1
|
Zhu C, Jeong KS, Edhi M, Rogness V, Saab CY, Esteller R. Spinal cord stimulation using time-dynamic pulses achieves longer reversal of allodynia compared to tonic pulses in a rat model of neuropathic pain. FRONTIERS IN PAIN RESEARCH 2025; 6:1541078. [PMID: 40270935 PMCID: PMC12014672 DOI: 10.3389/fpain.2025.1541078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/17/2025] [Indexed: 04/25/2025] Open
Abstract
Background Spinal cord stimulation (SCS) utilizing time-dynamic pulses (TDPs) is an emergent field of neuromodulation that continuously and automatically modulates pulse parameters. We previously demonstrated that TDPs delivered for 60 min at paresthesia-free or minimal paresthesia amplitudes significantly reversed allodynia in a rat model of neuropathic pain. Because the anti-allodynic effect was observed to persist post-stimulation, we hypothesized that the anti-nociceptive effects of TDPs may persist longer than those of tonic stimulation. Methods We extended SCS stimulation period up to 90 min and investigated the temporal dynamics of SCS-induced analgesia through PWT analysis of the aggregated data from both cohorts. Results Both TDPs and tonic stimulation reversed paw withdrawal thresholds (PWT) to near pre-neuropathic levels within 30 min. Most TDPs exhibited significantly slower ramp-up slope (analgesia 'wash-in' rates) as compared to tonic stimulation. All TDPs showed slower wind-down slopes (analgesia 'wash-out' rates) compared to tonic, with pulse width modulation reaching significance. Extending SCS from 60 to 90 min revealed that all TDPs maintained analgesic efficacy longer than tonic stimulation, which showed significant decrease at both 75 and 90 min. Discussion Although TDPs and tonic stimulation comparably mitigated allodynia, TDPs exhibited slower rate of wash-out, suggesting longer-lasting analgesic effects and potentially different mechanisms of action.
Collapse
Affiliation(s)
- Changfang Zhu
- Research and Development, Boston Scientific Neuromodulation, Valencia, CA, United States
| | - Ki-Soo Jeong
- Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
- School of Engineering, Brown University, Providence, RI, United States
| | - Muhammad Edhi
- Internal Medicine, University of Buffalo, Buffalo, NY, United States
| | - Victoria Rogness
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Carl Y. Saab
- Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
- School of Engineering, Brown University, Providence, RI, United States
| | - Rosana Esteller
- Research and Development, Boston Scientific Neuromodulation, Valencia, CA, United States
| |
Collapse
|
2
|
Rivera-Arconada I, Baccei ML, López-García JA, Bardoni R. An electrophysiologist's guide to dorsal horn excitability and pain. Front Cell Neurosci 2025; 19:1548252. [PMID: 40241846 PMCID: PMC12001243 DOI: 10.3389/fncel.2025.1548252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
The dorsal horn of the spinal cord represents the first site in the central nervous system (CNS) where nociceptive signals are integrated. As a result, there has been a rapid growth in the number of studies investigating the ionic mechanisms regulating the excitability of dorsal horn neurons under normal and pathological conditions. We believe that it is time to look back and to critically examine what picture emerges from this wealth of studies. What are the actual types of neurons described in the literature based on electrophysiological criteria? Are these electrophysiologically-defined subpopulations strongly linked to specific morphological, functional, or molecular traits? Are these electrophysiological properties stable, or can they change during development or in response to peripheral injury? Here we provide an in-depth overview of both early and recent publications that explore the factors influencing dorsal horn neuronal excitability (including intrinsic membrane properties and synaptic transmission), how these factors vary across distinct subtypes of dorsal horn neurons, and how such factors are altered by peripheral nerve or tissue damage. The meta-research presented below leads to the conclusion that the dorsal horn is comprised of highly heterogeneous subpopulations in which the observed electrophysiological properties of a given neuron often fail to easily predict other properties such as biochemical phenotype or morphology. This highlights the need for future studies which can more fully interrogate the properties of dorsal horn neurons in a multi-modal manner.
Collapse
Affiliation(s)
| | - Mark L. Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati, Cincinnati, OH, United States
| | | | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
Zhu C, Esteller R, Block J, Lechleiter K, Frey R, Moffitt MA. Exploratory evaluation of spinal cord stimulation with dynamic pulse patterns: a promising approach to improve stimulation sensation, coverage of pain areas, and expected pain relief. FRONTIERS IN PAIN RESEARCH 2024; 4:1339892. [PMID: 38361978 PMCID: PMC10867969 DOI: 10.3389/fpain.2023.1339892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/28/2023] [Indexed: 02/17/2024] Open
Abstract
Background The societal burden of chronic pain and the contribution-in-part to the opioid crisis, is a strong motivation to improve and expand non-addictive treatments, including spinal cord stimulation (SCS). For several decades standard SCS has consisted in delivery of tonic pulses with static parameter settings in frequency, pulse width, and amplitude. These static parameters have limited ability to personalize the quality of paresthesia, the dermatomal coverage, and thus may affect SCS efficacy. Further, static settings may contribute to the build-up of tolerance or loss of efficacy of the therapy over time in some patients. Methods We conducted an acute exploratory study to evaluate the effects of SCS using time-dynamic pulses as compared to time-static (conventional tonic) stimulation pulses, with the hypotheses that dynamic pulse SCS may enable beneficial tailoring of the sensation and the patient's expectation for better pain relief with SCS. During a single clinic visit, consented subjects undergoing a standard SCS trial had their implanted leads temporarily connected to an investigational external stimulator capable of delivering time-static and six categories of time-dynamic pulse sequences, each characterized by continuously varying a stimulation parameter. Study subjects provided several assessments while blinded to the stimulation pattern, including: drawing of paresthesia maps, descriptions of sensation, and ratings for comfort and helpfulness to pain relief. Results Even without optimization of the field location, a majority of subjects rated sensations from dynamic stimulation as better or equal to that of static stimulation for comfortableness and for helpfulness to pain relief. The initial data showed a gender and/or pain dermatomal location related preference to a stimulation pattern. In particular, female subjects and subjects with pain at higher dermatomes tended to rank the sensation from dynamic stimulation better. Dynamic stimulation produced greater pain coverage without optimization; in 70% (9/13) of subjects, maximal pain coverage was achieved with a dynamic stimulation pattern. There was also greater variety in the words used by patients to describe stimulation sensation in the free text and free form verbal descriptions associated with dynamic stimulation. Conclusions With the same electrode configuration and comparable parameter settings, acute SCS using dynamic pulses produced more positive ratings, expanded paresthesia coverage, and greater variation in sensation as compared to SCS using static pulses, suggesting that dynamic stimulation has the potential to improve capabilities of SCS for the treatment of chronic pain. Further study is warranted. Trial Registration This study was registered at ClinicalTrials.gov under ID NCT02988713, November 2016 (URL: https://clinicaltrials.gov/ct2/show/NCT02988713).
Collapse
Affiliation(s)
- Changfang Zhu
- Research and Development, Boston Scientific Neuromodulation, Valencia, CA, United States
| | - Rosana Esteller
- Research and Development, Boston Scientific Neuromodulation, Valencia, CA, United States
| | - Jessica Block
- Research and Development, Boston Scientific Neuromodulation, Valencia, CA, United States
| | - Kristen Lechleiter
- Clinical Research, Boston Scientific Neuromodulation, Valencia, CA, United States
| | - Robert Frey
- Pacific Pain Management Inc., Ventura, CA, United States
| | - Michael A. Moffitt
- Research and Development, Boston Scientific Neuromodulation, Valencia, CA, United States
| |
Collapse
|
4
|
Excitatory Effects of Calcitonin Gene-Related Peptide (CGRP) on Superficial Sp5C Neurons in Mouse Medullary Slices. Int J Mol Sci 2021; 22:ijms22073794. [PMID: 33917574 PMCID: PMC8038766 DOI: 10.3390/ijms22073794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/17/2022] Open
Abstract
The neuromodulator calcitonin gene-related peptide (CGRP) is known to facilitate nociceptive transmission in the superficial laminae of the spinal trigeminal nucleus caudalis (Sp5C). The central effects of CGRP in the Sp5C are very likely to contribute to the activation of central nociceptive pathways leading to attacks of severe headaches like migraine. To examine the potential impacts of CGRP on laminae I/II neurons at cellular and synaptic levels, we performed whole-cell patch-clamp recordings in juvenile mouse brainstem slices. First, we tested the effect of CGRP on cell excitability, focusing on neurons with tonically firing action potentials upon depolarizing current injection. CGRP (100 nM) enhanced tonic discharges together with membrane depolarization, an excitatory effect that was significantly reduced when the fast synaptic transmissions were pharmacologically blocked. However, CGRP at 500 nM was capable of exciting the functionally isolated cells, in a nifedipine-sensitive manner, indicating its direct effect on membrane intrinsic properties. In voltage-clamped cells, 100 nM CGRP effectively increased the frequency of excitatory synaptic inputs, suggesting its preferential presynaptic effect. Both CGRP-induced changes in cell excitability and synaptic drives were prevented by the CGRP receptor inhibitor BIBN 4096BS. Our data provide evidence that CGRP increases neuronal activity in Sp5C superficial laminae by dose-dependently promoting excitatory synaptic drive and directly enhancing cell intrinsic properties. We propose that the combination of such pre- and postsynaptic actions of CGRP might underlie its facilitation in nociceptive transmission in situations like migraine with elevated CGRP levels.
Collapse
|
5
|
Edhi MM, Heijmans L, Vanent KN, Bloye K, Baanante A, Jeong KS, Leung J, Zhu C, Esteller R, Saab CY. Time-dynamic pulse modulation of spinal cord stimulation reduces mechanical hypersensitivity and spontaneous pain in rats. Sci Rep 2020; 10:20358. [PMID: 33230202 PMCID: PMC7683561 DOI: 10.1038/s41598-020-77212-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/30/2020] [Indexed: 12/22/2022] Open
Abstract
Enhancing the efficacy of spinal cord stimulation (SCS) is needed to alleviate the burden of chronic pain and dependence on opioids. Present SCS therapies are characterized by the delivery of constant stimulation in the form of trains of tonic pulses (TPs). We tested the hypothesis that modulated SCS using novel time-dynamic pulses (TDPs) leads to improved analgesia and compared the effects of SCS using conventional TPs and a collection of TDPs in a rat model of neuropathic pain according to a longitudinal, double-blind, and crossover design. We tested the effects of the following SCS patterns on paw withdrawal threshold and resting state EEG theta power as a biomarker of spontaneous pain: Tonic (conventional), amplitude modulation, pulse width modulation, sinusoidal rate modulation, and stochastic rate modulation. Results demonstrated that under the parameter settings tested in this study, all tested patterns except pulse width modulation, significantly reversed mechanical hypersensitivity, with stochastic rate modulation achieving the highest efficacy, followed by the sinusoidal rate modulation. The anti-nociceptive effects of sinusoidal rate modulation on EEG outlasted SCS duration on the behavioral and EEG levels. These results suggest that TDP modulation may improve clinical outcomes by reducing pain intensity and possibly improving the sensory experience.
Collapse
Affiliation(s)
- Muhammad M Edhi
- Department of Neurosurgery, Rhode Island Hospital, 593 Eddy St., Providence, RI, 02903, USA.,Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Lonne Heijmans
- Department of Neurosurgery, Rhode Island Hospital, 593 Eddy St., Providence, RI, 02903, USA.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Kevin N Vanent
- Department of Neurosurgery, Rhode Island Hospital, 593 Eddy St., Providence, RI, 02903, USA
| | - Kiernan Bloye
- Department of Neurosurgery, Rhode Island Hospital, 593 Eddy St., Providence, RI, 02903, USA
| | - Amanda Baanante
- Department of Neurosurgery, Rhode Island Hospital, 593 Eddy St., Providence, RI, 02903, USA
| | - Ki-Soo Jeong
- Department of Neurosurgery, Rhode Island Hospital, 593 Eddy St., Providence, RI, 02903, USA.,Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jason Leung
- Department of Neurosurgery, Rhode Island Hospital, 593 Eddy St., Providence, RI, 02903, USA.,Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Changfang Zhu
- Boston Scientific Neuromodulation, Valencia, CA, 91355, USA
| | | | - Carl Y Saab
- Department of Neurosurgery, Rhode Island Hospital, 593 Eddy St., Providence, RI, 02903, USA. .,Department of Neuroscience, Brown University, Providence, RI, 02903, USA. .,Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA. .,Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
6
|
Neuronal networks and nociceptive processing in the dorsal horn of the spinal cord. Neuroscience 2016; 338:230-247. [PMID: 27595888 DOI: 10.1016/j.neuroscience.2016.08.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/23/2016] [Accepted: 08/28/2016] [Indexed: 12/31/2022]
Abstract
The dorsal horn (DH) of the spinal cord receives a variety of sensory information arising from the inner and outer environment, as well as modulatory inputs from supraspinal centers. This information is integrated by the DH before being forwarded to brain areas where it may lead to pain perception. Spinal integration of this information relies on the interplay between different DH neurons forming complex and plastic neuronal networks. Elements of these networks are therefore potential targets for new analgesics and pain-relieving strategies. The present review aims at providing an overview of the current knowledge on these networks, with a special emphasis on those involving interlaminar communication in both physiological and pathological conditions.
Collapse
|
7
|
Bui TV, Stifani N, Panek I, Farah C. Genetically identified spinal interneurons integrating tactile afferents for motor control. J Neurophysiol 2015; 114:3050-63. [PMID: 26445867 DOI: 10.1152/jn.00522.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/28/2015] [Indexed: 11/22/2022] Open
Abstract
Our movements are shaped by our perception of the world as communicated by our senses. Perception of sensory information has been largely attributed to cortical activity. However, a prior level of sensory processing occurs in the spinal cord. Indeed, sensory inputs directly project to many spinal circuits, some of which communicate with motor circuits within the spinal cord. Therefore, the processing of sensory information for the purpose of ensuring proper movements is distributed between spinal and supraspinal circuits. The mechanisms underlying the integration of sensory information for motor control at the level of the spinal cord have yet to be fully described. Recent research has led to the characterization of spinal neuron populations that share common molecular identities. Identification of molecular markers that define specific populations of spinal neurons is a prerequisite to the application of genetic techniques devised to both delineate the function of these spinal neurons and their connectivity. This strategy has been used in the study of spinal neurons that receive tactile inputs from sensory neurons innervating the skin. As a result, the circuits that include these spinal neurons have been revealed to play important roles in specific aspects of motor function. We describe these genetically identified spinal neurons that integrate tactile information and the contribution of these studies to our understanding of how tactile information shapes motor output. Furthermore, we describe future opportunities that these circuits present for shedding light on the neural mechanisms of tactile processing.
Collapse
Affiliation(s)
- Tuan V Bui
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Nicolas Stifani
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Izabela Panek
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carl Farah
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Del Barrio MG, Bourane S, Grossmann K, Schüle R, Britsch S, O’Leary DD, Goulding M. A transcription factor code defines nine sensory interneuron subtypes in the mechanosensory area of the spinal cord. PLoS One 2013; 8:e77928. [PMID: 24223744 PMCID: PMC3817166 DOI: 10.1371/journal.pone.0077928] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/06/2013] [Indexed: 12/11/2022] Open
Abstract
Interneurons in the dorsal spinal cord process and relay innocuous and nociceptive somatosensory information from cutaneous receptors that sense touch, temperature and pain. These neurons display a well-defined organization with respect to their afferent innervation. Nociceptive afferents innervate lamina I and II, while cutaneous mechanosensory afferents primarily innervate sensory interneurons that are located in lamina III-IV. In this study, we outline a combinatorial transcription factor code that defines nine different inhibitory and excitatory interneuron populations in laminae III-IV of the postnatal cord. This transcription factor code reveals a high degree of molecular diversity in the neurons that make up laminae III-IV, and it lays the foundation for systematically analyzing and manipulating these different neuronal populations to assess their function. In addition, we find that many of the transcription factors that are expressed in the dorsal spinal cord at early postnatal times continue to be expressed in the adult, raising questions about their function in mature neurons and opening the door to their genetic manipulation in adult animals.
Collapse
Affiliation(s)
- Marta Garcia Del Barrio
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Katja Grossmann
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Roland Schüle
- Urologische Klinik/Frauenklinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany
| | - Stefan Britsch
- Department of Medical Genetics, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany
- Institute for Molecular and Cellular Anatomy Ulm University, Ulm, Germany
| | - Dennis D.M. O’Leary
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Ku WH, Schneider SP. Multiple T-type Ca2+ current subtypes in electrophysiologically characterized hamster dorsal horn neurons: possible role in spinal sensory integration. J Neurophysiol 2011; 106:2486-98. [PMID: 21795620 DOI: 10.1152/jn.01083.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell patch-clamp recordings were used to investigate the contribution of transient, low-threshold calcium currents (I(T)) to firing properties of hamster spinal dorsal horn neurons. I(T) was widely, though not uniformly, expressed by cells in Rexed's laminae I-IV and correlated with the pattern of action potential discharge evoked under current-clamp conditions: I(T) in neurons responding to constant membrane depolarization with one or two action potentials was nearly threefold larger than I(T) in cells responding to the same activation with continuous firing. I(T) was evoked by depolarizing voltage ramps exceeding 46 mV/s and increased with ramp slope (240-2,400 mV/s). Bath application of 200 μM Ni(2+) depressed ramp-activated I(T). Phasic firing recorded in current clamp could only be activated by membrane depolarizations exceeding ∼43-46 mV/s and was blocked by Ni(2+) and mibefradil, suggesting I(T) as an underlying mechanism. Two components of I(T), "fast" and "slow," were isolated based on a difference in time constant of inactivation (12 ms and 177 ms, respectively). The amplitude of the fast subtype depended on the slope of membrane depolarization and was twice as great in burst-firing cells than in cells having a tonic discharge. Post hoc single-cell RT-PCR analyses suggested that the fast component is associated with the Ca(V)3.1 channel subtype. I(T) may enhance responses of phasic-firing dorsal horn neurons to rapid membrane depolarizations and contribute to an ability to discriminate between afferent sensory inputs that encode high- and low-frequency stimulus information.
Collapse
Affiliation(s)
- Wen-hsin Ku
- Dept. of Physiology, Michigan State Univ., East Lansing, MI 48824-3320, USA
| | | |
Collapse
|
10
|
Zhang W, Schneider SP. Short-term modulation at synapses between neurons in laminae II-V of the rodent spinal dorsal horn. J Neurophysiol 2011; 105:2920-30. [PMID: 21490280 DOI: 10.1152/jn.00684.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unitary excitatory (EPSP) and inhibitory (IPSP) postsynaptic potentials (PSPs) were evoked between neurons in Rexed's laminae (L)II-V of spinal slices from young hamsters (7-24 days old) at 27°C using paired whole cell recordings. Laminar differences in synaptic efficacy were observed: excitatory connections were more secure than inhibitory connections in LII and inhibitory linkages in LII were less reliable than those in LIII-V. A majority of connections displayed paired-pulse facilitation or depression. Depression was observed for both EPSPs and IPSPs, but facilitation was seen almost exclusively for IPSPs. There were no frequency-dependent shifts between facilitation and depression. Synaptic depression was associated with an increased failure rate and decreased PSP half-width for a majority of connections. However, there were no consistent changes in failure rate or PSP time course at facilitating connections. IPSPs evoked at high-failure synapses had consistently smaller amplitude and showed greater facilitation than low-failure connections. Facilitation at inhibitory connections was positively correlated with synaptic jitter and associated with a decrease in latency. At many connections, the paired-pulse ratio varied from trial to trial and depended on the amplitude of the first PSP; dependence was greater for inhibitory synapses than excitatory synapses. Paired-pulse ratios for connections onto neurons with rapidly adapting, "phasic" discharge to depolarizing current injection were significantly greater than for connections onto neurons with tonic discharge properties. These results are evidence of diversity in synaptic transmission between dorsal horn neurons, the nature of which may depend on the types of linkage, laminar location, and intrinsic firing properties of postsynaptic cells.
Collapse
Affiliation(s)
- W Zhang
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
11
|
Reali C, Fossat P, Landry M, Russo RE, Nagy F. Intrinsic membrane properties of spinal dorsal horn neurones modulate nociceptive information processing in vivo. J Physiol 2011; 589:2733-43. [PMID: 21486783 DOI: 10.1113/jphysiol.2011.207712] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The dorsal horn of the spinal cord is the first central relay where nociceptive inputs are processed. Based on the expression and modulation of intrinsic electrophysiological properties in in vitro slice preparations, dorsal horn neurones (DHNs) display different discharge patterns (tonic, plateau or rhythmic), which shape the neurone's response to sensory inputs. However, it is unclear whether intrinsic properties play any role in sensory processing in vivo. Using in vivo patch clamp recordings in the adult rat, we here examine whether these intrinsic properties are present, and to what extent they determine the DHN response to natural stimulation. We focused primarily on wide dynamic range neurones in deep laminae. These cells displayed a multicomponent peripheral receptive field, comprising an excitatory firing zone, a low-probability firing fringe, and adjacent inhibitory zones. Deep DHNs presented similar intrinsic properties to those observed in vitro, including plateau potentials. These plateaus, underlying high frequency accelerating discharges and after-discharges, were triggered by mechanical stimulation of the excitatory receptive field. Persistent activities induced by activation of plateau potentials were interrupted by stimulation of peripheral inhibitory zones. Moreover, we show that plateau activation is necessary for the expression of windup in response to repetitive, nociceptive stimulation. Finally, using the spinal nerve ligation model of neuropathy, we demonstrate a significant increase in the proportion of plateau neurones in deep dorsal laminae. Our data, therefore, establish that intrinsic amplification properties are expressed within intact spinal circuits and suggest their involvement in neuropathy-induced hyperexcitability of deep DHNs.
Collapse
Affiliation(s)
- Cecilia Reali
- CNRS, IINS, UMR 5297, Université de Bordeaux, Neurocentre Magendie, 146 rue Leo-Saignat, 33077 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
12
|
Abstract
The ability to respond to a wide range of novel touch sensations and to habituate upon repeated exposures is fundamental for effective sensation. In this study we identified adult spinal cord neurogenesis as a potential novel player in the mechanism of tactile sensation. We demonstrate that a single exposure to a novel mechanosensory stimulus induced immediate proliferation of progenitor cells in the spinal dorsal horn, whereas repeated exposures to the same stimulus induced neuronal differentiation and survival. Most of the newly formed neurons differentiated toward a GABAergic fate. This touch-induced neurogenesis reflected the novelty of the stimuli, its diversity, as well as stimulus duration. Introducing adult neurogenesis as a potential mechanism of response to a novel stimulus and for habituation to repeated sensory exposures opens up potential new directions in treating hypersensitivity, pain and other mechanosensory disorders.
Collapse
|
13
|
Spinal Cord Stimulation: Engineering Approaches to Clinical and Physiological Challenges. BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING 2009. [DOI: 10.1007/978-0-387-77261-5_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Lu Y. Synaptic wiring in the deep dorsal horn. Focus on "Local circuit connections between hamster laminae III and IV dorsal horn neurons". J Neurophysiol 2008; 99:1051-2. [PMID: 18216236 DOI: 10.1152/jn.00027.2008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Schneider SP. Local circuit connections between hamster laminae III and IV dorsal horn neurons. J Neurophysiol 2008; 99:1306-18. [PMID: 18184889 DOI: 10.1152/jn.00962.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To better understand the role of intrinsic spinal cord circuits in the integration of mechanosensory information, we studied synaptic transmission between neurons in Rexed's laminae III-IV, a major termination zone for cutaneous mechanoreceptor afferents, using dual, simultaneous whole cell electrophysiological recordings in young hamsters. Synaptic connections were detected between 32 of 106 cell pairs (linkage probability of 0.3) and were predominantly unidirectional (91%). Inhibitory connections outnumbered excitatory connections by 2:1. Amplitude of single-axon postsynaptic potentials (PSPs) was independent of postsynaptic cell input resistance. Intracellular labeling suggested that recordings were obtained from local axon interneurons. In connected cell pairs, the percentage of presynaptic action potentials that failed to evoke a postsynaptic response was 44 +/- 29%. Shape indices of PSPs suggested that synaptic contacts were widely distributed along the postsynaptic membrane. Linkage probability was unrelated to intrinsic firing properties, laminar position of the cells or the distance (<160 mum) separating them. However, PSPs in target cells following action potentials in neurons with phasic firing patterns had longer duration and lower failure rates than PSPs activated by neurons with tonic firing patterns. Thus transmission reliability at synapses between lamina III/IV interneurons overall is low, and efficacy of these connections is related to firing properties of the presynaptic cells. The observations also suggest that synaptic organization in LIII-IV is fundamentally different from the superficial dorsal horn (LI-II) where neural circuits may be composed of stereotyped units made from connections between a few functional types of neurons.
Collapse
Affiliation(s)
- Stephen P Schneider
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI 48824-3320, USA.
| |
Collapse
|
16
|
Castañeda-Castellanos DR, Flint AC, Kriegstein AR. Blind patch clamp recordings in embryonic and adult mammalian brain slices. Nat Protoc 2007; 1:532-42. [PMID: 17406279 DOI: 10.1038/nprot.2006.75] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To obtain electrophysiological recordings in brain slices, sophisticated and expensive pieces of equipment can be used. However, costly microscope equipment with infrared differential interference contrast optics is not always necessary or even desirable. For instance, obtaining a randomized unbiased sample in a given preparation would be better accomplished if cells were not directly visualized before recording. In addition, some preparations require thick slices, and direct visualization is not possible. Here we describe a protocol for the 'blind patch clamp method' that we developed several years ago to perform electrophysiological recordings in mammalian brain slices using a standard patch clamp amplifier, dissecting microscope and recording chamber. Overall, it takes approximately 3-4 h to set up this procedure.
Collapse
Affiliation(s)
- David R Castañeda-Castellanos
- Department of Physiology and Cellular Biophysics, Columbia University, 630 West 168th Street, New York, New York 10032, USA
| | | | | |
Collapse
|
17
|
Schneider SP, Walker TM. Morphology and electrophysiological properties of hamster spinal dorsal horn neurons that express VGLUT2 and enkephalin. J Comp Neurol 2007; 501:790-809. [PMID: 17299755 DOI: 10.1002/cne.21292] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The excitatory amino acid glutamate mediates transmission at spinal synapses, including those formed by sensory afferent fibers and by intrinsic interneurons. The identity and physiological properties of glutamatergic dorsal horn neurons are poorly characterized despite their importance in spinal sensory circuits. Moreover, many intrinsic spinal glutamatergic synapses colocalize the opioid peptide enkephalin (ENK), but the neurons to which they belong are yet to be identified. Therefore, we used immunohistochemistry and confocal microscopy to investigate expression of the VGLUT2 vesicular glutamate transporter, an isoform reported in nonprimary afferent spinal synapses, and ENK in electrophysiologically identified neurons of hamster spinal dorsal horn. VGLUT2 immunoreactivity was localized in restricted fashion to axon varicosities of neurons recorded from laminae II-V, although the occurrence of immunolabeling in individual varicosities varied widely between cells (39 +/- 36%, n = 31 neurons). ENK colocalized with VGLUT2 in up to 77% of varicosities (17 +/- 21%, n = 21 neurons). The majority of neurons expressing VGLUT2 and/or ENK had axons with dense local terminations or projections consistent with propriospinal functions. VGLUT2 and ENK labeling were not correlated with cellular morphology, intrinsic membrane properties, firing patterns, or synaptic responses to sensory afferent stimulation. However, VGLUT2 expression was significantly higher in neurons with depolarized resting membrane potential. The results are new evidence for a population of dual-function dorsal horn interneurons that might provide another mechanism for limiting excitation within dorsal horn circuits during periods of strong sensory activation.
Collapse
Affiliation(s)
- Stephen P Schneider
- Department of Physiology and Neuroscience Program, Michigan State University, E. Lansing, Michigan 48824-3320, USA.
| | | |
Collapse
|