1
|
Gerou M, Hall B, Woof R, Allsop J, Kolb SJ, Meyer K, Shaw PJ, Allen SP. Amyotrophic lateral sclerosis alters the metabolic aging profile in patient derived fibroblasts. Neurobiol Aging 2021; 105:64-77. [PMID: 34044197 PMCID: PMC8346650 DOI: 10.1016/j.neurobiolaging.2021.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
Aging is a major risk factor for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). As metabolic alterations are a hallmark of aging and have previously been observed in ALS, it is important to examine the effect of aging in the context of ALS metabolic function. Here, using a newly established phenotypic metabolic approach, we examined the effect of aging on the metabolic profile of fibroblasts derived from ALS cases compared to controls. We found that ALS fibroblasts have an altered metabolic profile, which is influenced by age. In control cases, we found significant increases with age in NADH metabolism in the presence of several metabolites including lactic acid, trehalose, uridine and fructose, which was not recapitulated in ALS cases. Conversely, we found a reduction of NADH metabolism with age of biopsy, age of onset and age of death in the presence of glycogen in the ALS cohort. Furthermore, we found that NADH production correlated with disease progression rates in relation to a number of metabolites including inosine and α-ketoglutaric acid. Inosine or α-ketoglutaric acid supplementation in ALS fibroblasts was bioenergetically favourable. Overall, we found aging related defects in energy substrates that feed carbon into glycolysis at various points as well as the tricarboxylic acid (TCA) cycle in ALS fibroblasts, which was validated in induced neuronal progenitor cell derived iAstrocytes. Our results suggest that supplementing those pathways may protect against age related metabolic dysfunction in ALS.
Collapse
Affiliation(s)
- Margarita Gerou
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Benjamin Hall
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Ryan Woof
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Jessica Allsop
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Centre, Columbus, OH, USA
| | - Kathrin Meyer
- Centre for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Scott P Allen
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
| |
Collapse
|
2
|
Metabolic engineering generates a transgene-free safety switch for cell therapy. Nat Biotechnol 2020; 38:1441-1450. [PMID: 32661439 DOI: 10.1038/s41587-020-0580-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 05/27/2020] [Indexed: 12/28/2022]
Abstract
Safeguard mechanisms can ameliorate the potential risks associated with cell therapies but currently rely on the introduction of transgenes. This limits their application owing to immunogenicity or transgene silencing. We aimed to create a control mechanism for human cells that is not mediated by a transgene. Using genome editing methods, we disrupt uridine monophosphate synthetase (UMPS) in the pyrimidine de novo synthesis pathway in cell lines, pluripotent cells and primary human T cells. We show that this makes proliferation dependent on external uridine and enables us to control cell growth by modulating the uridine supply, both in vitro and in vivo after transplantation in xenograft models. Additionally, disrupting this pathway creates resistance to 5-fluoroorotic acid, which enables positive selection of UMPS-knockout cells. We envision that this approach will add an additional level of safety to cell therapies and therefore enable the development of approaches with higher risks, especially those that are intended for limited treatment durations.
Collapse
|
3
|
Pesini A, Iglesias E, Bayona-Bafaluy MP, Garrido-Pérez N, Meade P, Gaudó P, Jiménez-Salvador I, Andrés-Benito P, Montoya J, Ferrer I, Pesini P, Ruiz-Pesini E. Brain pyrimidine nucleotide synthesis and Alzheimer disease. Aging (Albany NY) 2019; 11:8433-8462. [PMID: 31560653 PMCID: PMC6814620 DOI: 10.18632/aging.102328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/22/2019] [Indexed: 01/12/2023]
Abstract
Many patients suffering late-onset Alzheimer disease show a deficit in respiratory complex IV activity. The de novo pyrimidine biosynthesis pathway connects with the mitochondrial respiratory chain upstream from respiratory complex IV. We hypothesized that these patients would have decreased pyrimidine nucleotide levels. Then, different cell processes for which these compounds are essential, such as neuronal membrane generation and maintenance and synapses production, would be compromised. Using a cell model, we show that inhibiting oxidative phosphorylation function reduces neuronal differentiation. Linking these processes to pyrimidine nucleotides, uridine treatment recovers neuronal differentiation. To unmask the importance of these pathways in Alzheimer disease, we firstly confirm the existence of the de novo pyrimidine biosynthesis pathway in adult human brain. Then, we report altered mRNA levels for genes from both de novo pyrimidine biosynthesis and pyrimidine salvage pathways in brain from patients with Alzheimer disease. Thus, uridine supplementation might be used as a therapy for those Alzheimer disease patients with low respiratory complex IV activity.
Collapse
Affiliation(s)
- Alba Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Eldris Iglesias
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Nuria Garrido-Pérez
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Patricia Meade
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Paula Gaudó
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Irene Jiménez-Salvador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Pol Andrés-Benito
- Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Isidro Ferrer
- Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Servicio de Anatomía Patológica, Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain.,Instituto de Neurociencias, Universidad de Barcelona, Barcelona, Spain
| | | | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Fundación ARAID, Zaragoza, Spain
| |
Collapse
|
4
|
Olgun A. Converting NADH to NAD+ by nicotinamide nucleotide transhydrogenase as a novel strategy against mitochondrial pathologies during aging. Biogerontology 2008; 10:531-4. [PMID: 18932012 DOI: 10.1007/s10522-008-9190-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 10/07/2008] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA defects are involved supposedly via free radicals in many pathologies including aging and cancer. But, interestingly, free radical production was not found increased in prematurely aging mice having higher mutation rate in mtDNA. Therefore, some other mechanisms like the increase of mitochondrial NADH/NAD(+) and ubiquinol/ubiquinone ratios, can be in action in respiratory chain defects. NADH/NAD(+) ratio can be normalized by the activation or overexpression of nicotinamide nucleotide transhydrogenase (NNT), a mitochondrial enzyme catalyzing the following very important reaction: NADH + NADP(+ )<--> NADPH + NAD(+). The products NAD(+) and NADPH are required in many critical biological processes, e.g., NAD(+) is used by histone deacetylase Sir2 which regulates longevity in different species. NADPH is used in a number of biosynthesis reactions (e.g., reduced glutathione synthesis), and processes like apoptosis. Increased ubiquinol/ubiquinone ratio interferes the function of dihydroorotate dehydrogenase, the only mitochondrial enzyme involved in ubiquinone mediated de novo pyrimidine synthesis. Uridine and its prodrug triacetyluridine are used to compensate pyrimidine deficiency but their bioavailability is limited. Therefore, the normalization of the ubiquinol/ubiquinone ratio can be accomplished by allotopic expression of alternative oxidase, a mitochondrial ubiquinol oxidase which converts ubiquinol to ubiquinone.
Collapse
Affiliation(s)
- Abdullah Olgun
- Biochemistry Laboratory, Erzincan Mil. Hospital, Erzincan, Turkey.
| |
Collapse
|
5
|
Abstract
Human mitochondrial DNA (mtDNA) encodes 13 subunits of oxidative phosphorylation (OXPHOS) enzyme complexes I, III, IV, and V except complex II. MtDNA is more sensitive to oxidative damage than nuclear DNA. MtDNA defects are involved in many pathologies including aging. Several mtDNA-deficient cell culture, yeast, and animal models were generated to study the role of mtDNA in many physiological processes. Ethidium bromide (EB), an agent that is known to inhibit mtDNA replication with a negligible effect on nuclear DNA, is generally used to generate mtDNA-deficient models. The antibiotics chloramphenicol and doxycycline, which were known to inhibit mitochondrial translation, were also used to generate the same phenotype. Cultured mtDNA-deficient cells need uridine and pyruvate to survive. At the organismal level, uridine can be supplemented, but pyruvate supplementation can cause a worser phenotype because of lactic acidosis. In C. elegans, EB, when used during larval development, increases life span, but decreases, when used after the beginning of adult stage. This should be kept in mind since mitochondria-related genes are generally detected in genome-wide screening studies for longevity. We believe that conditional knockout studies need to be carried out for these genes after reaching adulthood. MtDNA mutator mouse did not show an increase of free radical production. Therefore, the downstream phenomena to mtDNA defects are likely ineffective pyrimidine synthesis (dihydroorotate dehydrogenase, DHODH, needs a functional respiratory chain) and excess NADH (decreased NAD pool) in addition to free radicals.
Collapse
Affiliation(s)
- Abdullah Olgun
- Department of Biochemistry and Clinical Biochemistry, Gülhane School of Medicine, 06018 Etlik, Ankara, Turkey.
| | | |
Collapse
|
6
|
Saydoff JA, Garcia RAG, Browne SE, Liu L, Sheng J, Brenneman D, Hu Z, Cardin S, Gonzalez A, von Borstel RW, Gregorio J, Burr H, Beal MF. Oral uridine pro-drug PN401 is neuroprotective in the R6/2 and N171-82Q mouse models of Huntington's disease. Neurobiol Dis 2006; 24:455-65. [PMID: 17011205 DOI: 10.1016/j.nbd.2006.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 08/09/2006] [Accepted: 08/14/2006] [Indexed: 11/16/2022] Open
Abstract
Previously, uridine pro-drug 2',3',5'-tri-O-acetyluridine (PN401) was shown to be protective in the mitochondrial complex II inhibitor 3-nitropropionic acid model of Huntington's disease (HD). In this study, PN401 increased survival and improved motor function on the rotarod in both R6/2 and N171-82Q polyglutamine repeat mouse models of HD. PN401 significantly decreased neurodegeneration in both the piriform cortex and striatum although PN401 decreased huntingtin protein aggregates only in the striatum. Cortical and striatal brain-derived neurotrophic factor (BDNF) protein levels were reduced in the +/- compared to the -/- N171-82Q mice and PN401 treatment significantly increased cortical BDNF in both +/- and -/- mice, but PN401 did not affect striatal BDNF. These results suggest that PN401 may have beneficial effects in the treatment of neurodegenerative diseases such as HD.
Collapse
Affiliation(s)
- Joel A Saydoff
- Neuroscience Research, Wellstat Therapeutics Corporation, 930 Clopper Road, Gaithersburg, MD 20878, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|