s)
- Laurie L Wellman
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School Norfolk, VA, USA
| | - Linghui Yang
- West China Hospital of Sichuan University Sichuan, China
| | - Larry D Sanford
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School Norfolk, VA, USA
| |
Collapse
|
17
|
Trauma-induced insomnia: A novel model for trauma and sleep research. Sleep Med Rev 2015; 25:74-83. [PMID: 26140870 DOI: 10.1016/j.smrv.2015.01.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 01/19/2015] [Accepted: 01/26/2015] [Indexed: 11/23/2022]
Abstract
Traumatic events have been increasingly recognized as important precipitants of clinically significant insomnia. Trauma is an extreme form of stressful life event that generates a sustained neurobiological response triggering the onset and maintenance of insomnia. Trauma may disrupt the normal sleep-wake regulatory mechanism by sensitizing the central nervous system's arousal centers, leading to pronounced central and physiological hyperarousal. The central concept of hyperarousal has been linked to both the pathogenesis of insomnia and to the neurobiological changes in the aftermath of traumatic events, and may be a neurobiological commonality underlying trauma and insomnia. This paper presents evidence for trauma-induced insomnia and advances a model of it as an important nosological and neurobiological entity. Trauma-induced insomnia may occur in the absence of full-blown posttraumatic stress disorder (PTSD), and may also be a precursor of subsequent PTSD development. Converging lines of evidence from the neuroscience of insomnia with the neurobiology and psychophysiology of stress, fear, trauma and PTSD will be integrated to advance understanding of the condition. Preclinical and clinical stress and fear paradigms have informed the neurobiological pathways mediating the production of insomnia by trauma. Elucidating the underlying neurobiological substrates can establish novel biological markers to identify persons at risk for the condition, and help optimize treatment of the trauma-insomnia interface. Early identification and treatment of trauma-induced insomnia may prevent the development of PTSD, as well as other important sequelae such as depression, substance dependence, and other medical conditions.
Collapse
|
18
|
Abstract
Stress is considered to be an important cause of disrupted sleep and insomnia. However, controlled and experimental studies in rodents indicate that effects of stress on sleep-wake regulation are complex and may strongly depend on the nature of the stressor. While most stressors are associated with at least a brief period of arousal and wakefulness, the subsequent amount and architecture of recovery sleep can vary dramatically across conditions even though classical markers of acute stress such as corticosterone are virtually the same. Sleep after stress appears to be highly influenced by situational variables including whether the stressor was controllable and/or predictable, whether the individual had the possibility to learn and adapt, and by the relative resilience and vulnerability of the individual experiencing stress. There are multiple brain regions and neurochemical systems linking stress and sleep, and the specific balance and interactions between these systems may ultimately determine the alterations in sleep-wake architecture. Factors that appear to play an important role in stress-induced wakefulness and sleep changes include various monominergic neurotransmitters, hypocretins, corticotropin releasing factor, and prolactin. In addition to the brain regions directly involved in stress responses such as the hypothalamus, the locus coeruleus, and the amygdala, differential effects of stressor controllability on behavior and sleep may be mediated by the medial prefrontal cortex. These various brain regions interact and influence each other and in turn affect the activity of sleep-wake controlling centers in the brain. Also, these regions likely play significant roles in memory processes and participate in the way stressful memories may affect arousal and sleep. Finally, stress-induced changes in sleep-architecture may affect sleep-related neuronal plasticity processes and thereby contribute to cognitive dysfunction and psychiatric disorders.
Collapse
Affiliation(s)
- Larry D Sanford
- Department of Pathology and Anatomy, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA, 23507, USA,
| | | | | |
Collapse
|
19
|
Wellman LL, Fitzpatrick ME, Machida M, Sanford LD. The basolateral amygdala determines the effects of fear memory on sleep in an animal model of PTSD. Exp Brain Res 2014; 232:1555-65. [PMID: 24519098 DOI: 10.1007/s00221-014-3850-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/20/2014] [Indexed: 02/05/2023]
Abstract
Fear conditioning [inescapable shock training (ST)] and fearful context re-exposure (CR) alone can produce significant fear indicated by increased freezing and reductions in subsequent rapid eye movement (REM) sleep. Damage to or inactivation of the basolateral nucleus of the amygdala (BLA) prior to or after ST or prior to CR generally has been found to attenuate freezing in the shock training context. However, no one has examined the impact of BLA inactivation on fear-induced changes in sleep. Here, we used the GABAA agonist, muscimol (MUS), to inactivate BLA prior to ST, the period when fear is learned, and assessed sleep after ST and sleep and freezing after two CR sessions. Wistar rats (n = 14) were implanted with electrodes for recording sleep and with cannulae aimed bilaterally into BLA. After recovery, the animals were habituated to the injection procedure (handling) over 2 consecutive days and baseline sleep following handling was recorded. On experimental day 1, the rats were injected (0.5 μl) into BLA with either MUS (1.0 μM; n = 7) or vehicle (distilled water, n = 7) 30 min prior to ST (20 footshocks, 0.8 mA, 0.5-s duration, 60-s interstimulus interval). On experimental days 7 and 21, the animals experienced CR (CR1 and CR2, respectively) alone. Electroencephalogram and electromyogram were recorded for 8 h on each day, and the recording was scored for non-rapid eye movement sleep, REM sleep, and wakefulness. Freezing was examined during CR1 and CR2. MUS microinjections into BLA prior to ST blocked the post-training reduction in REM sleep seen in vehicle-treated rats. Furthermore, in MUS-treated rats, REM sleep after CR1 and CR2 was at baseline levels and freezing was significantly attenuated. Thus, BLA inactivation prior to ST blocks the effects of footshock stress on sleep and reduces fear memory, as indicated by the lack of freezing and changes in sleep after CR. These data indicate that BLA is an important regulator of stress-induced alterations in sleep and an important site for forming fear memories that can alter sleep.
Collapse
Affiliation(s)
- Laurie L Wellman
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, P. O. Box 1980, Norfolk, VA, 23507, USA
| | | | | | | |
Collapse
|
20
|
Polta SA, Fenzl T, Jakubcakova V, Kimura M, Yassouridis A, Wotjak CT. Prognostic and symptomatic aspects of rapid eye movement sleep in a mouse model of posttraumatic stress disorder. Front Behav Neurosci 2013; 7:60. [PMID: 23750131 PMCID: PMC3668327 DOI: 10.3389/fnbeh.2013.00060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/19/2013] [Indexed: 01/08/2023] Open
Abstract
Not every individual develops Posttraumatic Stress Disorder (PTSD) after the exposure to a potentially traumatic event. Therefore, the identification of pre-existing risk factors and early diagnostic biomarkers is of high medical relevance. However, no objective biomarker has yet progressed into clinical practice. Sleep disturbances represent commonly reported complaints in PTSD patients. In particular, changes in rapid eye movement sleep (REMS) properties are frequently observed in PTSD patients. Here, we examined in a mouse model of PTSD whether (1) mice developed REMS alterations after trauma and (2) whether REMS architecture before and/or shortly after trauma predicted the development of PTSD-like symptoms. We monitored sleep-wake behavior via combined electroencephalogram/electromyogram recordings immediately before (24 h pre), immediately after (0-48 h post) and 2 months after exposure to an electric foot shock in male C57BL/6N mice (n = 15). PTSD-like symptoms, including hyperarousal, contextual, and generalized fear, were assessed 1 month post-trauma. Shocked mice showed early onset and sustained elevation of REMS compared to non-shocked controls. In addition, REMS architecture before trauma was correlated with the intensity of acoustic startle responses, but not contextual fear, 1 month after trauma. Our data suggest REMS as prognostic (pre-trauma) and symptomatic (post-trauma) marker of PTSD-like symptoms in mice. Translated to the situation in humans, REMS may constitute a viable, objective, and non-invasive biomarker in PTSD and other trauma-related psychiatric disorders, which could guide pharmacological interventions in humans at high risk.
Collapse
|
21
|
Machado RB, Tufik S, Suchecki D. Role of corticosterone on sleep homeostasis induced by REM sleep deprivation in rats. PLoS One 2013; 8:e63520. [PMID: 23667630 PMCID: PMC3646744 DOI: 10.1371/journal.pone.0063520] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/03/2013] [Indexed: 01/17/2023] Open
Abstract
Sleep is regulated by humoral and homeostatic processes. If on one hand chronic elevation of stress hormones impair sleep, on the other hand, rapid eye movement (REM) sleep deprivation induces elevation of glucocorticoids and time of REM sleep during the recovery period. In the present study we sought to examine whether manipulations of corticosterone levels during REM sleep deprivation would alter the subsequent sleep rebound. Adult male Wistar rats were fit with electrodes for sleep monitoring and submitted to four days of REM sleep deprivation under repeated corticosterone or metyrapone (an inhibitor of corticosterone synthesis) administration. Sleep parameters were continuously recorded throughout the sleep deprivation period and during 3 days of sleep recovery. Plasma levels of adrenocorticotropic hormone and corticosterone were also evaluated. Metyrapone treatment prevented the elevation of corticosterone plasma levels induced by REM sleep deprivation, whereas corticosterone administration to REM sleep-deprived rats resulted in lower corticosterone levels than in non-sleep deprived rats. Nonetheless, both corticosterone and metyrapone administration led to several alterations on sleep homeostasis, including reductions in the amount of non-REM and REM sleep during the recovery period, although corticosterone increased delta activity (1.0-4.0 Hz) during REM sleep deprivation. Metyrapone treatment of REM sleep-deprived rats reduced the number of REM sleep episodes. In conclusion, reduction of corticosterone levels during REM sleep deprivation resulted in impairment of sleep rebound, suggesting that physiological elevation of corticosterone levels resulting from REM sleep deprivation is necessary for plentiful recovery of sleep after this stressful event.
Collapse
|
22
|
Szabadi E. Modulation of physiological reflexes by pain: role of the locus coeruleus. Front Integr Neurosci 2012; 6:94. [PMID: 23087627 PMCID: PMC3474280 DOI: 10.3389/fnint.2012.00094] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/27/2012] [Indexed: 11/13/2022] Open
Abstract
The locus coeruleus (LC) is activated by noxious stimuli, and this activation leads to inhibition of perceived pain. As two physiological reflexes, the acoustic startle reflex and the pupillary light reflex, are sensitive to noxious stimuli, this review considers evidence that this sensitivity, at least to some extent, is mediated by the LC. The acoustic startle reflex, contraction of a large body of skeletal muscles in response to a sudden loud acoustic stimulus, can be enhanced by both directly ("sensitization") and indirectly ("fear conditioning") applied noxious stimuli. Fear-conditioning involves the association of a noxious (unconditioned) stimulus with a neutral (conditioned) stimulus (e.g., light), leading to the ability of the conditioned stimulus to evoke the "pain response". The enhancement of the startle response by conditioned fear ("fear-potentiated startle") involves the activation of the amygdala. The LC may also be involved in both sensitization and fear potentiation: pain signals activate the LC both directly and indirectly via the amygdala, which results in enhanced motoneurone activity, leading to an enhanced muscular response. Pupil diameter is under dual sympathetic/parasympathetic control, the sympathetic (noradrenergic) output dilating, and the parasympathetic (cholinergic) output constricting the pupil. The light reflex (constriction of the pupil in response to a light stimulus) operates via the parasympathetic output. The LC exerts a dual influence on pupillary control: it contributes to the sympathetic outflow and attenuates the parasympathetic output by inhibiting the Edinger-Westphal nucleus, the preganglionic cholinergic nucleus in the light reflex pathway. Noxious stimulation results in pupil dilation ("reflex dilation"), without any change in the light reflex response, consistent with sympathetic activation via the LC. Conditioned fear, on the other hand, results in the attenuation of the light reflex response ("fear-inhibited light reflex"), consistent with the inhibition of the parasympathetic light reflex via the LC. It is suggested that directly applied pain and fear-conditioning may affect different populations of autonomic neurones in the LC, directly applied pain activating sympathetic and fear-conditioning parasympathetic premotor neurones.
Collapse
Affiliation(s)
- Elemer Szabadi
- Psychopharmacology Section, Division of Psychiatry, University of NottinghamNottingham, UK
| |
Collapse
|
23
|
Liu X, Wellman LL, Yang L, Ambrozewicz MA, Tang X, Sanford LD. Antagonizing corticotropin-releasing factor in the central nucleus of the amygdala attenuates fear-induced reductions in sleep but not freezing. Sleep 2011; 34:1539-49. [PMID: 22043125 DOI: 10.5665/sleep.1394] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Contextual fear is followed by significant reductions in rapid eye movement sleep (REM) that are regulated by the central nucleus of the amygdala (CNA). Corticotropin-releasing factor (CRF) plays a major role in regulating the stress response as well as arousal, and CRF in CNA is implicated in stress-related behavior. To test the hypothesis that CRF regulation of CNA is involved in fear-induced alterations in REM, we determined the effects of microinjections into CNA of the CRF1 antagonist, antalarmin (ANT) on fear-induced reductions in REM. We also evaluated c-Fos activation in the hypothalamic paraventricular nucleus (PVN), locus coeruleus (LC), and dorsal raphe nucleus (DRN) to determine whether activation of these regions was consistent with their roles in regulating stress and in the control of REM. DESIGN On separate days, rats were subjected to baseline and 2 shock training sessions (S1 and S2). Five days later, the rats received bilateral microinjections of ANT (4.8 mM) or vehicle (VEH) prior to exposure to the fearful context. Sleep was recorded for 20 h in each condition. Freezing was assessed during S1, S2, and context. Separate groups of rats received identical training and microinjections or handling control (HC) only, but were sacrificed 2 h after context exposure to assess c-Fos expression. SETTING NA. PATIENTS OR PARTICIPANTS NA. INTERVENTIONS NA. MEASUREMENTS AND RESULTS Compared to baseline, S1 and S2 significantly reduced REM. Exposure to the fearful context reduced REM in VEH treated rats, whereas REM in ANT treated rats did not differ from baseline. ANT did not significantly alter freezing. Fear-induced c-Fos expression was decreased in PVN and LC after ANT compared to VEH. CONCLUSIONS The results demonstrate that CRF receptors in CNA are involved in fear-induced reductions in REM and neural activation (as indicated by c-Fos) in stress and REM regulatory regions, but not in fear-induced freezing.
Collapse
Affiliation(s)
- Xianling Liu
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | | | | | | | | | |
Collapse
|
24
|
Xi M, Fung SJ, Sampogna S, Chase MH. Excitatory projections from the amygdala to neurons in the nucleus pontis oralis in the rat: an intracellular study. Neuroscience 2011; 197:181-90. [PMID: 21955600 DOI: 10.1016/j.neuroscience.2011.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/25/2011] [Accepted: 09/11/2011] [Indexed: 11/20/2022]
Abstract
There is a consensus that active (REM) sleep (AS) is controlled by cholinergic projections from the laterodorsal and pedunculopontine tegmental nuclei (LDT/PPT) to neurons in the nucleus pontis oralis (NPO) that generate AS (i.e. AS-Generator neurons). The present study was designed to provide evidence that other projections to the NPO, such as those from the amygdala, are also capable of inducing AS. Accordingly, the responses of neurons, recorded intracellularly in the NPO, were examined following stimulation of the ipsilateral central nucleus of the amygdala (CNA) in urethane-anesthetized rats. Single pulse stimulation in the CNA produced an early, fast depolarizing potential (EPSP) in neurons within the NPO. The mean latency to the onset of these excitatory postsynaptic potentials (EPSPs) was 3.6±0.2 ms. A late, small-amplitude inhibitory synaptic potential (IPSP) was present following EPSPs in a portion of the NPO neurons. Following stimulation of the CNA with a train of 8-10 pulses, NPO neurons exhibited a sustained depolarization (5-10 mV) of their resting membrane potential. When single subthreshold intracellular depolarizing current pulses were delivered to NPO neurons, CNA-induced EPSPs were sufficient to promote the discharge of these cells. Stimulation of the CNA with a short train of stimuli induced potent temporal facilitation of EPSPs in NPO neurons. Two forms of synaptic plasticity were revealed by the patterns of response of NPO neurons following stimulation of the CNA: paired-pulse facilitation (PPF) and post-tetanic potentiation (PTP). Six of recorded NPO neurons were identified morphologically with neurobiotin. They were medium to large, multipolar cells with diameters >20 μM, which resemble AS-on cells in the NPO. The present results demonstrate that amygdalar projections are capable of exerting a powerful excitatory postsynaptic drive that activates NPO neurons. Therefore, we suggest that the amygdala is capable of inducing AS via direct projections to AS-Generator neurons in the NPO.
Collapse
Affiliation(s)
- M Xi
- WebSciences International, Los Angeles, CA 90024, USA.
| | | | | | | |
Collapse
|
25
|
Sanford LD, Yang L, Wellman LL, Liu X, Tang X. Differential effects of controllable and uncontrollable footshock stress on sleep in mice. Sleep 2010; 33:621-30. [PMID: 20469804 DOI: 10.1093/sleep/33.5.621] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Inescapable shock (IS), an uncontrollable stressor, and presentation of fearful contexts associated with IS produce prominent reductions in REM sleep. We compared sleep in animals trained with IS to that in animals trained with escapable shock (ES), a controllable stressor, in a paradigm in which animals always received shock but could terminate it by their actions. DESIGN Male BALB/cJ mice were implanted with telemetry transmitters for recording EEG and activity. After recovery from surgery, baseline sleep recordings were obtained for 2 days. The mice were then randomly assigned to receive ES (n=9) or IS (n=9). ES mice could escape a footshock (20 trials; 0.5 mA; 5.0 sec maximum duration; 1.0 min intervals) by moving to the unoccupied chamber in a shuttlebox. Yoked-control IS mice in a separate shuttlebox received identical footshock. The mice received 2 days of shock training (ST1; ST2) and were re-exposed to the shuttlebox without footshock (context alone). SETTING NA. PATIENTS OR PARTICIPANTS NA. INTERVENTIONS NA. MEASUREMENTS AND RESULTS On each training and test day, the mice were returned to their home cages, and EEG and activity were recorded for 20 h. Freezing was scored in the context alone. Compared to baseline, ES mice showed significantly increased REM, and IS mice showed significantly decreased REM after ST1, ST2, and context alone. Total NREM was decreased after shock training only in IS mice. Contextual freezing was enhanced in both ES and IS mice. CONCLUSIONS The directionally opposite changes in REM suggest that stressor controllability is an important factor in the effects of stress and stressful memories on sleep.
Collapse
Affiliation(s)
- Larry D Sanford
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23501, USA.
| | | | | | | | | |
Collapse
|
26
|
Liu X, Yang L, Wellman LL, Tang X, Sanford LD. GABAergic antagonism of the central nucleus of the amygdala attenuates reductions in rapid eye movement sleep after inescapable footshock stress. Sleep 2009; 32:888-96. [PMID: 19639751 DOI: 10.1093/sleep/32.7.888] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Rapid eye movement sleep (REM) appears to be especially susceptible to the effects of stress; inescapable footshock stress (IS) can produce reductions in REM that can occur without recovery sleep. The amygdala has well-established roles in stress and emotion; the central nucleus of the amygdala (CNA) projects to REM regulatory regions in the brainstem and has been found to play a key role in the regulation of REM. The objective of this study was to determine whether the reduction in REM induced by IS could be regulated by CNA and brainstem regions. DESIGN The GABAergic agonist muscimol (MUS) and GABAergic antagonist bicuculline (BIC) were microinjected into CNA before IS, and sleep was recorded for 20 h. In a second experiment using the same manipulations, sleep was recorded for 2 h, after which the rats were killed to evaluate Fos expression (a marker of neuronal activity) in the locus coeruleus (LC), a brainstem REM regulatory region. SETTING NA. PATIENTS OR PARTICIPANTS The subjects were male, outbred Wistar rats. INTERVENTIONS The rats were surgically implanted with standard electrodes or with telemetry transmitters for determining arousal state. MEASUREMENTS AND RESULTS IS preceded by control or MUS microinjections selectively reduced REM and increased Fos expression in LC. By comparison, microinjection of BIC into CNA prior to IS attenuated both the reduction in REM and Fos expression in LC to levels seen in non-shocked controls. CONCLUSIONS The results suggest that the effects of IS on REM may involve local GABAergic inhibition in CNA and activation of LC.
Collapse
Affiliation(s)
- Xianling Liu
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | | | | | | | |
Collapse
|
27
|
Datta S, Siwek DF, Stack EC. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep. Neuroscience 2009; 163:397-414. [PMID: 19540313 DOI: 10.1016/j.neuroscience.2009.06.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/11/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022]
Abstract
Recent studies have shown that in the pedunculopontine tegmental nucleus (PPT), increased neuronal activity and kainate receptor-mediated activation of intracellular protein kinase A (PKA) are important physiological and molecular steps for the generation of rapid eye movement (REM) sleep. In the present study performed on rats, phosphorylated cyclic AMP response element-binding protein (pCREB) immunostaining was used as a marker for increased intracellular PKA activation and as a reflection of increased neuronal activity. To identify whether activated cells were either cholinergic or noncholinergic, the PPT and laterodorsal tegmental nucleus (LDT) cells were immunostained for choline acetyltransferase (ChAT) in combination with pCREB or c-Fos. The results demonstrated that during high rapid eye movement sleep (HR, approximately 27%), significantly higher numbers of cells expressed pCREB and c-Fos in the PPT, of which 95% of pCREB-expressing cells were ChAT-positive. With HR, the numbers of pCREB-positive cells were also significantly higher in the medial pontine reticular formation (mPRF), pontine reticular nucleus oral (PnO), and dorsal subcoeruleus nucleus (SubCD) but very few in the locus coeruleus (LC) and dorsal raphe nucleus (DRN). Conversely, with low rapid eye movement sleep (LR, approximately 2%), the numbers of pCREB expressing cells were very few in the PPT, mPRF, PnO, and SubCD but significantly higher in the LC and DRN. The results of regression analyses revealed significant positive relationships between the total percentages of REM sleep and numbers of ChAT+/pCREB+ (Rsqr=0.98) cells in the PPT and pCREB+ cells in the mPRF (Rsqr=0.88), PnO (Rsqr=0.87), and SubCD (Rsqr=0.84); whereas significantly negative relationships were associated with the pCREB+ cells in the LC (Rsqr=0.70) and DRN (Rsqr=0.60). These results provide evidence supporting the hypothesis that during REM sleep, the PPT cholinergic neurons are active, whereas the LC and DRN neurons are inactive. More importantly, the regression analysis indicated that pCREB activation in approximately 98% of PPT cholinergic neurons, was caused by REM sleep. Moreover the results indicate that during REM sleep, PPT intracellular PKA activation and a transcriptional cascade involving pCREB occur exclusively in the cholinergic neurons.
Collapse
Affiliation(s)
- S Datta
- Laboratory of Sleep and Cognitive Neuroscience, Boston University School of Medicine, 85 East Newton Street, Suite M-902, Boston, MA 02118, USA.
| | | | | |
Collapse
|
28
|
Revel FG, Gottowik J, Gatti S, Wettstein JG, Moreau JL. Rodent models of insomnia: A review of experimental procedures that induce sleep disturbances. Neurosci Biobehav Rev 2009; 33:874-99. [DOI: 10.1016/j.neubiorev.2009.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 12/21/2022]
|
29
|
Stressor controllability and Fos expression in stress regulatory regions in mice. Physiol Behav 2009; 97:321-6. [PMID: 19275908 DOI: 10.1016/j.physbeh.2009.02.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 11/20/2022]
Abstract
Controllability is an important determinant of the effects of stress on behavior. We trained mice with escapable (ES) and inescapable (IS) shock and examined behavioral freezing and Fos expression in brain regions involved in stress to determine whether stressor controllability produced differential activation of these regions. Mice (C57BL/6J) were trained to escape footshock by moving to a safe chamber in a shuttlebox. This terminated shock for both ES mice (n=5) and yoked-control mice receiving IS (n=5). Handling control (HC) mice (n=5) experienced the shuttlebox, but never received footshock. Training took place on three days (20 trials per day, 0.2 mA, 5.0 s maximum duration, 1.0 min interstimulus interval). On day 3, the animals were killed 2 h after training and the brains were processed for Fos expression in the amygdala, hypothalamic paraventricular nucleus (PVN), laterodorsal tegmental nucleus, locus coeruleus and dorsal raphe nucleus. Fos expression after IS was greater than after ES and HC in all regions (p<.05). Fos expression after ES was greater than HC only in PVN (p<.05). Freezing in ES mice was equal to or greater than in IS mice whereas HC mice showed minimal freezing. Differential activation of brain regions implicated in stress may, in part, account for differences in behavior in the aftermath of uncontrollable and controllable stress.
Collapse
|
30
|
Cano G, Mochizuki T, Saper CB. Neural circuitry of stress-induced insomnia in rats. J Neurosci 2008; 28:10167-84. [PMID: 18829974 PMCID: PMC2693213 DOI: 10.1523/jneurosci.1809-08.2008] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/16/2008] [Accepted: 08/13/2008] [Indexed: 11/21/2022] Open
Abstract
Sleep architecture is often disturbed after a stressful event; nevertheless, little is known about the brain circuitry responsible for the sleep perturbations induced by stress. We exposed rats to a psychological stressor (cage exchange) that initially causes an acute stress response, but several hours later generates a pattern of sleep disturbances similar to that observed in stress-induced insomnia in humans: increased sleep latency, decreased non-REM (nREM) and REM sleep, increased fragmentation, and high-frequency EEG activity during nREM sleep. We examined the pattern of Fos expression to identify the brain circuitry activated, and found increased Fos in the cerebral cortex, limbic system, and parts of the arousal and autonomic systems. Surprisingly, there was simultaneous activation of the sleep-promoting areas, most likely driven by ongoing circadian and homeostatic pressure. The activity in the cerebral cortex and arousal system while sleeping generates a novel intermediate state characterized by EEG high-frequency activity, distinctive of waking, during nREM sleep. Inactivation of discrete limbic and arousal regions allowed the recovery of specific sleep components and altered the Fos pattern, suggesting a hierarchical organization of limbic areas that in turn activate the arousal system and subsequently the cerebral cortex, generating the high-frequency activity. This high-frequency activity during nREM was eliminated in the stressed rats after inactivating parts of the arousal system. These results suggest that shutting down the residual activity of the limbic-arousal system might be a better approach to treat stress-induced insomnia, rather than potentiation of the sleep system, which remains fully active.
Collapse
Affiliation(s)
- Georgina Cano
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02215
| | - Takatoshi Mochizuki
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02215
| | - Clifford B. Saper
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
31
|
Madan V, Brennan FX, Mann GL, Horbal AA, Dunn GA, Ross RJ, Morrison AR. Long-term effect of cued fear conditioning on REM sleep microarchitecture in rats. Sleep 2008; 31:497-503. [PMID: 18457237 DOI: 10.1093/sleep/31.4.497] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES To study long-term effects of conditioned fear on REM sleep (REMS) parameters in albino rats. DESIGN We have investigated disturbances in sleep architecture, including muscle twitch density as REMS phasic activity, and freezing behavior in wakefulness, upon reexposure to a conditioned stimulus (CS) on Day 1 and Day 14 postconditioning. SUBJECTS Male Sprague-Dawley rats prepared for polysomnographic recordings. INTERVENTIONS After baseline sleep recording, the animals in the experimental group received five pairings of a 5-sec tone, co-terminating with a 1-sec, 1 mAfootshock. The control rats received similar numbers of tones and shocks, but explicitly unpaired. On postconditioning days, after reexposure to tones alone, sleep and freezing behavior were recorded. MEASUREMENTS AND RESULTS Conditioned fear significantly altered REMS microarchitecture (characterized as sequential-REMS [seq-REMS: < or =3 min episode separation] and single-REMS [sin-REMS: >3 min episode separation]) on Day 14. The total amount and number of seq-REMS episodes decreased, while the total amount and number of sin-REMS episodes increased. Further, the CS induced significant increases in freezing and REMS myoclonic twitch density in the experimental group. Reexposure to the CS produced no alterations in controls. CONCLUSIONS The results suggest that conditioned fear causes REMS alterations, including difficulty in initiating a REMS episode as indicated by the diminution in the number of seq-REMS episodes. Another finding, the increase in phasic activity, agrees with the inference from clinical investigations that retrieval of fearful memories can be associated with the long-term REMS disturbances characteristic of posttraumatic stress disorder.
Collapse
Affiliation(s)
- Vibha Madan
- Laboratory for Study of the Brain in Sleep, Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104-6045, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Cui R, Li B, Suemaru K, Araki H. Psychological stress-induced changes in sleep patterns and their generation mechanism. YAKUGAKU ZASSHI 2008; 128:405-11. [PMID: 18311060 DOI: 10.1248/yakushi.128.405] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent findings have increasingly shown that sleep patterns are significantly influenced by psychological stress, such as social defeat, novelty stress, contextual fear stress, and psychological stress induced by the communication box. However, the exact association between psychological stress and sleep is still poorly understood. Therefore, in the present paper we will review related work based on our recent investigations. We have previously reported that total rapid eye movement (REM) sleep, but not non-rapid eye movement (NREM) sleep that is enhanced by psychological stress induced by the communication box in rats (Cui et al., 2007). In past decades strong evidence showed that neurotransmitters play a key role in the variations of the sleep patterns, such as acetylcholine, GABA and others. In addition to neurotransmitters, the hypothalamic-pituitary-adrenal (HPA) axis is another important factor which influences sleep patterns. Therefore, this review will focus on the involvement of the neurotransmitters and the HPA axis in the changes of sleep patterns in response to psychological stress.
Collapse
Affiliation(s)
- Ranji Cui
- Department of Clinical Pharmacology and Pharmacy, Brain Science, Ehime University Graduate School of Medicine, and Ehime University Hospital, Toon City, Japan
| | | | | | | |
Collapse
|
33
|
Cui R, Suemaru K, Li B, Araki H. The effects of atropine on changes in the sleep patterns induced by psychological stress in rats. Eur J Pharmacol 2008; 579:153-9. [DOI: 10.1016/j.ejphar.2007.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 09/24/2007] [Accepted: 09/27/2007] [Indexed: 11/26/2022]
|
34
|
Knapska E, Radwanska K, Werka T, Kaczmarek L. Functional internal complexity of amygdala: focus on gene activity mapping after behavioral training and drugs of abuse. Physiol Rev 2007; 87:1113-73. [PMID: 17928582 DOI: 10.1152/physrev.00037.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amygdala is a heterogeneous brain structure implicated in processing of emotions and storing the emotional aspects of memories. Gene activity markers such as c-Fos have been shown to reflect both neuronal activation and neuronal plasticity. Herein, we analyze the expression patterns of gene activity markers in the amygdala in response to either behavioral training or treatment with drugs of abuse and then we confront the results with data on other approaches to internal complexity of the amygdala. c-Fos has been the most often studied in the amygdala, showing specific expression patterns in response to various treatments, most probably reflecting functional specializations among amygdala subdivisions. In the basolateral amygdala, c-Fos expression appears to be consistent with the proposed role of this nucleus in a plasticity of the current stimulus-value associations. Within the medial part of the central amygdala, c-Fos correlates with acquisition of alimentary/gustatory behaviors. On the other hand, in the lateral subdivision of the central amygdala, c-Fos expression relates to attention and vigilance. In the medial amygdala, c-Fos appears to be evoked by emotional novelty of the experimental situation. The data on the other major subdivisions of the amygdala are scarce. In conclusion, the studies on the gene activity markers, confronted with other approaches involving neuroanatomy, physiology, and the lesion method, have revealed novel aspects of the amygdala, especially pointing to functional heterogeneity of this brain region that does not fit very well into contemporarily active debate on serial versus parallel information processing within the amygdala.
Collapse
|
35
|
Sanford LD, Yang L, Wellman LL, Dong E, Tang X. Mouse strain differences in the effects of corticotropin releasing hormone (CRH) on sleep and wakefulness. Brain Res 2007; 1190:94-104. [PMID: 18053970 DOI: 10.1016/j.brainres.2007.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 11/02/2007] [Accepted: 11/04/2007] [Indexed: 11/27/2022]
Abstract
Corticotropin releasing hormone (CRH) plays a major role in central nervous system responses to stressors and has been implicated in stress-induced alterations in sleep. In the absence of stressors, CRH contributes to the regulation of spontaneous waking. We examined the effects of CRH and astressin (AST), a non-specific CRH antagonist, on wakefulness and sleep in two mouse strains with differential responsiveness to stress to determine whether CRH might also differentially affect undisturbed sleep and activity. Less reactive C57BL/6J (n=7) and high reactive BALB/cJ (n=7) male mice were implanted with a transmitter for determining sleep via telemetry and with a guide cannula aimed into a lateral ventricle. After recovery from surgery and habituation to handling, ICV microinjections of CRH (0.04, 0.2, and 0.4 microg), AST (0.1, 0.4, and 1.0 microg) or vehicle alone (pyrogen-free saline, 0.2 microl) were administered during the fourth hour after lights on and sleep was recorded for the subsequent 8 h. Comparisons of wakefulness and sleep were conducted across conditions and across strains. In C57BL/6J mice, REM was significantly decreased after microinjections of CRH (0.2 microg) and CRH (0.4 microg), and NREM and total sleep were decreased after microinjections of CRH (0.4 microg). CRH (0.04 microg) and AST did not significantly change wakefulness or sleep. In BALB/cJ mice, CRH (0.4 microg) increased wakefulness and decreased NREM, REM and total sleep. AST decreased active wakefulness and significantly increased REM at the low and high dosages. These findings demonstrate that CRH produces changes in arousal when given to otherwise undisturbed mice. Strain differences in the effects of CRH and AST may be linked to the relative responsiveness of C57BL/6J and BALB/cJ mice to stressors and to underlying differences in the CRH system.
Collapse
Affiliation(s)
- L D Sanford
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, USA
| | | | | | | | | |
Collapse
|
36
|
Germain A, Buysse DJ, Nofzinger E. Sleep-specific mechanisms underlying posttraumatic stress disorder: integrative review and neurobiological hypotheses. Sleep Med Rev 2007; 12:185-95. [PMID: 17997114 DOI: 10.1016/j.smrv.2007.09.003] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a prevalent disorder that is associated with poor clinical and health outcomes, and considerable health care utilization and costs. Recent estimates suggest that 5-20% of military personnel who serve in current conflicts in Iraq and Afghanistan meet diagnostic criteria for PTSD. Clinically, sleep disturbances are core features of PTSD that are often resistant to first-line treatments, independently contribute to poor daytime functioning, and often require sleep-focused treatments. Physiologically, these observations suggest that PTSD is partially mediated by sleep disruption and its neurobiological correlates that are not adequately addressed by first-line treatments. However, polysomnographic studies have provided limited insights into the neurobiological underpinnings of PTSD during sleep. There is an urgent need to apply state-of-the-science sleep measurement methods to bridge the apparent gap between the clinical significance of sleep disturbances in PTSD and the limited understanding of their neurobiological underpinnings. Here, we propose an integrative review of findings derived from neurobiological models of fear conditioning and fear extinction, PTSD, and sleep-wake regulation, suggesting that the amygdala and medial prefrontal cortex can directly contribute to sleep disturbances in PTSD. Testable hypotheses regarding the neurobiological underpinnings of PTSD across the sleep-wake cycle are offered.
Collapse
Affiliation(s)
- Anne Germain
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, Room E-1124, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
37
|
Hou RH, Samuels ER, Langley RW, Szabadi E, Bradshaw CM. Arousal and the pupil: why diazepam-induced sedation is not accompanied by miosis. Psychopharmacology (Berl) 2007; 195:41-59. [PMID: 17659380 DOI: 10.1007/s00213-007-0884-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 06/27/2007] [Indexed: 11/28/2022]
Abstract
RATIONALE There is a close relationship between arousal and pupil diameter, decrease in the level of arousal being accompanied by constriction of the pupil (miosis), probably reflecting the attenuation of sympathetic outflow as sedation sets in. Paradoxically, sedation induced by benzodiazepines is not accompanied by miosis. OBJECTIVE The objective of this study was to examine the hypothesis that diazepam may attenuate both the sympathetic and the opposing parasympathetic outflow to the iris, which may mask the miosis. Dapiprazole (sympatholytic) and tropicamide (parasympatholytic) were applied topically, together with the cold pressor test (CPT), to manipulate the sympathetic/parasympathetic balance. MATERIALS AND METHODS Sixteen healthy male volunteers participated in four weekly sessions according to a balanced double-blind protocol. Diazepam 10 mg (two sessions) and placebo (two sessions), associated with either 0.01% tropicamide or 0.5% dapiprazole eyedrops, were administered orally. Pupil diameter, light and darkness reflexes and pupillary sleepiness waves were recorded with infrared video pupillometry, alertness was measured by critical flicker fusion frequency (CFFF) and visual analogue scales (VAS), blood pressure and heart rate by conventional methods. CPT was applied after post-treatment testing. Data were analysed by analysis of variance, with multiple comparisons. RESULTS Diazepam caused sedation (reduction in VAS alertness scores and CFFF, increase in sleepiness waves), dapiprazole had a sympatholytic and tropicamide a parasympatholytic effect on the pupil. Diazepam had no effect on pupil diameter and reflexes or their modifications by the antagonists. CPT increased pupil diameter, blood pressure and heart rate, and the increase only in systolic blood pressure was attenuated by diazepam. CONCLUSIONS Diazepam-induced sedation is not accompanied by any change in either the sympathetic or parasympathetic influence on the iris.
Collapse
Affiliation(s)
- R H Hou
- Psychopharmacology Section, Division of Psychiatry, University of Nottingham, Medical School Room B109, Queen's Medical Centre, Nottingham, UK
| | | | | | | | | |
Collapse
|
38
|
Maclean RR, Datta S. The relationship between anxiety and sleep-wake behavior after stressor exposure in the rat. Brain Res 2007; 1164:72-80. [PMID: 17644077 PMCID: PMC1994477 DOI: 10.1016/j.brainres.2007.06.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 06/15/2007] [Accepted: 06/19/2007] [Indexed: 12/30/2022]
Abstract
Disturbed sleep is a common subjective complaint among individuals diagnosed with anxiety disorders. In rodents, sleep is often recorded after exposure to various foot-shock paradigms designed to induce an anxiety state. Although differences in sleep-wake architecture are noted, the relationship to specific level of anxiety is often assumed or absent. Utilizing the elevated plus-maze (EPM) after exposure to escapable shock (ES), inescapable shock (IS) or fear conditioning (FC), resulting differences in sleep architecture were compared to an objective measure of anxiety. Male Wistar rats were implanted with EEG, EMG and hippocampal theta electrodes to record sleep-wake behavior. After recovery and recording of baseline sleep, rats were exposed to one of five manipulations: ES, IS, FC or control (CES or CIS; utilizing either chamber with no shock exposure). Shortly after experimental manipulation, the EPM was employed to quantify traditional and ethological measures of anxiety and polygraphic signs of sleep-wake behavior were recorded continuously for 6 h. Although no significance was observed in EPM measurements across groups, profound differences in sleep architecture were present. Individual correlation analysis revealed no differences in anxiety level and total percentage of time spent in sleep-wake states. These results indicate that differences in sleep architecture after foot-shock exposure may not be simply due to increased anxiety. Rather, individual anxiety may be exacerbated by disrupted sleep. To fully understand the relationship between anxiety and sleep-wake behavior, a more objective analysis of anxiety after stressor exposure is mandated.
Collapse
Affiliation(s)
- Robert Ross Maclean
- Sleep and Cognitive Neuroscience Laboratory, Department of Psychiatry, Boston University School of Medicine, 85 E. Newton St. M-902, Boston, MA 02118, USA
| | | |
Collapse
|
39
|
Tang X, Liu X, Yang L, Sanford LD. Rat strain differences in sleep after acute mild stressors and short-term sleep loss. Behav Brain Res 2005; 160:60-71. [PMID: 15836901 DOI: 10.1016/j.bbr.2004.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 11/09/2004] [Accepted: 11/14/2004] [Indexed: 11/22/2022]
Abstract
Genetic and physiological diversity amongst rodent strains provide the potential for developing models that may give insight into factors that regulate sleep in response to environmental challenges. We examined home cage activity, behavioral performance in the open field and sleep after a number of mild stressors (cage change [CC], open field [OF]) and after 1 and 4h of sleep deprivation (1hSD and 4hSD) in rat strains (Fischer 344 [F344], Lewis [LEW], Wistar [WST] and Sprague-Dawley [Sp-D], n=16 per strain) that differ in behavior and sleep. F344 and WST rats had greater home cage locomotion than LEW and Sp-D rats, but F344 rats exhibited the least relative locomotion in OF. In 24h baseline recordings of sleep, strain rankings were LEW=WST=Sp-D>F344 in rapid eye movement sleep (REM), and LEW=Sp-D>F344 and LEW>WST in non-REM (NREM). Compared to baseline, total sleep was reduced in all four strains after CC, OF and 1hSD, but not after 4hSD, in the first hour after treatment. Afterwards, increases in REM and NREM were seen after all treatments with the amount and time course varying across treatments and strains. CC induced the weakest and 4hSD the largest effects on sleep, whereas OF and 1hSD had intermediate effects. Among strains, the more anxious F344 rats exhibited the greatest sleep increases during the light period after OF, 1hSD and 4hSD. The results are discussed with respect to the relationship between behavioral and sleep responses to stressors, and to potential mechanisms underlying the strain differences.
Collapse
Affiliation(s)
- Xiangdong Tang
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, P.O. Box 1980, 700 Olney Road, Norfolk, VA 23501-1980, USA
| | | | | | | |
Collapse
|
40
|
Tang X, Xiao J, Liu X, Sanford LD. Strain differences in the influence of open field exposure on sleep in mice. Behav Brain Res 2004; 154:137-47. [PMID: 15302119 DOI: 10.1016/j.bbr.2004.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 01/29/2004] [Accepted: 02/03/2004] [Indexed: 11/29/2022]
Abstract
The open field (OF) is thought to induce anxiety in rodents. It also allows an opportunity for exploration in a novel environment. Less activity in the OF is thought to indicate greater anxiety whereas more activity may reflect greater exploration, and possibly greater exploratory learning. Anxiety and learning have poorly understood relationships to sleep. In order to determine how anxiety and exploration in the OF could influence sleep, we recorded sleep in mouse strains (C57BL/6J (B6), BALB/cJ (C), DBA/2J (D2), and CB6F1/J (CB6)) with different levels of anxiety and exploration after 30 min in an OF. In all strains, OF exposure induced immediate decreases in rapid eye movement sleep (REM) followed by longer latency increases in REM. The time course and amount of REM decreases and increases varied among strains. Compared to less anxious B6, D2 and CB6 mice, C mice had greater and longer lasting immediate decreases in REM. C mice also displayed longer periods of decreases REM and a smaller, longer latency increase in REM. OF exploratory activity was positively correlated to percentage of REM increases from 6 to 10h after OF exposure. The results suggest that the anxiogenic component of the OF produced an immediate decrease in REM that was greater in more "anxious" mice. In contrast, exploration in the OF was associated with increased REM, with the increase greater in less anxious mice. The results are discussed with respect to the potential influences of anxiety and learning on sleep.
Collapse
Affiliation(s)
- Xiangdong Tang
- Department of Pathology and Anatomy, Sleep Research Laboratory, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23501, USA
| | | | | | | |
Collapse
|