1
|
Lee J, Yin D, Yun J, Kim M, Kim SW, Hwang H, Park JE, Lee B, Lee CJ, Shin HS, An HJ. Deciphering mouse brain spatial diversity via glyco-lipidomic mapping. Nat Commun 2024; 15:8689. [PMID: 39375371 PMCID: PMC11458762 DOI: 10.1038/s41467-024-53032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Gangliosides in the brain play a crucial role in modulating the integrity of vertebrate central nervous system in a region-specific manner. However, to date, a comprehensive structural elucidation of complex intact ganglioside isomers has not been achieved, resulting in the elusiveness into related molecular mechanism. Here, we present a glycolipidomic approach for isomer-specific and brain region-specific profiling of the mouse brain. Considerable region-specificity and commonality in specific group of regions are highlighted. Notably, we observe a similarity in the abundance of major isomers, GD1a and GD1b, within certain regions, which provides significant biological implications with interpretation through the lens of a theoretical retrosynthetic state-transition network. Furthermore, A glycocentric-omics approaches using gangliosides and N-glycans reveal a remarkable convergence in spatial dynamics, providing valuable insight into molecular interaction network. Collectively, this study uncovers the spatial dynamics of intact glyco-conjugates in the brain, which are relevant to regional function and accelerates the discovery of potential therapeutic targets for brain diseases.
Collapse
Affiliation(s)
- Jua Lee
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Dongtan Yin
- Graduate School of Analytical Science & Technology, Chungnam National University, 34134, Daejeon, South Korea
- Asia-Pacific Glycomics Reference Site, 34134, Daejeon, South Korea
| | - Jaekyung Yun
- Graduate School of Analytical Science & Technology, Chungnam National University, 34134, Daejeon, South Korea
- Asia-Pacific Glycomics Reference Site, 34134, Daejeon, South Korea
| | - Minsoo Kim
- Center for Cognition and Sociality, Institute for Basic Science, 34051, Daejeon, South Korea
| | - Seong-Wook Kim
- Center for Cognition and Sociality, Institute for Basic Science, 34051, Daejeon, South Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 28119, Cheongju, South Korea
| | - Ji Eun Park
- Graduate School of Analytical Science & Technology, Chungnam National University, 34134, Daejeon, South Korea
- Asia-Pacific Glycomics Reference Site, 34134, Daejeon, South Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, 34051, Daejeon, South Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, 34051, Daejeon, South Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science, 34051, Daejeon, South Korea
| | - Hyun Joo An
- Graduate School of Analytical Science & Technology, Chungnam National University, 34134, Daejeon, South Korea.
- Asia-Pacific Glycomics Reference Site, 34134, Daejeon, South Korea.
| |
Collapse
|
2
|
Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci 2023; 24:ijms24119558. [PMID: 37298512 DOI: 10.3390/ijms24119558] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023] Open
Abstract
GM1 is one of the major glycosphingolipids (GSLs) on the cell surface in the central nervous system (CNS). Its expression level, distribution pattern, and lipid composition are dependent upon cell and tissue type, developmental stage, and disease state, which suggests a potentially broad spectrum of functions of GM1 in various neurological and neuropathological processes. The major focus of this review is the roles that GM1 plays in the development and activities of brains, such as cell differentiation, neuritogenesis, neuroregeneration, signal transducing, memory, and cognition, as well as the molecular basis and mechanisms for these functions. Overall, GM1 is protective for the CNS. Additionally, this review has also examined the relationships between GM1 and neurological disorders, such as Alzheimer's disease, Parkinson's disease, GM1 gangliosidosis, Huntington's disease, epilepsy and seizure, amyotrophic lateral sclerosis, depression, alcohol dependence, etc., and the functional roles and therapeutic applications of GM1 in these disorders. Finally, current obstacles that hinder more in-depth investigations and understanding of GM1 and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Yu H, Zhang L, Yang X, Bai Y, Chen X. Process Engineering and Glycosyltransferase Improvement for Short Route Chemoenzymatic Total Synthesis of GM1 Gangliosides. Chemistry 2023; 29:e202300005. [PMID: 36596720 PMCID: PMC10159885 DOI: 10.1002/chem.202300005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Large-scale synthesis of GM1, an important ganglioside in mammalian cells especially those in the nervous system, is needed to explore its therapeutic potential. Biocatalytic production is a promising platform for such a purpose. We report herein the development of process engineering and glycosyltransferase improvement strategies to advance chemoenzymatic total synthesis of GM1. Firstly, a new short route was developed for chemical synthesis of lactosylsphingosine from the commercially available Garner's aldehyde. Secondly, two glycosyltransferases including Campylobacter jejuni β1-4GalNAcT (CjCgtA) and β1-3-galactosyltransferase (CjCgtB) were improved on their soluble expression in E. coli and enzyme stability by fusing with an N-terminal maltose binding protein (MBP). Thirdly, the process for enzymatic synthesis of GM1 sphingosines from lactosylsphingosine was engineered by developing a multistep one-pot multienzyme (MSOPME) strategy without isolating intermediate glycosphingosines and by adding a detergent, sodium cholate, to the later enzymatic glycosylation steps. Installation of a desired fatty acyl chain to GM1 glycosphingosines led to the formation of target GM1 gangliosides. The combination of glycosyltransferase improvement with chemical and enzymatic process engineering represents a significant advance in obtaining GM1 gangliosides containing different sialic acid forms by total chemoenzymatic synthesis in a short route and with high efficiency.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Libo Zhang
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Xiaohong Yang
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Yuanyuan Bai
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
4
|
Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res 2022; 86:101162. [DOI: 10.1016/j.plipres.2022.101162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
5
|
Hong JM, Jeon H, Choi YC, Cho H, Hong YB, Park HJ. A Compound Heterozygous Pathogenic Variant in B4GALNT1 Is Associated With Axonal Charcot-Marie-Tooth Disease. J Clin Neurol 2021; 17:534-540. [PMID: 34595861 PMCID: PMC8490901 DOI: 10.3988/jcn.2021.17.4.534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose Pathogenic variants in B4GALNT1 have been reported to cause hereditary spastic paraplegia 26. This study has revealed that a novel compound heterozygous pathogenic variant in B4GALNT1 is associated with axonal Charcot-Marie-Tooth disease (CMT). Methods Whole-exome sequencing (WES) was used to identify the causative factors and characterize the clinical features of a Korean family with sensorimotor polyneuropathy. Functional assessment of the mutant genes was performed using a motor neuron cell line. Results The WES revealed a compound heterozygous pathogenic variant (c.128dupC and c.451G>A) in B4GALNT1 as the causative of the present patient, a 53-year-old male who presented with axonal sensorimotor polyneuropathy and cognitive impairment without spasticity. The electrodiagnostic study showed axonal sensorimotor polyneuropathy. B4GALNT1 was critical to the proliferation of motor neuron cells. The compensation assay revealed that the pathogenic variants might affect the enzymatic activity of B4GALNT1. Conclusions This study is the first to identify a case of autosomal recessive axonal CMT associated with a compound heterozygous pathogenic variant in B4GALNT1. This finding expands the clinical and genetic spectra of peripheral neuropathy.
Collapse
Affiliation(s)
- Ji Man Hong
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Hyeonjin Jeon
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Korea.,Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Korea
| | - Young Chul Choi
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Korea.,Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Korea.
| | - Hyung Jun Park
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Liu X, Zhang Y, Wang Y, Qian T. Inflammatory Response to Spinal Cord Injury and Its Treatment. World Neurosurg 2021; 155:19-31. [PMID: 34375779 DOI: 10.1016/j.wneu.2021.07.148] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 01/14/2023]
Abstract
Spinal cord injury (SCI), as one of the intractable diseases in clinical medicine, affects thousands of human beings, and the pathologic changes after injury have been a hot spot for exploration in clinical medicine. With the development of new treatments, the survival of patients has shown an increasing trend; however, the inflammatory response after injury has not yet been effectively controlled. SCI is divided into primary injury and secondary injury according to the time of injury and pathophysiologic changes. Primary injury occurs immediately and the damage to the injury site is irreversible; however, secondary injury occurs after primary injury and involves pathologic changes at the cellular and molecular levels, which are reversible. Thus, the inflammatory response from secondary injuries has become the main direction of research. In recent years, a complex pathophysiologic mechanism has gradually been unveiled, which has been followed by an upgrade of treatment methods. This article describes the mechanisms of the inflammatory response after SCI and the mainstream treatment modalities. Also, neuroprotective agents and nerve regeneration agent agents are commonly used in the treatment of SCI; the therapeutic mechanism and classification of these agents are reviewed.
Collapse
Affiliation(s)
- Xiangyu Liu
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Yiwen Zhang
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Yitong Wang
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China
| | - Taibao Qian
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.
| |
Collapse
|
7
|
Yin Y, Wang J, Yang M, Du R, Pontrelli G, McGinty S, Wang G, Yin T, Wang Y. Penetration of the blood-brain barrier and the anti-tumour effect of a novel PLGA-lysoGM1/DOX micelle drug delivery system. NANOSCALE 2020; 12:2946-2960. [PMID: 31994576 DOI: 10.1039/c9nr08741a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Effective treatment of glioma and other central nervous system (CNS) diseases is hindered by the presence of the blood-brain barrier (BBB). A novel nano-delivery vehicle system composed of PLGA-lysoGM1/DOX micelles was developed to cross the BBB for CNS treatment. We have shown that doxorubicin (DOX) as a model drug encapsulated in PLGA-lysoGM1 micelles can achieve up to 3.8% loading efficiency and 61.6% encapsulation efficiency by the orthogonal test design. Our in vitro experiments demonstrated that PLGA-lysoGM1/DOX micelles had a slow and sustainable drug release under physiological conditions and exhibited a high cellular uptake through the macropinocytosis and the autophagy/lysosomal pathways. In vivo experimental studies in zebrafish and mice confirmed that PLGA-lysoGM1/DOX micelles could cross the BBB and be specifically accumulated in the brain. Moreover, an excellent anti-glioma effect was observed in intracranial glioma-bearing rats. Therefore, PLGA-lysoGM1/DOX micelles not only effectively can cross the BBB, but our results also suggest that they have great potential for anti-glioma therapy and other central nervous system diseases.
Collapse
Affiliation(s)
- Ying Yin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Jun Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Meng Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Ruolin Du
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Giuseppe Pontrelli
- Istituto per le Applicazioni del Calcolo - CNR, Via dei Taurini 19, 00185 Roma, Italy
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, UK
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Tieying Yin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Yazhou Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China. and Medical School of Chongqing University, Chongqing University, Chongqing 400044, China
| |
Collapse
|
8
|
Stress-Coping Humoral Glycolipids Produced by Mice Given Controlled Bathing Treatments. NEUROSCIENCE JOURNAL 2019; 2019:4972186. [PMID: 31781586 PMCID: PMC6875319 DOI: 10.1155/2019/4972186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/01/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022]
Abstract
Mammalians have recognition-behavioral stress-coping neuronal module system followed by some humoral glycolipids. A sulfated Galbeta1-4GlcNAc-lipid promotes the serotonergic module regulating the emotional behaviors for not-wasting the physical strength; GalNAcalpha1-3GalNAc-lipid promotes the adrenergic module inducing the behaviors escaping from the uneasy situation, and sulfated Fucalpha1-2Gal-lipid protects the cholinergic module keeping the stressor-memory from the ischemia-stress. Mouse given bathing recognizes the stressors to be coped with in the treatment. We previously observed mouse given CO2-microbubble-bathing increased the behavior escaping from the bathing situation. Mouse given CO2-microbubble-bathing would recognize the other stressors to be coped with in the treatment. We examined stress-coping glycolipids produced by mice given controlled bathing treatments, and got the following results. A sulfated Galbeta1-4GlcNAc-lipid production was increased by the acidic bathing condition and the dissolved CO2, GalNAcalpha1-3GalNAc-lipid production was increased by the dissolved CO2, and sulfated Fucalpha1-2Gal-lipid production was increased by the acidic bathing condition. We understood the mice treated with CO2-microbubble-bathing would recognize the acidic bathing condition and the dissolved CO2, but not the microbubble, as the other stressors to be coped.
Collapse
|
9
|
Chen F, Zhou CC, Yang Y, Liu JW, Yan CH. GM1 Ameliorates Lead-Induced Cognitive Deficits and Brain Damage Through Activating the SIRT1/CREB/BDNF Pathway in the Developing Male Rat Hippocampus. Biol Trace Elem Res 2019; 190:425-436. [PMID: 30414004 DOI: 10.1007/s12011-018-1569-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/05/2018] [Indexed: 02/03/2023]
Abstract
Developmental lead (Pb) exposure involves various serious consequences, especially leading to neurotoxicity. In this study, we examined the possible role of monosialoganglioside (GM1) in lead-induced nervous impairment in the developing rat. Newborn male Sprague-Dawley rat pups were exposed to lead from birth for 30 days and then subjected to GM1 administration (0.4, 2, or 10 mg/kg; i.p.) or 0.9% saline. The results showed that developmental lead exposure significantly impaired spatial learning and memory in the Morris water maze test, reduced GM1 content, induced oxidative stress, and weakened the antioxidative systems in the hippocampus. However, co-treatment with GM1 reversed these effects. Moreover, GM1 counteracted lead-induced apoptosis by decreasing the expression of Bax, cleaved caspase-3, and by increasing the level of Bcl-2 in a dose-dependent manner. Furthermore, we found that GM1 upregulated the expression of SIRT1, CREB phosphorylation, and BDNF, which underlie learning and memory in the lead-treated developing rat hippocampus. In conclusion, our study demonstrated that GM1 exerts a protective effect on lead-induced cognitive deficits via antioxidant activity, preventing apoptosis, and activating SIRT1/CREB/BDNF in the developing rat hippocampus, implying a novel potential assistant therapy for lead poisoning.
Collapse
Affiliation(s)
- Fei Chen
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Can-Can Zhou
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Yin Yang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Jian-Wen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chong-Huai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
10
|
Schmitz F, Pierozan P, Biasibetti-Brendler H, Ferreira FS, Dos Santos Petry F, Trindade VMT, Pessoa-Pureur R, Wyse ATS. Methylphenidate disrupts cytoskeletal homeostasis and reduces membrane-associated lipid content in juvenile rat hippocampus. Metab Brain Dis 2018; 33:693-704. [PMID: 29288365 DOI: 10.1007/s11011-017-0177-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/25/2017] [Indexed: 12/16/2022]
Abstract
Although methylphenidate (MPH) is ubiquitously prescribed to children and adolescents, the consequences of chronic utilization of this psychostimulant are poorly understood. In this study, we investigated the effects of MPH on cytoskeletal homeostasis and lipid content in rat hippocampus. Wistar rats received intraperitoneal injections of MPH (2.0 mg/kg) or saline solution (controls), once a day, from the 15th to the 44th day of age. Results showed that MPH provoked hypophosphorylation of glial fibrillary acidic protein (GFAP) and reduced its immunocontent. Middle and high molecular weight neurofilament subunits (NF-M, NF-H) were hypophosphorylated by MPH on KSP repeat tail domains, while NFL, NFM and NFH immunocontents were not altered. MPH increased protein phosphatase 1 (PP1) and 2A (PP2A) immunocontents. MPH also decreased the total content of ganglioside and phospholipid, as well as the main brain gangliosides (GM1, GD1a, and GD1b) and the major brain phospholipids (sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine). Total cholesterol content was also reduced in the hippocampi of juvenile rats treated with MPH. These results provide evidence that disruptions of cytoskeletal and lipid homeostasis in hippocampus of juvenile rats are triggers by chronic MPH treatment and present a new basis for understanding the effects and consequences associated with chronic use of this psychostimulant during the development of the central nervous system.
Collapse
Affiliation(s)
- Felipe Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Pierozan
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Helena Biasibetti-Brendler
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Silva Ferreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Dos Santos Petry
- Laboratório de Bioquímica e Biologia Celular de Lipídios, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vera Maria Treis Trindade
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Bioquímica e Biologia Celular de Lipídios, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Regina Pessoa-Pureur
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório do Citoesqueleto, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
11
|
Lou ZY, Chen W, Xue WZ, Ding JJ, Yang QQ, Wang HL. Dietary intake of magnesium-l-threonate alleviates memory deficits induced by developmental lead exposure in rats. RSC Adv 2017. [DOI: 10.1039/c6ra26959a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Elevation of brain magnesium enhances cognitive capacity.
Collapse
Affiliation(s)
- Zhi-Yi Lou
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Weiheng Chen
- School of Life Sciences
- University of Science and Technology of China
- Hefei
- PR China
| | - Wei-zhen Xue
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Jin-Jun Ding
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Qian-Qian Yang
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Hui-Li Wang
- School of Food Science and Engineering
- Hefei University of Technology
- Hefei
- PR China
| |
Collapse
|
12
|
Effect of exercise, exercise withdrawal, and continued regular exercise on excitability and long-term potentiation in the dentate gyrus of hippocampus. Brain Res 2016; 1653:8-13. [DOI: 10.1016/j.brainres.2016.09.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/12/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
|
13
|
Meng H, Wang L, He J, Wang Z. The Protective Effect of Gangliosides on Lead (Pb)-Induced Neurotoxicity Is Mediated by Autophagic Pathways. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:365. [PMID: 27023584 PMCID: PMC4847027 DOI: 10.3390/ijerph13040365] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/19/2016] [Indexed: 12/27/2022]
Abstract
Lead (Pb) is a ubiquitous environmental and industrial pollutant and can affect intelligence development and the learning ability and memory of children. Therefore, necessary measures should be taken to protect the central nervous system (CNS) from Pb toxicity. Gangliosides are sialic acid-containing glycosphingolipids that are constituents of mammalian cell membranes and are more abundantly expressed in the CNS. Studies have shown that gangliosides constitute a useful tool in the attempt to promote functional recovery of CNS and can reverse Pb-induced impairments of synaptic plasticity in rats. However, the detailed mechanisms have yet to be fully understood. In our present study, we tried to investigate the role of gangliosides in Pb-induced injury in hippocampus neurons and to further confirm the detailed mechanism. Our results show that Pb-induced injuries in the spatial reference memory were associated with a reduction of cell viability and cell apoptosis, and treatment with gangliosides markedly ameliorated the Pb-induced injury by inhibition of apoptosis action. Gangliosides further attenuated Pb-induced the abnormal autophagic process by regulation of mTOR pathways. In summary, our study establishes the efficacy of gangliosides as neuroprotective agents and provides a strong rationale for further studies on the underlying mechanisms of their neuroprotective functions.
Collapse
Affiliation(s)
- Hongtao Meng
- Department of Neurology, Shanxi Hospital of the Armed Police Force, Xi'an 710054, China.
| | - Lan Wang
- Department of Neurology, Shanxi Hospital of the Armed Police Force, Xi'an 710054, China.
| | - Junhong He
- Department of Neurology, Shanxi Hospital of the Armed Police Force, Xi'an 710054, China.
| | - Zhufeng Wang
- Department of Neurology, Shanxi Hospital of the Armed Police Force, Xi'an 710054, China.
| |
Collapse
|
14
|
Palmano K, Rowan A, Guillermo R, Guan J, McJarrow P. The role of gangliosides in neurodevelopment. Nutrients 2015; 7:3891-913. [PMID: 26007338 PMCID: PMC4446785 DOI: 10.3390/nu7053891] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 11/18/2022] Open
Abstract
Gangliosides are important components of neuronal cell membranes and it is widely accepted that they play a critical role in neuronal and brain development. They are functionally involved in neurotransmission and are thought to support the formation and stabilization of functional synapses and neural circuits required as the structural basis of memory and learning. Available evidence, as reviewed herein, suggests that dietary gangliosides may impact positively on cognitive functions, particularly in the early postnatal period when the brain is still growing. Further, new evidence suggests that the mechanism of action may be through an effect on the neuroplasticity of the brain, mediated through enhanced synaptic plasticity in the hippocampus and nigro-striatal dopaminergic pathway.
Collapse
Affiliation(s)
| | - Angela Rowan
- Fonterra Co-operative Group Ltd., Private Bag 11029, Palmerston North 4442, New Zealand.
| | - Rozey Guillermo
- Centre for Brain Research, Auckland University, Private Bag 92019, Auckland 1142, New Zealand.
| | - Jian Guan
- Centre for Brain Research, Auckland University, Private Bag 92019, Auckland 1142, New Zealand.
| | - Paul McJarrow
- Fonterra Co-operative Group Ltd., Private Bag 11029, Palmerston North 4442, New Zealand.
| |
Collapse
|
15
|
Luo W, Ruan D, Yan C, Yin S, Chen J. Effects of chronic lead exposure on functions of nervous system in Chinese children and developmental rats. Neurotoxicology 2012; 33:862-71. [DOI: 10.1016/j.neuro.2012.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 03/09/2012] [Accepted: 03/20/2012] [Indexed: 01/23/2023]
|
16
|
Taki T. An Approach to Glycobiology from Glycolipidomics: Ganglioside Molecular Scanning in the Brains of Patients with Alzheimer’s Disease by TLC-Blot/Matrix Assisted Laser Desorption/Ionization-Time of Flight MS. Biol Pharm Bull 2012; 35:1642-7. [DOI: 10.1248/bpb.b12-00400] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takao Taki
- Tokushima Institute, Otsuka Pharmaceutical Co., Ltd
| |
Collapse
|
17
|
Ikarashi K, Fujiwara H, Yamazaki Y, Goto JI, Kaneko K, Kato H, Fujii S, Sasaki H, Fukumoto S, Furukawa K, Waki H, Furukawa K. Impaired hippocampal long-term potentiation and failure of learning in 1,4-N-acetylgalactosaminyltransferase gene transgenic mice. Glycobiology 2011; 21:1373-81. [DOI: 10.1093/glycob/cwr090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Gayen A, Goswami SK, Mukhopadhyay C. NMR evidence of GM1-induced conformational change of Substance P using isotropic bicelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:127-39. [DOI: 10.1016/j.bbamem.2010.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/24/2010] [Accepted: 09/22/2010] [Indexed: 01/30/2023]
|
19
|
Gustavsson M, Hodgkinson SC, Fong B, Norris C, Guan J, Krageloh CU, Breier BH, Davison M, McJarrow P, Vickers MH. Maternal supplementation with a complex milk lipid mixture during pregnancy and lactation alters neonatal brain lipid composition but lacks effect on cognitive function in rats. Nutr Res 2010; 30:279-89. [PMID: 20534331 DOI: 10.1016/j.nutres.2010.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 01/13/2023]
Abstract
Complex milk lipids (CMLs) provide a critical nutritional source for generating both energy and essential nutrients for the growth of the newborn. The present study investigated nutritional supplementation with a CML containing gangliosides and phospholipids in pregnant and lactating rats on learning behavior and postnatal growth in male offspring. Wistar female rats were supplemented during pregnancy and lactation with either control or CML to provide gangliosides at a dose of 0.01% (low) and 0.05% (high) based on total food intake. The CML-supplemented dams showed no differences in comparison to controls regarding growth, food intake, and litter characteristics. There were significant differences in brain composition in male offspring at postnatal day 2 (P2) with higher concentrations of gangliosides (high dose, P < .05) and lower concentrations of phospholipids (low and high dose, P < .05) in the CML-supplemented groups. The distribution of individual ganglioside species was not significantly different between treatment groups. Brain weight at P2 was also significantly higher in the CML groups. Differences in the brain composition and weight were not significant by weaning (P21). As adults (P80), adiposity was reduced in the low CML-supplemented group compared to controls. No significant differences were detected between any of the treatment groups in any of the behavioral tasks (water maze, object recognition, and operant learning). These data suggest that maternal supplementation with a CML during pregnancy and lactation is safe and has a significant early impact on brain weight and ganglioside and phospholipid content in offspring but did not alter long-term behavioral function using standard behavioral techniques.
Collapse
Affiliation(s)
- Malin Gustavsson
- Liggins Institute and The National Research Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Neurochemical changes on oxidative stress in rat hippocampus during acute phase of pilocarpine-induced seizures. Pharmacol Biochem Behav 2010; 94:341-5. [DOI: 10.1016/j.pbb.2009.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 09/13/2009] [Accepted: 09/21/2009] [Indexed: 11/19/2022]
|
21
|
Niu L, Cao B, Zhu H, Mei B, Wang M, Yang Y, Zhou Y. Impaired in vivo synaptic plasticity in dentate gyrus and spatial memory in juvenile rats induced by prenatal morphine exposure. Hippocampus 2009; 19:649-57. [PMID: 19115391 DOI: 10.1002/hipo.20540] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prenatal morphine exposure induces neurobiological changes, including deficits in learning and memory, in juvenile rat offspring. However the effects of this exposure on hippocampal plasticity, which is critical for learning and memory processes, are not well understood. The present study investigates the alterations of spatial memory and in vivo hippocampal synaptic plasticity in juvenile rats prenatally exposed to morphine. On gestation days 11-18, pregnant rats were randomly chosen to be injected twice daily with morphine or saline. Each juvenile offspring (postnatal day 22-31) performed one two-trial Y-maze task to evaluate spatial memory. Afterwards, the in vivo field excitatory postsynaptic potential (fEPSP) and population spike (PS) were recorded in the perforant path dentate gyrus (DG) pathway in the hippocampus. Prenatal morphine exposure reduced depotentiation (DP), but not long-term potentiation (LTP), of the EPSP slope. However, both LTP and DP of the EPSP slope were depressed in prenatal morphine-exposed juvenile offspring. The morphine group also showed poorer performance for the Y-maze task than the control group. Depressed PS LTP, but not EPSP LTP, in the morphine group suggested that prenatal morphine exposure changed GABAergic inhibition, which mediates EPSP-spike potentiation. Then a loss of GABA-containing neurons in the DG area of the morphine group was observed using immunohistochemistry. Taken together, our results suggest that prenatal morphine exposure impairs the juvenile offspring's dentate synaptic plasticity and spatial memory, and that decreased GABAergic inhibition may play a role in these effects. These findings might contribute to an explanation for the cognitive deficits in children whose mothers abuse opiates during pregnancy.
Collapse
Affiliation(s)
- Lei Niu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Cao XJ, Wang M, Chen WH, Zhu DM, She JQ, Ruan DY. Effects of chronic administration of melatonin on spatial learning ability and long-term potentiation in lead-exposed and control rats. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2009; 22:70-75. [PMID: 19462691 DOI: 10.1016/s0895-3988(09)60025-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE To explore the changes in spatial learning performance and long-term potentiation (LTP) which is recognized as a component of the cellular basis of learning and memory in normal and lead-exposed rats after administration of melatonin (MT) for two months. METHODS Experiment was performed in adult male Wistar rats (12 controls, 12 exposed to melatonin treatment, 10 exposed to lead and 10 exposed to lead and melatonin treatment). The lead-exposed rats received 0.2% lead acetate solution from their birth day while the control rats drank tap water. Melatonin (3 mg/kg) or vehicle was administered to the control and lead-exposed rats from the time of their weaning by gastric gavage each day for 60 days, depending on their groups. At the age of 81-90 days, all the animals were subjected to Morris water maze test and then used for extracellular recording of LTP in the dentate gyrus (DG) area of the hippocampus in vivo. RESULTS Low dose of melatonin given from weaning for two months impaired LTP in the DG area of hippocampus and induced learning and memory deficit in the control rats. When melatonin was administered over a prolonged period to the lead-exposed rats, it exacerbated LTP impairment, learning and memory deficit induced by lead. CONCLUSION Melatonin is not suitable for normal and lead-exposed children.
Collapse
Affiliation(s)
- Xiu-Jing Cao
- School of Life Science, University of Science and Technology of China, Hefei 230027, Anhui, China
| | | | | | | | | | | |
Collapse
|
23
|
Cao XJ, Huang SH, Wang M, Chen JT, Ruan DY. S-adenosyl-l-methionine improves impaired hippocampal long-term potentiation and water maze performance induced by developmental lead exposure in rats. Eur J Pharmacol 2008; 595:30-4. [DOI: 10.1016/j.ejphar.2008.07.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 07/18/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
|
24
|
Cao X, Huang S, Ruan D. Enriched environment restores impaired hippocampal long-term potentiation and water maze performance induced by developmental lead exposure in rats. Dev Psychobiol 2008; 50:307-13. [DOI: 10.1002/dev.20287] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Stefanello FM, Kreutz F, Scherer EBS, Breier AC, Vianna LP, Trindade VMT, Wyse ATS. Reduction of gangliosides, phospholipids and cholesterol content in cerebral cortex of rats caused by chronic hypermethioninemia. Int J Dev Neurosci 2007; 25:473-7. [PMID: 17890041 DOI: 10.1016/j.ijdevneu.2007.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022] Open
Abstract
Neurological dysfunction is observed in patients with severe hypermethioninemia, whose physiopathology is still poorly understood. In the current study we investigated the effect of chronic administration of methionine on the content and species of gangliosides and phospholipids, as well as on the concentration of cholesterol in rat cerebral cortex. Wistar rats received subcutaneous injections of methionine (1.34-2.68 micromol/g of body weight), twice a day, from the 6th to the 28th day of age and controls received saline. Animals were killed 12h after the last injection. Results showed that methionine administration significantly decreased the total content of lipids in cerebral cortex of rats. We also observed that this amino acid significantly reduced the absolute quantity of the major brain gangliosides (GM1, GD1a, GD1b and GT1b) and phospholipids (sphingomyelin, phosphatidylcholine and phosphatidylethanolamine). We also showed that Na+,K+-ATPase activity and TBARS were changed in cerebral cortex of rats subjected to hypermethioninemia. If confirmed in human beings, these data could suggest that the alteration in lipid composition, Na+,K+-ATPase activity and TBARS caused by methionine might contribute to the neurophysiopathology observed in hypermethioninemic patients.
Collapse
Affiliation(s)
- Francieli M Stefanello
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|