1
|
He W, Shi X, Dong Z. The roles of RACK1 in the pathogenesis of Alzheimer's disease. J Biomed Res 2024; 38:137-148. [PMID: 38410996 PMCID: PMC11001590 DOI: 10.7555/jbr.37.20220259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 02/28/2024] Open
Abstract
The receptor for activated C kinase 1 (RACK1) is a protein that plays a crucial role in various signaling pathways and is involved in the pathogenesis of Alzheimer's disease (AD), a prevalent neurodegenerative disease. RACK1 is highly expressed in neuronal cells of the central nervous system and regulates the pathogenesis of AD. Specifically, RACK1 is involved in regulation of the amyloid-β precursor protein processing through α- or β-secretase by binding to different protein kinase C isoforms. Additionally, RACK1 promotes synaptogenesis and synaptic plasticity by inhibiting N-methyl-D-aspartate receptors and activating gamma-aminobutyric acid A receptors, thereby preventing neuronal excitotoxicity. RACK1 also assembles inflammasomes that are involved in various neuroinflammatory pathways, such as nuclear factor-kappa B, tumor necrosis factor-alpha, and NOD-like receptor family pyrin domain-containing 3 pathways. The potential to design therapeutics that block amyloid-β accumulation and inflammation or precisely regulate synaptic plasticity represents an attractive therapeutic strategy, in which RACK1 is a potential target. In this review, we summarize the contribution of RACK1 to the pathogenesis of AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Wenting He
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiuyu Shi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
2
|
Shimomura-Kuroki J, Tsuneki M, Ida-Yonemochi H, Seino Y, Yamamoto K, Hirao Y, Yamamoto T, Ohshima H. Establishing protein expression profiles involved in tooth development using a proteomic approach. Odontology 2023; 111:839-853. [PMID: 36792749 DOI: 10.1007/s10266-023-00790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/29/2023] [Indexed: 02/17/2023]
Abstract
Various growth and transcription factors are involved in tooth development and developmental abnormalities; however, the protein dynamics do not always match the mRNA expression level. Using a proteomic approach, this study comprehensively analyzed protein expression in epithelial and mesenchymal tissues of the tooth germ during development. First molar tooth germs from embryonic day 14 and 16 Crlj:CD1 (ICR) mouse embryos were collected and separated into epithelial and mesenchymal tissues by laser microdissection. Mass spectrometry of the resulting proteins was carried out, and three types of highly expressed proteins [ATP synthase subunit beta (ATP5B), receptor of activated protein C kinase 1 (RACK1), and calreticulin (CALR)] were selected for immunohistochemical analysis. The expression profiles of these proteins were subsequently evaluated during all stages of amelogenesis using the continuously growing incisors of 3-week-old male ICR mice. Interestingly, these three proteins were specifically expressed depending on the stage of amelogenesis. RACK1 was highly expressed in dental epithelial and mesenchymal tissues during the proliferation and differentiation stages of odontogenesis, except for the pigmentation stage, whereas ATP5B and CALR immunoreactivity was weak in the enamel organ during the early stages, but became intense during the maturation and pigmentation stages, although the timing of the increased protein expression was different between the two. Overall, RACK1 plays an important role in maintaining the cell proliferation and differentiation in the apical end of incisors. In contrast, ATP5B and CALR are involved in the transport of minerals and the removal of organic materials as well as matrix deposition for CALR.
Collapse
Affiliation(s)
- Junko Shimomura-Kuroki
- Department of Pediatric Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-Ku, Niigata, 951-8580, Japan.
| | - Masayuki Tsuneki
- Department of Pediatric Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-Ku, Niigata, 951-8580, Japan
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
- Medmain Research, Medmain Inc., 2-4-5-104, Akasaka, Chuo-Ku, Fukuoka, 810-0042, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Yuta Seino
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| | - Keiko Yamamoto
- Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Yoshitoshi Hirao
- Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Tadashi Yamamoto
- Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata, 950-2181, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-Ku, Niigata, 951-8514, Japan
| |
Collapse
|
3
|
Yu D, Deng D, Chen B, Sun H, Lyu J, Zhao Y, Chen P, Wu H, Ren D. Rack1 regulates cellular patterning and polarity in the mouse cochlea. Exp Cell Res 2022; 421:113387. [PMID: 36252648 DOI: 10.1016/j.yexcr.2022.113387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022]
Abstract
Rack1 features seven WD40 repeats that fold into a multifaceted scaffold used to build signaling complexes in a context-dependent manner. Previous in vitro studies have revealed associations between Rack1 and many other proteins. Rack 1 is required for establishing planar cell polarity (PCP) in zebrafish and Xenopus. However, any molecular role of Rack1 in protein complexes or polarity regulation remains unclear. Here, we show that Rack1 is an essential gene in mice. Conditional knockout of Rack1 shortened the cochlear duct and induced cellular patterning defects characteristic of defective convergent extension (this PCP process is mediated by cellular junctional remodeling in the developing cochlear epithelium). Also, cochlear hair cells were no longer uniformly oriented in Rack1 conditional knockout mutants. Rack1 was enriched in the cellular cortices of sensory hair cells. In Rack1-deficient cochleae, E-cadherin expression at the cellular boundaries was greatly reduced. Together, the findings reveal a molecular role of Rack1 in PCP signaling that likely involves modulation of E-cadherin levels at the adherens junctions of the plasma membrane.
Collapse
Affiliation(s)
- Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Cell Biology, Emory University, Atlanta, GA, United States; Department of Otolaryngology, Emory University, Atlanta, GA, United States; Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Di Deng
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Binjun Chen
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Haojie Sun
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Jihan Lyu
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Yu Zhao
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Chen
- Department of Cell Biology, Emory University, Atlanta, GA, United States; Department of Otolaryngology, Emory University, Atlanta, GA, United States.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Dongdong Ren
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
4
|
Regulation of Ca V3.2 channels by the receptor for activated C kinase 1 (Rack-1). Pflugers Arch 2021; 474:447-454. [PMID: 34623515 DOI: 10.1007/s00424-021-02631-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/27/2023]
Abstract
This study describes the interaction between CaV3.2 calcium channels and the receptor for activated C kinase 1 (Rack-1), a scaffold protein which has recently been implicated in neuropathic pain. The coexpression of CaV3.2 and Rack-1 in tsA-201 cells led to a reduction in the magnitude of whole-cell CaV3.2 currents and CaV3.2 channel expression at the plasma membrane. Co-immunoprecipitations from transfected cells show the formation of a molecular protein complex between Cav3.2 channels and Rack-1. We determined that the interaction of Rack-1 occurs at the intracellular II-III loop and the C-terminus of the channel. Finally, the coexpression of PKCβII abolished the effect of Rack-1 on current densities. Altogether, our findings show that Rack-1 regulates CaV3.2-mediated calcium entry in a PKC-dependent manner.
Collapse
|
5
|
Zhu Q, Chen L, Li Y, Huang M, Shao J, Li S, Cheng J, Yang H, Wu Y, Zhang J, Feng J, Fan M, Wu H. Rack1 is essential for corticogenesis by preventing p21-dependent senescence in neural stem cells. Cell Rep 2021; 36:109639. [PMID: 34469723 DOI: 10.1016/j.celrep.2021.109639] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/27/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022] Open
Abstract
Normal neurodevelopment relies on intricate signaling pathways that balance neural stem cell (NSC) self-renewal, maturation, and survival. Disruptions lead to neurodevelopmental disorders, including microcephaly. Here, we implicate the inhibition of NSC senescence as a mechanism underlying neurogenesis and corticogenesis. We report that the receptor for activated C kinase (Rack1), a family member of WD40-repeat (WDR) proteins, is highly enriched in NSCs. Deletion of Rack1 in developing cortical progenitors leads to a microcephaly phenotype. Strikingly, the absence of Rack1 decreases neurogenesis and promotes a cellular senescence phenotype in NSCs. Mechanistically, the senescence-related p21 signaling pathway is dramatically activated in Rack1 null NSCs, and removal of p21 significantly rescues the Rack1-knockout phenotype in vivo. Finally, Rack1 directly interacts with Smad3 to suppress the activation of transforming growth factor (TGF)-β/Smad signaling pathway, which plays a critical role in p21-mediated senescence. Our data implicate Rack1-driven inhibition of p21-induced NSC senescence as a critical mechanism behind normal cortical development.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Minghe Huang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Jingyuan Shao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Shen Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Juanxian Cheng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Haihong Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jiyan Zhang
- Department of Neuroimmunology and Antibody Engineering, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China
| | - Ming Fan
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu Province, China; Chinese Institute for Brain Research, 102206 Beijing, China.
| |
Collapse
|
6
|
Laser microdissection-based microproteomics of the hippocampus of a rat epilepsy model reveals regional differences in protein abundances. Sci Rep 2020; 10:4412. [PMID: 32157145 PMCID: PMC7064578 DOI: 10.1038/s41598-020-61401-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/18/2020] [Indexed: 01/11/2023] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is a chronic neurological disorder affecting almost 40% of adult patients with epilepsy. Hippocampal sclerosis (HS) is a common histopathological abnormality found in patients with MTLE. HS is characterised by extensive neuronal loss in different hippocampus sub-regions. In this study, we used laser microdissection-based microproteomics to determine the protein abundances in different regions and layers of the hippocampus dentate gyrus (DG) in an electric stimulation rodent model which displays classical HS damage similar to that found in patients with MTLE. Our results indicate that there are differences in the proteomic profiles of different layers (granule cell and molecular), as well as different regions, of the DG (ventral and dorsal). We have identified new signalling pathways and proteins present in specific layers and regions of the DG, such as PARK7, RACK1, and connexin 31/gap junction. We also found two major signalling pathways that are common to all layers and regions: inflammation and energy metabolism. Finally, our results highlight the utility of high-throughput microproteomics and spatial-limited isolation of tissues in the study of complex disorders to fully appreciate the large biological heterogeneity present in different cell populations within the central nervous system.
Collapse
|
7
|
D'Mello SR. Regulation of Central Nervous System Development by Class I Histone Deacetylases. Dev Neurosci 2020; 41:149-165. [PMID: 31982872 PMCID: PMC7263453 DOI: 10.1159/000505535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Neurodevelopment is a highly complex process composed of several carefully regulated events starting from the proliferation of neuroepithelial cells and culminating with and refining of neural networks and synaptic transmission. Improper regulation of any of these neurodevelopmental events often results in severe brain dysfunction. Accumulating evidence indicates that epigenetic modifications of chromatin play a key role in neurodevelopmental regulation. Among these modifications are histone acetylation and deacetylation, which control access of transcription factors to DNA, thereby regulating gene transcription. Histone deacetylation, which restricts access of transcription factor repressing gene transcription, involves the action of members of a family of 18 enzymes, the histone deacetylases (HDAC), which are subdivided in 4 subgroups. This review focuses on the Group 1 HDACs - HDAC 1, 2, 3, and 8. Although much of the evidence for HDAC involvement in neurodevelopment has come from the use of pharmacological inhibitors, because these agents are generally nonselective with regard to their effects on individual members of the HDAC family, this review is limited to evidence garnered from the use of molecular genetic approaches. Our review describes that Class I HDACs play essential roles in all phases of neurodevelopment. Modulation of the activity of individual HDACs could be an important therapeutic approach for neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA,
| |
Collapse
|
8
|
Yang H, Yang C, Zhu Q, Wei M, Li Y, Cheng J, Liu F, Wu Y, Zhang J, Zhang C, Wu H. Rack1 Controls Parallel Fiber-Purkinje Cell Synaptogenesis and Synaptic Transmission. Front Cell Neurosci 2019; 13:539. [PMID: 31920545 PMCID: PMC6927999 DOI: 10.3389/fncel.2019.00539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023] Open
Abstract
Purkinje cells (PCs) in the cerebellum receive two excitatory afferents including granule cells-derived parallel fiber (PF) and the climbing fiber. Scaffolding protein Rack1 is highly expressed in the cerebellar PCs. Here, we found delayed formation of specific cerebellar vermis lobule and impaired motor coordination in PC-specific Rack1 conditional knockout mice. Our studies further revealed that Rack1 is essential for PF–PC synapse formation. In addition, Rack1 plays a critical role in regulating synaptic plasticity and long-term depression (LTD) induction of PF–PC synapses without changing the expression of postsynaptic proteins. Together, we have discovered Rack1 as the crucial molecule that controls PF–PC synaptogenesis and synaptic plasticity. Our studies provide a novel molecular insight into the mechanisms underlying the neural development and neuroplasticity in the cerebellum.
Collapse
Affiliation(s)
- Haihong Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Chaojuan Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Mengping Wei
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Juanxian Cheng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiyan Zhang
- Department of Neuroimmunology and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
9
|
Receptor for activated C kinase 1 mediates the chronic constriction injury-induced neuropathic pain in the rats’ peripheral and central nervous system. Neurosci Lett 2019; 712:134477. [DOI: 10.1016/j.neulet.2019.134477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 02/03/2023]
|
10
|
Opposite regulation of Wnt/β-catenin and Shh signaling pathways by Rack1 controls mammalian cerebellar development. Proc Natl Acad Sci U S A 2019; 116:4661-4670. [PMID: 30765517 DOI: 10.1073/pnas.1813244116] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The development of the cerebellum depends on intricate processes of neurogenesis, migration, and differentiation of neural stem cells (NSCs) and progenitor cells. Defective cerebellar development often results in motor dysfunctions and psychiatric disorders. Understanding the molecular mechanisms that underlie the complex development of the cerebellum will facilitate the development of novel treatment options. Here, we report that the receptor for activated C kinase (Rack1), a multifaceted signaling adaptor protein, regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Rack1 in mouse NSCs or granule neuron progenitors (GNPs), but not Bergmann glial cells (BGs), causes severe defects in cerebellar morphogenesis, including impaired folia and fissure formation. NSCs and GNPs lacking Rack1 exhibit enhanced Wnt/β-catenin signaling but reduced Sonic hedgehog (Shh) signaling. Simultaneous deletion of β-catenin in NSCs, but not GNPs, significantly rescues the Rack1 mutant phenotype. Interestingly, Rack1 controls the activation of Shh signaling by regulating the ubiquitylation and stability of histone deacetylase 1 (HDAC1)/HDAC2. Suppression of HDAC1/HDAC2 activity in the developing cerebellum phenocopies the Rack1 mutant. Together, these results reveal a previously unknown role of Rack1 in controlling mammalian cerebellar development by opposite regulation of Wnt/β-catenin and Shh signaling pathways.
Collapse
|
11
|
Kershner L, Welshhans K. RACK1 is necessary for the formation of point contacts and regulates axon growth. Dev Neurobiol 2017; 77:1038-1056. [PMID: 28245531 DOI: 10.1002/dneu.22491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 11/08/2022]
Abstract
Receptor for activated C kinase 1 (RACK1) is a multifunctional ribosomal scaffolding protein that can interact with multiple signaling molecules concurrently through its seven WD40 repeats. We recently found that RACK1 is localized to mammalian growth cones, prompting an investigation into its role during neural development. Here, we show for the first time that RACK1 localizes to point contacts within mouse cortical growth cones. Point contacts are adhesion sites that link the actin network within growth cones to the extracellular matrix, and are necessary for appropriate axon guidance. Our experiments show that RACK1 is necessary for point contact formation. Brain-derived neurotrophic factor (BDNF) stimulates an increase in point contact density, which was eliminated by RACK1 shRNA or overexpression of a nonphosphorylatable mutant form of RACK1. We also found that axonal growth requires both RACK1 expression and phosphorylation. We have previously shown that the local translation of β-actin mRNA within growth cones is necessary for appropriate axon guidance and is dependent on RACK1. Thus, we examined the location of members of the local translation complex relative to point contacts. Indeed, both β-actin mRNA and RACK1 colocalize with point contacts, and this colocalization increases following BDNF stimulation. This implies the novel finding that local translation is regulated at point contacts. Taken together, these data suggest that point contacts are a targeted site of local translation within growth cones, and RACK1 is a critical member of the point contact complex and necessary for appropriate neural development. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1038-1056, 2017.
Collapse
Affiliation(s)
- Leah Kershner
- Department of Biological Sciences, Kent State University, Kent, Ohio, 44242
| | - Kristy Welshhans
- Department of Biological Sciences, Kent State University, Kent, Ohio, 44242.,School of Biomedical Sciences, Kent State University, Kent, Ohio, 44242
| |
Collapse
|
12
|
Coronas-Samano G, Baker KL, Tan WJT, Ivanova AV, Verhagen JV. Fus1 KO Mouse As a Model of Oxidative Stress-Mediated Sporadic Alzheimer's Disease: Circadian Disruption and Long-Term Spatial and Olfactory Memory Impairments. Front Aging Neurosci 2016; 8:268. [PMID: 27895577 PMCID: PMC5108791 DOI: 10.3389/fnagi.2016.00268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
Insufficient advances in the development of effective therapeutic treatments of sporadic Alzheimer's Disease (sAD) to date are largely due to the lack of sAD-relevant animal models. While the vast majority of models do recapitulate AD's hallmarks of plaques and tangles by virtue of tau and/or beta amyloid overexpression, these models do not reflect the fact that in sAD (unlike familial AD) these genes are not risk factors per se and that other mechanisms like oxidative stress, metabolic dysregulation and inflammation play key roles in AD etiology. Here we characterize and propose the Fus1 KO mice that lack a mitochondrial protein Fus1/Tusc2 as a new sAD model. To establish sAD relevance, we assessed sAD related deficits in Fus1 KO and WT adult mice of 4-5 months old, the equivalent human age when the earliest cognitive and olfactory sAD symptoms arise. Fus1 KO mice showed oxidative stress (increased levels of ROS, decreased levels of PRDX1), disruption of metabolic homeostasis (decreased levels of ACC2, increased phosphorylation of AMPK), autophagy (decreased levels of LC3-II), PKC (decreased levels of RACK1) and calcium signaling (decreased levels of Calb2) in the olfactory bulb and/or hippocampus. Mice were behaviorally tested using objective and accurate video tracking (Noldus), in which Fus1 KO mice showed clear deficits in olfactory memory (decreased habituation/cross-habituation in the short and long term), olfactory guided navigation memory (inability to reduce their latency to find the hidden cookie), spatial memory (learning impairments on finding the platform in the Morris water maze) and showed more sleep time during the diurnal cycle. Fus1 KO mice did not show clear deficits in olfactory perception (cross-habituation), association memory (passive avoidance) or in species-typical behavior (nest building) and no increased anxiety (open field, light-dark box) or depression/anhedonia (sucrose preference) at this relatively young age. These neurobehavioral deficits of the Fus1 KO mice at this relatively young age are highly relevant to sAD, making them suitable for effective research on pharmacological targets in the context of early intervention of sAD.
Collapse
Affiliation(s)
| | - Keeley L Baker
- The John B. Pierce LaboratoryNew Haven, CT, USA; Department of Neuroscience, Yale University School of MedicineNew Haven, CT, USA
| | - Winston J T Tan
- Department of Surgery, Yale University School of Medicine New Haven, CT, USA
| | - Alla V Ivanova
- Department of Surgery, Yale University School of Medicine New Haven, CT, USA
| | - Justus V Verhagen
- The John B. Pierce LaboratoryNew Haven, CT, USA; Department of Neuroscience, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
13
|
Marubashi S, Ohbayashi N, Fukuda M. A Varp-Binding Protein, RACK1, Regulates Dendrite Outgrowth through Stabilization of Varp Protein in Mouse Melanocytes. J Invest Dermatol 2016; 136:1672-1680. [PMID: 27066885 DOI: 10.1016/j.jid.2016.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 01/29/2023]
Abstract
Varp (VPS9-ankyrin repeat protein) in melanocytes is thought to function as a key player in the pigmentation of mammals. Varp regulates two different melanocyte functions: (i) transport of melanogenic enzymes to melanosomes by functioning as a Rab32/38 effector and (ii) promotion of dendrite outgrowth by functioning as a Rab21-guanine nucleotide exchange factor. The Varp protein level has recently been shown to be negatively regulated by proteasomal degradation through interaction of the ankyrin repeat 2 (ANKR2) domain of Varp with Rab40C. However, the molecular mechanisms by which Varp escapes from Rab40C and retains its own expression level remain completely unknown. Here, we identified RACK1 (receptor of activated protein kinase C 1) as a Varp-ANKR2 binding partner and investigated its involvement in Varp stabilization in mouse melanocytes. The results showed that knockdown of endogenous RACK1 in melanocytes caused dramatic reduction of the Varp protein level and inhibition of dendrite outgrowth, and intriguingly, overexpression of RACK1 inhibited the interaction between Varp and Rab40C and counteracted the negative effect of Rab40C on dendrite outgrowth. These findings indicated that RACK1 competes with Rab40C for binding to the ANKR2 domain of Varp and regulates dendrite outgrowth through stabilization of Varp in mouse melanocytes.
Collapse
Affiliation(s)
- Soujiro Marubashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan; Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
14
|
Deficit of RACK1 contributes to the spatial memory impairment via upregulating BECLIN1 to induce autophagy. Life Sci 2016; 151:115-121. [PMID: 26930371 DOI: 10.1016/j.lfs.2016.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/14/2015] [Accepted: 02/05/2016] [Indexed: 11/21/2022]
Abstract
AIMS Deficiency of activated C kinase1 (RACK1) in the brain of aging animal and Alzheimer's disease was characterized by cognitive dementia and spatial memory impairment. However, the correlation between the RACK1 and spatial memory impairment and the mechanism involved in it remains unknown. MAIN METHODS Spatial memory impairment was performed in mice by lateral ventricle injection of Aβ25-35 (n=16, 10μl) and intraperitoneal injection of scopolamine (n=16, 10ml/kg). After the Morris water maze (MWM) which was performed to determine the ability of learning and memory in mice, expression of RACK1 was tested and the damage of hippocampus was confirmed by histopathology test. ShRACK1 was then used to decrease the level of RACK1 in hippocampus to test the ability of learning and memory and histopathology changes in hippocampus. To look into the mechanism of RACK1 on spatial memory impairment, we further measured the expression of autophagy proteins BECLIN1 and LC3-II/I in hippocampus of all mice. KEY FINDINGS Both the Aβ25-35, scopolamine impaired the spatial memory in mice (for escape latency, P=0.0004, P<0.0001) and severely damaged hippocampal DG neurons (P=0.012, P=0.014). The expression of RACK1 was significantly decreased which was concomitant with elevated BECLIN1 and LC3-II/I (P<0.001). Suppression of RACK1 by ShRACK1 plasmid (shGnb2l1) significantly impaired the spatial memory in mice, damaged hippocampal DG neurons (P=0.013), and increased the proteins of BECLIN1 and LC3-II/I (P<0.005). SIGNIFICANCE It demonstrated that the deficit of RACK1 in hippocampus impairs the ability of learning and memory in mice via up regulating autophagy.
Collapse
|
15
|
Fang L, Zhou J, Cheng S, Ying J, Yang Z, Yin L, Li S, Hou W, Wang Z. High orexin-A neuron activity and RACK1 expression might be involved in the restricted feeding-entrained behaviors in mice. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1004841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Xu X, Yang X, Xiong Y, Gu J, He C, Hu Y, Xiao F, Chen G, Wang X. Increased expression of receptor for activated C kinase 1 in temporal lobe epilepsy. J Neurochem 2015; 133:134-43. [PMID: 25650116 DOI: 10.1111/jnc.13052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 02/02/2023]
Abstract
Mesial temporal lobe epilepsy (MTLE) is characterized by spontaneous recurrent complex partial seizures. Increased neurogenesis and neuronal plasticity have been reported in animal models of MTLE, but not in detail in human MTLE cases. Here, we showed that receptor for activated C kinase 1 (RACK1) was expressed in the hippocampus and temporal cortex of the MTLE human brain. Interestingly, most of the cells expressing RACK1 in the epileptic temporal cortices co-expressed both polysialylated neural cell adhesion molecules, the migrating neuroblast marker, and the beta-tubulin isotype III, an early neuronal marker, suggesting that these cells may be post-mitotic neurons in the early phase of neuronal development. A subpopulation of RACK1-positive cells also co-express neuronal nuclei, a mature neuronal marker, suggesting that epilepsy may promote the generation of new neurons. Moreover, in the epileptic temporal cortices, the co-expression of both axonal and dendritic markers in the majority of RACK1-positive cells hints at enhanced neuronal plasticity. The expression of b-tubulin II (TUBB2B) associated with neuronal migration and positioning, was decreased. This study is the first to successfully identify a single population of cells expressing RACK1 in the human temporal cortex and the brain of the animal model, which can be up-regulated in epilepsy. Therefore, it is possible that these cells are functionally relevant to the pathophysiology of epilepsy.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
DJ-1 interacts with RACK1 and protects neurons from oxidative-stress-induced apoptosis. Biochem J 2014; 462:489-97. [PMID: 24947010 DOI: 10.1042/bj20140235] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PD (Parkinson's disease) is a complex disorder that is associated with neuronal loss or dysfunction caused by genetic risks, environmental factors and advanced aging. It has been reported that DJ-1 mutations rendered neurons sensitive to oxidative damage, which led to the onset of familiar PD. However, the molecular mechanism is still unclear. In the present study we show that DJ-1 interacts with RACK1 (receptor of activated C kinase 1) and increases its dimerization and protein stability. The DJ-1 transgene protects cortical neurons from H2O2-induced apoptosis, and this protective effect is abrogated by knocking down RACK1. Similarly, deletion of DJ-1 in cortical neurons increases the sensitivity to H2O2, and the damage can be significantly rescued by DJ-1 or DJ-1/RACK1 co-transfection, but not by RACK1 alone. We observed further that the interaction of DJ-1 and RACK1 is disrupted by H2O2 or MPP+ (1-methyl-4-phenylpyridinium) treatment, and the protein levels of DJ-1 and RACK1 decreased in neurodegenerative disease models. Taken together, the DJ-1-RACK1 complex protects neurons from oxidative stress-induced apoptosis, with the implication that DJ-1 and RACK1 might be novel targets in the treatment of neurodegenerative diseases.
Collapse
|
18
|
Dong ZF, Tang LJ, Deng GF, Zeng T, Liu SJ, Wan RP, Liu T, Zhao QH, Yi YH, Liao WP, Long YS. Transcription of the human sodium channel SCN1A gene is repressed by a scaffolding protein RACK1. Mol Neurobiol 2014; 50:438-48. [PMID: 24436055 DOI: 10.1007/s12035-014-8633-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/02/2014] [Indexed: 11/29/2022]
Abstract
Voltage-gated sodium channel α subunit type I (Nav1.1, encoded by SCN1A gene) plays a critical role in the initiation of action potential in the central nervous system. Downregulated expression of SCN1A is believed to be associated with epilepsy. Here, we found that the SCN1A promoter (P1c), located at the 5' untranslated exon 1c, drove the reporter gene expression in human NT2 cells, and a region between nt +53 and +62 downstream of the P1c promoter repressed the promoter activity. Further analyses showed that a scaffolding protein RACK1 (receptor for activated C kinase 1) was involved in binding to this silencer. Knockdown of RACK1 expression in NT2 cells deprived the repressive role of the silencer on the P1c promoter and increased SCN1A transcription, suggesting the potential involvement of RACK1 in negatively regulating SCN1A transcription via interaction with the silencer. Furthermore, we demonstrated that the binding of the protein complex including RACK1 to the SCN1A promoter motif was decreased in neuron-like differentiation of the NT2 cells induced by retinoic acid and resulted in the upregulation of SCN1A transcription. Taken together, this study reports a novel role of RACK1 in regulating SCN1A expression that participates in retinoic acid-induced neuronal differentiation of NT2 cells.
Collapse
Affiliation(s)
- Zhao-Fei Dong
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, 510260, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dwane S, Durack E, O'Connor R, Kiely PA. RACK1 promotes neurite outgrowth by scaffolding AGAP2 to FAK. Cell Signal 2013; 26:9-18. [PMID: 24056044 DOI: 10.1016/j.cellsig.2013.08.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/31/2013] [Indexed: 11/29/2022]
Abstract
RACK1 binds proteins in a constitutive or transient manner and supports signal transmission by engaging in diverse and distinct signalling pathways. The emerging theme is that RACK1 functions as a signalling switch, recruiting proteins to form distinct molecular complexes. In focal adhesions, RACK1 is required for the regulation of FAK activity and for integrating a wide array of cellular signalling events including the integration of growth factor and adhesion signalling pathways. FAK is required for cell adhesion and migration and has a well-established role in neurite outgrowth and in the developing nervous system. However, the mechanism by which FAK activity is regulated in neurons remains unknown. Using neuronal cell lines, we determined that differentiation of these cells promotes an interaction between the scaffolding protein RACK1 and FAK. Disruption of the RACK1/FAK interaction leads to decreased neurite outgrowth suggesting a role for the interaction in neurite extension. We hypothesised that RACK1 recruits proteins to FAK, to regulate FAK activity in neuronal cells. To address this, we immunoprecipitated RACK1 from rat hippocampus and searched for interacting proteins by mass spectrometry. We identified AGAP2 as a novel RACK1-interacting protein. Having confirmed the RACK1-AGAP2 interaction biochemically, we show RACK1-AGAP2 to localise together in the growth cone of differentiated cells, and confirm that these proteins are in complex with FAK. This complex is disrupted when RACK1 expression is suppressed using siRNA or when mutants of RACK1 that do not interact with FAK are expressed in cells. Similarly, suppression of AGAP2 using siRNA leads to increased phosphorylation of FAK and increased cell adhesion resulting in decreased neurite outgrowth. Our results suggest that RACK1 scaffolds AGAP2 to FAK to regulate FAK activity and cell adhesion during the differentiation process.
Collapse
Affiliation(s)
- Susan Dwane
- Department of Life Sciences and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | | | | | | |
Collapse
|
20
|
Dwane S, Durack E, Kiely PA. Optimising parameters for the differentiation of SH-SY5Y cells to study cell adhesion and cell migration. BMC Res Notes 2013; 6:366. [PMID: 24025096 PMCID: PMC3847106 DOI: 10.1186/1756-0500-6-366] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 09/04/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cell migration is a fundamental biological process and has an important role in the developing brain by regulating a highly specific pattern of connections between nerve cells. Cell migration is required for axonal guidance and neurite outgrowth and involves a series of highly co-ordinated and overlapping signalling pathways. The non-receptor tyrosine kinase, Focal Adhesion Kinase (FAK) has an essential role in development and is the most highly expressed kinase in the developing CNS. FAK activity is essential for neuronal cell adhesion and migration. RESULTS The objective of this study was to optimise a protocol for the differentiation of the neuroblastoma cell line, SH-SY5Y. We determined the optimal extracellular matrix proteins and growth factor combinations required for the optimal differentiation of SH-SY5Y cells into neuronal-like cells and determined those conditions that induce the expression of FAK. It was confirmed that the cells were morphologically and biochemically differentiated when compared to undifferentiated cells. This is in direct contrast to commonly used differentiation methods that induce morphological differentiation but not biochemical differentiation. CONCLUSIONS We conclude that we have optimised a protocol for the differentiation of SH-SY5Y cells that results in a cell population that is both morphologically and biochemically distinct from undifferentiated SH-SY5Y cells and has a distinct adhesion and spreading pattern and display extensive neurite outgrowth. This protocol will provide a neuronal model system for studying FAK activity during cell adhesion and migration events.
Collapse
Affiliation(s)
- Susan Dwane
- Department of Life Sciences and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.
| | | | | |
Collapse
|
21
|
Abstract
Ethanol's effects on intracellular signaling pathways contribute to acute effects of ethanol as well as to neuroadaptive responses to repeated ethanol exposure. In this chapter we review recent discoveries that demonstrate how ethanol alters signaling pathways involving several receptor tyrosine kinases and intracellular tyrosine and serine-threonine kinases, with consequences for regulation of cell surface receptor function, gene expression, protein translation, neuronal excitability and animal behavior. We also describe recent work that demonstrates a key role for ethanol in regulating the function of scaffolding proteins that organize signaling complexes into functional units. Finally, we review recent exciting studies demonstrating ethanol modulation of DNA and histone modification and the expression of microRNAs, indicating epigenetic mechanisms by which ethanol regulates neuronal gene expression and addictive behaviors.
Collapse
Affiliation(s)
- Dorit Ron
- Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| | - Robert O. Messing
- Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| |
Collapse
|
22
|
Ceci M, Welshhans K, Ciotti MT, Brandi R, Parisi C, Paoletti F, Pistillo L, Bassell GJ, Cattaneo A. RACK1 is a ribosome scaffold protein for β-actin mRNA/ZBP1 complex. PLoS One 2012; 7:e35034. [PMID: 22523568 PMCID: PMC3327689 DOI: 10.1371/journal.pone.0035034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/08/2012] [Indexed: 12/24/2022] Open
Abstract
In neurons, specific mRNAs are transported in a translationally repressed manner along dendrites or axons by transport ribonucleic-protein complexes called RNA granules. ZBP1 is one RNA binding protein present in transport RNPs, where it transports and represses the translation of cotransported mRNAs, including β-actin mRNA. The release of β-actin mRNA from ZBP1 and its subsequent translation depends on the phosphorylation of ZBP1 by Src kinase, but little is known about how this process is regulated. Here we demonstrate that the ribosomal-associated protein RACK1, another substrate of Src, binds the β-actin mRNA/ZBP1 complex on ribosomes and contributes to the release of β-actin mRNA from ZBP1 and to its translation. We identify the Src binding and phosphorylation site Y246 on RACK1 as the critical site for the binding to the β-actin mRNA/ZBP1 complex. Based on these results we propose RACK1 as a ribosomal scaffold protein for specific mRNA-RBP complexes to tightly regulate the translation of specific mRNAs.
Collapse
Affiliation(s)
- Marcello Ceci
- European Brain Research Institute (EBRI), Rome, Italy
| | - Kristy Welshhans
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | | | | | - Chiara Parisi
- European Brain Research Institute (EBRI), Rome, Italy
| | | | | | - Gary J. Bassell
- Departments of Cell Biology, Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Antonino Cattaneo
- European Brain Research Institute (EBRI), Rome, Italy
- Scuola Normale Superiore di Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
23
|
Adams DR, Ron D, Kiely PA. RACK1, A multifaceted scaffolding protein: Structure and function. Cell Commun Signal 2011; 9:22. [PMID: 21978545 PMCID: PMC3195729 DOI: 10.1186/1478-811x-9-22] [Citation(s) in RCA: 349] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/06/2011] [Indexed: 12/17/2022] Open
Abstract
The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease.
Collapse
Affiliation(s)
- David R Adams
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.
| | | | | |
Collapse
|
24
|
Wan L, Xie Y, Su L, Liu Y, Wang Y, Wang Z. RACK1 affects morphine reward via BDNF. Brain Res 2011; 1416:26-34. [PMID: 21885037 DOI: 10.1016/j.brainres.2011.07.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 11/25/2022]
Abstract
Chronic morphine addiction may trigger functional changes in the mesolimbic dopamine system, which is believed to be the neurobiological substrate of opiate addiction. Brain derived neurotrophic factor (BDNF) has been implicated in addiction-related pathology in animal studies. Our previous studies have shown that RACK1 is involved in morphine reward in mice. The recent research indicates nuclear RACK1 by localizing at the promoter IV region of the BDNF gene and the subsequent chromatin modifications leads to the activation of the promoter and transcription of BDNF. The present study was designed to investigate if shRACK1 (a short hairpin RNA of RACK1) could reverse the mice's behavioral responses to morphine and BDNF expression in hippocampus and prefrontal cortex. No significant changes were observed in vehicle-infused mice which received no morphine treatment (CONC) and shRACK1-infused mice which received no morphine treatment (CONR), whereas vehicle-infused mice preceded the morphine injection (MIC) showed increased BDNF expression in hippocampus and prefrontal cortex, as compared to vehicle-infused mice which received no morphine treatment (CONC). Intracerebroventricular shRACK1 treatment reversed these, and in fact, ShRACK1-infused mice preceded the morphine injection (MIR) showed reduced BDNF expression in hippocampus and prefrontal cortex, as compared to MIC. In the conditioned place preference (CPP) test, inactivating RACK1 markedly reduces morphine-induced conditioned place preference. Non-specific changes in CPP could not account for these effects since general CPP of shRACK1- and vehicle-infused animals was not different. Combined behavioral and molecular approaches have support the possibility that the RACK1-BDNF system plays an important role in the response to morphine-induced reward.
Collapse
Affiliation(s)
- Lihong Wan
- Key Laboratory of Chronobiology, Ministry of Health (Sichuan University), Sichuan University, Chengdu, PR China.
| | | | | | | | | | | |
Collapse
|
25
|
Chiba Y, Tanabe M, Sakai H, Kimura S, Misawa M. A functional interaction between CPI-17 and RACK1 proteins in bronchial smooth muscle cells. Biochem Biophys Res Commun 2010; 401:487-90. [PMID: 20875397 PMCID: PMC3486735 DOI: 10.1016/j.bbrc.2010.09.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 09/18/2010] [Indexed: 10/19/2022]
Abstract
CPI-17 is a phosphorylation-dependent inhibitor of smooth muscle myosin light chain. Using yeast two-hybrid system, we have identified the receptor for activated C kinase 1 (RACK1) as a novel interaction partner of CPI-17. The direct interaction and co-localization of CPI-17 with RACK1 were confirmed by immunoprecipitation and confocal microscopy analysis, respectively. An in vitro assay system using recombinant/purified proteins revealed that the PKC-mediated phosphorylation of CPI-17 was augmented in the presence of RACK1. These results suggest that RACK1 may play a role in PKC/CPI-17 signaling pathway.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
26
|
Annenkov A. The insulin-like growth factor (IGF) receptor type 1 (IGF1R) as an essential component of the signalling network regulating neurogenesis. Mol Neurobiol 2009; 40:195-215. [PMID: 19714501 DOI: 10.1007/s12035-009-8081-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 08/14/2009] [Indexed: 02/07/2023]
Abstract
The insulin-like growth factor receptor type 1 (IGF1R) signalling pathway is activated in the mammalian nervous system from early developmental stages. Its major effect on developing neural cells is to promote their growth and survival. This pathway can integrate its action with signalling pathways of growth and morphogenetic factors that induce cell fate specification and selective expansion of specified neural cell subsets. This suggests that during developmental and adult neurogenesis cellular responses to many signalling factors, including ligands of Notch, sonic hedgehog, fibroblast growth factor family members, ligands of the epidermal growth factor receptor, bone morphogenetic proteins and Wingless and Int-1, may be modified by co-activation of the IGF1R. Modulation of cell migration is another possible role that IGF1R activation may play in neurogenesis. Here, I briefly overview neurogenesis and discuss a role for IGF1R-mediated signalling in the developing and mature nervous system with emphasis on crosstalk between the signalling pathways of the IGF1R and other factors regulating neural cell development and migration. Studies on neural as well as on non-neural cells are highlighted because it may be interesting to test in neurogenic paradigms some of the models based on the information obtained in studies on non-neural cell types.
Collapse
Affiliation(s)
- Alexander Annenkov
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, UK.
| |
Collapse
|
27
|
Lintas C, Sacco R, Garbett K, Mirnics K, Militerni R, Bravaccio C, Curatolo P, Manzi B, Schneider C, Melmed R, Elia M, Pascucci T, Puglisi-Allegra S, Reichelt KL, Persico AM. Involvement of the PRKCB1 gene in autistic disorder: significant genetic association and reduced neocortical gene expression. Mol Psychiatry 2009; 14:705-18. [PMID: 18317465 DOI: 10.1038/mp.2008.21] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein kinase C enzymes play an important role in signal transduction, regulation of gene expression and control of cell division and differentiation. The fsI and betaII isoenzymes result from the alternative splicing of the PKCbeta gene (PRKCB1), previously found to be associated with autism. We performed a family-based association study in 229 simplex and 5 multiplex families, and a postmortem study of PRKCB1 gene expression in temporocortical gray matter (BA41/42) of 11 autistic patients and controls. PRKCB1 gene haplotypes are significantly associated with autism (P<0.05) and have the autistic endophenotype of enhanced oligopeptiduria (P<0.05). Temporocortical PRKCB1 gene expression was reduced on average by 35 and 31% for the PRKCB1-1 and PRKCB1-2 isoforms (P<0.01 and <0.05, respectively) according to qPCR. Protein amounts measured for the PKCbetaII isoform were similarly decreased by 35% (P=0.05). Decreased gene expression characterized patients carrying the 'normal' PRKCB1 alleles, whereas patients homozygous for the autism-associated alleles displayed mRNA levels comparable to those of controls. Whole genome expression analysis unveiled a partial disruption in the coordinated expression of PKCbeta-driven genes, including several cytokines. These results confirm the association between autism and PRKCB1 gene variants, point toward PKCbeta roles in altered epithelial permeability, demonstrate a significant downregulation of brain PRKCB1 gene expression in autism and suggest that it could represent a compensatory adjustment aimed at limiting an ongoing dysreactive immune process. Altogether, these data underscore potential PKCbeta roles in autism pathogenesis and spur interest in the identification and functional characterization of PRKCB1 gene variants conferring autism vulnerability.
Collapse
Affiliation(s)
- C Lintas
- Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wan L, Su L, Xie Y, Liu Y, Wang Y, Wang Z. Protein receptor for activated C kinase 1 is involved in morphine reward in mice. Neuroscience 2009; 161:734-42. [DOI: 10.1016/j.neuroscience.2009.03.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 03/17/2009] [Accepted: 03/21/2009] [Indexed: 11/16/2022]
|
29
|
Jurd R, Thornton C, Wang J, Luong K, Phamluong K, Kharazia V, Gibb SL, Ron D. Mind bomb-2 is an E3 ligase that ubiquitinates the N-methyl-D-aspartate receptor NR2B subunit in a phosphorylation-dependent manner. J Biol Chem 2008; 283:301-310. [PMID: 17962190 PMCID: PMC3124443 DOI: 10.1074/jbc.m705580200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR) plays a critical role in synaptic plasticity. Post-translational modifications of NMDARs, such as phosphorylation, alter both the activity and trafficking properties of NMDARs. Ubiquitination is increasingly being recognized as another post-translational modification that can alter synaptic protein composition and function. We identified Mind bomb-2 as an E3 ubiquitin ligase that interacts with and ubiquitinates the NR2B subunit of the NMDAR in mammalian cells. The protein-protein interaction and the ubiquitination of the NR2B subunit were found to be enhanced in a Fyn phosphorylation-dependent manner. Immunocytochemical studies reveal that Mind bomb-2 is localized to postsynaptic sites and colocalizes with the NMDAR in apical dendrites of hippocampal neurons. Furthermore, we show that NMDAR activity is down-regulated by Mind bomb-2. These results identify a specific E3 ubiquitin ligase as a novel interactant with the NR2B subunit and suggest a possible mechanism for the regulation of NMDAR function involving both phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Rachel Jurd
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Claire Thornton
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Jun Wang
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Ken Luong
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Khanhky Phamluong
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Viktor Kharazia
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Stuart L Gibb
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608
| | - Dorit Ron
- Gallo Research Center, Department of Neurology, University of California, San Francisco, Emeryville, California 94608.
| |
Collapse
|
30
|
Huang X, Zhang W, Li X, Zhang X, Li B, Mao B, Zhang H. Developmental expression of amphioxus RACK1. ACTA ACUST UNITED AC 2007; 50:329-34. [PMID: 17609889 DOI: 10.1007/s11427-007-0025-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 01/16/2007] [Indexed: 12/30/2022]
Abstract
Vertebrate RACK1 plays a key role in embryonic development. This paper described the cloning, phylogenetic analysis and developmental expression of AmphiRACK1, the RACK1 homologous gene in amphioxus. Phylogenetic analysis indicated that amphioxus RACK1 was located at the base of vertebrate clade. AmphiRACK1 expression in lithium-treated embryos was also examined. During embryonic development, AmphiRACK1 was expressed strongly in cerebral vesicles, neural tubes and somites. In lithium-treated embryos, the segmental expression of AmphiRACK1 in somites became blurry and decreased. Its expression in cerebral vesicles and neural tubes was also weaker or disappeared. In the adult animal, AmphiRACK1 transcripts were detected in the epithelium of midgut diverticulus and gut, wheel organ, gill blood vessels and testis.
Collapse
Affiliation(s)
- XiangWei Huang
- Institute of Developmental Biology, College of Life Science, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Amadio M, Battaini F, Pascale A. The different facets of protein kinases C: old and new players in neuronal signal transduction pathways. Pharmacol Res 2006; 54:317-25. [PMID: 16996748 DOI: 10.1016/j.phrs.2006.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 08/08/2006] [Accepted: 08/08/2006] [Indexed: 12/01/2022]
Abstract
Signal transduction pathways are crucial for cell-to-cell communication. Various molecular cascades allow the translation of distinct stimuli, targeting the cell, into a language that the cell itself is able to understand, thus elaborating specific responses. Within this context, a strategic role is played by protein kinases which catalyze the phosphorylation of specific substrates. The serine/threonine protein kinase C (PKC) enzymes family (at least 10 isoforms) is implicated in the transduction of signals coupled to receptor-mediated hydrolysis of membrane phospholipids. Within this molecular pathway, protein-protein interactions play a critical role in directing the distinct activated PKCs towards selective subcellular compartments, in order to guarantee spatio-temporal and localized cellular responses. A space-specific modulation of biochemical events is particularly important during learning. Among the various mechanisms, the modulation of mRNA decay appears to be an efficient post-transcriptional way of controlling gene expression during learning, allowing changes to take place in selected neuronal regions, in particular at synaptic level. To this regard, recent studies have pointed out that PKC activation is also involved in a novel signalling cascade leading to the stabilization of specific mRNAs. This review will especially focus the attention on the implication of PKC in memory trace formation and how alterations within this molecular cascade may have consequences on physiological and pathological neuronal aging (i.e. Alzheimer's disease).
Collapse
Affiliation(s)
- Marialaura Amadio
- Department of Experimental and Applied Pharmacology, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|