1
|
Estave PM, Sun H, Peck EG, Holleran KM, Chen R, Jones SR. Cocaine self-administration augments kappa opioid receptor system-mediated inhibition of dopamine activity in the mesolimbic dopamine system. IBRO Neurosci Rep 2023; 14:129-137. [PMID: 36748012 PMCID: PMC9898071 DOI: 10.1016/j.ibneur.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
Prior studies examining the effects of cocaine on the dynorphin/kappa opioid receptor (Dyn/KOR) system primarily focus on non-contingent cocaine exposure, but the effects of self-administration, which more closely reflects human drug-taking behaviors, are not well studied. In this study we characterized the effects of escalated intravenous cocaine self-administration on the functional state of the Dyn/KOR system and its interaction with mesolimbic dopamine signaling. Rats self-administered cocaine in an extended access, limited intake cocaine procedure, in which animals obtained 40 infusions per day (1.5 mg/kg/inf) for 5 consecutive days to ensure comparable consumption levels. Following single day tests of cue reactivity and progressive ratio responding, quantitative real-time polymerase chain reaction was used to measure levels of Oprk and Pdyn transcripts in the ventral tegmental area and nucleus accumbens. Additionally, after self-administration, ex vivo fast-scan cyclic voltammetry in the NAc was used to examine the ability of the KOR agonist U50,488 to inhibit dopamine release. We found that KOR-induced inhibition of dopamine release was enhanced in animals that self-administered cocaine compared to controls, suggesting upregulated Dyn/KOR activity after cocaine self-administration. Furthermore, expression levels of Pdyn in the nucleus accumbens and ventral tegmental area, and Oprk in the nucleus accumbens, were elevated in cocaine animals compared to controls. Additionally, Pdyn expression in the nucleus accumbens was negatively correlated with progressive ratio breakpoints, a measure of motivation to self-administer cocaine. Overall, these data suggest that cocaine self-administration elevates KOR/Dyn system activity in the mesolimbic dopamine pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Sara R. Jones
- Correspondence to: Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
2
|
Cocaine Self-administration Regulates Transcription of Opioid Peptide Precursors and Opioid Receptors in Rat Caudate Putamen and Prefrontal Cortex. Neuroscience 2020; 443:131-139. [PMID: 32730947 DOI: 10.1016/j.neuroscience.2020.07.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
Abstract
The brain opioid system plays an important role in cocaine reward. Altered signaling in the opioid system by chronic cocaine exposure contributes to cocaine-seeking and taking behavior. The current study investigated concurrent changes in the gene expression of multiple components in rat brain opioid system following cocaine self-administration. Animals were limited to 40 infusions (1.5 mg/kg/infusion) within 6 h per day for five consecutive days. We then examined the mRNA levels of opioid receptors including mu (Oprm), delta (Oprd), and kappa (Oprk), and their endogenous opioid peptide precursors including proopiomelanocortin (Pomc), proenkephalin (Penk), prodynorphin (Pdyn) in the dorsal striatum (CPu) and the prefrontal cortex (PFC) 18 h after the last cocaine infusion. We found that cocaine self-administration significantly increased the mRNA levels of Oprm and Oprd in both the CPu and PFC, but had no effect on Oprk mRNA levels in either brain region. Moreover, cocaine had a greater influence on the mRNA levels of opioid peptide precursors in rat CPu than in the PFC. In the CPu, cocaine self-administration significantly increased the mRNA levels of Penk and Pdyn and abolished the mRNA levels of Pomc. In the PFC, cocaine self-administration only increased Pdyn mRNA levels without changing the mRNA levels of Pomc and Penk. These data suggest that cocaine self-administration influences the expression of multiple genes in the brain opioid system, and the concurrent changes in these targets may underlie cocaine-induced reward and habitual drug-seeking behavior.
Collapse
|
3
|
Shahkarami K, Vousooghi N, Golab F, Mohsenzadeh A, Baharvand P, Sadat-Shirazi MS, Babhadi-Ashar N, Shakeri A, Zarrindast MR. Evaluation of dynorphin and kappa-opioid receptor level in the human blood lymphocytes and plasma: Possible role as a biomarker in severe opioid use disorder. Drug Alcohol Depend 2019; 205:107638. [PMID: 31710992 DOI: 10.1016/j.drugalcdep.2019.107638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/31/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The dynorphin (DYN)/kappa opioid receptor (KOR) system plays an important role in the development of addiction, and dysregulation of this system could lead to abnormal activity in the reward pathway. It has been reported that the expression state of the neurotransmitters and their receptors in the brain is reflected in peripheral blood lymphocytes (PBLs). METHODS We have evaluated the PBLs and plasma samples of four groups: 1) subjects with severe opioid use disorder (SOD), 2) methadone-maintenance treated (MMT) individuals, 3) long-term abstinent subjects having former SOD, and 4) healthy control subjects (n = 20 in each group). The mRNA expression level of preprodynorphin (pPDYN) and KOR in PBLs has been evaluated by real-time PCR. Peptide expression of PDYN in PBLs has been studied by western blot, and DYN concentration in plasma has been measured by ELISA. RESULTS The relative expression level of the pPDYN mRNA and PDYN peptide in PBLs were significantly up-regulated in SOD, MMT, and abstinent groups compared to control subjects. No significant difference was found in the plasma DYN concentration between study groups. The expression level of the KOR mRNA in PBLs was significantly decreased in all three study groups compared to the control subjects. CONCLUSION the expression changes in the DYN/KOR system after chronic exposure to opioids, including methadone, seems to be stable and does not return to normal levels even after 12 months abstinence. These long-time and permanent changes in PBLs may serve as a biomarker and footprint of SOD development in the periphery.
Collapse
Affiliation(s)
- Kourosh Shahkarami
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Mohsenzadeh
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parastoo Baharvand
- Department of Social Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Babhadi-Ashar
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Atena Shakeri
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran.
| |
Collapse
|
4
|
Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Yakovleva T, Hansson AC, Sommer WH, Spanagel R, Bakalkin G. Dynorphin and κ-Opioid Receptor Dysregulation in the Dopaminergic Reward System of Human Alcoholics. Mol Neurobiol 2018; 55:7049-7061. [PMID: 29383684 PMCID: PMC6061161 DOI: 10.1007/s12035-017-0844-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
Abstract
Molecular changes induced by excessive alcohol consumption may underlie formation of dysphoric state during acute and protracted alcohol withdrawal which leads to craving and relapse. A main molecular addiction hypothesis is that the upregulation of the dynorphin (DYN)/κ-opioid receptor (KOR) system in the nucleus accumbens (NAc) of alcohol-dependent individuals causes the imbalance in activity of D1- and D2 dopamine receptor (DR) expressing neural circuits that results in dysphoria. We here analyzed post-mortem NAc samples of human alcoholics to assess changes in prodynorphin (PDYN) and KOR (OPRK1) gene expression and co-expression (transcriptionally coordinated) patterns. To address alterations in D1- and D2-receptor circuits, we studied the regulatory interactions between these pathways and the DYN/KOR system. No significant differences in PDYN and OPRK1 gene expression levels between alcoholics and controls were evident. However, PDYN and OPRK1 showed transcriptionally coordinated pattern that was significantly different between alcoholics and controls. A downregulation of DRD1 but not DRD2 expression was seen in alcoholics. Expression of DRD1 and DRD2 strongly correlated with that of PDYN and OPRK1 suggesting high levels of transcriptional coordination between these gene clusters. The differences in expression and co-expression patterns were not due to the decline in neuronal proportion in alcoholic brain and thereby represent transcriptional phenomena. Dysregulation of DYN/KOR system and dopamine signaling through both alterations in co-expression patterns of opioid genes and decreased DRD1 gene expression may contribute to imbalance in the activity of D1- and D2-containing pathways which may lead to the negative affective state in human alcoholics.
Collapse
Affiliation(s)
- Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden.
| | - Daniil Sarkisyan
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Olga Kononenko
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Hiroyuki Watanabe
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Tatiana Yakovleva
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| |
Collapse
|
5
|
Mongi-Bragato B, Avalos MP, Guzmán AS, Bollati FA, Cancela LM. Enkephalin as a Pivotal Player in Neuroadaptations Related to Psychostimulant Addiction. Front Psychiatry 2018; 9:222. [PMID: 29892236 PMCID: PMC5985699 DOI: 10.3389/fpsyt.2018.00222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/08/2018] [Indexed: 12/21/2022] Open
Abstract
Enkephalin expression is high in mesocorticolimbic areas associated with psychostimulant-induced behavioral and neurobiological effects, and may also modulate local neurotransmission in this circuit network. Psychostimulant drugs, like amphetamine and cocaine, significantly increase the content of enkephalin in these brain structures, but we do not yet understand the specific significance of this drug-induced adaptation. In this review, we summarize the neurochemical and molecular mechanism of psychostimulant-induced enkephalin activation in mesocorticolimbic brain areas, and the contribution of this opioid peptide in the pivotal neuroadaptations and long-term behavioral changes underlying psychostimulant addiction. There is evidence suggesting that adaptive changes in enkephalin content in the mesocorticolimbic circuit, induced by acute and chronic psychostimulant administration, may represent a key initial step in the long-term behavioral and neuronal plasticity induced by these drugs.
Collapse
Affiliation(s)
- Bethania Mongi-Bragato
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María P Avalos
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea S Guzmán
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Flavia A Bollati
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Liliana M Cancela
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
6
|
Bilodeau J, Schwendt M. Post-cocaine changes in regulator of G-protein signaling (RGS) proteins in the dorsal striatum: Relevance for cocaine-seeking and protein kinase C-mediated phosphorylation. Synapse 2016; 70:432-40. [PMID: 27261631 DOI: 10.1002/syn.21917] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/19/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022]
Abstract
Persistent cocaine-induced neuroadaptations within the cortico-striatal circuitry might be related to elevated risk of relapse observed in human addicts even after months or years of drug-free abstinence. Identification of these neuroadaptations may lead development of novel, neurobiologically-based treatments of relapse. In the current study, 12 adult male Sprague-Dawley rats self-administered cocaine (or received yoked-saline) for two weeks followed by three weeks of home-cage abstinence. At this point, we analyzed expression of proteins involved in regulation of Gαi- and Gαq-protein signaling in the dorsal striatum (dSTR). Animals abstinent from chronic cocaine showed decreased expression of regulator of G-protein signaling 2 (RGS2) and RGS4, as well as upregulation of RGS9. These data, together with the increased ratio of Gαq-to-Gαi proteins indicated, "sensitized" Gαq signaling in the dSTR of abstinent cocaine animals. To evaluate activation of Gαq signaling during relapse, another group of abstinent cocaine animals (and yoked saline controls, 22 rats together) was reintroduced to the cocaine context and PKC-mediated phosphorylation in the dSTR was analyzed. Re-exposure to the cocaine context triggered cocaine seeking and increase in phosphorylation of cellular PKC substrates, including phospho-ERK and phospho-CREB. In conclusion, this study demonstrates persistent dysregulation of RGS proteins in the dSTR of abstinent cocaine animals that may produce an imbalance in local Gαq-to-Gαi signaling. This imbalance might be related to augmented PKC-mediated phosphorylation during relapse to cocaine-seeking. Future studies will address whether selective targeting of RGS proteins in the dSTR can be utilized to suppress PKC-mediated phosphorylation and relapse to cocaine-seeking.
Collapse
Affiliation(s)
- Jenna Bilodeau
- Psychology Department, University of Florida, Gainesville, Florida 32611-2250
| | - Marek Schwendt
- Psychology Department, University of Florida, Gainesville, Florida 32611-2250
| |
Collapse
|
7
|
Noble F, Lenoir M, Marie N. The opioid receptors as targets for drug abuse medication. Br J Pharmacol 2015; 172:3964-79. [PMID: 25988826 DOI: 10.1111/bph.13190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/24/2015] [Accepted: 05/10/2015] [Indexed: 12/24/2022] Open
Abstract
The endogenous opioid system is largely expressed in the brain, and both endogenous opioid peptides and receptors are present in areas associated with reward and motivation. It is well known that this endogenous system plays a key role in many aspects of addictive behaviours. The present review summarizes the modifications of the opioid system induced by chronic treatment with drugs of abuse reported in preclinical and clinical studies, as well as the action of opioid antagonists and agonists on the reinforcing effects of drugs of abuse, with therapeutic perspectives. We have focused on the effects of chronic psychostimulants, alcohol and nicotine exposure. Taken together, the changes in both opioid peptides and opioid receptors in different brain structures following acute or chronic exposure to these drugs of abuse clearly identify the opioid system as a potential target for the development of effective pharmacotherapy for the treatment of addiction and the prevention of relapse.
Collapse
Affiliation(s)
- Florence Noble
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| | - Magalie Lenoir
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| | - Nicolas Marie
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
8
|
Blasio A, Steardo L, Sabino V, Cottone P. Opioid system in the medial prefrontal cortex mediates binge-like eating. Addict Biol 2014; 19:652-62. [PMID: 23346966 DOI: 10.1111/adb.12033] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Binge eating disorder is an addiction-like disorder characterized by excessive food consumption within discrete periods of time. This study was aimed at understanding the role of the opioid system within the medial prefrontal cortex (mPFC) in the consummatory and motivational aspects of binge-like eating. For this purpose, we trained male rats to obtain either a sugary, highly palatable diet (Palatable rats) or a chow diet (Chow rats) for 1 hour/day. We then evaluated the effects of the opioid receptor antagonist, naltrexone, given either systemically or site-specifically into the nucleus accumbens (NAcc) or the mPFC on a fixed ratio 1 (FR1) and a progressive ratio schedule of reinforcement for food. Finally, we assessed the expression of the genes proopiomelanocortin (POMC), pro-dynorphin (PDyn) and pro-enkephalin (PEnk), coding for the opioids peptides in the NAcc and the mPFC in both groups. Palatable rats rapidly escalated their intake by four times. Naltrexone, when administered systemically and into the NAcc, reduced FR1 responding for food and motivation to eat under a progressive ratio in both Chow and Palatable rats; conversely, when administered into the mPFC, the effects were highly selective for binge eating rats. Furthermore, we found a twofold increase in POMC and a ∼50% reduction in PDyn gene expression in the mPFC of Palatable rats, when compared to control rats; however, no changes were observed in the NAcc. Our data suggest that neuroadaptations of the opioid system in the mPFC occur following intermittent access to highly palatable food, which may be responsible for the development of binge-like eating.
Collapse
Affiliation(s)
- Angelo Blasio
- Laboratory of Addictive Disorders; Departments of Pharmacology and Psychiatry; Boston University School of Medicine; Boston MA USA
| | - Luca Steardo
- Department of Physiology and Pharmacology; University of Rome ‘Sapienza’; Italy
| | - Valentina Sabino
- Laboratory of Addictive Disorders; Departments of Pharmacology and Psychiatry; Boston University School of Medicine; Boston MA USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders; Departments of Pharmacology and Psychiatry; Boston University School of Medicine; Boston MA USA
| |
Collapse
|
9
|
Cummins E, Leri F. Animal studies trigger new insights on the use of methadone maintenance. Expert Opin Drug Discov 2013; 4:577-86. [PMID: 23485087 DOI: 10.1517/17460440902915533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Although steady-state methadone (SSM) treatment is mainly used for opioid addiction, some clinical studies indicate that it also reduces cocaine abuse in opioid-dependent individuals. OBJECTIVE/METHODS To present evidence suggesting that SSM may be useful in the treatment of cocaine addiction without pre-existing opioid dependence. We review studies in animals investigating the effects of SSM on behaviors motivated by cocaine and on cocaine-induced alterations of genes expression in the rat brain. CONCLUSION SSM reduces cocaine intake, blocks cocaine seeking and normalizes expression of genes known to regulate cocaine seeking. These findings suggest that SSM could be an effective pharmacological agent to assist cocaine detoxification and prevention of relapse to cocaine abuse in individuals not co-dependent on opioid.
Collapse
Affiliation(s)
- Erin Cummins
- PhD Student University of Guelph, Department of Psychology, Guelph (ON), N1G 2W1, Canada
| | | |
Collapse
|
10
|
Yoo JH, Kitchen I, Bailey A. The endogenous opioid system in cocaine addiction: what lessons have opioid peptide and receptor knockout mice taught us? Br J Pharmacol 2012; 166:1993-2014. [PMID: 22428846 DOI: 10.1111/j.1476-5381.2012.01952.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cocaine addiction has become a major concern in the UK as Britain tops the European 'league table' for cocaine abuse. Despite its devastating health and socio-economic consequences, no effective pharmacotherapy for treating cocaine addiction is available. Identifying neurochemical changes induced by repeated drug exposure is critical not only for understanding the transition from recreational drug use towards compulsive drug abuse but also for the development of novel targets for the treatment of the disease and especially for relapse prevention. This article focuses on the effects of chronic cocaine exposure and withdrawal on each of the endogenous opioid peptides and receptors in rodent models. In addition, we review the studies that utilized opioid peptide or receptor knockout mice in order to identify and/or clarify the role of different components of the opioid system in cocaine-addictive behaviours and in cocaine-induced alterations of brain neurochemistry. The review of these studies indicates a region-specific activation of the µ-opioid receptor system following chronic cocaine exposure, which may contribute towards the rewarding effect of the drug and possibly towards cocaine craving during withdrawal followed by relapse. Cocaine also causes a region-specific activation of the κ-opioid receptor/dynorphin system, which may antagonize the rewarding effect of the drug, and at the same time, contribute to the stress-inducing properties of the drug and the triggering of relapse. These conclusions have important implications for the development of effective pharmacotherapy for the treatment of cocaine addiction and the prevention of relapse.
Collapse
Affiliation(s)
- Ji Hoon Yoo
- Division of Biochemistry, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | | |
Collapse
|
11
|
Piechota M, Korostynski M, Sikora M, Golda S, Dzbek J, Przewlocki R. Common transcriptional effects in the mouse striatum following chronic treatment with heroin and methamphetamine. GENES BRAIN AND BEHAVIOR 2012; 11:404-14. [PMID: 22390687 DOI: 10.1111/j.1601-183x.2012.00777.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular alterations that underlie the long-lasting behavioural effects of drugs of abuse, such as psychomotor sensitization and physical dependence, are still not known. Moreover, it is not known which molecular effects are similar for addictive drugs from various pharmacological classes. In this study, we utilized whole-genome microarray profiling to evaluate the detailed time-course of transcriptional alterations in the mouse striatum during chronic treatment with heroin (HER) and methamphetamine (METH) and after period of spontaneous withdrawal. We identified 27 genes regulated by chronic drug administration. The overlap between lists of HER- and METH-induced genes was highly significant. The most substantial impact on the gene expression profile was observed for circadian genes (Per1, Per2 and Nr1d1). However, changing the treatment scheme from diurnal to nocturnal was sufficient to attenuate the drug-induced changes in circadian gene mRNA levels. Both of the drugs caused a dose-dependent induction in glucocorticoid-dependent genes with relatively long mRNA half-lives (Fkbp5, Sult1a1 and Plin4). The analysis also showed a drug-regulated group of transcripts enriched in the nucleus accumbens and includes well known (Pdyn, Cartpt and Rgs2) as well as new (Fam40b and Inmt) candidate genes. All identified alterations in the striatal transcriptome were transient and persisted up to 6 days after withdrawal. Behavioural sensitization, however, was maintained throughout the 12-day withdrawal period for both HER and METH. We suggest that transient gene expression alterations during drug treatment and in the early period of withdrawal are involved in the establishment of persistent neuroplastic alterations responsible for the development of drug addiction.
Collapse
Affiliation(s)
- M Piechota
- Department of Molecular Neuropharmacology, Institute of Pharmacology PAS, Smetna 12, Krakow, Poland
| | | | | | | | | | | |
Collapse
|
12
|
Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 2012; 69:857-96. [PMID: 22002579 PMCID: PMC11114766 DOI: 10.1007/s00018-011-0844-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
The dynorphin/κ-opioid receptor system has been implicated in the pathogenesis and pathophysiology of several psychiatric disorders. In the present review, we present evidence indicating a key role for this system in modulating neurotransmission in brain circuits that subserve mood, motivation, and cognitive function. We overview the pharmacology, signaling, post-translational, post-transcriptional, transcriptional, epigenetic and cis regulation of the dynorphin/κ-opioid receptor system, and critically review functional neuroanatomical, neurochemical, and pharmacological evidence, suggesting that alterations in this system may contribute to affective disorders, drug addiction, and schizophrenia. We also overview the dynorphin/κ-opioid receptor system in the genetics of psychiatric disorders and discuss implications of the reviewed material for therapeutics development.
Collapse
Affiliation(s)
- H. A. Tejeda
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201 USA
| | - T. S. Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
| | - R. Henriksson
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Clinical Neuroscience, Karolinska Institutet, CMM, L8:04, 17176 Stockholm, Sweden
| |
Collapse
|
13
|
Wassum KM, Cely IC, Balleine BW, Maidment NT. Micro-opioid receptor activation in the basolateral amygdala mediates the learning of increases but not decreases in the incentive value of a food reward. J Neurosci 2011; 31:1591-9. [PMID: 21289167 PMCID: PMC3081716 DOI: 10.1523/jneurosci.3102-10.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 11/19/2010] [Accepted: 11/30/2010] [Indexed: 11/21/2022] Open
Abstract
The decision to perform, or not perform, actions known to lead to a rewarding outcome is strongly influenced by the current incentive value of the reward. Incentive value is largely determined by the affective experience derived during previous consumption of the reward-the process of incentive learning. We trained rats on a two-lever, seeking-taking chain paradigm for sucrose reward, in which responding on the initial seeking lever of the chain was demonstrably controlled by the incentive value of the reward. We found that infusion of the μ-opioid receptor antagonist, CTOP (d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH(2)), into the basolateral amygdala (BLA) during posttraining, noncontingent consumption of sucrose in a novel elevated-hunger state (a positive incentive learning opportunity) blocked the encoding of incentive value information normally used to increase subsequent sucrose-seeking responses. Similar treatment with δ [N, N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH (ICI 174,864)] or κ [5'-guanidinonaltrindole (GNTI)] antagonists was without effect. Interestingly, none of these drugs affected the ability of the rats to encode a decrease in incentive value resulting from experiencing the sucrose in a novel reduced-hunger state. However, the μ agonist, DAMGO ([d-Ala2, NMe-Phe4, Gly5-ol]-enkephalin), appeared to attenuate this negative incentive learning. These data suggest that upshifts and downshifts in endogenous opioid transmission in the BLA mediate the encoding of positive and negative shifts in incentive value, respectively, through actions at μ-opioid receptors, and provide insight into a mechanism through which opiates may elicit inappropriate desire resulting in their continued intake in the face of diminishing affective experience.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/metabolism
- Animals
- Conditioning, Operant/drug effects
- Drive
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, Leucine/administration & dosage
- Enkephalin, Leucine/analogs & derivatives
- Enkephalin, Leucine/pharmacology
- Food
- Guanidines
- Male
- Microinjections
- Morphinans
- Naltrexone/administration & dosage
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/administration & dosage
- Narcotic Antagonists/pharmacology
- Neuropsychological Tests
- Rats
- Rats, Long-Evans
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Reward
- Somatostatin/administration & dosage
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
- Sucrose
Collapse
Affiliation(s)
- Kate M Wassum
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90024, USA.
| | | | | | | |
Collapse
|
14
|
Trigo JM, Martin-García E, Berrendero F, Robledo P, Maldonado R. The endogenous opioid system: a common substrate in drug addiction. Drug Alcohol Depend 2010; 108:183-94. [PMID: 19945803 DOI: 10.1016/j.drugalcdep.2009.10.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/30/2009] [Accepted: 10/28/2009] [Indexed: 12/17/2022]
Abstract
Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.
Collapse
Affiliation(s)
- José Manuel Trigo
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | | | | | | | | |
Collapse
|
15
|
Le Merrer J, Becker JAJ, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev 2009; 89:1379-412. [PMID: 19789384 DOI: 10.1152/physrev.00005.2009] [Citation(s) in RCA: 702] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides processed from three protein precursors, proopiomelanocortin, proenkephalin, and prodynorphin. Opioid receptors are recruited in response to natural rewarding stimuli and drugs of abuse, and both endogenous opioids and their receptors are modified as addiction develops. Mechanisms whereby aberrant activation and modifications of the opioid system contribute to drug craving and relapse remain to be clarified. This review summarizes our present knowledge on brain sites where the endogenous opioid system controls hedonic responses and is modified in response to drugs of abuse in the rodent brain. We review 1) the latest data on the anatomy of the opioid system, 2) the consequences of local intracerebral pharmacological manipulation of the opioid system on reinforced behaviors, 3) the consequences of gene knockout on reinforced behaviors and drug dependence, and 4) the consequences of chronic exposure to drugs of abuse on expression levels of opioid system genes. Future studies will establish key molecular actors of the system and neural sites where opioid peptides and receptors contribute to the onset of addictive disorders. Combined with data from human and nonhuman primate (not reviewed here), research in this extremely active field has implications both for our understanding of the biology of addiction and for therapeutic interventions to treat the disorder.
Collapse
Affiliation(s)
- Julie Le Merrer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département Neurobiologie et Génétique, Illkirch, France
| | | | | | | |
Collapse
|
16
|
Leri F, Zhou Y, Goddard B, Levy A, Jacklin D, Kreek MJ. Steady-state methadone blocks cocaine seeking and cocaine-induced gene expression alterations in the rat brain. Eur Neuropsychopharmacol 2009; 19:238-49. [PMID: 18990547 PMCID: PMC2900837 DOI: 10.1016/j.euroneuro.2008.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/22/2008] [Accepted: 09/30/2008] [Indexed: 11/26/2022]
Abstract
To elucidate the effects of steady-state methadone exposure on responding to cocaine conditioned stimuli and on cocaine-induced alterations in central opioid, hypocretin/orexin, and D2 receptor systems, male Sprague-Dawley rats received intravenous infusions of 1 mg/kg/inf cocaine paired with an audiovisual stimulus over three days of conditioning. Then, mini pumps releasing vehicle or 30 mg/kg/day methadone were implanted (SC), and lever pressing for the stimulus was assessed in the absence of cocaine and after a cocaine prime (20 mg/kg, IP). It was found that rats treated with vehicle, but not methadone, responded for the cocaine conditioned stimulus and displayed elevated mu-opioid receptor mRNA expression in the nucleus accumbens core and basolateral amygdala, reduced hypocretin/orexin mRNA in the lateral hypothalamus, and reduced D2 receptor mRNA in the caudate-putamen. This is the first demonstration that steady-state methadone administered after cocaine exposure blocks cocaine-induced behavioral and neural adaptations.
Collapse
MESH Headings
- Acoustic Stimulation/methods
- Analgesics, Opioid/administration & dosage
- Analysis of Variance
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Cocaine/pharmacology
- Cocaine-Related Disorders/drug therapy
- Cocaine-Related Disorders/metabolism
- Conditioning, Classical/drug effects
- Conditioning, Operant/drug effects
- Dopamine Uptake Inhibitors/pharmacology
- Drug Administration Schedule
- Drug Delivery Systems/methods
- Dynorphins/genetics
- Dynorphins/metabolism
- Gene Expression Regulation/drug effects
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Locomotion/drug effects
- Male
- Methadone/administration & dosage
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Orexins
- Photic Stimulation/methods
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Francesco Leri
- Department of Psychology, University of Guelph, Guelph, Canada.
| | | | | | | | | | | |
Collapse
|
17
|
Solecki W, Ziolkowska B, Krowka T, Gieryk A, Filip M, Przewlocki R. Alterations of prodynorphin gene expression in the rat mesocorticolimbic system during heroin self-administration. Brain Res 2009; 1255:113-21. [DOI: 10.1016/j.brainres.2008.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 11/28/2022]
|
18
|
Abstract
This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, United States.
| |
Collapse
|
19
|
Stefański R, Ziółkowska B, Kuśmider M, Mierzejewski P, Wyszogrodzka E, Kołomańska P, Dziedzicka-Wasylewska M, Przewłocki R, Kostowski W. Active versus passive cocaine administration: differences in the neuroadaptive changes in the brain dopaminergic system. Brain Res 2007; 1157:1-10. [PMID: 17544385 DOI: 10.1016/j.brainres.2007.04.074] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/11/2007] [Accepted: 04/20/2007] [Indexed: 10/23/2022]
Abstract
There is considerable evidence that chronic exposure to cocaine is associated with low striatal dopamine D2 receptor availability. In the present study we wished to determine whether neuroadaptive changes in densities of D2 receptors were due to direct pharmacological actions of cocaine or they reflected motivational states that were present when cocaine injection depended on active drug-seeking behavior and whether these changes were related to the actual expression of D2 mRNA. To achieve this goal we utilized a "yoked" procedure in which rats were tested simultaneously in groups of three, with only one rat actively self-administering cocaine while the other two received yoked injections of either cocaine or saline. Only passively administered cocaine produced a decrease in dopamine D2 receptor levels in the anterior and central regions of caudate/putamen, and both the shell and core of the nucleus accumbens, as measured by in vitro quantitative autoradiography. In contrast, examination of D2 receptor gene expression using in situ hybridization analysis revealed that there was an increase in D2 receptor mRNA levels in the ventral tegmental area of rats actively self-administered cocaine. We conclude that the reductions in striatal D2 receptor densities may be related to the chronic administration of cocaine per se and not to the motivated process of reinforced responding. Our results also suggest that increases in D2 receptor mRNA levels in limbic regions do not necessarily result in increased receptor densities and these changes likely reflect motivational states that were present when cocaine injection dependent on active drug self-administration.
Collapse
Affiliation(s)
- Roman Stefański
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Russo SJ, Bolanos CA, Theobald DE, DeCarolis NA, Renthal W, Kumar A, Winstanley CA, Renthal NE, Wiley MD, Self DW, Russell DS, Neve RL, Eisch AJ, Nestler EJ. IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nat Neurosci 2006; 10:93-9. [PMID: 17143271 DOI: 10.1038/nn1812] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 11/09/2006] [Indexed: 11/09/2022]
Abstract
Chronic morphine administration (via subcutaneous pellet) decreases the size of dopamine neurons in the ventral tegmental area (VTA), a key reward region in the brain, yet the molecular basis and functional consequences of this effect are unknown. In this study, we used viral-mediated gene transfer in rat to show that chronic morphine-induced downregulation of the insulin receptor substrate 2 (IRS2)-thymoma viral proto-oncogene (Akt) signaling pathway in the VTA mediates the decrease in dopamine cell size seen after morphine exposure and that this downregulation diminishes morphine reward, as measured by conditioned place preference. We further show that the reduction in size of VTA dopamine neurons persists up to 2 weeks after morphine withdrawal, which parallels the tolerance to morphine's rewarding effects caused by previous chronic morphine exposure. These findings directly implicate the IRS2-Akt signaling pathway as a critical regulator of dopamine cell morphology and opiate reward.
Collapse
Affiliation(s)
- Scott J Russo
- Department of Psychiatry and Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9070, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mierzejewski P, Siemiatkowski M, Radwanska K, Szyndler J, Bienkowski P, Stefanski R, Kaczmarek L, Kostowski W. Cycloheximide impairs acquisition but not extinction of cocaine self-administration. Neuropharmacology 2006; 51:367-73. [PMID: 16777145 DOI: 10.1016/j.neuropharm.2006.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 03/30/2006] [Accepted: 04/03/2006] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to assess the role of de novo protein synthesis in the acquisition and extinction of cocaine self-administration. In a first experiment, rats were trained to respond for intravenous cocaine infusions (0.3 mg/kg) and a protein synthesis inhibitor, cycloheximide (CHX; 3 mg/kg, s.c.) was injected immediately after each self-administration session. In a second experiment, rats were allowed to acquire cocaine self-administration and CHX was injected immediately after subsequent extinction sessions. CHX impaired the acquisition, but not extinction, of cocaine self-administration. In control experiments, CHX (3 mg/kg) blocked c-Fos protein expression after foot-shock stress and impaired the acquisition of conditioned freezing but did not inhibit spontaneous locomotor activity and sucrose drinking. Our results suggest that: i) the acquisition and extinction of cocaine-reinforced behaviour have a different molecular basis; and ii) only the former process requires de novo protein synthesis.
Collapse
Affiliation(s)
- Pawel Mierzejewski
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, Sobieskiego 9 St., 02-957 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|