1
|
Liu X, Yu J, Tan X, Zhang Q, Niu J, Hou Z, Wang Q. Necroptosis involved in sevoflurane-induced cognitive dysfunction in aged mice by activating NMDA receptors increasing intracellular calcium. Neurotoxicology 2024; 100:35-46. [PMID: 38070654 DOI: 10.1016/j.neuro.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Perioperative neurocognitive disorders are a common surgical and postanesthesia complication. Necroptosis contributes to the emergence of various neurological disorders. We conjecture that cognitive impairment is associated with necroptosis of hippocampal neurons, which is mediated by NMDA receptors leading to cytoplasmic calcium imbalance. C57BL/6 J male mice ( 18 months) were randomly divided into the C ( control group), S ( sevoflurane group), S+M ( sevoflurane plus the NMDA receptor antagonist memantine group) and S+N ( sevoflurane plus necrostatin-1) group. We exposed the mice to 3% sevoflurane for 2 h a day for three consecutive days in the S, S+M and S+N groups. Memantine ( 20 mg/kg) or Nec-1 ( 10 mg/kg) was injected intraperitoneally 1 h before sevoflurane anesthesia in the S+M or S+N group. We used the animal behavior tests to evaluate the cognitive function. Pathological damage, the rate of necroptosis, [Ca2+]i, and the expression of necroptosis-related proteins were evaluated. The cognitive function tests, pathological damage, the rate of necroptosis, the expression of necroptosis-related proteins, NMDAR2A and NMDAR2B were significantly different in the S group ( P < 0.05). Alleviated pathological damage, decreased the rate of necroptosis and down-regulated the expression of necroptosis-related proteins occurred in the S+M and S+N group ( P < 0.05). The lower elevated [Ca2+]i, expression of NMDAR2A and NMDAR2B were found in the S+M group. Our findings highlighted sevoflurane-induced cognitive dysfunction is associated with an imbalance in cytoplasmic calcium homeostasis by activating NMDA receptors, which causes hippocampus neurons to undergo necroptosis and ultimately affects cognitive performance in aged mice.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China; Department of Anesthesiology, Children's Hospital of Hebei Province, Shijiazhuang 050030, China
| | - Jiaxu Yu
- Department of Anesthesiology, Cang Zhou Centrol Hospital, Cangzhou 061017, Hebei, China
| | - Xiaona Tan
- Department of Neurological Rehabilitation, Children's Hospital of Hebei Province, Shijiazhuang 050030, China
| | - Qi Zhang
- Department of Anesthesiology, Children's Hospital of Hebei Province, Shijiazhuang 050030, China
| | - Junfang Niu
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Zhiyong Hou
- Center of Emergency and Trauma, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Qiujun Wang
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China.
| |
Collapse
|
2
|
Lorenz-Guertin JM, Povysheva N, Chapman CA, MacDonald ML, Fazzari M, Nigam A, Nuwer JL, Das S, Brady ML, Vajn K, Bambino MJ, Weintraub ST, Johnson JW, Jacob TC. Inhibitory and excitatory synaptic neuroadaptations in the diazepam tolerant brain. Neurobiol Dis 2023; 185:106248. [PMID: 37536384 PMCID: PMC10578451 DOI: 10.1016/j.nbd.2023.106248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Benzodiazepine (BZ) drugs treat seizures, anxiety, insomnia, and alcohol withdrawal by potentiating γ2 subunit containing GABA type A receptors (GABAARs). BZ clinical use is hampered by tolerance and withdrawal symptoms including heightened seizure susceptibility, panic, and sleep disturbances. Here, we investigated inhibitory GABAergic and excitatory glutamatergic plasticity in mice tolerant to benzodiazepine sedation. Repeated diazepam (DZP) treatment diminished sedative effects and decreased DZP potentiation of GABAAR synaptic currents without impacting overall synaptic inhibition. While DZP did not alter γ2-GABAAR subunit composition, there was a redistribution of extrasynaptic GABAARs to synapses, resulting in higher levels of synaptic BZ-insensitive α4-containing GABAARs and a concomitant reduction in tonic inhibition. Conversely, excitatory glutamatergic synaptic transmission was increased, and NMDAR subunits were upregulated at synaptic and total protein levels. Quantitative proteomics further revealed cortex neuroadaptations of key pro-excitatory mediators and synaptic plasticity pathways highlighted by Ca2+/calmodulin-dependent protein kinase II (CAMKII), MAPK, and PKC signaling. Thus, reduced inhibitory GABAergic tone and elevated glutamatergic neurotransmission contribute to disrupted excitation/inhibition balance and reduced BZ therapeutic power with benzodiazepine tolerance.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya Povysheva
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlyn A Chapman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aparna Nigam
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sabyasachi Das
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Megan L Brady
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katarina Vajn
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew J Bambino
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antoni, TX, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Lim JR, Lee HJ, Jung YH, Kim JS, Chae CW, Kim SY, Han HJ. Ethanol-activated CaMKII signaling induces neuronal apoptosis through Drp1-mediated excessive mitochondrial fission and JNK1-dependent NLRP3 inflammasome activation. Cell Commun Signal 2020; 18:123. [PMID: 32787872 PMCID: PMC7422600 DOI: 10.1186/s12964-020-00572-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/01/2020] [Indexed: 01/04/2023] Open
Abstract
Background Neurodegeneration is a representative phenotype of patients with chronic alcoholism. Ethanol-induced calcium overload causes NOD-like receptor protein 3 (NLRP3) inflammasome formation and an imbalance in mitochondrial dynamics, closely associated with the pathogenesis of neurodegeneration. However, how calcium regulates this process in neuronal cells is poorly understood. Therefore, the present study investigated the detailed mechanism of calcium-regulated mitochondrial dynamics and NLRP3 inflammasome formation in neuronal cells by ethanol. Methods In this study, we used the SK-N-MC human neuroblastoma cell line. To confirm the expression level of the mRNA and protein, real time quantitative PCR and western blot were performed. Co-immunoprecipitation and Immunofluorescence staining were conducted to confirm the complex formation or interaction of the proteins. Flow cytometry was used to analyze intracellular calcium, mitochondrial dysfunction and neuronal apoptosis. Results Ethanol increased cleaved caspase-3 levels and mitochondrial reactive oxygen species (ROS) generation associated with neuronal apoptosis. In addition, ethanol increased protein kinase A (PKA) activation and cAMP-response-element-binding protein (CREB) phosphorylation, which increased N-methyl-D-aspartate receptor (NMDAR) expression. Ethanol-increased NMDAR induced intracellular calcium overload and calmodulin-dependent protein kinase II (CaMKII) activation leading to phosphorylation of dynamin-related protein 1 (Drp1) and c-Jun N-terminal protein kinase 1 (JNK1). Drp1 phosphorylation promoted Drp1 translocation to the mitochondria, resulting in excessive mitochondrial fission, mitochondrial ROS accumulation, and loss of mitochondrial membrane potential, which was recovered by Drp1 inhibitor pretreatment. Ethanol-induced JNK1 phosphorylation activated the NLRP3 inflammasome that induced caspase-1 dependent mitophagy inhibition, thereby exacerbating ROS accumulation and causing cell death. Suppressing caspase-1 induced mitophagy and reversed the ethanol-induced apoptosis in neuronal cells. Conclusions Our results demonstrated that ethanol upregulated NMDAR-dependent CaMKII phosphorylation which is essential for Drp1-mediated excessive mitochondrial fission and the JNK1-induced NLRP3 inflammasome activation resulting in neuronal apoptosis. Video abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea.,Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seo Yihl Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Qiu LL, Pan W, Luo D, Zhang GF, Zhou ZQ, Sun XY, Yang JJ, Ji MH. Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca 2+/calpain might contribute to postoperative cognitive dysfunction in aging mice. J Neuroinflammation 2020; 17:23. [PMID: 31948437 PMCID: PMC6966800 DOI: 10.1186/s12974-019-1695-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Postoperative cognitive decline (POCD) is a recognized clinical phenomenon characterized by cognitive impairments in patients following anesthesia and surgery, yet its underlying mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal plasticity, learning, and memory via activation of TrkB-full length (TrkB-FL) receptors. It has been reported that an abnormal truncation of TrkB mediated by calpain results in dysregulation of BDNF/TrkB signaling and is associated with cognitive impairments in several neurodegenerative disorders. Calpains are Ca2+-dependent proteases, and overactivation of calpain is linked to neuronal death. Since one source of intracellular Ca2+ is N-methyl-d-aspartate receptors (NMDARs) related and the function of NMDARs can be regulated by neuroinflammation, we therefore hypothesized that dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca2+/calpain might be involved in the pathogenesis of POCD. METHODS In the present study, 16-month-old C57BL/6 mice were subjected to exploratory laparotomy with isoflurane anesthesia to establish the POCD animal model. For the interventional study, mice were treated with either NMDAR antagonist memantine or calpain inhibitor MDL-28170. Behavioral tests were performed by open field, Y maze, and fear conditioning tests from 5 to 8 days post-surgery. The levels of Iba-1, GFAP, interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), NMDARs, calpain, BDNF, TrkB, bax, bcl-2, caspase-3, and dendritic spine density were determined in the hippocampus. RESULTS Anesthesia and surgery-induced neuroinflammation overactivated NMDARs and then triggered overactivation of calpain, which subsequently led to the truncation of TrkB-FL, BDNF/TrkB signaling dysregulation, dendritic spine loss, and cell apoptosis, contributing to cognitive impairments in aging mice. These abnormities were prevented by memantine or MDL-28170 treatment. CONCLUSION Collectively, our study supports the notion that NMDAR/Ca2+/calpain is mechanistically involved in anesthesia and surgery-induced BDNF/TrkB signaling disruption and cognitive impairments in aging mice, which provides one possible therapeutic target for POCD.
Collapse
Affiliation(s)
- Li-Li Qiu
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Wei Pan
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan Luo
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Guang-Fen Zhang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Zhi-Qiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiao-Yun Sun
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Mu-Huo Ji
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
5
|
Alinaghipour A, Mazoochi T, Ardjmand A. Low-dose ethanol ameliorates amnesia induced by a brief seizure model: the role of NMDA signaling. Neurol Res 2019; 41:624-632. [PMID: 30967097 DOI: 10.1080/01616412.2019.1602322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: The present study aimed to evaluate the ameliorative effect of low-dose ethanol (Eth) on amnesia induced by a brief seizure model and the role of N-methyl D-aspartate (NMDA) signaling in this event. Materials and Methods: Four groups of rats (total number = 36; n = 9, each group) were used: control, Eth (0.5 g/kg/i.p.), pentylenetetrazole (PTZ) (60 mg/kg/i.p.), and Eth+PTZ. Eth was administered for 6 days before the single injection of PTZ, at minute dose that cannot induce memory impairment. The consequences of Eth pretreatment, coadministered with PTZ, were studied in an inhibitory avoidance (IA) memory model. The PTZ was injected 30 min prior to the IA memory test. Thereafter, locomotion, liver enzymes, and the Real-time PCR for NR1 subunit of NMDA receptor were studied. The statistical analyses were performed using the parametric/nonparametric ANOVA and the post-hoc tests. Results: Our findings revealed that Eth pretreatment significantly improved the IA memory impairment induced by PTZ (P < 0.001), and indicated no change in locomotion and serum ALT, but significantly differed for AST between the PTZ and PTZ groups (P = < 0.05). The Real-time PCR results indicate the decreased NR1 mRNA expression in Eth and PTZ groups and the increased NR1 mRNA expression in Eth+PTZ group, compared to the control group (P < 0.001); however, the NR1 mRNA expression was increased in the Eth+PTZ group, compared to PTZ group (P < 0.001). Conclusion: The present study provides evidence that the low-dose Eth can improve the amnesia induced by a brief seizure model presumably via NMDA signaling in a rat.
Collapse
Affiliation(s)
- Azam Alinaghipour
- a Physiology Research Center , Kashan University of Medical Sciences , Kashan , Iran
| | - Tahereh Mazoochi
- b Anatomical Science Research Center , Kashan University of Medical sciences , Kashan , Iran
| | - Abolfazl Ardjmand
- a Physiology Research Center , Kashan University of Medical Sciences , Kashan , Iran.,c Department of Physiology , School of Medicine, Kashan University of Medical Sciences , Kashan , Iran
| |
Collapse
|
6
|
Correlation between the epigenetic modification of histone H3K9 acetylation of NR2B gene promoter in rat hippocampus and ethanol withdrawal syndrome. Mol Biol Rep 2019; 46:2867-2875. [PMID: 30903572 DOI: 10.1007/s11033-019-04733-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/28/2019] [Indexed: 12/31/2022]
Abstract
Patients with alcohol use disorder may develop acute ethanol withdrawal syndrome (EWS). Previous studies showed that an epigenetic modification of the N-methyl-D-aspartate (NMDA) receptor, especially NMDA receptor 2B subunit (NR2B), was involved in the pathological process of EWS. However, the relationship between the epigenetic regulation of the NR2B gene in the rat hippocampus region and EWS were inconsistent. The purpose of this study was to explore the role of the histone H3K9 acetylation of the NR2B gene in the rat hippocampus region in EWS. A rat model of chronic ethanol exposure was established. EWS score and the behavioral changes were recorded at different time points. The NR2B expression levels and the histone H3K9 acetylation level in the NR2B gene promoter region were measured using qRT-PCR, Western blot, immunofluorescence, and chromatin immunoprecipitation, respectively. Finally, the relationship between the epigenetic modification of histone H3K9 acetylation of NR2B gene promoter and EWS were examined. Our ultimate results showed that the EWS score was increased at 2 h, peaked at 6 h after withdrawal of ethanol, and reduced to the level parallel to the normal control group at day 3 after ethanol withdrawal. The NR2B mRNA expression and protein levels showed similar patterns. Further correlation analyses indicted that both histone H3K9 acetylation in NR2B gene promoter and the expression levels of NR2B were positively associated with EWS. Our results suggest that chronic ethanol exposure may result in epigenetic modification of histone H3K9 acetylation in NR2B gene promoter in rat hippocampus, and the expression levels of NR2B were found to be positively correlated with ethanol withdrawal syndrome.
Collapse
|
7
|
Hillemacher T, Frieling H. Pharmacotherapeutic options for co-morbid depression and alcohol dependence. Expert Opin Pharmacother 2019; 20:547-569. [DOI: 10.1080/14656566.2018.1561870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Thomas Hillemacher
- Department of Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog Neurobiol 2018; 171:32-49. [PMID: 30316901 DOI: 10.1016/j.pneurobio.2018.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Emerging evidence demonstrates that alcohol dependence is associated with dysregulation of several neurotransmitters. Alterations in dopamine, glutamate and gamma-aminobutyric acid release are linked to chronic alcohol exposure. The effects of alcohol on the glutamatergic system in the mesocorticolimbic areas have been investigated extensively. Several studies have demonstrated dysregulation in the glutamatergic systems in animal models exposed to alcohol. Alcohol exposure can lead to an increase in extracellular glutamate concentrations in mesocorticolimbic brain regions. In addition, alcohol exposure affects the expression and functions of several glutamate receptors and glutamate transporters in these brain regions. In this review, we discussed the effects of alcohol exposure on glutamate receptors, glutamate transporters and glutamate homeostasis in each area of the mesocorticolimbic system. In addition, we discussed the genetic aspect of alcohol associated with glutamate and reward circuitry. We also discussed the potential therapeutic role of glutamate receptors and glutamate transporters in each brain region for the treatment of alcohol dependence. Finally, we provided some limitations on targeting the glutamatergic system for potential therapeutic options for the treatment alcohol use disorders.
Collapse
|
9
|
Wang X, Yu H, You J, Wang C, Feng C, Liu Z, Li Y, Wei R, Xu S, Zhao R, Wu X, Zhang G. Memantine can improve chronic ethanol exposure-induced spatial memory impairment in male C57BL/6 mice by reducing hippocampal apoptosis. Toxicology 2018; 406-407:21-32. [PMID: 29800586 DOI: 10.1016/j.tox.2018.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 01/08/2023]
Abstract
Chronic ethanol intake can induce neuronal apoptosis, leading to dementia. We investigated the protective effects of memantine on spatial memory impairment induced by chronic ethanol exposure in mice. Male C57BL/6 mice were administered 10% (m/V) or 20% (m/V) ethanol as the only choice of drinking water. Mice were treated for 60 d, 90 d, or 180 d. Mice were treated with memantine for the same duration (daily 10 mg/kg oral). The Morris water maze and radial arm maze test were used to measure spatial memory. Mice were sacrificed after the behavioral tests. Brains were removed to prepare for paraffin sections, and hippocampi were isolated for protein and RNA extraction. 4',6-diamidino-2-phenylindole (DAPI) staining and immunohistochemical staining of cleaved caspase-3 were performed. Western blot analysis was used to detect the expression of cleaved caspase-3 and calcium-related proteins, including N-methyl-d-aspartic acid receptor 1 (NR1), 1,4,5-trisphosphate receptor 1 (IP3R1), and sarco/endoplasmic reticulum calcium adenosine triphosphatase 1 (SERCA1). The changes of NR1, IP3R1 and SERCA1 mRNA were detected using quantitative polymerase chain reaction (qPCR). The results revealed that chronic ethanol exposure induced spatial memory impairment in mice, as well as increasing the expression of NR1, IP3R1 and SERCA1, the activation of caspase-3 and apoptosis in hippocampus. The effect was particularly prominent in the 20% ethanol group after 180 d exposure. Memantine decreased ethanol-induced spatial memory impairment, caspase-3 activation and apoptosis in the mouse hippocampus. These results suggest that disruption of intracellular calcium balance by ethanol can induce caspase-3 activation and apoptosis, which underlies subsequent spatial memory impairment in mice.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Hao Yu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Jiabin You
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Changliang Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Chunmei Feng
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Zhaodi Liu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Ya Li
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Rucheng Wei
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Siqi Xu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China.
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
10
|
Wang X, Chen J, Wang H, Yu H, Wang C, You J, Wang P, Feng C, Xu G, Wu X, Zhao R, Zhang G. Memantine Can Reduce Ethanol-Induced Caspase-3 Activity and Apoptosis in H4 Cells by Decreasing Intracellular Calcium. J Mol Neurosci 2017; 62:402-411. [PMID: 28730337 DOI: 10.1007/s12031-017-0948-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023]
Abstract
Caspase-3 activation and apoptosis are associated with various neurodegenerative disorders. Calcium activation is an important factor in promoting apoptosis. We, therefore, assessed the role of intracellular calcium in ethanol-induced activation of caspase-3 in H4 human neuroglioma cells and the protective effect of the NMDA receptor antagonist, memantine, on ethanol-induced apoptosis in H4 cells. H4 cells were treated with 100 mM EtOH (in culture medium) for 2 days. For interaction studies, cells were treated with memantine (4 μM), EDTA (1 mM), or BAPTA-AM (10 μM) before treatment with EtOH. Knockdown of the gene encoding the NR1 subunit of the NMDA receptor was performed using RNAi. Apoptosis was detected by Annexin V-FITC/PI staining and flow cytometry. Cell viability was detected using an MTS cell proliferation kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration. The levels of NR1, caspase-3, IP3R1, and SERCA1 proteins were detected by western blotting. NR1, IP3R1, and SERCA1 mRNA levels were detected by qPCR. We observed increased expression of NR1, IP3R1, SERCA1, and increased intracellular levels of calcium ions in H4 cells exposed to ethanol. In addition, the calcium chelators, EDTA and BAPTA, and RNAi disruption of the NMDA receptor reduced ethanol-induced caspase-3 activation in H4 cells. Memantine treatment reduced the ethanol-induced increase of intracellular calcium, caspase-3 activation, apoptosis, and the ethanol-induced decrease in cell viability. Our results indicate that ethanol-induced caspase-3 activation and apoptosis are likely to be dependent on cytosolic calcium levels and that they can be reduced by memantine treatment.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Jiajun Chen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Hongbo Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Hao Yu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Changliang Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Jiabin You
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Pengfei Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Chunmei Feng
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Guohui Xu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
11
|
Xiang Y, Kim KY, Gelernter J, Park IH, Zhang H. Ethanol upregulates NMDA receptor subunit gene expression in human embryonic stem cell-derived cortical neurons. PLoS One 2015; 10:e0134907. [PMID: 26266540 PMCID: PMC4534442 DOI: 10.1371/journal.pone.0134907] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/16/2015] [Indexed: 01/16/2023] Open
Abstract
Chronic alcohol consumption may result in sustained gene expression alterations in the brain, leading to alcohol abuse or dependence. Because of ethical concerns of using live human brain cells in research, this hypothesis cannot be tested directly in live human brains. In the present study, we used human embryonic stem cell (hESC)-derived cortical neurons as in vitro cellular models to investigate alcohol-induced expression changes of genes involved in alcohol metabolism (ALDH2), anti-apoptosis (BCL2 and CCND2), neurotransmission (NMDA receptor subunit genes: GRIN1, GRIN2A, GRIN2B, and GRIN2D), calcium channel activity (ITPR2), or transcriptional repression (JARID2). hESCs were differentiated into cortical neurons, which were characterized by immunostaining using antibodies against cortical neuron-specific biomarkers. Ethanol-induced gene expression changes were determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). After a 7-day ethanol (50 mM) exposure followed by a 24-hour ethanol withdrawal treatment, five of the above nine genes (including all four NMDA receptor subunit genes) were highly upregulated (GRIN1: 1.93-fold, P = 0.003; GRIN2A: 1.40-fold, P = 0.003; GRIN2B: 1.75-fold, P = 0.002; GRIN2D: 1.86-fold, P = 0.048; BCL2: 1.34-fold, P = 0.031), and the results of GRIN1, GRIN2A, and GRIN2B survived multiple comparison correction. Our findings suggest that alcohol responsive genes, particularly NMDA receptor genes, play an important role in regulating neuronal function and mediating chronic alcohol consumption-induced neuroadaptations.
Collapse
Affiliation(s)
- Yangfei Xiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | - Kun-Yong Kim
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | - Joel Gelernter
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, United States of America
- VA Medical Center, VA Connecticut Healthcare System, West Haven, CT, United States of America
| | - In-Hyun Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
- * E-mail: (HZ); (IHP)
| | - Huiping Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America
- VA Medical Center, VA Connecticut Healthcare System, West Haven, CT, United States of America
- * E-mail: (HZ); (IHP)
| |
Collapse
|
12
|
Hwa LS, Nathanson AJ, Shimamoto A, Tayeh JK, Wilens AR, Holly EN, Newman EL, DeBold JF, Miczek KA. Aggression and increased glutamate in the mPFC during withdrawal from intermittent alcohol in outbred mice. Psychopharmacology (Berl) 2015; 232:2889-902. [PMID: 25899790 PMCID: PMC4515187 DOI: 10.1007/s00213-015-3925-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/20/2015] [Indexed: 12/14/2022]
Abstract
RATIONALE Disrupted social behavior, including occasional aggressive outbursts, is characteristic of withdrawal from long-term alcohol (EtOH) use. Heavy EtOH use and exaggerated responses during withdrawal may be treated using glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonists. OBJECTIVES The current experiments explore aggression and medial prefrontal cortex (mPFC) glutamate as consequences of withdrawal from intermittent access to EtOH and changes in aggression and mPFC glutamate caused by NMDAR antagonists memantine and ketamine. METHODS Swiss male mice underwent withdrawal following 1-8 weeks of intermittent access to 20 % EtOH. Aggressive and nonaggressive behaviors with a conspecific were measured 6-8 h into EtOH withdrawal after memantine or ketamine (0-30 mg/kg, i.p.) administration. In separate mice, extracellular mPFC glutamate after memantine was measured during withdrawal using in vivo microdialysis. RESULTS At 6-8 h withdrawal from EtOH, mice exhibited more convulsions and aggression and decreased social contact compared to age-matched water controls. Memantine, but not ketamine, increased withdrawal aggression at the 5-mg/kg dose in mice with a history of 8 weeks of EtOH but not 1 or 4 weeks of EtOH or in water drinkers. Tonic mPFC glutamate was higher during withdrawal after 8 weeks of EtOH compared to 1 week of EtOH or 8 weeks of water. Five milligrams per kilogram of memantine increased glutamate in 8-week EtOH mice, but also in 1-week EtOH and water drinkers. CONCLUSIONS These studies reveal aggressive behavior as a novel symptom of EtOH withdrawal in outbred mice and confirm a role of NMDARs during withdrawal aggression and for disrupted social behavior.
Collapse
Affiliation(s)
- Lara S. Hwa
- Tufts University Department of Psychology, Medford, MA 02155
| | | | - Akiko Shimamoto
- Tufts University Department of Psychology, Medford, MA 02155
| | | | | | | | - Emily L. Newman
- Tufts University Department of Psychology, Medford, MA 02155
| | | | - Klaus A. Miczek
- Tufts University Department of Psychology, Medford, MA 02155
- Tufts University Department of Neuroscience, Boston, MA 02111
| |
Collapse
|
13
|
Gonzalez J, Jurado-Coronel JC, Ávila MF, Sabogal A, Capani F, Barreto GE. NMDARs in neurological diseases: a potential therapeutic target. Int J Neurosci 2014; 125:315-27. [PMID: 25051426 DOI: 10.3109/00207454.2014.940941] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
N-methyl-D-aspartate ionotropic glutamate receptor (NMDARs) is a ligand-gated ion channel that plays a critical role in excitatory neurotransmission, brain development, synaptic plasticity associated with memory formation, central sensitization during persistent pain, excitotoxicity and neurodegenerative diseases in the central nervous system (CNS). Within iGluRs, NMDA receptors have been the most actively investigated for their role in neurological diseases, especially neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases. It has been demonstrated that excessive activation of NMDA receptors (NMDARs) plays a key role in mediating some aspects of synaptic dysfunction in several CNS disorders, so extensive research has been directed on the discovery of compounds that are able to reduce NMDARs activity. This review discusses the role of NMDARs on neurological pathologies and the possible therapeutic use of agents that target this receptor. Additionally, we delve into the role of NMDARs in Alzheimer's and Parkinson's diseases and the receptor antagonists that have been tested on in vivo models of these pathologies. Finally, we put into consideration the importance of antioxidants to counteract oxidative capacity of the signaling cascade in which NMDARs are involved.
Collapse
Affiliation(s)
- Janneth Gonzalez
- 1Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | | | | | | | | | | |
Collapse
|
14
|
Bonnet U, Taazimi B, Borda T, Grabbe HD. Improvement of a Woman’s Alcohol-Related Dementia via Off-label Memantine Treatment. Ann Pharmacother 2014; 48:1371-5. [DOI: 10.1177/1060028014542270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: To report a case of long-term treatment of moderate alcohol-related dementia (ARD) with memantine. Case Summary: We present the case of a 48-year-old German woman with a long history of alcohol dependence and cognitive impairments, who was diagnosed with moderate ARD (according to ICD-10 criteria) after having ruled out other dementias. Her cognitive functioning improved with off-label use of memantine (up to 20 mg/d) under abstinent conditions. Discontinuation and reinstitution of memantine were associated with a worsening and an improving of her cognitive performance, respectively, which was documented in neuropsychiatric tests. The patient had 2 alcohol relapses during this study. Only the first relapse was associated with discontinuation of memantine and cognitive deterioration. The second relapse happened during receiving of memantine and was not associated with a decline in cognitive functioning. After 16 months of treatment, moderate ARD had been improved to the grade of an amnestic mild cognitive impairment (according to DemTect) and to mild dementia (according to Clinical Dementia Rating Scale), respectively. Discussion: The on-off-on pattern of the memantine treatment supports the assumption that this antidementia agent played a key role in the improvement of ARD. An alcohol relapse did not attenuate the improvement of cognition with memantine. Conclusion: The use of memantine improved cognitive functioning of a female patient with ARD.
Collapse
Affiliation(s)
- Udo Bonnet
- Department of Psychiatry, Psychotherapy and Psychosomatics of Evangelisches Krankenhaus Castrop-Rauxel, Castrop-Rauxel, Germany
- University of Duisburg, Essen, Germany
| | - Behnaz Taazimi
- Department of Psychiatry, Psychotherapy and Psychosomatics of Evangelisches Krankenhaus Castrop-Rauxel, Castrop-Rauxel, Germany
| | - Thorsten Borda
- Department of Psychiatry, Psychotherapy and Psychosomatics of Evangelisches Krankenhaus Castrop-Rauxel, Castrop-Rauxel, Germany
| | - Heinz-Dieter Grabbe
- Department of Psychiatry, Psychotherapy and Psychosomatics of Evangelisches Krankenhaus Castrop-Rauxel, Castrop-Rauxel, Germany
| |
Collapse
|
15
|
Yao ZG, Zhang L, Liang L, Liu Y, Yang YJ, Huang L, Zhu H, Ma CM, Qin C. The effect of PN-1, a Traditional Chinese Prescription, on the Learning and Memory in a Transgenic Mouse Model of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:518421. [PMID: 23476695 PMCID: PMC3588396 DOI: 10.1155/2013/518421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 01/30/2023]
Abstract
Traditional Chinese Medicine (TCM) is a complete medical system that has been practiced for more than 3000 years. Prescription number 1 (PN-1) consists of several Chinese medicines and is designed according to TCM theories to treat patients with neuropsychiatric disorders. The evidence of clinical practice suggests the benefit effects of PN-1 on cognitive deficits of dementia patients. We try to prove and explain this by using contemporary methodology and transgenic animal models of Alzheimer's disease (AD). The behavioral studies were developed to evaluate the memory of transgenic animals after intragastric administration of PN-1 for 3 months. Amyloid beta-protein (A β ) neuropathology was quantified using immunohistochemistry and ELISA. The western blotting was used to detect the levels of plasticity associated proteins. The safety of PN-1 on mice was also assessed through multiple parameters. Results showed that PN-1 could effectively relieve learning and memory impairment of transgenic animals. Possible mechanisms showed that PN-1 could significantly reduce plaque burden and A β levels and boost synaptic plasticity. Our observations showed that PN-1 could improve learning and memory ability through multiple mechanisms without detectable side effects on mice. We propose that PN-1 is a promising alternative treatment for AD in the future.
Collapse
Affiliation(s)
- Zhi-Gang Yao
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Ling Zhang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Liang Liang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Yu Liu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Ya-Jun Yang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Lan Huang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Hua Zhu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Chun-Mei Ma
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Chuan Qin
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| |
Collapse
|
16
|
Mathews DC, Henter ID, Zarate CA. Targeting the glutamatergic system to treat major depressive disorder: rationale and progress to date. Drugs 2012; 72:1313-33. [PMID: 22731961 DOI: 10.2165/11633130-000000000-00000] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a severe, debilitating medical illness that affects millions of individuals worldwide. The young age of onset and chronicity of the disorder has a significant impact on the long-term disability that affected individuals face. Most existing treatments have focused on the 'monoamine hypothesis' for rational design of compounds. However, patients continue to experience low remission rates, residual subsyndromal symptoms, relapses and overall functional impairment. In this context, growing evidence suggests that the glutamatergic system is uniquely central to the neurobiology and treatment of MDD. Here, we review data supporting the involvement of the glutamatergic system in the pathophysiology of MDD, and discuss the efficacy of glutamatergic agents as novel therapeutics. Preliminary clinical evidence has been promising, particularly with regard to the N-methyl-D-aspartate (NMDA) antagonist ketamine as a 'proof-of-concept' agent. The review also highlights potential molecular and inflammatory mechanisms that may contribute to the rapid antidepressant response seen with ketamine. Because existing pharmacological treatments for MDD are often insufficient for many patients, the next generation of treatments needs to be more effective, rapid acting and better tolerated than currently available medications. There is extant evidence that the glutamatergic system holds considerable promise for developing the next generation of novel and mechanistically distinct agents for the treatment of MDD.
Collapse
Affiliation(s)
- Daniel C Mathews
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
17
|
Mathews DC, Henter ID, Zarate CA. Targeting the glutamatergic system to treat major depressive disorder: rationale and progress to date. Drugs 2012. [PMID: 22731961 DOI: 10.2165/11633130‐000000000‐00000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Major depressive disorder (MDD) is a severe, debilitating medical illness that affects millions of individuals worldwide. The young age of onset and chronicity of the disorder has a significant impact on the long-term disability that affected individuals face. Most existing treatments have focused on the 'monoamine hypothesis' for rational design of compounds. However, patients continue to experience low remission rates, residual subsyndromal symptoms, relapses and overall functional impairment. In this context, growing evidence suggests that the glutamatergic system is uniquely central to the neurobiology and treatment of MDD. Here, we review data supporting the involvement of the glutamatergic system in the pathophysiology of MDD, and discuss the efficacy of glutamatergic agents as novel therapeutics. Preliminary clinical evidence has been promising, particularly with regard to the N-methyl-D-aspartate (NMDA) antagonist ketamine as a 'proof-of-concept' agent. The review also highlights potential molecular and inflammatory mechanisms that may contribute to the rapid antidepressant response seen with ketamine. Because existing pharmacological treatments for MDD are often insufficient for many patients, the next generation of treatments needs to be more effective, rapid acting and better tolerated than currently available medications. There is extant evidence that the glutamatergic system holds considerable promise for developing the next generation of novel and mechanistically distinct agents for the treatment of MDD.
Collapse
Affiliation(s)
- Daniel C Mathews
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
18
|
Lieberman R, Levine ES, Kranzler HR, Abreu C, Covault J. Pilot study of iPS-derived neural cells to examine biologic effects of alcohol on human neurons in vitro. Alcohol Clin Exp Res 2012; 36:1678-87. [PMID: 22486492 DOI: 10.1111/j.1530-0277.2012.01792.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/31/2012] [Indexed: 01/06/2023]
Abstract
BACKGROUND Studies of the effects of alcohol on N-methyl-d-aspartate (NMDA) receptor function and gene expression have depended on rodent or postmortem human brain models. Ideally, the effects of alcohol might better be examined in living neural tissue derived from human subjects. In this study, we used new technologies to reprogram human subject-specific tissue into pluripotent cell colonies and generate human neural cultures as a model system to examine the molecular actions of alcohol. METHODS Induced pluripotent stem (iPS) cells were generated from skin biopsies taken from 7 individuals, 4 alcohol-dependent subjects, and 3 social drinkers. We differentiated the iPS cells into neural cultures and characterized them by immunocytochemistry using antibodies for the neuronal marker beta-III tubulin, glial marker s100β, and synaptic marker synpasin-1. Electrophysiology was performed to characterize the iPS-derived neurons and to measure the effects of acute alcohol exposure on the NMDA receptor response in chronically alcohol exposed and nonexposed neural cultures from 1 nonalcoholic. Finally, we examined changes in mRNA expression of the NMDA receptor subunit genes GRIN1, GRIN2A, GRIN2B, and GRIN2D after 7 days of alcohol exposure and after 24-hour withdrawal from chronic alcohol exposure. RESULTS Immunocytochemistry revealed positive staining for neuronal, glial, and synaptic markers. iPS-derived neurons displayed spontaneous electrical properties and functional ionotropic receptors. Acute alcohol exposure significantly attenuated the NMDA response, an effect that was not observed after 7 days of chronic alcohol exposure. After 7 days of chronic alcohol exposure, there were significant increases in mRNA expression of GRIN1, GRIN2A, and GRIN2D in cultures derived from alcoholic subjects but not in cultures derived from nonalcoholics. CONCLUSIONS These findings support the potential utility of human iPS-derived neural cultures as in vitro models to examine the molecular actions of alcohol on human neural cells.
Collapse
Affiliation(s)
- Richard Lieberman
- Graduate Program in Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-1410, USA
| | | | | | | | | |
Collapse
|
19
|
Idrus NM, McGough NN, Spinetta MJ, Thomas JD, Riley EP. The effects of a single memantine treatment on behavioral alterations associated with binge alcohol exposure in neonatal rats. Neurotoxicol Teratol 2011; 33:444-50. [PMID: 21565269 PMCID: PMC3144286 DOI: 10.1016/j.ntt.2011.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 01/09/2023]
Abstract
BACKGROUND The third trimester in human fetal development represents a critical time of brain maturation referred to as the "brain growth spurt". This period occurs in rats postnatally, and exposure to ethanol during this time can increase the risk of impairments on a variety of cognitive and motor tasks. It has been proposed that one potential mechanism for the teratogenic effects of ethanol is NMDA receptor-mediated excitotoxicity during periods of ethanol withdrawal. In neonatal rats, antagonism of NMDA receptors during ethanol withdrawal, with drugs such as MK-801 and eliprodil, has been shown to mitigate some of the behavioral deficits induced by developmental ethanol exposure. The current study examined whether memantine, an NMDA receptor antagonist and a drug used clinically in Alzheimer's patients, would attenuate impairments associated with binge ethanol exposure in neonatal rats. METHODS On postnatal day 6, rats were exposed to 6 g/kg ethanol via intubation with controls receiving an isocaloric maltose dextrin solution. Twenty-one hours following the ethanol binge, rats received intraperitoneal injections of memantine at 0, 10, 15, or 20 mg/kg. Ethanol's teratogenic effects were assessed using multiple behavioral tasks: open field activity, parallel bars and spatial discrimination reversal learning. RESULTS Ethanol-treated rats were overactive in the open field and were impaired on both reversal learning and motor performance. Administration of 15 or 20 mg/kg memantine during withdrawal significantly attenuated ethanol's adverse effects on motor coordination, but did not significantly alter activity levels or improve the spatial learning deficits associated with neonatal alcohol exposure. CONCLUSION These results indicate that a single memantine administration during ethanol withdrawal can mitigate motor impairments but not spatial learning impairments or overactivity observed following a binge ethanol exposure during development in the rat.
Collapse
Affiliation(s)
- Nirelia M. Idrus
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Ct., Ste 100, San Diego, CA 92120, USA
| | - Nancy N.H. McGough
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Ct., Ste 100, San Diego, CA 92120, USA
| | - Michael J. Spinetta
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Ct., Ste 100, San Diego, CA 92120, USA
| | - Jennifer D. Thomas
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Ct., Ste 100, San Diego, CA 92120, USA
| | - Edward P. Riley
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Ct., Ste 100, San Diego, CA 92120, USA
| |
Collapse
|
20
|
Idrus NM, McGough NNH, Riley EP, Thomas JD. Administration of memantine during ethanol withdrawal in neonatal rats: effects on long-term ethanol-induced motor incoordination and cerebellar Purkinje cell loss. Alcohol Clin Exp Res 2011; 35:355-64. [PMID: 21070252 PMCID: PMC3743721 DOI: 10.1111/j.1530-0277.2010.01351.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Alcohol consumption during pregnancy can damage the developing fetus, illustrated by central nervous system dysfunction and deficits in motor and cognitive abilities. Binge drinking has been associated with an increased risk of fetal alcohol spectrum disorders, likely due to increased episodes of ethanol withdrawal. We hypothesized that overactivity of the N-methyl-D-aspartate (NMDA) receptor during ethanol withdrawal leads to excitotoxic cell death in the developing brain. Consistent with this, administration of NMDA receptor antagonists (e.g., MK-801) during withdrawal can attenuate ethanol's teratogenic effects. The aim of this study was to determine whether administration of memantine, an NMDA receptor antagonist, during ethanol withdrawal could effectively attenuate ethanol-related deficits, without the adverse side effects associated with other NMDA receptor antagonists. METHODS Sprague-Dawley pups were exposed to 6.0 g/kg ethanol or isocaloric maltose solution via intubation on postnatal day 6, a period of brain development equivalent to a portion of the 3rd trimester. Twenty-four and 36 hours after ethanol, subjects were injected with 0, 10, or 15 mg/kg memantine, totaling doses of 0, 20, or 30 mg/kg. Motor coordination was tested on a parallel bar task and the total number of cerebellar Purkinje cells was estimated using unbiased stereology. RESULTS Alcohol exposure induced significant parallel bar motor incoordination and reduced Purkinje cell number. Memantine administration significantly attenuated both ethanol-associated motor deficits and cerebellar cell loss in a dose-dependent manner. CONCLUSIONS Memantine was neuroprotective when administered during ethanol withdrawal. These data provide further support that ethanol withdrawal contributes to fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Nirelia M Idrus
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, California 92120, USA
| | | | | | | |
Collapse
|
21
|
Lei Y, Tejani-Butt SM. N-methyl-d-aspartic acid receptors are altered by stress and alcohol in Wistar-Kyoto rat brain. Neuroscience 2010; 169:125-31. [PMID: 20466039 PMCID: PMC2900440 DOI: 10.1016/j.neuroscience.2010.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 04/27/2010] [Accepted: 05/01/2010] [Indexed: 11/23/2022]
Abstract
Previous studies have shown that the Wistar-Kyoto (WKY) rat strain is more sensitive to stressors and consumes significant quantities of alcohol under basal as well as stressful conditions when compared to other strains. Given that the glutamate neurotransmitter system has been implicated in depression and addiction, the goals of the present study were to investigate the effects of stress and stress-alcohol interactions on N-methyl-d-aspartate (NMDA) receptors in the rat brain. Thus this study measured the binding of [(3)H] MK-801 to NMDA receptors in the prefrontal cortex (PFC), caudate putamen (CPu), nucleus accumbens (NAc), hippocampus (HIP) and basolateral amygdala (BLA) in WKY rats in comparison to the Wistar (WIS) rat strain. Our results suggested that while voluntary alcohol consumption did not alter NMDA receptors in the PFC, CPu or NAc in either rat strain, it increased NMDA receptors in the HIP and BLA in both strains. In contrast, chronic stress increased NMDA receptors in the PFC, CPu, NAc in WKY rats but not in WIS rats. Chronic stress also decreased NMDA receptors in the HIP and increased NMDA receptors in the BLA in both strains. Alcohol co-treatment with stress increased NMDA receptors in the PFC, CPu and NAc in WKY rats but not in WIS rats. Interestingly, while alcohol co-treatment did not reverse stress induced decreases in NMDA receptors in the HIP, it reduced the binding of NMDA receptors in the BLA to control levels in both strains. Thus it appears that NMDA receptors in the PFC, CPu and NAc may be more sensitive to the effects of stress and could be implicated in the stress-induced alcohol consumption behavior seen in WKY rats. In contrast, NMDA receptors in the HIP and BLA may reflect an adaptive response and may not be responsible for the stress susceptible phenotype of the WKY rat strain.
Collapse
Affiliation(s)
- Yanlin Lei
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Shanaz M. Tejani-Butt
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
22
|
Rammes G, Danysz W, Parsons CG. Pharmacodynamics of memantine: an update. Curr Neuropharmacol 2010; 6:55-78. [PMID: 19305788 PMCID: PMC2645549 DOI: 10.2174/157015908783769671] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/10/2007] [Accepted: 11/05/2007] [Indexed: 01/12/2023] Open
Abstract
Memantine received marketing authorization from the European Agency for the Evaluation of Medicinal Products (EMEA) for the treatment of moderately severe to severe Alzheimer s disease (AD) in Europe on 17(th) May 2002 and shortly thereafter was also approved by the FDA for use in the same indication in the USA. Memantine is a moderate affinity, uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist with strong voltage-dependency and fast kinetics. Due to this mechanism of action (MOA), there is a wealth of other possible therapeutic indications for memantine and numerous preclinical data in animal models support this assumption. This review is intended to provide an update on preclinical studies on the pharmacodynamics of memantine, with an additional focus on animal models of diseases aside from the approved indication. For most studies prior to 1999, the reader is referred to a previous review [196].In general, since 1999, considerable additional preclinical evidence has accumulated supporting the use of memantine in AD (both symptomatic and neuroprotective). In addition, there has been further confirmation of the MOA of memantine as an uncompetitive NMDA receptor antagonist and essentially no data contradicting our understanding of the benign side effect profile of memantine.
Collapse
Affiliation(s)
- G Rammes
- Clinical Neuropharmacology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | | |
Collapse
|
23
|
Collins MA, Neafsey EJ, Wang K, Achille NJ, Mitchell RM, Sivaswamy S. Moderate ethanol preconditioning of rat brain cultures engenders neuroprotection against dementia-inducing neuroinflammatory proteins: possible signaling mechanisms. Mol Neurobiol 2010; 41:420-5. [PMID: 20422315 PMCID: PMC2908405 DOI: 10.1007/s12035-010-8138-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/12/2010] [Indexed: 12/18/2022]
Abstract
There is no question that chronic alcohol (ethanol) abuse, a leading worldwide problem, causes neuronal dysfunction and brain damage. However, various epidemiologic studies in recent years have indicated that in comparisons with abstainers or never-drinkers, light/moderate alcohol consumers have lower risks of age-dependent cognitive decline and/or dementia, including Alzheimer's disease (AD). Such reduced risks have been variously attributed to favorable circulatory and/or cerebrovascular effects of moderate ethanol intake, but they could also involve ethanol "preconditioning" phenomena in brain glia and neurons. Here we summarize our experimental studies showing that moderate ethanol preconditioning (MEP; 20-30 mM ethanol) of rat brain cultures prevents neurodegeneration due to beta-amyloid, an important protein implicated in AD, and to other neuroinflammatory proteins such as gp120, the human immunodeficiency virus 1 envelope protein linked to AIDS dementia. The MEP neuroprotection is associated with suppression of neurotoxic protein-evoked initial increases in [Ca(+2)](i) and proinflammatory mediators--e.g., superoxide anion, arachidonic acid, and glutamate. Applying a sensor --> transducer --> effector model to MEP, we find that onset of neuroprotection correlates temporally with elevations in "effector" heat shock proteins (HSP70, HSP27, and phospho-HSP27). The effector status of HSPs is supported by the fact that inhibiting HSP elevations due to MEP largely restores gp120-induced superoxide potentiation and subsequent neurotoxicity. As upstream mediators, synaptic N-methyl-d-aspartate receptors may be initial prosurvival sensors of ethanol, and protein kinase C epsilon and focal adhesion kinase are likely transducers during MEP that are essential for protective HSP elevations. Regarding human consumption, we speculate that moderate ethanol intake might counter incipient cognitive deterioration during advanced aging or AD by exerting preconditioning-like suppression of ongoing neuroinflammation related to amyloidogenic protein accumulation.
Collapse
Affiliation(s)
- Michael A Collins
- Biochemistry Division, Department of Pharmacology, Loyola University Medical School, Maywood, IL 60153, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Min JA, Kim DJ, Lee CU. Alcohol and brain health: from mechanisms to interventions. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2010. [DOI: 10.5124/jkma.2010.53.12.1115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jung-Ah Min
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, Korea
| | - Chang-Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea School of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Mitchell RM, Neafsey EJ, Collins MA. Essential involvement of the NMDA receptor in ethanol preconditioning-dependent neuroprotection from amyloid-betain vitro. J Neurochem 2009; 111:580-8. [PMID: 19694907 PMCID: PMC2908385 DOI: 10.1111/j.1471-4159.2009.06351.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In several epidemiological studies, moderate ethanol consumption has been associated with reduced risks of cognitive decline or Alzheimer's dementia. Of potential relevance is that brain cultures preconditioned with moderate ethanol concentrations are resistant to neurotoxic Alzheimer's amyloid-beta (Abeta) peptides. Using rat cerebellar mixed cultures we investigated whether certain membrane receptors were early 'sensors' in moderate ethanol preconditioning (MEP). In a 6-day MEP protocol (30 mM ethanol), neuroprotection from Abeta25-35 was undiminished by antagonism during the first 3 days of either adenosine A(1) or Galpha(i/o) protein-coupled receptors. However, similar cotreatment with memantine or DL-2-amino-5-phosphono-pentanoic acid (AP-5), antagonists of NMDA receptors (NMDAR), abolished neuroprotection, indicating key early involvement of this ionotropic glutamate receptor. Also in these cultures, directly activating NMDAR using subexcitotoxic NMDA preconditioning prevented Abeta neurotoxicity. By day 2 of MEP, we observed increased levels of NMDAR subunits NR1, NR2B, and NR2C that persisted through day 6. Interestingly, memantine co-exposure blocked elevations in the obligatory NR1 subunit. Furthermore, 2 days of MEP significantly increased two indicators of synaptic NMDAR localization, NR2B phospho-Tyr1472, and post-synaptic density 95 scaffolding protein. The results indicate that ethanol preconditioning-dependent neuroprotection is associated with early increases in NR subunits concomitant with enhancement of synaptic localization and activity of NMDAR.
Collapse
Affiliation(s)
- Robert M Mitchell
- Department of Pharmacology, Division of Biochemistry, Loyola University Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
26
|
N-methyl-d-aspartate 2b receptor subtype (NR2B) promoter methylation in patients during alcohol withdrawal. J Neural Transm (Vienna) 2009; 116:615-22. [DOI: 10.1007/s00702-009-0212-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
|
27
|
Memantine Reduces Craving for Alcohol in Alcohol-induced Dementia. ADDICTIVE DISORDERS & THEIR TREATMENT 2009. [DOI: 10.1097/adt.0b013e31815827be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
The effect of 12-week open-label memantine treatment on cognitive function improvement in patients with alcohol-related dementia. Int J Neuropsychopharmacol 2008; 11:971-83. [PMID: 18346293 DOI: 10.1017/s1461145708008663] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
There is compelling evidence that alcohol-induced neurotoxicity is related to glutamate excitotoxicity. It was hypothesized that the low-affinity NMDA receptor antagonist memantine would improve the cognitive function of patients with alcoholic dementia. The aim of this study was to test this hypothesis and to evaluate the effect of memantine on the cognitive improvement of patients with alcohol-related dementia (ARD). The study was designed as a 12-wk open-label study investigating the efficacy of 20 mg memantine, a low-affinity NMDA receptor antagonist, as a treatment for cognitive and behavioural problems in 19 patients with probable ARD according to the criteria for ARD proposed by Oslin and colleagues. The CERAD-K (Consortium to Establish a Registry for Alzheimer's Disease - Korean version) and several clinical assessment scales were completed before and after the 12-wk memantine treatment period. Significant improvements in the mean scores from baseline to final assessment were observed in the Global Deterioration Scale (p<0.05), Brief Psychiatric Rating Scale (p<0.01), Geriatric Quality of Life - Dementia scale (p<0.01) and Neuropsychiatric Inventory (p<0.01) at the end of week 12. The CERAD-K subscales of word list recall (p<0.05), word list recognition (p<0.05), time orientation (p<0.01), drawing an interlocking pentagon (p<0.05), and the total MMSE-K (Mini Mental State Examination - Korean version) scores (p<0.01) of the patients all showed significant improvement following the memantine trial. In this open-label study, patients with ARD treated with 20 mg/d memantine for 12 wk showed improvement on global cognition, quality of life and behavioural symptoms. The result of this study suggests the possible usefulness of memantine for the treatment of ARD. As this was an open-label study, the possibility that participants improved cognitively on their own due to protracted abstinence from alcohol cannot be discounted.
Collapse
|
29
|
Muhonen LH, Lahti J, Sinclair D, Lönnqvist J, Alho H. Treatment of alcohol dependence in patients with co-morbid major depressive disorder--predictors for the outcomes with memantine and escitalopram medication. SUBSTANCE ABUSE TREATMENT PREVENTION AND POLICY 2008; 3:20. [PMID: 18834506 PMCID: PMC2569922 DOI: 10.1186/1747-597x-3-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 10/03/2008] [Indexed: 11/10/2022]
Abstract
Background Alcohol dependence comorbid with major depressive disorder poses a major challenge in the clinical setting. The results in the treatment with selective serotonin re-uptake inhibitors have been conflicting. Thus, we compared in alcohol-dependent patients with co-morbid major depressive disorder the selective serotonin re-uptake inhibitor escitalopram to a compound that acts on different transporter system and may reduce craving, the glutamate receptor antagonist memantine. Methods Eighty alcohol-dependent patients comorbid with major depressive disorder in municipal alcohol clinics were randomized 1:1 to receive memantine 20 mg or escitalopram 20 mg in a double-blind manner. During the 26-week study period patients continued their routine treatment at the clinics. Abstinence was not required but encouraged. The patients attended visits weekly during the first month, and then at 3 and at 6 months. Outcome measures were Alcohol Use Disorders Identification Test (AUDIT), Obsessive Compulsive Drinking Scale (OCDS) and Drinking Diary. Results The completion rate was high in both groups, especially among the patients who had been abstinent at the beginning of the study. However, among those patients who were not abstinent at baseline, 47% in both groups discontinued the study. Numbers of abstinent days were high in both groups throughout the study. Alcohol consumption measured by the AUDIT QF (quantity-frequency) score was significantly reduced in both groups, as was the craving for alcohol measured by the OCDS. Early age at first alcohol intoxication predicted poor treatment outcomes in patients treated with escitalopram, and the same was seen with the early onset of the first depressive episode. The same predictive effects were not found in patients treated with memantine. Conclusion Our results indicate that both memantine and escitalopram are useful adjunct medications for the treatment of alcohol dependence co-morbid with major depression. Memantine was at least as effective with regard to drinking as escitalopram. We believe that a direct comparison of memantine, with the commonly used escitalopram, can provide useful information for clinicians on the treatment of alcohol dependency co-morbid with MDD. Trial registration ClinicalTrials.gov Identifier # NCT00368862
Collapse
Affiliation(s)
- Leea H Muhonen
- National Public Health Institute, Department of Mental Health and Alcohol Research, Finland.
| | | | | | | | | |
Collapse
|
30
|
Nagy J. Alcohol related changes in regulation of NMDA receptor functions. Curr Neuropharmacol 2008; 6:39-54. [PMID: 19305787 PMCID: PMC2645546 DOI: 10.2174/157015908783769662] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/19/2007] [Accepted: 10/20/2007] [Indexed: 12/25/2022] Open
Abstract
Long-term alcohol exposure may lead to development of alcohol dependence in consequence of altered neurotransmitter functions. Accumulating evidence suggests that the N-methyl-D-aspartate (NMDA) type of glutamate receptors is a particularly important site of ethanol's action. Several studies showed that ethanol potently inhibits NMDA receptors (NMDARs) and prolonged ethanol exposition leads to a compensatory "up-regulation" of NMDAR mediated functions. Therefore, alterations in NMDAR function are supposed to contribute to the development of ethanol tolerance, dependence as well as to the acute and late signs of ethanol withdrawal.A number of publications report alterations in the expression and phosphorylation states of NMDAR subunits, in their interaction with scaffolding proteins or other receptors in consequence of chronic ethanol treatment. Our knowledge on the regulatory processes, which modulate NMDAR functions including factors altering transcription, protein expression and post-translational modifications of NMDAR subunits, as well as those influencing their interactions with different regulatory proteins or other downstream signaling elements are incessantly increasing. The aim of this review is to summarize the complex chain of events supposedly playing a role in the up-regulation of NMDAR functions in consequence of chronic ethanol exposure.
Collapse
Affiliation(s)
- József Nagy
- Gedeon Richter Plc., Pharmacological and Drug Safety Research, Laboratory for Molecular Cell Biology, Budapest 10. P.O. Box 27, H-1475 Hungary.
| |
Collapse
|
31
|
Smith KJ, Butler TR, Self RL, Braden BB, Prendergast MA. Potentiation of N-methyl-D-aspartate receptor-mediated neuronal injury during methamphetamine withdrawal in vitro requires co-activation of IP3 receptors. Brain Res 2008; 1187:67-73. [PMID: 18021755 PMCID: PMC2184481 DOI: 10.1016/j.brainres.2007.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/03/2007] [Accepted: 10/08/2007] [Indexed: 11/29/2022]
Abstract
Recent findings suggest that methamphetamine (METH) functions acutely to inhibit N-methyl-d-aspartate (NMDA) receptor function. Protracted withdrawal from METH exposure may increase the sensitivity of NMDA receptors to agonist exposure, promoting neuronal excitability. However, the relevance of METH effects on NMDA receptor activity with regard to neuronal viability has not been fully studied. The present studies examined the effects of protracted METH exposure (6 or 7 days; 1.0-100 microM) and withdrawal (1 or 7 days) on NMDA receptor-dependent neurotoxicity, determined with use of the non-vital fluorescent marker propidium iodide, in organotypic slice cultures of male and female rats. Prolonged exposure to METH (100 microM) produced only modest toxicity in the granule cell layer of the dentate gyrus. Withdrawal from METH exposure (1 or 7 days) did not produce overt neuronal injury in any region of slice cultures. Exposure to NMDA (5 microM) produced marked neurotoxicity in the CA1 pyramidal cell layer. Neither co-exposure to METH nor 1 day of METH withdrawal in combination with NMDA exposure altered NMDA-induced neurotoxicity. In contrast, protracted withdrawal from METH exposure (7 days) was associated with a marked (approximately 400%) increase in NMDA-induced neurotoxicity in CA1 region pyramidal cells. This potentiation of neurotoxicity was prevented by co-exposure to the selective NMDA receptor antagonist 5-2-amino-5-phosphonovaleric acid (20 microM) and was markedly attenuated by co-exposure of slices to xestospongin C (1 microM), an antagonist of IP(3) receptors. The results of the present studies suggest that long-term METH withdrawal functionally sensitizes the NMDA receptor to agonist exposure and requires the co-activation of NMDA and IP(3) receptors.
Collapse
Affiliation(s)
- Katherine J. Smith
- University of Kentucky, Department of Psychology, B449 Biomedical and Biological Sciences Building, 741 South Limestone St., Lexington, KY 40536-0509
| | - Tracy R. Butler
- University of Kentucky, Department of Psychology, B449 Biomedical and Biological Sciences Building, 741 South Limestone St., Lexington, KY 40536-0509
| | - Rachel L. Self
- University of Kentucky, Department of Psychology, B449 Biomedical and Biological Sciences Building, 741 South Limestone St., Lexington, KY 40536-0509
| | - Brittany B. Braden
- University of Kentucky, Department of Psychology, B449 Biomedical and Biological Sciences Building, 741 South Limestone St., Lexington, KY 40536-0509
| | - Mark A. Prendergast
- University of Kentucky, Department of Psychology, B449 Biomedical and Biological Sciences Building, 741 South Limestone St., Lexington, KY 40536-0509
| |
Collapse
|
32
|
The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. Curr Psychiatry Rep 2007; 9:467-74. [PMID: 18221626 DOI: 10.1007/s11920-007-0063-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this article, we first review a study showing that the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine leads to rapid, robust, and relatively sustained antidepressant effects in patients with treatment-resistant major depression. We then discuss our hypothesis that the therapeutic effects of monoaminergic antidepressants and ketamine may be mediated by increased AMPA-to-NMDA glutamate receptor throughput in critical neuronal circuits. We hypothesize that ketamine directly mediates this throughput, whereas monoaminergic antidepressants work indirectly and gradually; this may explain, in part, the lag of onset of several weeks to months that is observed with traditional antidepressants.
Collapse
|
33
|
Biermann T, Bönsch D, Reulbach U, Kornhuber J, Bleich S. Dopamine and N-methyl-D-aspartate receptor expression in peripheral blood of patients undergoing alcohol withdrawal. J Neural Transm (Vienna) 2007; 114:1081-4. [PMID: 17370105 DOI: 10.1007/s00702-007-0661-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 02/09/2007] [Indexed: 12/01/2022]
Abstract
The aim of the present pilot study was to explore whether a change in cerebral receptors can be demonstrated in human peripheral blood lymphocytes during alcohol withdrawal. Dopamine (D1 and D2) and NMDA (1 and 2B) receptor expressions of 14 male patients suffering from alcohol-dependency were assessed through quantitative RT-PCR. A significant difference in D1 receptor expression (T = 2.361; p = 0.035) in terms of up-regulation could be shown, though there were no significant changes concerning D2, NMDA1 or NMDA2B receptor expression.
Collapse
Affiliation(s)
- T Biermann
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
| | | | | | | | | |
Collapse
|
34
|
Bleich S, Bayerlein K, Hillemacher T, Degner D, Kornhuber J, Frieling H. An assessment of the potential value of elevated homocysteine in predicting alcohol-withdrawal seizures. Epilepsia 2006; 47:934-8. [PMID: 16686660 DOI: 10.1111/j.1528-1167.2006.00560.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE Higher homocysteine levels were found in actively drinking patients with alcohol dependence. Recent studies have shown that high homocysteine levels are associated with alcohol-withdrawal seizures. The aim of the present study was to calculate the best predictive cutoff value of plasma homocysteine levels in actively drinking alcoholics (n = 88) with first-onset alcohol-withdrawal seizures. METHODS The present study included 88 alcohol-dependent patients of whom 18 patients had a first-onset withdrawal seizure. All patients were active drinkers and had an established diagnosis of alcohol dependence, according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Sensitivity and specificity were calculated by using every homocysteine plasma level found in the study population as cut-off value. A Bayes theorem was used to calculate positive (PPV) and negative (NPV) predictive values for all cutoff values used. RESULTS The highest combined sensitivity and specificity was reached at a homocysteine plasma cutoff value of 23.9 microM. Positive predictive values ranged from 0.23 to 0.745; the maximum was reached at a homocysteine plasma level of 41.7 microM. Negative predictive values ranged from 0.50 to 0.935, with a maximum at a homocysteine plasma level of 15.8 microM. CONCLUSIONS Homocysteine levels above this cutoff value on admission are a useful screening tool to identify actively drinking patients at higher risk of alcohol-withdrawal seizures. This pilot study gives further hints that biologic markers may be helpful to predict patients at risk for first-onset alcohol-withdrawal seizures.
Collapse
Affiliation(s)
- Stefan Bleich
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Our current psychopharmacological treatments for anxiety disorders evince a number of shortcomings, including troublesome side effects and lack of primary effects. Whereas many new drugs have been developed in the past few decades, most are based on outmoded theories of the pathogenesis of these disorders (i.e., monoamine hypotheses), thus frustrating our ability to create more specific and effective interventions. Recently, however, the neurobiological literature has shown a convergence of findings focusing on the glutamatergic system in anxiety disorders, and the growth of pharmacological tools targeting these receptors has led to the development of novel treatments having anxiolytic effects in humans and animals alike. Additionally, as this system is showing promise as a final common pathway in the pathogenesis of anxiety disorders, we may be able to employ glutamate-specific neuroimaging techniques (e.g., N-acetyl-aspartate, GLX) to both guide treatment decisions and present reliable objective biomarkers for treatment efficacy.
Collapse
Affiliation(s)
- Asher B Simon
- Mount Sinai School of Medicine, Department of Psychiatry, Laboratory of Clinical Psychobiology, New York, New York 10029, USA.
| | | |
Collapse
|