1
|
Santulli G, Kansakar U, Varzideh F, Mone P, Jankauskas SS, Lombardi A. Functional Role of Taurine in Aging and Cardiovascular Health: An Updated Overview. Nutrients 2023; 15:4236. [PMID: 37836520 PMCID: PMC10574552 DOI: 10.3390/nu15194236] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Taurine, a naturally occurring sulfur-containing amino acid, has attracted significant attention in recent years due to its potential health benefits. Found in various foods and often used in energy drinks and supplements, taurine has been studied extensively to understand its impact on human physiology. Determining its exact functional roles represents a complex and multifaceted topic. We provide an overview of the scientific literature and present an analysis of the effects of taurine on various aspects of human health, focusing on aging and cardiovascular pathophysiology, but also including athletic performance, metabolic regulation, and neurological function. Additionally, our report summarizes the current recommendations for taurine intake and addresses potential safety concerns. Evidence from both human and animal studies indicates that taurine may have beneficial cardiovascular effects, including blood pressure regulation, improved cardiac fitness, and enhanced vascular health. Its mechanisms of action and antioxidant properties make it also an intriguing candidate for potential anti-aging strategies.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Fahimeh Varzideh
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Pasquale Mone
- Department of Molecular Pharmacology, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Stanislovas S. Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (S.S.J.); (A.L.)
| |
Collapse
|
2
|
Oja SS, Saransaari P. Taurine and the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:325-331. [DOI: 10.1007/978-3-030-93337-1_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Spichak S, Bastiaanssen TFS, Berding K, Vlckova K, Clarke G, Dinan TG, Cryan JF. Mining microbes for mental health: Determining the role of microbial metabolic pathways in human brain health and disease. Neurosci Biobehav Rev 2021; 125:698-761. [PMID: 33675857 DOI: 10.1016/j.neubiorev.2021.02.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
There is increasing knowledge regarding the role of the microbiome in modulating the brain and behaviour. Indeed, the actions of microbial metabolites are key for appropriate gut-brain communication in humans. Among these metabolites, short-chain fatty acids, tryptophan, and bile acid metabolites/pathways show strong preclinical evidence for involvement in various aspects of brain function and behaviour. With the identification of neuroactive gut-brain modules, new predictive tools can be applied to existing datasets. We identified 278 studies relating to the human microbiota-gut-brain axis which included sequencing data. This spanned across psychiatric and neurological disorders with a small number also focused on normal behavioural development. With a consistent bioinformatics pipeline, thirty-five of these datasets were reanalysed from publicly available raw sequencing files and the remainder summarised and collated. Among the reanalysed studies, we uncovered evidence of disease-related alterations in microbial metabolic pathways in Alzheimer's Disease, schizophrenia, anxiety and depression. Amongst studies that could not be reanalysed, many sequencing and technical limitations hindered the discovery of specific biomarkers of microbes or metabolites conserved across studies. Future studies are warranted to confirm our findings. We also propose guidelines for future human microbiome analysis to increase reproducibility and consistency within the field.
Collapse
Affiliation(s)
- Simon Spichak
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Kirsten Berding
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Klara Vlckova
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
4
|
Zhang W, Lan Z, Li K, Liu C, Jiang P, Lu W. Inhibitory role of taurine in the caudal neurosecretory Dahlgren cells of the olive flounder, Paralichthys olivaceus. Gen Comp Endocrinol 2020; 299:113613. [PMID: 32950586 DOI: 10.1016/j.ygcen.2020.113613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 01/19/2023]
Abstract
Taurine plays role in neural development and physiological functions such as endocrine regulation in the central nervous system (CNS), and it is one of the most abundant free amino acid there. We investigated its potential effect as a neurotransmitter in the group of neuroendocrine Dahlgren cells at flounder Paralichthys olivaceus caudal neurosecretory system (CNSS). The application of taurine in vitro led to a reduction in electrical activity of Dahlgren cells, followed by a rise in the number of silent cells, at the same time the frequency of all three activity patterns (tonic, phasic, bursting) in Dahlgren cells was reduced. Both strychnine (a glycine receptor antagonist) and bicuculline (a GABAA receptor antagonist) can block the response to taurine separately. Transcriptome sequencing analysis showed the existence of glycine receptor (GlyR) and GABAA receptor (GABAAR) in the flounder CNSS, and the GlyR, GABAAR, and Cl- channel mRNA expression were significantly raised after taurine superfusion according to quantitative RT-PCR results. These data indicate that taurine may mediate Dahlgren cell population of CNSS activity in vivo through GlyR and GABAAR, thereby, regulating stress-response.
Collapse
Affiliation(s)
- Wei Zhang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Zhaohui Lan
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Kunyu Li
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Cheng Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Pengxin Jiang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China.
| |
Collapse
|
5
|
Oja SS, Saransaari P. Significance of Taurine in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:89-94. [PMID: 28849446 DOI: 10.1007/978-94-024-1079-2_8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Two main functions of taurine in the brain are here discussed: the role of taurine in cell volume regulation and the neuromodulatory actions of taurine liberated by depolarization. Taurine takes part in cell volume regulation with other small-molecular compounds. Extracellular taurine inhibits neuronal firing through GABA and glycine receptors. However, the existence of specific taurine receptors is still not excluded.
Collapse
Affiliation(s)
- Simo S Oja
- Tampere University Medical School, Tampere, Finland.
| | | |
Collapse
|
6
|
Effects of taurine on striatal dopamine transporter expression and dopamine uptake in SHR rats. Behav Brain Res 2018; 348:219-226. [PMID: 29694913 DOI: 10.1016/j.bbr.2018.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/03/2018] [Accepted: 04/20/2018] [Indexed: 01/01/2023]
Abstract
Dopaminergic deficits in the prefrontal cortex and striatum have been attributed to the pathogenesis of attention-deficit hyperactivity disorder (ADHD). Our recent study revealed that high-dose taurine improves hyperactive behavior and brain-functional signals in SHR rats. This study investigates the effect of taurine on the SHR striatum by detecting the spontaneous alternation, DA transporter (DAT) level, dopamine uptake and brain-derived neurotrophic factor (BDNF) expression. A significant increase in the total arm entries was detected in both WKY and SHR rats fed with low-dose taurine but not in those fed with high-dose taurine. Notably, significantly increased spontaneous alternation was observed in SHR rats fed with high-dose taurine. Significantly higher striatal DAT level was detected in WKY rats fed with low-dose taurine but not in SHR rats, whereas significantly reduced striatal DAT level was detected in SHR rats fed with high-dose taurine but not in WKY rats. Significantly increased dopamine uptake was detected in the striatal synaptosomes of both WKY and SHR rats fed with low-dose taurine. Conversely, significantly reduced dopamine uptake was detected in the striatal synaptosomes of SHR rats fed with high-dose taurine. Accordingly, a negative correlation was detected between striatal dopamine uptake and spontaneous alternation in SHR rats fed with low or high-dose taurine. Significantly increased BDNF was detected in the striatum of both WKY and SHR rats fed with low or high-dose taurine. These findings indicate that different dosages of taurine have opposite effects on striatal DAT expression and dopamine uptake, suggesting high-dose taurine as a possible candidate for ADHD treatment.
Collapse
|
7
|
Ammonia-induced mitochondrial dysfunction and energy metabolism disturbances in isolated brain and liver mitochondria, and the effect of taurine administration: relevance to hepatic encephalopathy treatment. Clin Exp Hepatol 2017; 3:141-151. [PMID: 29062904 PMCID: PMC5649485 DOI: 10.5114/ceh.2017.68833] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/06/2017] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION Ammonia-induced oxidative stress, mitochondrial dysfunction, and energy crisis are known as some the major mechanisms of brain injury in hepatic encephalopathy (HE). Hyperammonemia also affects the liver and hepatocytes. Therefore, targeting mitochondria seems to be a therapeutic point of intervention in the treatment of HE. Taurine is an abundant amino acid in the human body. Several biological functions including the mitochondrial protective properties are attributed to this amino acid. The aim of this study is to evaluate the effect of taurine administration on ammonia-induced mitochondrial dysfunction. MATERIAL AND METHODS Isolated mice liver and brain mitochondria were exposed to different concentrations of ammonia (1, 5, 10, and 20 mM) and taurine (1, 5, and 10 mM), and several mitochondrial indices were assessed. RESULTS It was found that ammonia inhibited mitochondrial dehydrogenases activity caused collapse of mitochondrial membrane potential (MMP), induced mitochondrial swelling (MPP), and increased reactive oxygen species (ROS) in isolated liver and brain mitochondria. Furthermore, a significant amount of lipid peroxidation (LPO), along with glutathione (GSH) and ATP depletion, was detected in ammonia exposed mitochondria. Taurine administration (5 and 10 mM) mitigated ammonia-induced mitochondrial dysfunction. CONCLUSIONS The current investigation demonstrates that taurine is instrumental in preserving brain and liver mitochondrial function in a hyperammonemic environment. The data suggest taurine as a potential protective agent with a therapeutic capability against hepatic encephalopathy and hyperammonemia.
Collapse
|
8
|
Nałęcz KA. Solute Carriers in the Blood–Brain Barier: Safety in Abundance. Neurochem Res 2016; 42:795-809. [DOI: 10.1007/s11064-016-2030-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022]
|
9
|
López-Avalos MD, Fernández-Llebrez Zayas R, Cifuentes M, De Andrés MV, Fernández-Llebrez Del Rey P, Grondona JM, Pérez-Martín M, Pedraza C. Mente Activa® Improves Impaired Spatial Memory in Aging Rats. J Nutr Health Aging 2015; 19:819-27. [PMID: 26412286 DOI: 10.1007/s12603-015-0546-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Aging is accompanied by a decline in several aspects of the cognitive function, having negative personal and socioeconomic impacts. Dietary supplements could be beneficial for preventing age-related cognitive decline. In this context, we examined whether the nutritional supplement Mente Activa® has beneficial effects on aging-related cognitive deficits without inducing side effects. METHODS Mente Activa® was administered to old rats (n= 30 treated rats and n= 30 control rats) during 5 months, and the Morris water maze was used to test the learning capacities of the animals. The first assessment was conducted before the nutritional intervention (age of 18-19 months), to determine the baseline of the performance of animals on this test, and the second assessment was performed at the end of the treatment (23-24 moths). In order to examine possible secondary effects of this nutritional supplement, plasma, heart anatomy and liver parameters were evaluated. RESULTS Our data indicate that supplemented rats showed less escape latency, distance swum, higher use of spatial search strategies, and crossed the former platform location with higher frequency than control rats. These effects were specific of the treatment, indicating that this nutritional supplement has a beneficial effect on spatial memory. On the other hand, the regular intake of Mente Activa® did not induce any negative effects in plasma parameters and heart size. CONCLUSIONS Aged rats under a sustained dietary intake of the nutritional supplement Mente Activa® displayed improved learning and memory abilities compared to the non-treated rats. These results suggest the therapeutic potential and safety of use of Mente Activa® for age-related cognitive deficits, particularly, in the onset of the first cognitive dysfunction symptoms.
Collapse
Affiliation(s)
- M D López-Avalos
- C. Pedraza, Dpto. Psicobiología y Metodología de las CC. Facultad de Psicología. Universidad de Málaga, Campus de Teatinos s/n., Málaga, 29071. Spain, Tel: +34 952 132 510; Fax: +34 952 134 142, E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sergeeva OA. GABAergic transmission in hepatic encephalopathy. Arch Biochem Biophys 2013; 536:122-30. [PMID: 23624382 DOI: 10.1016/j.abb.2013.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 01/05/2023]
Abstract
Hepatic encephalopathy (HE)(1) is a neuropsychiatric disorder caused by chronic or acute liver failure. Nearly thirty years ago a hypothesis was formulated explaining the neuropathology of HE by increased GABAergic tone. Recent progress in the GABAA-receptor (GABAAR) molecular pharmacology and biochemistry as well as the physiology of GABAergic transmission provided better understanding of GABA's role in health and disease. A detailed analysis of neuronal populations and their GABAergic afferents affected in HE is still missing. The slow progress in understanding the pathology of GABAergic transmission in HE is due to the high complexity of brain circuitries controlled by multiple types of GABAergic interneurons and the large variety of GABAAR, which are differently affected by pathological conditions and not yet fully identified. The mechanisms of action of the GABAAR agonist taurine, allosteric positive modulators (inhibitory neurosteroids, anaesthetics, benzodiazepines and histamine) and inhibitors of the GABAAR (excitatory neurosteroids, Ro15-4513) are discussed with respect to HE pathophysiology. Perspectives for GABAergic drugs in the symptomatic treatment of HE are suggested.
Collapse
Affiliation(s)
- Olga A Sergeeva
- Department of Neurophysiology, Medical Faculty, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.
| |
Collapse
|
11
|
Differential modulation of the glutamate-nitric oxide-cyclic GMP pathway by distinct neurosteroids in cerebellum in vivo. Neuroscience 2011; 190:27-36. [PMID: 21703332 DOI: 10.1016/j.neuroscience.2011.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 11/20/2022]
Abstract
The glutamate-nitric oxide (NO)-cGMP pathway mediates many responses to activation of N-methyl-d-aspartate (NMDA) receptors, including modulation of some types of learning and memory. The glutamate-NO-cGMP pathway is modulated by GABAergic neurotransmission. Activation of GABA(A) receptors reduces the function of the pathway. Several neurosteroids modulate the activity of GABA(A) and/or NMDA receptors, suggesting that they could modulate the function of the glutamate-NO-cGMP pathway. The aim of this work was to assess, by in vivo microdialysis, the effects of several neurosteroids with different effects on GABA(A) and NMDA receptors on the function of the glutamate-NO-cGMP pathway in cerebellum in vivo. To assess the effects of the neurosteroids on the glutamate-NO-cGMP pathway, they were administered through the microdialysis probe before administration of NMDA and the effects on NMDA-induced increase in extracellular cGMP were analyzed. We also assessed the effects of the neurosteroids on basal levels of extracellular cGMP. To assess the effects of neurosteroids on nitric oxide synthase (NOS) activity and on NMDA-induced activation of NOS, we also measured the effects of the neurosteroids on extracellular citrulline. Pregnanolone and tetrahydrodeoxy-corticosterone (THDOC) behave as agonists of GABA(A) receptors and completely block NMDA-induced increase in cGMP. Pregnanolone but not THDOC also reduced basal levels of extracellular cGMP. Pregnenolone did not affect extracellular cGMP or its increase by NMDA administration. Pregnenolone sulfate increased basal extracellular cGMP and potentiated NMDA-induced increase in cGMP, behaving as an enhancer of NMDA receptors activation. Allopregnanolone and dehydroepiandrosterone sulphate behave as antagonists of NMDA receptors, increasing basal cGMP and blocking completely NMDA-induced increase in cGMP. Dehydroepiandrosterone sulphate seems to do this by activating sigma receptors. These data support the concept that, at physiological concentrations, different neurosteroids may rapidly modulate, in different ways and by different mechanisms, the function of the glutamate-NO-cGMP pathway and, likely, some forms of learning and memory modulated by this pathway.
Collapse
|
12
|
Ching B, Chew SF, Wong WP, Ip YK. Environmental ammonia exposure induces oxidative stress in gills and brain of Boleophthalmus boddarti (mudskipper). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 95:203-212. [PMID: 19819034 DOI: 10.1016/j.aquatox.2009.09.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 09/04/2009] [Accepted: 09/10/2009] [Indexed: 05/28/2023]
Abstract
This study aimed to elucidate whether exposure to a sublethal concentration (8mmoll(-1)) of NH(4)Cl (pH 7.0) for 12 or 48h would induce oxidative stress in gills and brain of the mudskipper Boleophthalmus boddarti which has high tolerance of environmental and brain ammonia. The gills of B. boddarti experienced a transient oxidative stress after 12h of ammonia exposure as evidenced by an increase in lipid hydroperoxide content, decreases in contents of reduced glutathione (GSH) and total GSH equivalent, and in activities of total glutathione peroxidase, glutathione reductase and catalase. There were also transient increases in protein abundance of p53 and p38 in gills of fish exposed to ammonia for 12h, although the protein abundance of phosphorylated p53 remained unchanged and there was a decrease in the protein abundance of phosphorylated p38, at hour 12. Since the majority of these oxidative parameters returned to control levels at hour 48, the ability of the gills of B. boddarti to recover from ammonia-induced oxidative stress might contribute to its high environmental ammonia tolerance. Ammonia also induced oxidative stress in the brain of B. boddarti at hours 12 and 48 as evidenced by the accumulation of carbonyl proteins, elevation in oxidized glutathione (GSSG) content and GSSG/GSH, decreases in activities of glutathione reductase and catalase, and an increase in the activity of superoxide dismutase. The capacity to increase glutathione synthesis and GSH content could alleviate severe ammonia-induced oxidative and nitrosative stress in the brain. Furthermore, the ability to decrease the protein abundance of p38 and phosphorylated p53 might prevent cell swelling, contributing in part to the high ammonia tolerance in the brain of B. boddarti. Overall, our results indicate that there could be multiple routes through which ammonia induced oxidative stress in and outside the brain.
Collapse
Affiliation(s)
- Biyun Ching
- Department of Biological Science, National University of Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
13
|
Hilgier W, Wegrzynowicz M, Maczewski M, Beresewicz A, Oja SS, Saransaari P, Albrecht J. Effect of glutamine synthesis inhibition with methionine sulfoximine on the nitric oxide-cyclic GMP pathway in the rat striatum treated acutely with ammonia: a microdialysis study. Neurochem Res 2007; 33:267-72. [PMID: 17726645 DOI: 10.1007/s11064-007-9455-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 07/20/2007] [Indexed: 01/31/2023]
Abstract
Ammonia neurotoxicity is associated with overactivation of N-methyl-D-aspartate (NMDA) receptors leading to enhanced nitric oxide and cyclic GMP synthesis and to accumulation of reactive oxygen and nitrogen species. Ammonia is detoxified in the brain via synthesis of glutamine, which if accumulated in excess contributes to astrocytic swelling, mitochondrial dysfunction and cerebral edema. This study was aimed at testing the hypothesis that the activity of the NMDA/NO/cGMP pathway is controlled by the ammonia-induced production of Gln in the brain. Ammonium chloride (final concentration 5 mM), infused for 40 min to the rat striatum via a microdialysis probe, caused a significant increase in Gln (by 40%), NO oxidation products (nitrite+nitrate=NOx) (by 35%) and cGMP (by 50%) concentration in the microdialysate. A Gln synthetase inhibitor, methionine sulfoximine (MSO, 5 mM), added directly to the microdialysate, completely prevented ammonia-mediated production of Gln, and paradoxically, it increased ammonia-mediated production of NOx and cGMP by 230% and 250%, respectively. Of note, MSO given alone significantly reduced basal Gln concentration in the rat striatum, had no effect on the basal NOx concentration, and attenuated basal concentration of cGMP in the microdialysate by 50%. The results of the present study suggest that Gln, at physiological concentrations, may ameliorate excessive activation of the NO-cGMP pathway by neurotoxic concentrations of ammonia. However, in view of potential direct interference of MSO with the pathway, exogenously added Gln and less toxic modulators of Gln content and/or transport will have to be employed in further studies on the underlying mechanisms.
Collapse
Affiliation(s)
- Wojciech Hilgier
- Department of Neurotoxicology, Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, Warsaw 02-106, Poland
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang GH, Jiang ZL, Fan XJ, Zhang L, Li X, Ke KF. Neuroprotective effect of taurine against focal cerebral ischemia in rats possibly mediated by activation of both GABAA and glycine receptors. Neuropharmacology 2007; 52:1199-209. [PMID: 17386936 DOI: 10.1016/j.neuropharm.2006.10.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 10/16/2006] [Accepted: 10/26/2006] [Indexed: 11/25/2022]
Abstract
To investigate the neuroprotective effect of taurine and the involved mechanisms, middle cerebral artery occlusion (MCAO) was induced with suture for 2h in rat, and the brain tissue was then reperfused. The infarct volume and cerebral damage area were measured, respectively, with 2,3,5-triphenyltetrazolium chloride (TTC) staining and MRI. Nissl staining was used for histological observation, and immunohistochemistry and Western-blot analysis for detecting the activated caspase-3 expression. Both pre- (200mgkg(-1)) and post-treatment of taurine decreased the neurology deficit score, infarct volume and brain water content. Taurine post-treatment (67, 200 and 600mgkg(-1)) showed a dose-dependent neuroprotective effect. Taurine (200mgkg(-1)) significantly decreased neuronal loss in the cerebral cortex and hippocampus, and reduced the expression of caspase-3 as well. The neuroprotective effect of taurine was partly blunted by strychnine or bicuculline alone, and almost completely blocked by coapplication of both antagonists of glycine and GABA(A) receptors. It is suggested that taurine exerts a neuroprotective role on the brain when administered before or after MCAO. Such effect is possibly mediated by the activation of both GABA(A) receptors and strychnine-sensitive glycine receptors. Moreover, inhibition of caspase-3 expression is involved in this neuroprotective effect. These results imply a potential therapeutic use of taurine for stroke.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Body Water/metabolism
- Brain Chemistry/drug effects
- Caspase 3/biosynthesis
- Dose-Response Relationship, Drug
- GABA Antagonists/pharmacology
- Immunohistochemistry
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/prevention & control
- Ischemic Attack, Transient/drug therapy
- Ischemic Attack, Transient/pathology
- Magnetic Resonance Imaging
- Male
- Neuroprotective Agents
- Rats
- Rats, Sprague-Dawley
- Receptors, GABA-A/drug effects
- Receptors, Glycine/antagonists & inhibitors
- Receptors, Glycine/drug effects
- Taurine/pharmacology
- Tetrazolium Salts
- Thermogravimetry
Collapse
Affiliation(s)
- Guo-Hua Wang
- Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | | | | | | | | | | |
Collapse
|
15
|
Molchanova SM, Oja SS, Saransaari P. Inhibitory effect of taurine on veratridine-evoked D-[3H]aspartate release from murine corticostriatal slices: involvement of chloride channels and mitochondria. Brain Res 2006; 1130:95-102. [PMID: 17173871 DOI: 10.1016/j.brainres.2006.10.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 10/02/2006] [Accepted: 10/20/2006] [Indexed: 11/26/2022]
Abstract
We have previously shown that the inhibitory neuromodulator taurine attenuates the release of preloaded D-[3H]aspartate from murine corticostriatal slices evoked by ischemic conditions or by application of the sodium channel agonist veratridine. The release of D-[3H]aspartate (a non-metabolized analog of glutamate) was used as an index of glutamate release. The aim of the present study was to reveal the molecular mechanisms responsible for this inhibitory effect of taurine. It was shown that 10 mM taurine suppresses D-[3H]aspartate release evoked by 0.1 mM veratridine, but does not affect the high-K+ -(50 mM) or ouabain- (0.1 mM) evoked release. Taurine had no effect in Ca2+ -free medium when the synaptic exocytosis of D-[3H]aspartate was inhibited. Nor did it suppress the release from slices preloaded with the competitive glutamate uptake blocker DL-threo-beta-hydroxyaspartate (THBA), which inhibits D-[3H]aspartate release mediated by the reverse action of glutamate transporters. Omission of Cl- from the incubation medium reduced the effect of taurine, signifying the involvement of a Cl- channel. The glycine receptor antagonist strychnine and the GABA(A) receptor antagonist bicuculline did not block the taurine effect, although picrotoxin, a less specific blocker of agonist-gated chloride channels, completely prevented the effect of taurine on veratridine-induced D-[3H]aspartate release. The respiratory chain blocker rotenone or mitochondrial protonophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP) in combination with the mitochondrial ATPase inhibitor oligomycin, which inhibits the mitochondrial Ca2+ uniporter, also reduced the effect of taurine. The results obtained in the present study show that taurine acts specifically on the release of preloaded D-[3H]aspartate evoked by veratridine, but not on that evoked by other depolarizing agents, and affects the release mediated both by synaptic exocytosis and the reverse action of glutamate transporter. Taurine may attenuate D-[3H]aspartate release by regulation of mitochondrial Ca2+ sequestration and by activation of a chloride channel, but not that governed by GABA(A) or strychnine-sensitive glycine receptors.
Collapse
|
16
|
Bélanger M, Asashima T, Ohtsuki S, Yamaguchi H, Ito S, Terasaki T. Hyperammonemia induces transport of taurine and creatine and suppresses claudin-12 gene expression in brain capillary endothelial cells in vitro. Neurochem Int 2006; 50:95-101. [PMID: 16956696 DOI: 10.1016/j.neuint.2006.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 07/10/2006] [Accepted: 07/13/2006] [Indexed: 11/23/2022]
Abstract
Ammonia is a key neurotoxin involved in the neurological complications of acute liver failure. The present study was undertaken to study the effects of exposure to pathophysiologically relevant concentrations of ammonium chloride on cultured brain capillary endothelial cells in order to identify mechanisms by which ammonia may alter blood-brain barrier function. Conditionally immortalized mouse brain capillary endothelial cells (TM-BBB) were used as an in vitro model of the blood-brain barrier. Gene expression of a series of blood-brain barrier transporters and tight junction proteins was assessed by quantitative real time PCR analysis. Exposure to ammonia (5mM for 72h) resulted in significant increases in mRNA levels of taurine transporter (TAUT; 2.0-fold increase) as well as creatine transporter (CRT; 1.9-fold increase) whereas claudin-12 mRNA expression was significantly reduced to 67.7% of control levels. Furthermore, [(3)H]taurine and [(14)C]creatine uptake were concomitantly increased following exposure to ammonia, suggesting that up-regulation of both TAUT and CRT under hyperammonemic conditions results in an increased function of these two transporters in TM-BBB cells. TAUT and CRT are respectively involved in osmoregulation and energy buffering in the brain, two systems that are thought to be affected in acute liver failure. Furthermore, claudin-12 down-regulation suggests that hyperammonemia may also affect tight junction integrity. Our results provide evidence that ammonia can alter brain capillary endothelial cell gene expression and transporter function. These findings may be relevant to pathological situations involving hyperammonemia, such as liver disease.
Collapse
Affiliation(s)
- Mireille Bélanger
- Neuroscience Research Unit, CHUM (Hôpital Saint-Luc), Université de Montréal, 1058 St-Denis, Montréal, Québec H2X 3J4, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Chepkova AN, Sergeeva OA, Haas HL. Taurine rescues hippocampal long-term potentiation from ammonia-induced impairment. Neurobiol Dis 2006; 23:512-21. [PMID: 16766203 DOI: 10.1016/j.nbd.2006.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 04/11/2006] [Accepted: 04/12/2006] [Indexed: 11/19/2022] Open
Abstract
Hyperammonemia, a major pathophysiological factor in hepatic encephalopathy, impairs long-term potentiation (LTP) of synaptic transmission, a cellular model of learning and memory, in the hippocampus. We have now studied the protective action of taurine on this paradigm by analyzing LTP characteristics in mouse hippocampal slices treated with ammonium chloride (1 mM) in the presence of taurine (1 mM), an ubiquitous osmolyte, antioxidant, and neuromodulator, as well as other substances with such properties. Ammonia-treated slices displayed a significant impairment of LTP maintenance. Taurine and the mitochondrial enhancer l-carnitine, but not the antioxidants (ascorbate, carnosine, and the novel compound GVS-111) or the osmolyte betaine prevented this impairment. The protective effect of taurine was preserved under the blockade of inhibitory GABA(A) and glycine receptors. It is suggested that taurine may rescue the mechanisms of hippocampal synaptic plasticity by improving mitochondrial function under hyperammonemic conditions.
Collapse
Affiliation(s)
- Aisa N Chepkova
- Department of Neurophysiology, Heinrich-Heine University, POB 101007, D-40001 Düsseldorf, Germany
| | | | | |
Collapse
|
18
|
Albrecht J, Schousboe A. Taurine interaction with neurotransmitter receptors in the CNS: an update. Neurochem Res 2006; 30:1615-21. [PMID: 16362781 DOI: 10.1007/s11064-005-8986-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2005] [Indexed: 10/25/2022]
Abstract
Taurine appears to have multiple functions in the brain participating both in volume regulation and neurotransmission. In the latter context it may exert its actions by serving as an agonist at receptors of the GABAergic and glycinergic neurotransmitter systems. Its interaction with GABAA and GABAB receptors as well as with glycine receptors is reviewed and the physiological relevance of such interactions is evaluated. The question as to whether local extracellular concentrations of taurine are likely to reach the threshold level for the pertinent receptor populations cannot presently be answered satisfactorily. Hence more sophisticated analytical methods are warranted in order to obtain a definite answer to this important question.
Collapse
Affiliation(s)
- Jan Albrecht
- Department of Neurotoxicology, Medical Research Centre, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| | | |
Collapse
|
19
|
Albrecht J, Wegrzynowicz M. Endogenous neuro-protectants in ammonia toxicity in the central nervous system: facts and hypotheses. Metab Brain Dis 2005; 20:253-63. [PMID: 16382336 DOI: 10.1007/s11011-005-7904-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The paper overviews experimental evidence suggestive of the engagement of three endogenous metabolites: taurine, kynurenic acid, and glutathione (GSH) in the protection of central nervous system (CNS) cells against ammonia toxicity. Intrastriatal administration of taurine via microdialysis probe attenuates ammonia-induced accumulation of extracellular cyclic guanosine monophosphate (cGMP) resulting from over-activation of the N-methyl-D: -aspartate/nitric oxide (NMDA/NO) pathway, and this effect involves agonistic effect of taurine on the GABA-A and glycine receptors. Taurine also counteracts generation of free radicals, increased release of dopamine, and its metabolism to dihydroxyphenylacetic acid (DOPAC). Taurine reduces ammonia-induced increase of cell volume (edema) in cerebrocortical slices by a mechanism involving GABA-A receptors. Massive release of radiolabeled or endogenous taurine from CNS tissues by ammonia in vivo and in vitro is thought to promote its neuroprotective action, by making the amino acid available for interaction with cell membranes and/or by driving excess water out of the CNS cells (astrocytes) that underwent ammonia-induced swelling. Ammonia in vivo and in vitro affects in variable ways the synthesis of kynurenic acid (KYNA). Since KYNA is an endogenous NMDA receptor antagonist with a high affinity towards its glycine site, changes in its content may counter over-activation or depression of glutaminergic transmission observed at the different stages of hyperammonemia. GSH is a major antioxidant in the CNS whose synthesis is partly compartmented between neurons and astrocytes: astrocytic GSH is a source of precursors for the synthesis of neuronal GSH. Ammonia in vitro stimulates GSH synthesis in cultured astrocytes, which may compensate for increased GSH consumption (decreased GSH/GSSG ratio) in neurons.
Collapse
Affiliation(s)
- Jan Albrecht
- Department of Neurotoxicology, M. Mossakowski Medical Research Center, Polish Academy of Sciences, Warsaw, Poland.
| | | |
Collapse
|
20
|
Cheema TA, Ward CE, Fisher SK. Subnanomolar concentrations of thrombin enhance the volume-sensitive efflux of taurine from human 1321N1 astrocytoma cells. J Pharmacol Exp Ther 2005; 315:755-63. [PMID: 16051696 DOI: 10.1124/jpet.105.090787] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of subnanomolar concentrations of thrombin to protect both neurons and glia from ischemia and other metabolic insults has recently been reported. In this study, we demonstrate an additional neuroprotective property of thrombin; its ability to promote the release of the organic osmolyte, taurine, in response to hypoosmotic stress. Incubation of human 1321N1 astrocytoma cells with hypo-osmolar buffers (320-227 mOsM) resulted in a time-dependent release of taurine. Inclusion of thrombin (EC(50) = 60 pM) resulted in a marked increase in taurine efflux that, although evident under isotonic conditions (340 mOsM), was maximal at an osmolarity of 270 mOsM (3-4-fold stimulation). Thrombin-stimulated taurine efflux was dependent upon its protease activity and could be mimicked by addition of the peptide SFLLRN, a proteinase activated receptor-1 (PAR-1) subtype-specific ligand. Inclusion of anion channel blockers known to inhibit the volume-sensitive organic osmolyte anion channel attenuated thrombin-stimulated taurine release. Depletion of intracellular Ca(2+) with either 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) or thapsigargin, or alternatively, inhibition of protein kinase C (PKC) with bisindolylmaleimide or chelerythrine resulted in a 30 to 50% inhibition of thrombin-stimulated taurine efflux. Under conditions in which intracellular Ca(2+) was depleted and PKC activity inhibited, thrombin-stimulated taurine efflux was reduced by >85%. The results indicate that activation of PAR-1 receptors by thrombin facilitates the ability of 1321N1 astrocytoma cells to release osmolytes in response to a reduction in osmolarity via a mechanism that is dependent on intracellular Ca(2+) and PKC activity.
Collapse
Affiliation(s)
- Tooba A Cheema
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, 48109, USA
| | | | | |
Collapse
|