1
|
Irfan S, Etekochay MO, Atanasov AG, Prasad VP, Kandimalla R, Mofatteh M, V P, Emran TB. Human olfactory neurosphere-derived cells: a unified tool for neurological disease modelling and neurotherapeutic applications. Int J Surg 2024; 110:6321-6329. [PMID: 38652180 PMCID: PMC11486950 DOI: 10.1097/js9.0000000000001460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
As one of the leading causes of global mortality and morbidity, various neurological diseases cause social and economic burdens. Despite significant advances in the treatment of neurological diseases, establishing a proper disease model, especially for degenerative and infectious diseases, remains a major challenging issue. For long, mice were the model of choice but suffered from serious drawbacks of differences in anatomical and functional aspects of the nervous system. Furthermore, the collection of postmortem brain tissues limits their usage in cultured cell lines. Overcoming such limitations has prompted the usage of stem cells derived from the peripheral nervous system, such as the cells of the olfactory mucosa as a preferred choice. These cells can be easily cultured in vitro and retain the receptors of neuronal cells life-long. Such cells have various advantages over embryonic or induced stem cells, including homology, and ease of culture and can be conveniently obtained from diseased individuals through either biopsies or exfoliation. They have continuously helped in understanding the genetic and developmental mechanisms of degenerative diseases like Alzheimer's and Parkinson's disease. Moreover, the mode of infection of various viruses that can lead to postviral olfactory dysfunction, such as the Zika virus can be monitored through these cells in vitro and their therapeutic development can be fastened.
Collapse
Affiliation(s)
- Saad Irfan
- Animal Science Department, Faculty of Animal and Agriculture Sciences, Universitas Diponegoro, Semarang, Indonesia
| | | | - Atanas G. Atanasov
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| | - Vishnu P. Prasad
- Rajiv Gandhi University of Health Sciences, Jayanagar, Bengaluru, Karnataka
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka, Hyderabad, Telangana State
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
| | - Mohammad Mofatteh
- School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Priyanka V
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | - Talha B. Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Santillán-Morales V, Rodriguez-Espinosa N, Muñoz-Estrada J, Alarcón-Elizalde S, Acebes Á, Benítez-King G. Biomarkers in Alzheimer's Disease: Are Olfactory Neuronal Precursors Useful for Antemortem Biomarker Research? Brain Sci 2024; 14:46. [PMID: 38248261 PMCID: PMC10813897 DOI: 10.3390/brainsci14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD), as the main cause of dementia, affects millions of people around the world, whose diagnosis is based mainly on clinical criteria. Unfortunately, the diagnosis is obtained very late, when the neurodegenerative damage is significant for most patients. Therefore, the exhaustive study of biomarkers is indispensable for diagnostic, prognostic, and even follow-up support. AD is a multifactorial disease, and knowing its underlying pathological mechanisms is crucial to propose new and valuable biomarkers. In this review, we summarize some of the main biomarkers described in AD, which have been evaluated mainly by imaging studies in cerebrospinal fluid and blood samples. Furthermore, we describe and propose neuronal precursors derived from the olfactory neuroepithelium as a potential resource to evaluate some of the widely known biomarkers of AD and to gear toward searching for new biomarkers. These neuronal lineage cells, which can be obtained directly from patients through a non-invasive and outpatient procedure, display several characteristics that validate them as a surrogate model to study the central nervous system, allowing the analysis of AD pathophysiological processes. Moreover, the ease of obtaining and harvesting endows them as an accessible and powerful resource to evaluate biomarkers in clinical practice.
Collapse
Affiliation(s)
- Valeria Santillán-Morales
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| | - Norberto Rodriguez-Espinosa
- Department of Neurology, University Hospital Nuestra Señora de Candelaria, 38010 Tenerife, Spain;
- Department of Internal Medicine, Dermatology and Psychiatry, Faculty of Health Sciences, University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Jesús Muñoz-Estrada
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA 90069, USA;
| | - Salvador Alarcón-Elizalde
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| | - Ángel Acebes
- Department of Basic Medical Sciences, Institute of Biomedical Technologies (ITB), University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Gloria Benítez-King
- Laboratory of Neuropharmacology, Clinical Research, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (V.S.-M.); (S.A.-E.)
| |
Collapse
|
3
|
Dagda RK, Dagda RY, Vazquez-Mayorga E, Martinez B, Gallahue A. Intranasal Administration of Forskolin and Noopept Reverses Parkinsonian Pathology in PINK1 Knockout Rats. Int J Mol Sci 2022; 24:690. [PMID: 36614135 PMCID: PMC9820624 DOI: 10.3390/ijms24010690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Parkinson's Disease (PD) is a brain-degenerative disorder characterized by a progressive loss of midbrain dopamine neurons. Current standard-of-care includes oral administration of Levodopa to address motor symptoms, but this treatment is not disease-modifying. A reduction in Protein Kinase A (PKA) signaling and neurotrophic support contributes to PD pathology. We previously showed that enhancing PKA activity in the brain via intraperitoneal administration of Forskolin in Parkinsonian rats (PINK1 knockout) abrogate motor symptoms and loss of midbrain dopamine neurons. Given that intraperitoneal administration is invasive, we hypothesized that intranasal administration of Forskolin and a second nootropic agent (Noopept) could reverse PD pathology efficiently. Results show that intranasal administration of a formulation (CNS/CT-001) containing Forskolin (10 µM) and Noopept (20 nM) significantly reversed motor symptoms, loss of hind limb strength, and neurodegeneration of midbrain dopamine neurons in PINK1-KO rats and is indistinguishable from wild-type (WT) rats; therapeutic effects associated with increased PKA activity and levels of BDNF and NGF in the brain. Intranasal administration of CNS/CT-001, but not Forskolin, significantly decreased the number of α-synuclein aggregates in the cortex of PINK1-KO rats, and is indistinguishable from WT rats. Overall, we show proof of concept that intranasal administration of CNS/CT-001 is a non-invasive, disease-modifying formulation for PD.
Collapse
Affiliation(s)
- Ruben K. Dagda
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA
- CNS Curative Technologies LLC, 450 Sinclair Street, Reno, NV 89501, USA
| | - Raul Y. Dagda
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA
- CNS Curative Technologies LLC, 450 Sinclair Street, Reno, NV 89501, USA
| | | | - Bridget Martinez
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Aine Gallahue
- Department of Pharmacology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA
- CNS Curative Technologies LLC, 450 Sinclair Street, Reno, NV 89501, USA
| |
Collapse
|
4
|
Denaro S, D’Aprile S, Alberghina C, Pavone AM, Torrisi F, Giallongo S, Longhitano L, Mannino G, Lo Furno D, Zappalà A, Giuffrida R, Tibullo D, Li Volti G, Vicario N, Parenti R. Neurotrophic and immunomodulatory effects of olfactory ensheathing cells as a strategy for neuroprotection and regeneration. Front Immunol 2022; 13:1098212. [PMID: 36601122 PMCID: PMC9806219 DOI: 10.3389/fimmu.2022.1098212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence sustains glial cells as critical players during central nervous system (CNS) development, homeostasis and disease. Olfactory ensheathing cells (OECs), a type of specialized glia cells sharing properties with both Schwann cells and astrocytes, are of critical importance in physiological condition during olfactory system development, supporting its regenerative potential throughout the adult life. These characteristics prompted research in the field of cell-based therapy to test OEC grafts in damaged CNS. Neuroprotective mechanisms exerted by OEC grafts are not limited to axonal regeneration and cell differentiation. Indeed, OEC immunomodulatory properties and their phagocytic potential encourage OEC-based approaches for tissue regeneration in case of CNS injury. Herein we reviewed recent advances on the immune role of OECs, their ability to modulate CNS microenvironment via bystander effects and the potential of OECs as a cell-based strategy for tissue regeneration.
Collapse
Affiliation(s)
- Simona Denaro
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Simona D’Aprile
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristiana Alberghina
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Anna Maria Pavone
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Torrisi
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Debora Lo Furno
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agata Zappalà
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy,*Correspondence: Nunzio Vicario, ; Rosalba Parenti,
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy,*Correspondence: Nunzio Vicario, ; Rosalba Parenti,
| |
Collapse
|
5
|
Vazquez-Mayorga E, Grigoruta M, Dagda R, Martinez B, Dagda RK. Intraperitoneal Administration of Forskolin Reverses Motor Symptoms and Loss of Midbrain Dopamine Neurons in PINK1 Knockout Rats. JOURNAL OF PARKINSON'S DISEASE 2022; 12:831-850. [PMID: 34957950 PMCID: PMC9108570 DOI: 10.3233/jpd-213016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/05/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a relentless, chronic neurodegenerative disease characterized by the progressive loss of substantia nigra (SN) neurons that leads to the onset of motor and non-motor symptoms. Standard of care for PD consists of replenishing the loss of dopamine through oral administration of Levodopa; however, this treatment is not disease-modifying and often induces intolerable side effects. While the etiology that contributes to PD is largely unknown, emerging evidence in animal models suggests that a significant reduction in neuroprotective Protein Kinase A (PKA) signaling in the SN contributes to PD pathogenesis, suggesting that restoring PKA signaling in the midbrain may be a new anti-PD therapeutic alternative. OBJECTIVE We surmised that pharmacological activation of PKA via intraperitoneal administration of Forskolin exerts anti-PD effects in symptomatic PTEN-induced kinase 1 knockout (PINK1-KO), a bona fide in vivo model of PD. METHODS By using a beam balance and a grip strength analyzer, we show that Forskolin reverses motor symptoms and loss of hindlimb strength with long-lasting therapeutic effects (> 5 weeks) following the last dose. RESULTS In comparison, intraperitoneal treatment with Levodopa temporarily (24 h) reduces motor symptoms but unable to restore hindlimb strength in PINK1-KO rats. By using immunohistochemistry and an XF24e BioAnalyzer, Forskolin treatment reverses SN neurons loss, elevates brain energy production and restores PKA activity in SN in symptomatic PINK1-KO rats. CONCLUSION Overall, our collective in vivo data suggest that Forskolin is a promising disease-modifying therapeutic alternative for PD and is superior to Levodopa because it confers long-lasting therapeutic effects.
Collapse
Affiliation(s)
| | - Mariana Grigoruta
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juarez, Mexico
| | - Raul Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Bridget Martinez
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Ruben K. Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
6
|
The Fate of Transplanted Olfactory Progenitors Is Conditioned by the Cell Phenotypes of the Receiver Brain Tissue in Cocultures. Int J Mol Sci 2020; 21:ijms21197249. [PMID: 33008128 PMCID: PMC7582579 DOI: 10.3390/ijms21197249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Among the numerous candidates for cell therapy of the central nervous system (CNS), olfactory progenitors (OPs) represent an interesting alternative because they are free of ethical concerns, are easy to collect, and allow autologous transplantation. In the present study, we focused on the optimization of neuron production and maturation. It is known that plated OPs respond to various trophic factors, and we also showed that the use of Nerve Growth Factor (NGF) allowed switching from a 60/40 neuron/glia ratio to an 80/20 one. Nevertheless, in order to focus on the integration of OPs in mature neural circuits, we cocultured OPs in primary cultures obtained from the cortex and hippocampus of newborn mice. When dissociated OPs were plated, they differentiated into both glial and neuronal phenotypes, but we obtained a 1.5-fold higher viability in cortex/OP cocultures than in hippocampus/OP ones. The fate of OPs in cocultures was characterized with different markers such as BrdU, Map-2, and Synapsin, indicating a healthy integration. These results suggest that the integration of transplanted OPs might by affected by trophic factors and the environmental conditions/cell phenotypes of the host tissue. Thus, a model of coculture could provide useful information on key cell events for the use of progenitors in cell therapy.
Collapse
|
7
|
Li C, Zhang B, Tian S, Hu J, Gao B, Liu P, Hua Y, Bao W, Guan Y, Bai Y. Early wheel-running promotes functional recovery by improving mitochondria metabolism in olfactory ensheathing cells after ischemic stroke in rats. Behav Brain Res 2018; 361:32-38. [PMID: 30583029 DOI: 10.1016/j.bbr.2018.12.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/27/2018] [Accepted: 12/20/2018] [Indexed: 01/19/2023]
Abstract
Olfactory ensheathing cells (OECs) has been widely studied in stroke. The present study was aimed at examining the role of wheel-running treatment (WR) on rat olfactory ensheathing cells (rOECs) functions. Thirty adult male Sprague Dawley rats were randomly divided into two groups: the middle cerebral artery occlusion (MCAO) group and WR + MCAO group. Motor behavior was assessed through the footfault test, and the results showed that WR training markedly improved the neurobehavioral outcome. The glucose metabolic status of the brain was assessed with the micro-PET. This training significantly enhanced the glucose uptake of olfactory bulb in the early stage of WR treatment. The function of rOECs mitochondrial was significantly enhanced after 10 days of treatment. Body weight of rats in both of the two groups decreased and then increased slowly following the days. But the growth trend of the WR + MCAO group was no significantly higher than that of the WR group. This training significantly enhanced the glucose uptake, improved the proliferation of rOECs and increased the expression level of cytochrome C (Cyt-c). The mechanism may be associated with the facilitation of mitochondrial function of rOECs cells. Including facilitation of mitochondrial fusion, fission, and accompanying increased quantities of mitochondria. Obtained results indicate that early WR treatment may exert enhanced function on rOECs in vivo and increased mitochondrial amounts, and improved the expression level of Cyt-c after ischemic stroke.
Collapse
Affiliation(s)
- Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 WuLuMuQi Middle Road, Shanghai 200040, China
| | - Bei Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 WuLuMuQi Middle Road, Shanghai 200040, China
| | - Shan Tian
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 WuLuMuQi Middle Road, Shanghai 200040, China
| | - Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 WuLuMuQi Middle Road, Shanghai 200040, China
| | - Beiyao Gao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 WuLuMuQi Middle Road, Shanghai 200040, China
| | - Peile Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 WuLuMuQi Middle Road, Shanghai 200040, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 WuLuMuQi Middle Road, Shanghai 200040, China
| | - Weiqi Bao
- Department of PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai 200235, China
| | - Yihui Guan
- Department of PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai 200235, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 12 WuLuMuQi Middle Road, Shanghai 200040, China.
| |
Collapse
|
8
|
Li ST, Young TH, Huang TW. Poly (ethylene-co-vinyl alcohol) is a suitable substrate for human olfactory neuroepithelial cell differentiation in vitro through a defined regulatory pathway. Acta Biomater 2018; 68:204-213. [PMID: 29288083 DOI: 10.1016/j.actbio.2017.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/28/2017] [Accepted: 12/19/2017] [Indexed: 12/30/2022]
Abstract
Olfactory dysfunction significantly influences patients' life quality, but currently has no adequate treatment. Poly (ethylene-co-vinyl alcohol) (EVAL) mediates cell adhesion, growth and modulates differentiation of neural stem cells. However, whether EVAL is a suitable substrate to establish an in vitro culture system that can promote development and differentiation of human olfactory neuroepithelial cells (HONCs) remains unexplored. This study isolates and cultures HONCs on controls and EVAL films for 21 days. The effects of treatment are assessed using immunocytochemistry, microarray analysis, quantitative PCR, ELISA and western blots following culturing. Most of the cell morphology on controls is epithelial and expresses markers of sustentacular cells (SCs), cadherin-1 and cytokeratin18, whereas the main population on EVAL presents as morphology with extended thin processes and possesses markers of mature olfactory sensory neurons (OSNs), olfactory marker protein (OMP). Microarray analyses reveal neuropeptide Y (NPY) and amphiregulin (AREG) are the two important regulating factors on EVAL films. HONCs cultured on EVAL films enhance the development of mature OSNs through NPY signaling, and significantly decrease the growth of SCs by blocking epidermal growth factor receptor (EGFR) activation. EVAL is a potential biomaterial to serve as an ideal substrate for treating olfactory dysfunction in the future. STATEMENT OF SIGNIFICANCE Olfaction not only contributes to enjoyments of food, but provides a clue to escape from dangerous environmental hazards. However, loss of smell is commonly progressive and there is no good prognostic approach for olfactory dysfunction. Here, we use poly (ethylene-co-vinyl alcohol) (EVAL) to establish an in vitro culture system that promotes development and differentiation of human olfactory neuroepithelial cells. We show that EVAL not only enhances the development of mature olfactory sensory neurons through neuronpeptide Y signaling, but significantly protects the olfactory neuroepithelium from metaplasia by inhibiting EGFR activation. Therefore, EVAL is a potential biomaterial to serve as an ideal substrate for treating olfactory dysfunction in the future.
Collapse
|
9
|
Galván-Arrieta T, Trueta C, Cercós MG, Valdés-Tovar M, Alarcón S, Oikawa J, Zamudio-Meza H, Benítez-King G. The role of melatonin in the neurodevelopmental etiology of schizophrenia: A study in human olfactory neuronal precursors. J Pineal Res 2017; 63. [PMID: 28500770 DOI: 10.1111/jpi.12421] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/05/2017] [Indexed: 01/13/2023]
Abstract
Dim light exposure of the mother during pregnancy has been proposed as one of the environmental factors that affect the fetal brain development in schizophrenia. Melatonin circulating levels are regulated by the environmental light/dark cycle. This hormone stimulates neuronal differentiation in the adult brain. However, little is known about its role in the fetal human brain development. Olfactory neuronal precursors (ONPs) are useful for studying the physiopathology of neuropsychiatric diseases because they mimic all the stages of neurodevelopment in culture. Here, we first characterized whether melatonin stimulates neuronal differentiation in cloned ONPs obtained from a healthy control subject (HCS). Then, melatonin effects were evaluated in primary cultures of ONPs derived from a patient diagnosed with schizophrenia (SZ) and an age- and gender-matched HCS. Axonal formation was evidenced morphologically by tau immunostaining and by GSK3β phosphorylated state. Potassium-evoked secretion was assessed as a functional feature of differentiated neurons. As well, we report the expression of MT1/2 receptors in human ONPs for the first time. Melatonin stimulated axonal formation and ramification in cloned ONPs through a receptor-mediated mechanism and enhanced the amount and velocity of axonal and somatic secretion. SZ ONPs displayed reduced axogenesis associated with lower levels of pGSK3β and less expression of melatonergic receptors regarding the HCS ONPs. Melatonin counteracted this reduction in SZ cells. Altogether, our results show that melatonin signaling is crucial for functional differentiation of human ONPs, strongly suggesting that a deficit of this indoleamine may lead to an impaired neurodevelopment which has been associated with the etiology of schizophrenia.
Collapse
Affiliation(s)
- Tania Galván-Arrieta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Citlali Trueta
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Montserrat G Cercós
- Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Salvador Alarcón
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Julian Oikawa
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Horacio Zamudio-Meza
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, México
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The goal of this review article is to introduce olfactory epithelium-derived cell/tissue models as a promising surrogate system to study the molecular mechanisms implicated in schizophrenia and other neuropsychiatric disorders. Here, we particularly focus on the utility of their neural progenitors. RECENT FINDINGS Recent investigations of the pathophysiology of schizophrenia using olfactory epithelium-derived tissue/cell models have provided insights about schizophrenia-associated alterations in neurodevelopment, stress response, and gene/protein expression regulatory pathways. SUMMARY The olfactory epithelium retains the capacity for lifelong neurogenesis and regeneration, because of the presence of neural stem cells and progenitors. Thus, both mature neurons and neural progenitors can be obtained from the olfactory epithelium without the need for genetic reprogramming and related confounds. Furthermore, the olfactory epithelium is highly scalable resource in translational settings. Here, we also demonstrate recent findings from research using olfactory epithelium-derived tissue/cell models in schizophrenia and other brain disorders. In summary, we propose that the olfactory epithelium is a promising resource to study neural molecular and cellular signatures relevant to the pathology of schizophrenia and other mental disorders.
Collapse
|
11
|
Gao Y, Winstead W, Lei Z, Lu C, Roisen FJ, El-Mallakh RS. Olfactory Neuroepithelial Neural Progenitor Cells from Subjects with Bipolar I Disorder. J Cent Nerv Syst Dis 2017; 9:1179573517694529. [PMID: 28469524 PMCID: PMC5392049 DOI: 10.1177/1179573517694529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022] Open
Abstract
Background: Research into the pathophysiology of bipolar disorder (BD) is limited by the inability to examine brain cellular processes in subjects with the illness. Methods: Endoscopic biopsy was performed in subjects with bipolar I disorder to establish olfactory neural progenitor (ONP) cell lines. Olfactory function was assessed prebiopsy and postbiopsy using the University of Pennsylvania Smell Identification Test (UPSIT). Cells were characterized to determine their lineage. Results: There were no significant complications associated with the biopsy procedure, including olfaction. Outpatient olfactory neuroepithelial biopsy yielded ONP cells in three out of 13 biopsy attempts (23.1%). ONPs were positive for neuron-specific proteins (β-tubulin III, nestin, hexaribonucleotide binding protein-3, and peripherin) and glia-specific proteins (glial fibrillary acidic protein and myelin basic protein). Conclusions: ONP cells can be obtained safely from awake outpatients and are potentially useful for pathophysiological studies of bipolar illness and perhaps other neuropsychiatric conditions. Such cells allow for the investigation of potential pathological cellular processes without the confounding factors of genetic manipulation, which is required for induced pluripotent cells.
Collapse
Affiliation(s)
- Yonglin Gao
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Welby Winstead
- Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders, University of Louisville School of Medicine, Louisville, KY, USA
| | - Zhenmin Lei
- Department of Obstetrics, Gynecology & Women's Health, University of Louisville School of Medicine, Louisville, KY, USA
| | - Chengliang Lu
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Fred J Roisen
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rif S El-Mallakh
- Professor and Director, Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
12
|
Improved smell function with increased nasal mucus sonic hedgehog in hyposmic patients after treatment with oral theophylline. Am J Otolaryngol 2017; 38:143-147. [PMID: 27923495 DOI: 10.1016/j.amjoto.2016.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/22/2016] [Indexed: 01/01/2023]
Abstract
PURPOSE We previously demonstrated the presence of sonic hedgehog (Shh) in nasal mucus in normal subjects and in patients with smell loss (hyposmia). Nasal mucus Shh levels were found significantly diminished in untreated hyposmic patients of multiple etiologies. Since treatment with oral theophylline has been previously associated with improvement in smell function we wished to study if such treatment increased nasal mucus Shh as well as improved smell function in patients with hyposmia. METHODS Forty-four patients with hyposmia of several etiologies were evaluated for changes in hyposmia by subjective measurements of smell, taste and flavor perception and by olfactometry. Measurements of nasal mucus Shh were made in relationship to each set of sensory measurements. Patients were treated with oral theophylline at doses of 200-800mg for periods of 2-10months with sensory function, nasal mucus Shh and serum theophylline levels evaluated at these time intervals. Nasal mucus Shh measurements were made with a sensitive spectrophotometric ELISA assay and theophylline with a fluorometric assay. RESULTS There was consistent, significant improvement in subjective responses in smell, taste and flavor perception and in olfactometry associated with increased nasal mucus Shh and serum theophylline after theophylline treatment. CONCLUSIONS Improvement in smell function and in nasal mucus Shh was positively correlated in a dose-response relationship after treatment with oral theophylline. Results are consistent with a successful role for theophylline in improvement of smell function in hyposmic patients of multiple etiologies associated with increased nasal mucus Shh which can act as a biochemical marker for smell function.
Collapse
|
13
|
Alizadeh R, Hassanzadeh G, Joghataei MT, Soleimani M, Moradi F, Mohammadpour S, Ghorbani J, Safavi A, Sarbishegi M, Pirhajati Mahabadi V, Alizadeh L, Hadjighassem M. In vitro differentiation of neural stem cells derived from human olfactory bulb into dopaminergic‐like neurons. Eur J Neurosci 2017; 45:773-784. [DOI: 10.1111/ejn.13504] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022]
Abstract
AbstractThis study describes a new accessible source of neuronal stem cells that can be used in Parkinson's disease cell transplant. The human olfactory bulb contains neural stem cells (NSCs) that are responsible for neurogenesis in the brain and the replacement of damaged cellular components throughout life. NSCs are capable of differentiating into neuronal and glial cells. We isolated NSCs from the olfactory bulb of brain‐death donors and differentiated them into dopaminergic neurons. The olfactory bulb tissues obtained were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F12, B27 supplemented with basic fibroblast growth factor, epidermal growth factor and leukemia inhibitory factor. The NSCs and proliferation markers were assessed. The multipotentiality of olfactory bulb NSCs was demonstrated by their capacity to differentiate into neurons, oligodendrocytes and astrocytes. To generate dopaminergic neurons, olfactory bulb NSCs were differentiated in neurobasal medium, supplemented with B27, and treated with sonic hedgehog, fibroblast growth factor 8 and glial cell‐derived neurotrophic factor from the 7th to the 21st day, followed by detection of dopaminergic neuronal markers including tyrosine hydroxylase and aromatic l‐amino acid decarboxylase. The cells were expanded, established in continuous cell lines and differentiated into the two classical neuronal phenotypes. The percentage of co‐positive cells (microtubule‐associated protein 2 and tyrosine hydroxylase; aromatic l‐amino acid decarboxylase and tyrosine hydroxylase) in the treated cells was significantly higher than in the untreated cells. These results illustrate the existence of multipotent NSCs in the adult human olfactory bulb that are capable of differentiating toward putative dopaminergic neurons in the presence of trophic factors. Taken together, our data encourage further investigations of the possible use of olfactory bulb NSCs as a promising cell‐based therapeutic strategy for Parkinson's disease.
Collapse
Affiliation(s)
- Rafieh Alizadeh
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- ENT and Head & Neck Research Center and Department Hazrat Rasoul Akram Hospital Iran University of Medical Sciences (IUMS) Tehran Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Anatomy School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Anatomy School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Fatemeh Moradi
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Anatomy School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Shahram Mohammadpour
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Anatomy School of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Anatomy School of Medicine Ilam University of Medical Sciences Ilam Iran
| | - Jahangir Ghorbani
- Organ Procurement and Transplant Unit (OPTU) Faculty of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Safavi
- Organ Procurement and Transplant Unit (OPTU) Faculty of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Maryam Sarbishegi
- Department of Anatomy School of Medicine Zahedan University of Medical Sciences Zahedan Iran
| | - Vahid Pirhajati Mahabadi
- ENT and Head & Neck Research Center and Department Hazrat Rasoul Akram Hospital Iran University of Medical Sciences (IUMS) Tehran Iran
- Department of Anatomy School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Leila Alizadeh
- Shefa Neuroscience Research Center Khatam‐Alanbia Hospital, Department of Neuroscience, School of Advanced Technologies in Medicine Tehran Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center Imam Khomeinin Hospital Blv Keshavarz, Tehran University of Medical Sciences Tehran 1419733141 Iran
- School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
14
|
Franco I, Ortiz-López L, Roque-Ramírez B, Ramírez-Rodríguez GB, Lamas M. Pharmacological inhibition of DNA methyltransferase 1 promotes neuronal differentiation from rodent and human nasal olfactory stem/progenitor cell cultures. Int J Dev Neurosci 2017; 58:65-73. [PMID: 28161254 DOI: 10.1016/j.ijdevneu.2017.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/28/2017] [Accepted: 01/29/2017] [Indexed: 01/09/2023] Open
Abstract
Nasal olfactory stem and neural progenitor cells (NOS/PCs) are considered possible tools for regenerative stem cell therapies in neurodegenerative diseases. Neurogenesis is a complex process regulated by extrinsic and intrinsic signals that include DNA-methylation and other chromatin modifications that could be experimentally manipulated in order to increase neuronal differentiation. The aim of the present study was the characterization of primary cultures and consecutive passages (P2-P10) of NOS/PCs isolated from male Swiss-Webster (mNOS/PCs) or healthy humans (hNOS/PCs). We evaluated and compared cellular morphology, proliferation rates and the expression pattern of pluripotency-associated markers and DNA methylation-associated gene expression in these cultures. Neuronal differentiation was induced by exposure to all-trans retinoic acid and forskolin for 7 days and evaluated by morphological analysis and immunofluorescence against neuronal markers MAP2, NSE and MAP1B. In response to the inductive cues mNOS/PCs expressed NSE (75.67%) and MAP2 (35.34%); whereas the majority of the hNOS/PCs were immunopositive to MAP1B. Treatment with procainamide, a specific inhibitor of DNA methyltransferase 1 (DNMT1), increases in the number of forskolin'/retinoic acid-induced mature neuronal marker-expressing mNOS/PCs cells and enhances neurite development in hNOS/PCs. Our results indicate that mice and human nasal olfactory stem/progenitors cells share pluripotency-related gene expression suggesting that their application for stem cell therapy is worth pursuing and that DNA methylation inhibitors could be efficient tools to enhance neuronal differentiation from these cells.
Collapse
Affiliation(s)
- I Franco
- Departamento de Farmacobiología, CINVESTAV-Sede Sur, Ciudad de México, Mexico
| | - L Ortiz-López
- Laboratorio de Neurogénesis, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - B Roque-Ramírez
- Departamento de Farmacobiología, CINVESTAV-Sede Sur, Ciudad de México, Mexico
| | - G B Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - M Lamas
- Departamento de Farmacobiología, CINVESTAV-Sede Sur, Ciudad de México, Mexico.
| |
Collapse
|
15
|
Solís-Chagoyán H, Flores-Soto E, Reyes-García J, Valdés-Tovar M, Calixto E, Montaño LM, Benítez-King G. Voltage-Activated Calcium Channels as Functional Markers of Mature Neurons in Human Olfactory Neuroepithelial Cells: Implications for the Study of Neurodevelopment in Neuropsychiatric Disorders. Int J Mol Sci 2016; 17:ijms17060941. [PMID: 27314332 PMCID: PMC4926474 DOI: 10.3390/ijms17060941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022] Open
Abstract
In adulthood, differentiation of precursor cells into neurons continues in several brain structures as well as in the olfactory neuroepithelium. Isolated precursors allow the study of the neurodevelopmental process in vitro. The aim of this work was to determine whether the expression of functional Voltage-Activated Ca2+ Channels (VACC) is dependent on the neurodevelopmental stage in neuronal cells obtained from the human olfactory epithelium of a single healthy donor. The presence of channel-forming proteins in Olfactory Sensory Neurons (OSN) was demonstrated by immunofluorescent labeling, and VACC functioning was assessed by microfluorometry and the patch-clamp technique. VACC were immunodetected only in OSN. Mature neurons responded to forskolin with a five-fold increase in Ca2+. By contrast, in precursor cells, a subtle response was observed. The involvement of VACC in the precursors’ response was discarded for the absence of transmembrane inward Ca2+ movement evoked by step depolarizations. Data suggest differential expression of VACC in neuronal cells depending on their developmental stage and also that the expression of these channels is acquired by OSN during maturation, to enable specialized functions such as ion movement triggered by membrane depolarization. The results support that VACC in OSN could be considered as a functional marker to study neurodevelopment.
Collapse
Affiliation(s)
- Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, Mexico City 14370, Mexico.
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, Mexico City 14370, Mexico.
| | - Eduardo Calixto
- Departamento de Neurobiología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, Mexico City 14370, Mexico.
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, Mexico City 14370, Mexico.
| |
Collapse
|
16
|
Sethi R, Sethi R, Redmond A, Lavik E. Olfactory ensheathing cells promote differentiation of neural stem cells and robust neurite extension. Stem Cell Rev Rep 2015; 10:772-85. [PMID: 24996386 DOI: 10.1007/s12015-014-9539-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS The goal of this study was to gain insight into the signaling between olfactory ensheathing cells (OECs) and neural stem cells (NSCs). We sought to understand the impact of OECs on NSC differentiation and neurite extension and to begin to elucidate the factors involved in these interactions to provide new targets for therapeutic interventions. MATERIALS AND METHODS We utilized lines of OECs that have been extremely well characterized in vitro and in vivo along with well studied NSCs in gels to determine the impact of the coculture in three dimensions. To further elucidate the signaling, we used conditioned media from the OECs as well as fractioned components on NSCs to determine the molecular weight range of the soluble factors that was most responsible for the NSC behavior. RESULTS We found that the coculture of NSCs and OECs led to robust NSC differentiation and extremely long neural processes not usually seen with NSCs in three dimensional gels in vitro. Through culture of NSCs with fractioned OEC media, we determined that molecules larger than 30 kDa have the greatest impact on the NSC behavior. CONCLUSIONS Overall, our findings suggest that cocultures of NSCs and OECs may be a novel combination therapy for neural injuries including spinal cord injury (SCI). Furthermore, we have identified a class of molecules which plays a substantial role in the behavior that provides new targets for investigating pharmacological therapies.
Collapse
Affiliation(s)
- Rosh Sethi
- Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA,
| | | | | | | |
Collapse
|
17
|
Ohnishi YI, Iwatsuki K, Ishihara M, Shikina T, Shinzawa K, Moriwaki T, Ninomiya K, Ohkawa T, Umegaki M, Kishima H, Yoshimine T. Isolation of human adult olfactory sphere cells as a cell source of neural progenitors. Stem Cell Res 2015; 15:23-9. [PMID: 25965912 DOI: 10.1016/j.scr.2015.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/14/2015] [Accepted: 04/22/2015] [Indexed: 01/21/2023] Open
Abstract
Olfactory stem cells are generated from olfactory mucosa. Various culture conditions generate olfactory stem cells that differ according to species and developmental stage and have different progenitor or stem cell characteristics. Olfactory spheres (OSs) are clusters of progenitor or stem cells generated from olfactory mucosa in suspension culture. In this study, adult human OSs were generated and their characteristics analyzed. Human OSs were adequately produced from olfactory mucosa with area over 40 mm(2). Immunocytochemistry (ICC) and fluorescence-activated cell sorting showed that human OSs were AN2 and A2B5-positive. Immunofluorescence analysis of cell type-specific ICC indicated that the number of Tuj1-positive OS cells was significantly elevated. Tuj1-positive cells displayed typical neuronal soma and dendritic morphology. Human OS cells were also immunopositive for MAP2. By contrast, few RIP-, O4-, and GFAP-positive cells were present. These RIP, O4, and GFAP-positive cells did not resemble bona fide oligodendrocytes and astrocytes morphologically. In culture to induce differentiation of oligodendrocytes, human OS cells also expressed neuronal markers, but neither oligodendrocyte or astrocyte markers. These findings suggest that human OS cells autonomously differentiate into neurons in our culture condition and have potential to be used as a cell source of neural progenitors for their own regenerative grafts, avoiding the need for immunosuppression and ethical controversies.
Collapse
Affiliation(s)
- Yu-Ichiro Ohnishi
- Department of Neurosurgery, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Koichi Iwatsuki
- Department of Neurosurgery, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Ishihara
- Department of Neurosurgery, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Shikina
- Department of Otorhinolaryngology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koei Shinzawa
- Department of Molecular Genetics, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Moriwaki
- Department of Neurosurgery, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koshi Ninomiya
- Department of Neurosurgery, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshika Ohkawa
- Department of Neurosurgery, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masao Umegaki
- Department of Neurosurgery, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiki Yoshimine
- Department of Neurosurgery, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Translational potential of olfactory mucosa for the study of neuropsychiatric illness. Transl Psychiatry 2015; 5:e527. [PMID: 25781226 PMCID: PMC4354342 DOI: 10.1038/tp.2014.141] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/22/2014] [Accepted: 11/17/2014] [Indexed: 01/02/2023] Open
Abstract
The olfactory mucosa (OM) is a unique source of regenerative neural tissue that is readily obtainable from living human subjects and thus affords opportunities for the study of psychiatric illnesses. OM tissues can be used, either as ex vivo OM tissue or in vitro OM-derived neural cells, to explore parameters that have been difficult to assess in the brain of living individuals with psychiatric illness. As OM tissues are distinct from brain tissues, an understanding of the neurobiology of the OM is needed to relate findings in these tissues to those of the brain as well as to design and interpret ex vivo or in vitro OM studies. To that end, we discuss the molecular, cellular and functional characteristics of cell types within the olfactory mucosa, describe the organization of the OM and highlight its role in the olfactory neurocircuitry. In addition, we discuss various approaches to in vitro culture of OM-derived cells and their characterization, focusing on the extent to which they reflect the in vivo neurobiology of the OM. Finally, we review studies of ex vivo OM tissues and in vitro OM-derived cells from individuals with psychiatric, neurodegenerative and neurodevelopmental disorders. In particular, we discuss the concordance of this work with postmortem brain studies and highlight possible future approaches, which may offer distinct strengths in comparison to in vitro paradigms based on genomic reprogramming.
Collapse
|
19
|
Yazinski S, Gomez G. Time course of structural and functional maturation of human olfactory epithelial cells in vitro. J Neurosci Res 2013; 92:64-73. [PMID: 24123277 DOI: 10.1002/jnr.23296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 11/06/2022]
Abstract
The unique ability of olfactory neurons to regenerate in vitro has allowed their use for the study of olfactory function, regeneration, and neurodegenerative disorders; thus, characterization of their properties is important. This present study attempts to establish the timeline of structural (protein expression) and functional (odorant sensitivity) maturation of human olfactory epithelial cells (hOE) in vitro using biopsy-derived cultured tissue. Cells were grown for 7 days; on each day, cells were tested for odorant sensitivity using calcium imaging techniques and then protein expression of each cell was tested using immunocytochemistry for proteins typically used for characterizing olfactory cells. Previous studies have shown that mature olfactory neurons in vitro attain a unique "phase-bright" morphology and express the olfactory marker protein (OMP). By day 3 in vitro, a variety of cells were odorant-sensitive, including both "phase-bright" and "phase-dark" cells that have previously been considered glial-like cells. The functional maturation of these hOEs appears to take place within 4 days. Interestingly, the emergence of an odorant sensitivity profile of both phase-bright and phase-dark cells preceded the expression of marker protein expression for OMP (which is expressed only by mature neurons in vivo). This structural maturation took 5 days, suggesting that the development of odorant sensitivity is not coincident with the expression of marker molecules that are hallmarks of structural maturation. These results have important implications for the use of hOEs as in vitro models of olfactory and neuronal function.
Collapse
Affiliation(s)
- Stepahnie Yazinski
- Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts
| | | |
Collapse
|
20
|
Carnicero E, Alonso M, Carretero R, Lamus F, Moro J, de la Mano A, Fernández J, Gato A. Embryonic Cerebrospinal Fluid Activates Neurogenesis of Neural Precursors within the Subventricular Zone of the Adult Mouse Brain. Cells Tissues Organs 2013; 198:398-404. [DOI: 10.1159/000356983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2013] [Indexed: 11/19/2022] Open
|
21
|
Wang M, Lu C, Roisen F. Adult human olfactory epithelial-derived progenitors: a potential autologous source for cell-based treatment for Parkinson's disease. Stem Cells Transl Med 2012; 1:492-502. [PMID: 23197853 PMCID: PMC3659713 DOI: 10.5966/sctm.2012-0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/04/2012] [Indexed: 11/16/2022] Open
Abstract
Human adult olfactory epithelial-derived neural progenitors (hONPs) can differentiate along several neural lineages in response to morphogenic signals in vitro. A previous study optimized the transfection paradigm for the differentiation of hONPs to dopaminergic neurons. This study engrafted cells modified by the most efficient transfection paradigm for dopaminergic neural restriction and pretransfected controls into a unilateral neurotoxin, 6-hydroxydopamine-induced parkinsonian rat model. Approximately 35% of the animals engrafted with hONPs had improved behavioral recovery as demonstrated by the amphetamine-induced rotation test, as well as a corner preference and cylinder paw preference, over a period of 24 weeks. The pre- and post-transfected groups produced equivalent responses, indicating that the toxic host environment supported hONP dopaminergic differentiation in situ. Human fibroblasts used as a cellular control did not diminish the parkinsonian rotational deficits at any point during the study. Increased numbers of tyrosine hydroxylase (TH)-positive cells were detected in the engrafted brains compared with the fibroblast-implanted and medium-only controls. Engrafted TH-positive hONPs were detected for a minimum of 6 months in vivo; they were multipolar, had long processes, and migrated beyond their initial injection sites. Higher dopamine levels were detected in the striatum of behaviorally improved animals than in equivalent regions of their nonrecovered counterparts. Throughout these experiments, no evidence of tumorigenicity was observed. These results support our hypothesis that human adult olfactory epithelial-derived progenitors represent a unique autologous cell type with promising potential for future use in a cell-based therapy for patients with Parkinson's disease.
Collapse
Affiliation(s)
- Meng Wang
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Chengliang Lu
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Fred Roisen
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
22
|
Boone N, Bergon A, Loriod B, Devèze A, Nguyen C, Axelrod FB, Ibrahim EC. Genome-wide analysis of familial dysautonomia and kinetin target genes with patient olfactory ecto-mesenchymal stem cells. Hum Mutat 2012; 33:530-40. [PMID: 22190446 DOI: 10.1002/humu.22010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/08/2011] [Indexed: 11/10/2022]
Abstract
Familial dysautonomia (FD) is a rare inherited neurodegenerative disorder. The most common mutation is a c.2204+6T>C transition in the 5' splice site (5'ss) of IKBKAP intron 20, which causes a tissue-specific skipping of exon 20, resulting in lower synthesis of IKAP/hELP1 protein. To better understand the specificity of neuron loss in FD, we modeled the molecular mechanisms of IKBKAP mRNA splicing by studying human olfactory ecto-mesenchymal stem cells (hOE-MSCs) derived from FD patient nasal biopsies. We explored how the modulation of IKBKAP mRNA alternative splicing impacts the transcriptome at the genome-wide level. We found that the FD transcriptional signature was highly associated with biological functions related to the development of the nervous system. In addition, we identified target genes of kinetin, a plant cytokinin that corrects IKBKAP mRNA splicing and increases the expression of IKAP/hELP1. We identified this compound as a putative regulator of splicing factors and added new evidence for a sequence-specific correction of splicing. In conclusion, hOE-MSCs isolated from FD patients represent a promising avenue for modeling the altered genetic expression of FD, demonstrating a methodology that can be applied to a host of other genetic disorders to test the therapeutic potential of candidate molecules.
Collapse
Affiliation(s)
- Nathalie Boone
- Aix-Marseille Université, NICN, UMR 6184, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
23
|
García-Escudero V, García-Gómez A, Langa E, Martín-Bermejo MJ, Ramírez-Camacho R, García-Berrocal JR, Moreno-Flores MT, Avila J, Lim F. Patient-derived olfactory mucosa cells but not lung or skin fibroblasts mediate axonal regeneration of retinal ganglion neurons. Neurosci Lett 2011; 509:27-32. [PMID: 22227621 DOI: 10.1016/j.neulet.2011.12.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 01/24/2023]
Abstract
Although human olfactory mucosa derived cells (OMC) have been used in animal models and clinical trials with CNS repair purposes, the exact identity of these cells in culture with respect to their tissue of origin is not fully understood and their neuroregenerative capacity in vitro has not yet been demonstrated. In this study we have compared human OMC with human ensheathing glia from olfactory bulb (OB) and human fibroblasts from skin and lung. Our results indicate that these different cultured cell types exhibit considerable overlap of antigenic markers such that it is presently not possible to distinguish them immunocytochemically. However, in rat retinal ganglion neuron coculture assays the axonal regenerative activity of OMC and OB ensheathing glia was dramatically higher than that exhibited by all fibroblast samples, confirming neuroregenerative activity as a unique property shared by cultured cells derived from the human olfactory system.
Collapse
Affiliation(s)
- Vega García-Escudero
- Department of Molecular Biology, Universidad Autónoma de Madrid, 28049 Cantoblanco, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
More than 1 million people in the United States live with a spinal cord injury (SCI). Despite medical advances, many patients with SCIs still experience substantial neurological disability, with loss of motor, sensory, and autonomic function. Cell therapy is ideally suited to address the multifactorial nature of the secondary events following SCI. Remarkable advances in our understanding of the pathophysiology of SCI, structural and functional magnetic resonance imaging, image-guided micro-neurosurgical techniques, and transplantable cell biology have enabled the use of cell-based regenerative techniques in the clinic. It is important to note that there are more than a dozen recently completed, ongoing, or recruiting cell therapy clinical trials for SCI that reflect the views of many key stakeholders. The field of regenerative neuroscience has reached a stage in which the clinical trials are scientifically and ethically justified. Although experimental models and analysis methods and techniques continue to evolve, no model will completely replicate the human condition. It is recognized that more work with cervical models of contusive/compressive SCI are required in parallel with clinical trials. It is also important that the clinical translation of advances made through well-established and validated experimental approaches in animal models move forward to meet the compelling needs of individuals with SCI and to advance the field of regenerative neuroscience. However, it is imperative that such efforts at translation be done in the most rigorous and informed fashion to determine safety and possible efficacy, and to provide key information to clinicians and basic scientists, which will allow improvements in regenerative techniques and the validation and refinement of existing preclinical animal models and research approaches. The field of regenerative neuroscience should not be stalled at the animal model stage, but instead the clinical trials need to be focused, safe, and ethical, backed up by a robust, translationally relevant preclinical research strategy.
Collapse
Affiliation(s)
- Michael G. Fehlings
- University Health Network, Toronto Western Hospital, Toronto, ON M5T 2S8 Canada
| | - Reaz Vawda
- University Health Network, Toronto Western Hospital, Toronto, ON M5T 2S8 Canada
| |
Collapse
|
25
|
Manceur AP, Tseng M, Holowacz T, Witterick I, Weksberg R, McCurdy RD, Warsh JJ, Audet J. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors. Exp Cell Res 2011; 317:2086-98. [PMID: 21708147 DOI: 10.1016/j.yexcr.2011.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 01/12/2023]
Abstract
The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aziza P Manceur
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Alonso MI, Martín C, Carnicero E, Bueno D, Gato A. Cerebrospinal fluid control of neurogenesis induced by retinoic acid during early brain development. Dev Dyn 2011; 240:1650-9. [PMID: 21594951 DOI: 10.1002/dvdy.22657] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2011] [Indexed: 01/13/2023] Open
Abstract
Embryonic-cerebrospinal fluid (E-CSF) plays crucial roles in early brain development including the control of neurogenesis. Although FGF2 and lipoproteins present in the E-CSF have previously been shown to be involved in neurogenesis, the main factor triggering this process remains unknown. E-CSF contains all-trans-retinol and retinol-binding protein involved in the synthesis of retinoic acid (RA), a neurogenesis inducer. In early chick embryo brain, only the mesencephalic-rombencephalic isthmus (IsO) is able to synthesize RA. Here we show that in chick embryo brain development: (1) E-CSF helps to control RA synthesis in the IsO by means of the RBP and all-trans-retinol it contains; (2) E-CSF has retinoic acid activity, which suggests it may act as a diffusion pathway for RA; and (3) the influence of E-CSF on embryonic brain neurogenesis is to a large extent due to its involvement in RA synthesis. These data help to understand neurogenesis from neural progenitor cells.
Collapse
Affiliation(s)
- M I Alonso
- Departamento de Anatomía y Radiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | | | | | | | | |
Collapse
|
27
|
Wang M, Lu C, Li H, Qiu M, Winstead W, Roisen F. Lineage restriction of adult human olfactory-derived progenitors to dopaminergic neurons. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/scd.2011.13004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Boone N, Loriod B, Bergon A, Sbai O, Formisano-Tréziny C, Gabert J, Khrestchatisky M, Nguyen C, Féron F, Axelrod FB, Ibrahim EC. Olfactory stem cells, a new cellular model for studying molecular mechanisms underlying familial dysautonomia. PLoS One 2010; 5:e15590. [PMID: 21187979 PMCID: PMC3004942 DOI: 10.1371/journal.pone.0015590] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/13/2010] [Indexed: 12/29/2022] Open
Abstract
Background Familial dysautonomia (FD) is a hereditary neuropathy caused by mutations in the IKBKAP gene, the most common of which results in variable tissue-specific mRNA splicing with skipping of exon 20. Defective splicing is especially severe in nervous tissue, leading to incomplete development and progressive degeneration of sensory and autonomic neurons. The specificity of neuron loss in FD is poorly understood due to the lack of an appropriate model system. To better understand and modelize the molecular mechanisms of IKBKAP mRNA splicing, we collected human olfactory ecto-mesenchymal stem cells (hOE-MSC) from FD patients. hOE-MSCs have a pluripotent ability to differentiate into various cell lineages, including neurons and glial cells. Methodology/Principal Findings We confirmed IKBKAP mRNA alternative splicing in FD hOE-MSCs and identified 2 novel spliced isoforms also present in control cells. We observed a significant lower expression of both IKBKAP transcript and IKAP/hELP1 protein in FD cells resulting from the degradation of the transcript isoform skipping exon 20. We localized IKAP/hELP1 in different cell compartments, including the nucleus, which supports multiple roles for that protein. We also investigated cellular pathways altered in FD, at the genome-wide level, and confirmed that cell migration and cytoskeleton reorganization were among the processes altered in FD. Indeed, FD hOE-MSCs exhibit impaired migration compared to control cells. Moreover, we showed that kinetin improved exon 20 inclusion and restores a normal level of IKAP/hELP1 in FD hOE-MSCs. Furthermore, we were able to modify the IKBKAP splicing ratio in FD hOE-MSCs, increasing or reducing the WT (exon 20 inclusion):MU (exon 20 skipping) ratio respectively, either by producing free-floating spheres, or by inducing cells into neural differentiation. Conclusions/Significance hOE-MSCs isolated from FD patients represent a new approach for modeling FD to better understand genetic expression and possible therapeutic approaches. This model could also be applied to other neurological genetic diseases.
Collapse
Affiliation(s)
- Nathalie Boone
- NICN-CNRS UMR 6184, Université de la Méditerranée-Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
| | | | | | - Oualid Sbai
- NICN-CNRS UMR 6184, Université de la Méditerranée-Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
| | | | - Jean Gabert
- Plateforme Transcriptome, CRO2, Faculté de Médecine, Marseille, France
- Biochemistry and Molecular Biology, Hôpital Nord, AP-HM, Marseille, France
| | - Michel Khrestchatisky
- NICN-CNRS UMR 6184, Université de la Méditerranée-Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
| | | | - François Féron
- NICN-CNRS UMR 6184, Université de la Méditerranée-Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
| | - Felicia B. Axelrod
- Department of Pediatrics, New York University School of Medicine, New York, New York, United States of America
| | - El Chérif Ibrahim
- NICN-CNRS UMR 6184, Université de la Méditerranée-Faculté de Médecine Nord, IFR Jean Roche, Marseille, France
- * E-mail:
| |
Collapse
|
29
|
Gao Y, Lei Z, Lu C, Roisen FJ, El-Mallakh RS. Effect of ionic stress on apoptosis and the expression of TRPM2 in human olfactory neuroepithelial-derived progenitors. World J Biol Psychiatry 2010; 11:972-84. [PMID: 20799912 DOI: 10.3109/15622975.2010.507784] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Disturbed ion homeostasis and apoptosis have been implicated in the pathophysiology of bipolar disorder (BD). TRPM2, a nonselective cation channel, is involved in apoptosis and is possibly linked with BD. In this study, monensin, a sodium ionophore, was used to model the increase [Na(+)](in) and [Ca(2+)](in) seen in BD patients. METHODS Human olfactory neuroepithelial-derived progenitors (ONP), which possess neuronal markers, were utilized to investigate the effects of monensin on apoptosis and the response of TRPM2, and the effects of lithium on the cellular response to monensin. Monensin treatment for 6 h activated caspase-3, -7 and poly(ADP-ribose) polymerase (PARP), inducing apoptosis. RESULTS [Na(+)](in) increased to twice the basal level and reached steady state after 2 h of 10(-6) M monensin treatment, while [Ca(2+)](in) rose after 6 h of the treatment. Monensin treatment for 24 h decreased expression of the long form of TRPM2, and increased expression of the short form. Lithium (1 mM) pretreatment reduced the [Na(+)](in) and [Ca(2+)](in) elevation caused by monensin, down-regulated the levels of caspase-3, -7 and PARP, and reduced expression of TRPM2. CONCLUSIONS Our findings suggest that the elevation of [Na(+)](in) and [Ca(2+)](in) induced ONP apoptosis and altered the expression of TRPM2. Lithium pretreatment attenuated the apoptosis induced by ionic stress.
Collapse
Affiliation(s)
- Yonglin Gao
- Department of Psychiatry and Behavioral Sciences, University of Louisville, School of Medicine, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
30
|
Alves FR, Guerra RR, Fioretto ET, Delgado JC, Machado Júnior AAN, Ambrósio CE, Kerkis I, Miglino MA. Establishment of a protocol for obtention of neuronal stem cells lineages from the dog olfactory epithelium. PESQUISA VETERINARIA BRASILEIRA 2010. [DOI: 10.1590/s0100-736x2010000400014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A morphological and cell culture study from nasal mucosa of dogs was performed in order to establish a protocol to obtain a cell population committed to neuronal lineage, as a proposal for the treatment of traumatic and degenerative lesions in these animals, so that in the future these results could be applied to the human species. Twelve mongrel dogs of 60-day aged pregnancy were collected from urban pound dogs in São Paulo. Tissue from cribriform ethmoidal lamina of the fetuses was collected at necropsy under sterile conditions around 1h to 2h postmortem by uterine sections and sections from the fetal regions described above. Isolated cells of this tissue were added in DMEM/F-12 medium under standard conditions of incubation (5% CO², >37ºC). Cell culture based on isolated cells from biopsies of the olfactory epithelium showed rapid growth when cultured for 24 hours, showing phase-bright sphere cells found floating around the fragments, attached on culture flasks. After 20 days, a specific type of cells, predominantly ellipsoids or fusiform cells was characterized in vitro. The indirect immunofluorescence examination showed cells expressing markers of neuronal precursors (GFAP, neurofilament, oligodendrocyte, and III â-tubulin). The cell proliferation index showed Ki67 immunostaining with a trend to label cell groups throughout the apical region, while PCNA immunostaining label predominantly cell groups lying above the basal lamina. The transmission electron microscopy from the olfactory epithelium of dogs revealed cells with electron-dense cytoplasm and preserving the same distribution as those of positive cell staining for PCNA. Metabolic activity was confirmed by presence of euchromatin in the greatest part of cells. All these aspects give subsidies to support the hypothesis about resident progenitor cells among the basal cells of the olfactory epithelium, committed to renewal of these cell populations, especially neurons.
Collapse
|
31
|
Thyrotropin-releasing hormone d,l polylactide nanoparticles (TRH-NPs) protect against glutamate toxicity in vitro and kindling development in vivo. Brain Res 2009; 1303:151-60. [PMID: 19766611 DOI: 10.1016/j.brainres.2009.09.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/03/2009] [Accepted: 09/11/2009] [Indexed: 11/22/2022]
Abstract
Thyrotropin-releasing hormone (TRH) is reported to have anticonvulsant effects in animal seizure models and certain intractable epileptic patients. However, its duration of action is limited by rapid tissue metabolism and the blood brain barrier. Direct nose-brain delivery of neuropeptides in sustained-release biodegradable nanoparticles (NPs) is a promising mode of therapy for enhancing CNS bioavailability. Bioactivity/neuroprotection of d,l polylactide nanoparticles containing TRH was assessed against glutamate toxicity in cultured rat fetal hippocampal neurons. Subsequently, we utilized the kindling model of temporal lobe epilepsy to determine if intranasal administration of nanoparticles containing TRH (TRH-NPs) could inhibit kindling development. Animals received daily treatments of either blank (control) or TRH-NPs for 7 days before initiation of kindling. On day 8 and each day thereafter until either fully kindled or until day 20, the animals received daily treatments before receiving a kindling stimulus 3 h later. Afterdischarge duration (ADD) was assessed via electroencephalographs recorded from electrodes in the basolateral amygdalae and behavioral seizure stereotypy was simultaneously recorded digitally. Intranasal application of TRH-NPs resulted in a significant reduction in seizure ADD as kindling progressed, while the number of stimulations required to reach stage V seizures and to become permanently kindled was significantly greater in TRH-NP-treated subjects. Additionally, delay to clonus was significantly prolonged while clonus duration was reduced indicating a less severe seizure in TRH-NP-treated subjects. Our results provide proof of principle that intranasal delivery of sustained-release TRH-NPs may be neuroprotective and can be utilized to suppress seizures and perhaps epileptogenesis.
Collapse
|
32
|
He C, Qu X, Cui L, Wang J, Kang JX. Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc Natl Acad Sci U S A 2009; 106:11370-5. [PMID: 19549874 PMCID: PMC2708766 DOI: 10.1073/pnas.0904835106] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Indexed: 11/18/2022] Open
Abstract
Docosahexaenoic acid (DHA), an n-3 long chain polyunsaturated fatty acid (LC-PUFA), highly enriched in the central nervous system, is critical for brain development and function. It has been shown that DHA deficiency impairs cognitive performance whereas DHA supplementation improves the condition. However, the mechanisms underlying the role of DHA in brain development and function remain to be elucidated. By using transgenic fat-1 mice rich in endogenous n-3 PUFA, we show that increased brain DHA significantly enhances hippocampal neurogenesis shown by an increased number of proliferating neurons and neuritogenesis, evidenced by increased density of dendritic spines of CA1 pyramidal neurons in the hippocampus. Concurrently, fat-1 mice exhibit a better spatial learning performance in the Morris water maze compared with control WT littermates. In vitro experiments further demonstrate that DHA promotes differentiation and neurite outgrowth of neuronal cells derived from mouse ES cells and increases the proliferation of cells undergoing differentiation into neuronal lineages from the ES cells. These results together provide direct evidence for a promoting effect of DHA on neurogenesis and neuritogenesis and suggest that this effect may be a mechanism underlying its beneficial effect on behavioral performance.
Collapse
Affiliation(s)
| | | | - Libin Cui
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | | | | |
Collapse
|
33
|
Borgmann-Winter KE, Rawson NE, Wang HY, Wang H, MacDonald ML, Ozdener MH, Yee KK, Gomez G, Xu J, Bryant B, Adamek G, Mirza N, Pribitkin E, Hahn CG. Human olfactory epithelial cells generated in vitro express diverse neuronal characteristics. Neuroscience 2009; 158:642-53. [PMID: 18996445 PMCID: PMC2951119 DOI: 10.1016/j.neuroscience.2008.09.059] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 09/22/2008] [Accepted: 09/28/2008] [Indexed: 10/21/2022]
Abstract
The olfactory epithelium constitutes the sole source of regenerating neural cells that can be obtained from a living human. As such, primary cultures derived from human olfactory epithelial biopsies can be utilized to study neurobiological characteristics of individuals under different conditions and disease states. Here, using such human cultures, we report in vitro generation of cells that exhibit a complex neuronal phenotype, encompassing receptors and signaling pathways pertinent to both olfaction and other aspects of CNS function. Using in situ hybridization, we demonstrate for the first time the native expression of olfactory receptors in cultured cells derived from human olfactory epithelial tissue. We further establish the presence and function of olfactory transduction molecules in these cells using immunocytochemistry, calcium imaging and molecular methods. Western blot analysis revealed the expression of neurotransmitter receptors for dopamine (D2R), 5-HT (5HT2C) and NMDA subtypes 1 and 2A/2B. Stimulation with dopamine or 5-HT enhanced receptor G protein activation in a subtype specific manner, based on 35S-guanosine triphosphate incorporation assay. Functional characteristics of the cultured cells are demonstrated through enhanced tyrosine phosphorylation of NMDAR 2A/2B and recruitment of signaling partners in response to NMDA stimulation. The array of neuronal characteristics observed here establishes that proliferating cells derived from the human olfactory epithelium differentiate in vitro to express functional and molecular attributes of mature olfactory neurons. These cultured neural cells exhibit neurotransmitter pathways important in a number of neuropsychiatric disorders. Their ready availability from living humans thus provides a new tool to link functional and molecular features of neural cells with clinical characteristics of individual living patients.
Collapse
Affiliation(s)
- K. E. Borgmann-Winter
- Dept. Psychiatry, University of Pennsylvania, Philadelphia, PA
- Dept. of Child and Adolescent Psychiatry, The Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Hoau-Yan Wang
- Dept. Physiology & Pharmacology, City University of New York Medical School, New York, NY
| | | | - M. L. MacDonald
- Dept. Pharmacology, University of Pennsylvania, Philadelphia, PA
| | | | - K. K. Yee
- Monell Chemical Senses Center, Philadelphia, PA
| | | | - J. Xu
- Monell Chemical Senses Center, Philadelphia, PA
| | - B. Bryant
- Monell Chemical Senses Center, Philadelphia, PA
| | | | - N. Mirza
- Dept. of Otorhinolaryngology, University of Pennsylvania, Philadelphia PA
| | - E. Pribitkin
- Dept. of Otorhinolaryngology, Thomas Jefferson University, Philadelphia PA
| | - C-G. Hahn
- Dept. Psychiatry, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
34
|
Gelain DP, Moreira JCF, Bevilaqua LRM, Dickson PW, Dunkley PR. Retinol activates tyrosine hydroxylase acutely by increasing the phosphorylation of serine40 and then serine31 in bovine adrenal chromaffin cells. J Neurochem 2007; 103:2369-79. [PMID: 17908239 DOI: 10.1111/j.1471-4159.2007.04935.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tyrosine hydroxylase is the rate-limiting enzyme in the biosynthesis of the catecholamines. It has been reported that retinol (vitamin A) modulates tyrosine hydroxylase activity by increasing its expression through the activation of the nuclear retinoid receptors. In this study, we observed that retinol also leads to an acute activation of tyrosine hydroxylase in bovine adrenal chromaffin cells and this was shown to occur via two distinct non-genomic mechanisms. In the first mechanism, retinol induced an influx in extracellular calcium, activation of protein kinase C and serine40 phosphorylation, leading to tyrosine hydroxylase activation within 15 min. This effect then declined over time. The retinol-induced rise in intracellular calcium then led to a second slower mechanism; this involved an increase in reactive oxygen species, activation of extracellular signal-regulated kinase 1/2 and serine31 phosphorylation and the maintenance of tyrosine hydroxylase activation for up to 2 h. No effects were observed with retinoic acid. These results show that retinol activates tyrosine hydroxylase via two sequential non-genomic mechanisms, which have not previously been characterized. These mechanisms are likely to operate in vivo to facilitate the stress response, especially when vitamin supplements are taken or when retinol is used as a therapeutic agent.
Collapse
Affiliation(s)
- Daniel P Gelain
- The School of Biomedical Science and Hunter Medical Research Institute, Faculty of Health, The University of Newcastle, Callaghan, Australia
| | | | | | | | | |
Collapse
|
35
|
Ahn JM, Lee CH, Kim DY, Rhee CS, Min YG, Kim JW. Maintenance of regional difference in cellular composition of neurospheres derived from adult mouse olfactory bulb. Eur Arch Otorhinolaryngol 2007; 265:429-34. [PMID: 17938947 DOI: 10.1007/s00405-007-0487-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 09/28/2007] [Indexed: 01/19/2023]
Abstract
Neurospheres are potentially good tools to study olfactory neurogenesis. For this purpose, it is necessary to characterize neurospheres derived from the olfactory system. This study is aimed at identifying the regional difference of cellular composition within neurospheres derived from the adult mouse olfactory bulb, and studying whether these characteristics are maintained throughout the long-term culture. Neural cells were obtained from the olfactory bulbs of 8-week-old Balb/c mice and the dissociated cells were cultured in serum-free media containing epidermal growth factor and basic fibroblast growth factor to form neurospheres. These neurospheres were subjected to characterization by confocal microscopy after immunofluorescence staining with nestin, proliferating cell nuclear antigen (PCNA), neuronal cell adhesion molecule (NCAM), glial fibrillary acidic protein (GFAP), O4, and olfactory marker protein (OMP). Confocal microscopy showed that nestin-reactive cells, which are stem cell-like cells, were present at the periphery of neurospheres and PCNA-reactive cells undergoing proliferation were found throughout the neurospheres. Neuronal cell markers, NCAM-reactive cells, were observed at the center of neurospheres while glial cell markers, GFAP- or O4-reactive cells, were present at the periphery of neurospheres. No cells were found to be reactive for OMP, a differentiated olfactory neuron marker. This regional distribution of cells in neurospheres was maintained through 17 passages for a year. The neural lineage of cells showed different distribution within neurospheres and this localization was preserved throughout the culture period. These findings in the neurosphere culture system of the olfactory bulb may help to study olfactory neurogenesis.
Collapse
Affiliation(s)
- Jung Min Ahn
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Goomi-Dong, Bundang-Gu, Seongnam-Si, Kyunggi-Do 463-707, South Korea
| | | | | | | | | | | |
Collapse
|
36
|
Viktorov IV, Savchenko EA, Ukhova OV, Alekseyeva NY, Chekhonin VP. Multipotent stem and progenitor cells of the olfactory epithelium. Bull Exp Biol Med 2007; 142:495-502. [PMID: 17415447 DOI: 10.1007/s10517-006-0402-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In recent decades, a wide spectrum of fetal and embryonic stem and progenitor cells were used for cell therapy of diseases of the central nervous system, but the olfactory glial ensheathing cells exhibited certain advantages due to their biological properties and capacity to stimulate regeneratory processes in spinal injury. The therapeutic effect of a heterogeneous complex of olfactory epithelial cells is more pronounced; apart from glial ensheathing cells, this complex includes fibroblasts, Schwann cells, stem and progenitor cells of this structure. The use of minimally invasive methods for isolation of human olfactory epithelial tissue is important for clinical practice, because they provide cells for autologous transplantation and rule out graft rejection immune reaction and the risk of transmission viral infection and transfer of genetic defects, which can be associated with allotransplantation.
Collapse
Affiliation(s)
- I V Viktorov
- V. P. Serbsky State Research Center of Social and Forensic Psychiatry, Moscow.
| | | | | | | | | |
Collapse
|