1
|
Marinelli S. BoNT/Action beyond neurons. Toxicon 2025; 255:108250. [PMID: 39862929 DOI: 10.1016/j.toxicon.2025.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control. BoNT/A also interacts with glial cells, such as Schwann cells, satellite glial cells, astrocytes, microglia, and oligodendrocytes. Schwann cells, key to peripheral nerve regeneration, are directly influenced by BoNT/A, which promotes their proliferation and enhances remyelination. Satellite glial cells, involved in sensory neuron regulation, show reduced glutamate release in response to BoNT/A, aiding in pain relief. In the CNS, BoNT/A modulates astrocyte activity, reducing excitotoxicity and inflammation, which is relevant in conditions like epilepsy. Microglia, the CNS's immune cells, shift from a pro-inflammatory to a neuroprotective state when treated with BoNT/A, enhancing tissue repair. Additionally, BoNT/A promotes oligodendrocyte survival and remyelination, especially after spinal cord injury. Overall, BoNT/A's ability to target both neurons and glial cells presents a multifaceted therapeutic strategy for neurological disorders, pain management, and CNS repair. Further research is necessary to fully elucidate its mechanisms and optimize its clinical application.
Collapse
Affiliation(s)
- Sara Marinelli
- National Research Council of Italy, Institute of Biochemistry and Cell Biology, 00015, Monterotondo, RM, Italy.
| |
Collapse
|
2
|
Matak I, Lacković Z. Native botulinum toxin type A vs. redesigned botulinum toxins in pain: What did we learn so far? Curr Opin Pharmacol 2024; 78:102476. [PMID: 39178620 DOI: 10.1016/j.coph.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/26/2024]
Abstract
Driven by the clinical success of botulinum toxin serotype A (BoNT/A) and the need for improved chronic pain management, researchers attempted to develop re-designed botulinum toxin (BoNT)-based molecules as novel analgesics. Various recombinant protein expression strategies including retargeted binding domains, and chimeric toxins combining different serotypes were tested to improve BoNT/A therapeutic safety margin and expand its efficacy. The aim of this review is to re-evaluate the current design strategies for recombinant BoNT-based molecules for pain treatment, compares their analgesic profile against the native BoNT/A, as well as to discuss the main strengths and potential weaknesses of reported approaches.
Collapse
Affiliation(s)
- Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia.
| | - Zdravko Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Seo M, Hwang S, Lee TH, Nam K. Comparison of Neural Recovery Effects of Botulinum Toxin Based on Administration Timing in Sciatic Nerve-Injured Rats. Toxins (Basel) 2024; 16:387. [PMID: 39330845 PMCID: PMC11435736 DOI: 10.3390/toxins16090387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
This study aimed to assess the effects of the timing of administering botulinum neurotoxin A (BoNT/A) on nerve regeneration in rats. Sixty 6-week-old rats with a sciatic nerve injury were randomly divided into four groups: the immediately treated (IT) group (BoNT/A injection administered immediately post-injury), the delay-treated (DT) group (BoNT/A injection administered one week post-injury), the control group (saline administered one week post-injury), and the sham group (only skin and muscle incisions made). Nerve regeneration was assessed 3, 6, and 9 weeks post-injury using various techniques. The levels of glial fibrillary acid protein (GFAP), astroglial calcium-binding protein S100β (S100β), growth-associated protein 43 (GAP43), neurofilament 200 (NF200), and brain-derived neurotrophic factor (BDNF) in the IT and DT groups were higher. ELISA revealed the highest levels of these proteins in the IT group, followed by the DT and control groups. Toluidine blue staining revealed that the average area and myelin thickness were higher in the IT group. Electrophysiological studies revealed that the CMAP in the IT group was significantly higher than that in the control group, with the DT group exhibiting significant differences starting from week 8. The findings of the sciatic functional index analysis mirrored these results. Thus, administering BoNT/A injections immediately after a nerve injury is most effective for neural recovery. However, injections administered one week post-injury also significantly enhanced recovery. BoNT/A should be administered promptly after nerve damage; however, its administration during the non-acute phase is also beneficial.
Collapse
Affiliation(s)
| | | | | | - Kiyeun Nam
- Department of Physical Medicine & Rehabilitation, Dongguk University College of Medicine, Goyang 10326, Republic of Korea; (M.S.); (S.H.); (T.H.L.)
| |
Collapse
|
4
|
Kim YM, Son JY, Ahn DK. Botulinum toxin type A is a potential therapeutic drug for chronic orofacial pain. J Oral Biosci 2024; 66:496-503. [PMID: 38908515 DOI: 10.1016/j.job.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Botulinum toxin type A (BTX-A), produced by the gram-positive anaerobic bacterium Clostridium botulinum, acts by cleaving synaptosome-associated protein-25 (SNAP-25), an essential component of the presynaptic neuronal membrane that is necessary for fusion with the membrane proteins of neurotransmitter-containing vesicles. Recent studies have highlighted the efficacy of BTX-A in treating chronic pain conditions, including lower back pain, chronic neck pain, neuropathic pain, and trigeminal neuralgia, particularly when patients are unresponsive to traditional painkillers. This review focuses on the analgesic effects of BTX-A in various chronic pain conditions, with a particular emphasis on the orofacial region. HIGHLIGHT This review focuses on the mechanisms by which BTX-A induces analgesia in patients with inflammatory and temporomandibular joint pain. This review also highlights the fact that BTX-A can effectively manage neuropathic pain and trigeminal neuralgia, which are difficult-to-treat chronic pain conditions. Herein, we present a comprehensive assessment of the central analgesic effects of BTX-A and a discussion of its various applications in clinical dental practice. CONCLUSION BTX-A is an approved treatment option for various chronic pain conditions. Although there is evidence of axonal transport of BTX-A from peripheral to central endings in motor neurons, the precise mechanism underlying its pain-modulating effects remains unclear. This review discusses the evidence supporting the effectiveness of BTX-A in controlling chronic pain conditions in the orofacial region. BTX-A is a promising therapeutic agent for treating pain conditions that do not respond to conventional analgesics.
Collapse
Affiliation(s)
- Yu-Mi Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jo-Young Son
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Dong-Kuk Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
5
|
Moreau N, Korai SA, Sepe G, Panetsos F, Papa M, Cirillo G. Peripheral and central neurobiological effects of botulinum toxin A (BoNT/A) in neuropathic pain: a systematic review. Pain 2024; 165:1674-1688. [PMID: 38452215 DOI: 10.1097/j.pain.0000000000003204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 03/09/2024]
Abstract
ABSTRACT Botulinum toxin (BoNT), a presynaptic inhibitor of acetylcholine (Ach) release at the neuromuscular junction (NMJ), is a successful and safe drug for the treatment of several neurological disorders. However, a wide and recent literature review has demonstrated that BoNT exerts its effects not only at the "periphery" but also within the central nervous system (CNS). Studies from animal models, in fact, have shown a retrograde transport to the CNS, thus modulating synaptic function. The increasing number of articles reporting efficacy of BoNT on chronic neuropathic pain (CNP), a complex disease of the CNS, demonstrates that the central mechanisms of BoNT are far from being completely elucidated. In this new light, BoNT might interfere with the activity of spinal, brain stem, and cortical circuitry, modulating excitability and the functional organization of CNS in healthy conditions. Botulinum toxins efficacy on CNP is the result of a wide and complex action on many and diverse mechanisms at the basis of the maladaptive plasticity, the core of the pathogenesis of CNP. This systematic review aims to discuss in detail the BoNT's mechanisms and effects on peripheral and central neuroplasticity, at the basis for the clinical efficacy in CNP syndromes.
Collapse
Affiliation(s)
- Nathan Moreau
- Laboratoire de Neurobiologie oro-faciale, EA 7543, Université Paris Cité, Paris, France
| | - Sohaib Ali Korai
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Sepe
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, Silk Biomed SL, Madrid, Spain
| | - Michele Papa
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Cirillo
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
6
|
Hasriadi, Dasuni Wasana PW, Thongphichai W, Samun Y, Sukrong S, Towiwat P. Curcuma latifolia Roscoe extract reverses inflammatory pain in mice and offers a favorable CNS safety profile. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116877. [PMID: 37442490 DOI: 10.1016/j.jep.2023.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma latifolia Roscoe, a plant in the Curcuma genus, has been used as a food additive and folk medicine in Thailand to treat pelvic pain and improve premenstrual syndrome. Although it has been used for centuries, no scientific studies have proved its potential effects on inflammatory pain and central nervous system (CNS) safety profiles. AIM OF THE STUDY This study aimed to evaluate the potential effects of the ethanolic extract of C. latifolia rhizome on inflammatory pain in mice, together with its CNS safety profiles. MATERIALS AND METHODS First, network pharmacology was employed to identify the role of bioactive constituents in C. latifolia on inflammatory pain. In addition, in vitro pharmacology was also evaluated to confirm the anti-inflammatory activity of C. latifolia extract at cellular levels in activated macrophages and microglia. Furthermore, the efficacy of the plant extract in attenuating formalin-induced pain-like behaviors in mice was evaluated. Mice were orally administered the extract (125, 250, 500 mg/kg) followed by the measurement of formalin-induced pain-like behaviors. The LABORAS automated behavioral analysis and rotarod test were used to assess potential CNS side effects of C. latifolia extract (500 mg/kg) in mice. RESULTS The results demonstrated that major bioactive constituents present in C. latifolia have the ability to regulate multiple targets, biological processes and pathways associated with inflammatory pain as assessed by network pharmacology. C. latifolia modulated peripheral and central immune cells via reducing proinflammatory mediators (NO, TNF-α, and IL-6). C. latifolia extract improved formalin-induced pain-like behaviors in a dose-dependent manner during phase II of the formalin test. The efficacy of the plant extract at doses of 250 and 500 mg/kg was comparable to that of the positive control (indomethacin 10 mg/kg). Furthermore, the highest therapeutic dose of the extract did not affect motor coordination, exploratory behaviors, general behaviors, and overall well-being of mice, indicating no development of potential CNS adverse effects after administration of the extract. CONCLUSION These findings provide novel perspectives on using C. latifolia extract for pain management, considering its therapeutic efficacy and CNS safety.
Collapse
Affiliation(s)
- Hasriadi
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, Bangkok, Thailand.
| | - Peththa Wadu Dasuni Wasana
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, Bangkok, Thailand; Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle, 80000, Sri Lanka.
| | - Wisuwat Thongphichai
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Yodsagon Samun
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suchada Sukrong
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Pasarapa Towiwat
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, Bangkok, Thailand; Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Wadu Dasuni Wasana P, Vajragupta O, Rojsitthisak P, Towiwat P, Rojsitthisak P. Metformin and curcumin co-encapsulated chitosan/alginate nanoparticles as effective oral carriers against pain-like behaviors in mice. Int J Pharm 2023; 640:123037. [PMID: 37172632 DOI: 10.1016/j.ijpharm.2023.123037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Nanotechnology plays an integral role in multimodal analgesia. In this study, we co-encapsulated metformin (Met) and curcumin (Cur) into chitosan/alginate (CTS/ALG) nanoparticles (NPs) at their synergistic drug ratio by applying response surface methodology. The optimized Met-Cur-CTS/ALG-NPs were achieved with Pluronic® F-127 2.33% (w/v), Met 5.91 mg, and CTS:ALG mass ratio 0.05:1. The prepared Met-Cur-CTS/ALG-NPs had 243 nm particle size, -21.6 mV zeta potential, 32.6 and 44.2% Met and Cur encapsulations, 19.6 and 6.8% Met and Cur loading, respectively, and 2.9:1 Met:Cur mass ratio. Met-Cur-CTS/ALG-NPs displayed stability under simulated gastrointestinal (GI) fluid conditions and during storage. In vitro release study of Met-Cur-CTS/ALG-NPs in simulated GI fluids showed sustained release, with Met exhibiting Fickian diffusion and Cur demonstrating non-Fickian diffusion following the Korsmeyer-Peppas model. Met-Cur-CTS/ALG-NPs exhibited increased mucoadhesion and improved cellular uptake in Caco-2 cells. Additionally, Met-Cur-CTS/ALG-NPs exhibited better anti-inflammatory effects in lipopolysaccharide-stimulated RAW 264.7 macrophage and BV-2 microglial cells than the equivalent amount of the Met-Cur physical mixture, indicating a greater ability to modulate peripheral and central immune mechanisms of pain. In the mouse formalin-induced pain model, Met-Cur-CTS/ALG-NPs administered orally exhibited better attenuation of pain-like behaviors and proinflammatory cytokine release compared to the Met-Cur physical mixture. Furthermore, Met-Cur-CTS/ALG-NPs did not induce significant side effects in mice at therapeutic doses. Altogether, the present study establishes a CTS/ALG nano-delivery system for Met-Cur combination against pain with improved efficacy and safety.
Collapse
Affiliation(s)
- Peththa Wadu Dasuni Wasana
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pasarapa Towiwat
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
8
|
Boonrueng P, Wasana PWD, Hasriadi, Vajragupta O, Rojsitthisak P, Towiwat P. Combination of curcumin and piperine synergistically improves pain-like behaviors in mouse models of pain with no potential CNS side effects. Chin Med 2022; 17:119. [PMID: 36274168 PMCID: PMC9590184 DOI: 10.1186/s13020-022-00660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Background Curcumin and piperine are major bioactive compounds of Curcuma longa and Piper nigrum, widely consumed as spices and flock medicine. The combinational use of these plants is a common practice in Southeast Asia. Synergism between curcumin and piperine has been found in several animal models but not in periodontal disease and diabetes, and the antinociceptive interaction is still unknown. Hence, the present study aimed to assess the interaction between curcumin and piperine in pain and its potential CNS side effect profile. Methods Formalin test and in vitro LPS-stimulated RAW 264.7 macrophage cells were used to assess the synergistic interaction of curcumin and piperine in a mouse model of inflammatory pain. Tail-flick and cold plate tests were applied to determine the antinociceptive synergism between piperine and curcumin. The interaction was determined by applying isobolographic analysis. The potential CNS-side effects of the curcumin and piperine combination were also assessed using LABORAS automated home-cage behavioral analysis. Results Curcumin alone dose-dependently improved pain-like behaviors in the formalin, tail-flick, and cold plate tests with the ED50 of 71.4, 34.4, and 31.9 mg/kg, respectively. Additionally, piperine exhibited efficacy in the formalin, tail-flick, and cold plate tests with the ED50 of 18.4, 8.1, and 28.1 mg/kg, respectively. The combination of curcumin and piperine (1:1 ED50 ratio) produced synergistic interaction in the formalin, tail-flick, and cold plate tests as assessed significantly lower experimental ED50 values (5.9, 5.2, and 5.5 mg/kg) compared to theoretical ED50 values (44.9, 21.3, and 30.0 mg/kg), isobologram analysis, and interaction index values of 0.13, 0.24 and 0.18, respectively. The synergistic interaction of curcumin and piperine was further confirmed by the efficacy of the combination in LPS-stimulated RAW 264.7 macrophage cells. Curcumin and piperine interacted synergistically, reducing proinflammatory mediators. The combination also demonstrated better compatibility profiles with neuronal cells. Furthermore, the curcumin-piperine combination had no effects on mouse spontaneous locomotor behaviors in LABORAS automated home cage monitoring. Conclusion Overall, the present study demonstrates strong antinociceptive synergism between curcumin and piperine in mouse models with no potential CNS side effects, suggesting its possible use in clinical trials.
Collapse
|
9
|
Wasana PWD, Sritularak B, Vajragupta O, Rojsitthisak P, Towiwat P. Batatasin III, a Constituent of Dendrobium scabrilingue, Improves Murine Pain-like Behaviors with a Favorable CNS Safety Profile. JOURNAL OF NATURAL PRODUCTS 2022; 85:1816-1825. [PMID: 35707966 DOI: 10.1021/acs.jnatprod.2c00376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Batatasin III is a stilbenoid compound present in a wide variety of Dendrobium species. Although the pharmacological efficacy of batatasin III has been reported in several disease models, its antinociceptive efficacy and central nervous system (CNS) side effects remain unknown. Thus, this study examined the effects of batatasin III on pain-like behaviors in mouse models of formalin- and lipopolysaccharide (LPS)-induced inflammatory pain. The results revealed a significant antinociceptive effect of batatasin III in both models, as 50 mg/kg batatasin III elicited comparable antinociception as 10 mg/kg indomethacin. Further, the anti-inflammatory effect of batatasin III was assessed in LPS-induced RAW 264.7 macrophages and BV-2 microglial cells. The compound significantly reduced the levels of inflammatory mediators (nitric oxide, TNF-α, and IL-6) in LPS-stimulated cells in a concentration-dependent manner. Following efficacy evaluations, the potential CNS side effects of batatasin III were evaluated using the rotarod test and the Laboratory Animal Behavior Observation, Registration, and Analysis System. Batatasin III-treated mice exhibited comparable forced, spontaneous, and general locomotive behaviors to vehicle-treated mice, indicating no potential CNS side effects. Overall, this study demonstrated the preclinical antinociceptive efficacy and CNS safety of batatasin III, suggesting its potential role in the development of new analgesics.
Collapse
Affiliation(s)
- Peththa Wadu Dasuni Wasana
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 103300, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 103300, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pasarapa Towiwat
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Go EJ, Ji J, Kim YH, Berta T, Park CK. Transient Receptor Potential Channels and Botulinum Neurotoxins in Chronic Pain. Front Mol Neurosci 2021; 14:772719. [PMID: 34776867 PMCID: PMC8586451 DOI: 10.3389/fnmol.2021.772719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022] Open
Abstract
Pain afflicts more than 1.5 billion people worldwide, with hundreds of millions suffering from unrelieved chronic pain. Despite widespread recognition of the importance of developing better interventions for the relief of chronic pain, little is known about the mechanisms underlying this condition. However, transient receptor potential (TRP) ion channels in nociceptors have been shown to be essential players in the generation and progression of pain and have attracted the attention of several pharmaceutical companies as therapeutic targets. Unfortunately, TRP channel inhibitors have failed in clinical trials, at least in part due to their thermoregulatory function. Botulinum neurotoxins (BoNTs) have emerged as novel and safe pain therapeutics because of their regulation of exocytosis and pro-nociceptive neurotransmitters. However, it is becoming evident that BoNTs also regulate the expression and function of TRP channels, which may explain their analgesic effects. Here, we summarize the roles of TRP channels in pain, with a particular focus on TRPV1 and TRPA1, their regulation by BoNTs, and briefly discuss the use of BoNTs for the treatment of chronic pain.
Collapse
Affiliation(s)
- Eun Jin Go
- Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| | - Jeongkyu Ji
- Gachon University College of Medicine, Incheon, South Korea
| | - Yong Ho Kim
- Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| | - Temugin Berta
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
11
|
Luvisetto S. Botulinum Neurotoxins in Central Nervous System: An Overview from Animal Models to Human Therapy. Toxins (Basel) 2021; 13:toxins13110751. [PMID: 34822535 PMCID: PMC8622321 DOI: 10.3390/toxins13110751] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are potent inhibitors of synaptic vesicle fusion and transmitter release. The natural target of BoNTs is the peripheral neuromuscular junction (NMJ) where, by blocking the release of acetylcholine (ACh), they functionally denervate muscles and alter muscle tone. This leads them to be an excellent drug for the therapy of muscle hyperactivity disorders, such as dystonia, spasticity, and many other movement disorders. BoNTs are also effective in inhibiting both the release of ACh at sites other than NMJ and the release of neurotransmitters other than ACh. Furthermore, much evidence shows that BoNTs can act not only on the peripheral nervous system (PNS), but also on the central nervous system (CNS). Under this view, central changes may result either from sensory input from the PNS, from retrograde transport of BoNTs, or from direct injection of BoNTs into the CNS. The aim of this review is to give an update on available data, both from animal models or human studies, which suggest or confirm central alterations induced by peripheral or central BoNTs treatment. The data will be discussed with particular attention to the possible therapeutic applications to pathological conditions and degenerative diseases of the CNS.
Collapse
Affiliation(s)
- Siro Luvisetto
- National Research Council of Italy-CNR, Institute of Biochemistry and Cell Biology (IBBC), Via Ercole Ramarini 32, Monterotondo Scalo, 00015 Roma, Italy
| |
Collapse
|
12
|
Abrahão Cunha TC, Gontijo Couto AC, Januzzi E, Rosa Ferraz Gonçalves RT, Silva G, Silva CR. Analgesic potential of different available commercial brands of botulinum neurotoxin-A in formalin-induced orofacial pain in mice. Toxicon X 2021; 12:100083. [PMID: 34527897 PMCID: PMC8429966 DOI: 10.1016/j.toxcx.2021.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/29/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
The use of botulinum neurotoxin-A (BoNT-A) is an alternative for the management of orofacial pain disorders. Although only Botox has labeled, there are other commercial brands available for use, among them: Dysport, Botulift, Prosigne, and Xeomin. The objective of the present study was to evaluate the possible differences in the antinociceptive effect evoked by different commercially available formulations of BoNT-A in an animal model of inflammatory orofacial pain induced by formalin injection. Male C57/BL6 mice (20–25 g) were submitted to the pre-treatment with five different commercial brands of BoNT-A (Botox, Botulift, Xeomin, Dysport, or Prosigne; with doses between 0.02 and 0.2 Units of Botulinum Toxin, in 20 μL of 0.9% saline) three days prior the 2% formalin injection. All injections were made subcutaneously into the right perinasal area. After formalin injections, nociceptive behaviors like rubbing the place of injection were quantified during the neurogenic (0–5 min) and inflammatory (15–30 min) phases. The treatment using Botox, Botulift, and Xeomin were able to induce antinociceptive effects in both phases of the formalin-induced pain animal model, however, Dysport and Prosigne reduced the response in neither of them. Our data suggest that the treatment using different formulations of BoNT-A is not similar in efficacy as analgesics when evaluated in formalin-induced orofacial pain in mice. Botulinum neurotoxin-a reduced formalin-induced orofacial pain in mice. There are differences in the analgesic potential of different available commercial brands of botulinum neurotoxin-A. Botox, Botulift, Xeomin demonstrated analgesic effect when evaluated in formalin-induced orofacial pain in mice.
Collapse
Affiliation(s)
- Thays Crosara Abrahão Cunha
- Post-Graduated Program Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Ana Claudia Gontijo Couto
- Post-Graduated Program Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Eduardo Januzzi
- Post-Graduated Program Orofacial Pain, CIODONTO, Belo Horizonte, MG, Brazil.,Orofacial Pain Department, MaterDei Hospital, Belo Horizonte, MG, Brazil
| | - Rafael Tardin Rosa Ferraz Gonçalves
- Post-Graduated Program Orofacial Pain, CIODONTO, Belo Horizonte, MG, Brazil.,Orofacial Pain Department, MaterDei Hospital, Belo Horizonte, MG, Brazil
| | - Graziella Silva
- Post-Graduated Program Orofacial Pain, CIODONTO, Belo Horizonte, MG, Brazil.,Orofacial Pain Department, MaterDei Hospital, Belo Horizonte, MG, Brazil
| | - Cassia Regina Silva
- Post-Graduated Program Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
13
|
Topical Treatments and Their Molecular/Cellular Mechanisms in Patients with Peripheral Neuropathic Pain-Narrative Review. Pharmaceutics 2021; 13:pharmaceutics13040450. [PMID: 33810493 PMCID: PMC8067282 DOI: 10.3390/pharmaceutics13040450] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain in humans results from an injury or disease of the somatosensory nervous system at the peripheral or central level. Despite the considerable progress in pain management methods made to date, peripheral neuropathic pain significantly impacts patients' quality of life, as pharmacological and non-pharmacological methods often fail or induce side effects. Topical treatments are gaining popularity in the management of peripheral neuropathic pain, due to excellent safety profiles and preferences. Moreover, topical treatments applied locally may target the underlying mechanisms of peripheral sensitization and pain. Recent studies showed that peripheral sensitization results from interactions between neuronal and non-neuronal cells, with numerous signaling molecules and molecular/cellular targets involved. This narrative review discusses the molecular/cellular mechanisms of drugs available in topical formulations utilized in clinical practice and their effectiveness in clinical studies in patients with peripheral neuropathic pain. We searched PubMed for papers published from 1 January 1995 to 30 November 2020. The key search phrases for identifying potentially relevant articles were "topical AND pain", "topical AND neuropathic", "topical AND treatment", "topical AND mechanism", "peripheral neuropathic", and "mechanism". The result of our search was 23 randomized controlled trials (RCT), 9 open-label studies, 16 retrospective studies, 20 case (series) reports, 8 systematic reviews, 66 narrative reviews, and 140 experimental studies. The data from preclinical studies revealed that active compounds of topical treatments exert multiple mechanisms of action, directly or indirectly modulating ion channels, receptors, proteins, and enzymes expressed by neuronal and non-neuronal cells, and thus contributing to antinociception. However, which mechanisms and the extent to which the mechanisms contribute to pain relief observed in humans remain unclear. The evidence from RCTs and reviews supports 5% lidocaine patches, 8% capsaicin patches, and botulinum toxin A injections as effective treatments in patients with peripheral neuropathic pain. In turn, single RCTs support evidence of doxepin, funapide, diclofenac, baclofen, clonidine, loperamide, and cannabidiol in neuropathic pain states. Topical administration of phenytoin, ambroxol, and prazosin is supported by observational clinical studies. For topical amitriptyline, menthol, and gabapentin, evidence comes from case reports and case series. For topical ketamine and baclofen, data supporting their effectiveness are provided by both single RCTs and case series. The discussed data from clinical studies and observations support the usefulness of topical treatments in neuropathic pain management. This review may help clinicians in making decisions regarding whether and which topical treatment may be a beneficial option, particularly in frail patients not tolerating systemic pharmacotherapy.
Collapse
|
14
|
Peripheral Mechanisms of Neuropathic Pain-the Role of Neuronal and Non-Neuronal Interactions and Their Implications for Topical Treatment of Neuropathic Pain. Pharmaceuticals (Basel) 2021; 14:ph14020077. [PMID: 33498496 PMCID: PMC7909513 DOI: 10.3390/ph14020077] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain in humans arises as a consequence of injury or disease of somatosensory nervous system at peripheral or central level. Peripheral neuropathic pain is more common than central neuropathic pain, and is supposed to result from peripheral mechanisms, following nerve injury. The animal models of neuropathic pain show extensive functional and structural changes occurring in neuronal and non-neuronal cells in response to peripheral nerve injury. These pathological changes following damage lead to peripheral sensitization development, and subsequently to central sensitization initiation with spinal and supraspinal mechanism involved. The aim of this narrative review paper is to discuss the mechanisms engaged in peripheral neuropathic pain generation and maintenance, with special focus on the role of glial, immune, and epithelial cells in peripheral nociception. Based on the preclinical and clinical studies, interactions between neuronal and non-neuronal cells have been described, pointing out at the molecular/cellular underlying mechanisms of neuropathic pain, which might be potentially targeted by topical treatments in clinical practice. The modulation of the complex neuro-immuno-cutaneous interactions in the periphery represents a strategy for the development of new topical analgesics and their utilization in clinical settings.
Collapse
|
15
|
Vacca V, Madaro L, De Angelis F, Proietti D, Cobianchi S, Orsini T, Puri PL, Luvisetto S, Pavone F, Marinelli S. Revealing the Therapeutic Potential of Botulinum Neurotoxin Type A in Counteracting Paralysis and Neuropathic Pain in Spinally Injured Mice. Toxins (Basel) 2020; 12:E491. [PMID: 32751937 PMCID: PMC7472120 DOI: 10.3390/toxins12080491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Botulinum neurotoxin type A (BoNT/A) is a major therapeutic agent that has been proven to be a successful treatment for different neurological disorders, with emerging novel therapeutic indications each year. BoNT/A exerts its action by blocking SNARE complex formation and vesicle release through the specific cleavage of SNAP-25 protein; the toxin is able to block the release of pro-inflammatory molecules for months after its administration. Here we demonstrate the extraordinary capacity of BoNT/A to neutralize the complete paralysis and pain insensitivity induced in a murine model of severe spinal cord injury (SCI). We show that the toxin, spinally administered within one hour from spinal trauma, exerts a long-lasting proteolytic action, up to 60 days after its administration, and induces a complete recovery of muscle and motor function. BoNT/A modulates SCI-induced neuroglia hyperreactivity, facilitating axonal restoration, and preventing secondary cells death and damage. Moreover, we demonstrate that BoNT/A affects SCI-induced neuropathic pain after moderate spinal contusion, confirming its anti-nociceptive action in this kind of pain, as well. Our results provide the intriguing and real possibility to identify in BoNT/A a therapeutic tool in counteracting SCI-induced detrimental effects. Because of the well-documented BoNT/A pharmacology, safety, and toxicity, these findings strongly encourage clinical translation.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR—National Research Council, Institute of Biochemistry and Cell Biology, 00015 Monterotondo Scalo (RM), Italy; (V.V.); (T.O.); (S.L.)
- IRCCS Santa Lucia Foundation, 00143 Roma, Italy; (L.M.); (F.D.A.); (D.P.)
| | - Luca Madaro
- IRCCS Santa Lucia Foundation, 00143 Roma, Italy; (L.M.); (F.D.A.); (D.P.)
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Daisy Proietti
- IRCCS Santa Lucia Foundation, 00143 Roma, Italy; (L.M.); (F.D.A.); (D.P.)
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Stefano Cobianchi
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Spain;
| | - Tiziana Orsini
- CNR—National Research Council, Institute of Biochemistry and Cell Biology, 00015 Monterotondo Scalo (RM), Italy; (V.V.); (T.O.); (S.L.)
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Siro Luvisetto
- CNR—National Research Council, Institute of Biochemistry and Cell Biology, 00015 Monterotondo Scalo (RM), Italy; (V.V.); (T.O.); (S.L.)
| | - Flaminia Pavone
- CNR—National Research Council, Institute of Biochemistry and Cell Biology, 00015 Monterotondo Scalo (RM), Italy; (V.V.); (T.O.); (S.L.)
- IRCCS Santa Lucia Foundation, 00143 Roma, Italy; (L.M.); (F.D.A.); (D.P.)
| | - Sara Marinelli
- CNR—National Research Council, Institute of Biochemistry and Cell Biology, 00015 Monterotondo Scalo (RM), Italy; (V.V.); (T.O.); (S.L.)
- IRCCS Santa Lucia Foundation, 00143 Roma, Italy; (L.M.); (F.D.A.); (D.P.)
| |
Collapse
|
16
|
Therapeutic use of botulinum toxin in pain treatment. Neuronal Signal 2018; 2:NS20180058. [PMID: 32714587 PMCID: PMC7373233 DOI: 10.1042/ns20180058] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 05/22/2018] [Accepted: 06/25/2018] [Indexed: 11/17/2022] Open
Abstract
Botulinum toxin is one of the most potent molecule known to mankind. A neurotoxin, with high affinity for cholinergic synapse, is effectively capable of inhibiting the release of acetylcholine. On the other hand, botulinum toxin is therapeutically used for several musculoskeletal disorders. Although most of the therapeutic effect of botulinum toxin is due to temporary skeletal muscle relaxation (mainly due to inhibition of the acetylcholine release), other effects on the nervous system are also investigated. One of the therapeutically investigated areas of the botulinum neurotoxin (BoNT) is the treatment of pain. At present, it is used for several chronic pain diseases, such as myofascial syndrome, headaches, arthritis, and neuropathic pain. Although the effect of botulinum toxin in pain is mainly due to its effect on cholinergic transmission in the somatic and autonomic nervous systems, research suggests that botulinum toxin can also provide benefits related to effects on cholinergic control of cholinergic nociceptive and antinociceptive systems. Furthermore, evidence suggests that botulinum toxin can also affect central nervous system (CNS). In summary, botulinum toxin holds great potential for pain treatments. It may be also useful for the pain treatments where other methods are ineffective with no side effect(s). Further studies will establish the exact analgesic mechanisms, efficacy, and complication of botulinum toxin in chronic pain disorders, and to some extent acute pain disorders.
Collapse
|
17
|
Jang SH, Park SJ, Lee CJ, Ahn DK, Han SK. Botulinum toxin type A enhances the inhibitory spontaneous postsynaptic currents on the substantia gelatinosa neurons of the subnucleus caudalis in immature mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:539-546. [PMID: 30181700 PMCID: PMC6115353 DOI: 10.4196/kjpp.2018.22.5.539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022]
Abstract
Botulinum toxin type A (BoNT/A) has been used therapeutically for various conditions including dystonia, cerebral palsy, wrinkle, hyperhidrosis and pain control. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) receive orofacial nociceptive information from primary afferents and transmit the information to higher brain center. Although many studies have shown the analgesic effects of BoNT/A, the effects of BoNT/A at the central nervous system and the action mechanism are not well understood. Therefore, the effects of BoNT/A on the spontaneous postsynaptic currents (sPSCs) in the SG neurons were investigated. In whole cell voltage clamp mode, the frequency of sPSCs was increased in 18 (37.5%) neurons, decreased in 5 (10.4%) neurons and not affected in 25 (52.1%) of 48 neurons tested by BoNT/A (3 nM). Similar proportions of frequency variation of sPSCs were observed in 1 and 10 nM BoNT/A and no significant differences were observed in the relative mean frequencies of sPSCs among 1-10 nM BoNT/A. BoNT/A-induced frequency increase of sPSCs was not affected by pretreated tetrodotoxin (0.5 µM). In addition, the frequency of sIPSCs in the presence of CNQX (10 µM) and AP5 (20 µM) was increased in 10 (53%) neurons, decreased in 1 (5%) neuron and not affected in 8 (42%) of 19 neurons tested by BoNT/A (3 nM). These results demonstrate that BoNT/A increases the frequency of sIPSCs on SG neurons of the Vc at least partly and can provide an evidence for rapid action of BoNT/A at the central nervous system.
Collapse
Affiliation(s)
- Seon-Hui Jang
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University, Jeonju 54896, Korea
| | - Soo-Joung Park
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University, Jeonju 54896, Korea
| | - Chang-Jin Lee
- Research and Development Division, Hugel Inc., Chuncheon 24206, Korea
| | - Dong-Kuk Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Seong-Kyu Han
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
18
|
Hawlitschka A, Wree A. Experimental Intrastriatal Applications of Botulinum Neurotoxin-A: A Review. Int J Mol Sci 2018; 19:ijms19051392. [PMID: 29735936 PMCID: PMC5983629 DOI: 10.3390/ijms19051392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most frequent neurodegenerative disorders. Its main pathophysiological characteristic is the loss of dopaminergic neurons in the substantia nigra pars compacta followed by a lack of striatal dopaminergic input and a consequent disinhibition of tonically active cholinergic interneurons. The resulting striatal hypercholinism causes major motor symptoms in PD. Anticholinergic pharmacotherapies have antiparkinsonian effects on motor symptoms, but, due to systemic actions, also numerous severe side effects occur on a regular basis. To circumvent these side effects, a local anticholinergic therapy acting exclusively in the striatum would be reasonable. Botulinum neurotoxin-A (BoNT-A) is synthesized by Clostridium botulinum and blocks the release of acetylcholine from the presynaptic bouton. For several decades, BoNT-A has been used successfully for medical and cosmetic purposes to induce controlled paralyses of single muscles. Our group and others investigated the experimental treatment of striatal hypercholinism by the direct injection of BoNT-A into the striatum of rats and mice as well as of hemiparkinsonian animal models. This review gives an overview of the most important results of the experimental intrastriatal BoNT-A application, with a focus on hemiparkinsonian rats.
Collapse
Affiliation(s)
- Alexander Hawlitschka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany.
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany.
| |
Collapse
|
19
|
Caleo M, Restani L. Exploiting Botulinum Neurotoxins for the Study of Brain Physiology and Pathology. Toxins (Basel) 2018; 10:toxins10050175. [PMID: 29693600 PMCID: PMC5983231 DOI: 10.3390/toxins10050175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 01/25/2023] Open
Abstract
Botulinum neurotoxins are metalloproteases that specifically cleave N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in synaptic terminals, resulting in a potent inhibition of vesicle fusion and transmitter release. The family comprises different serotypes (BoNT/A to BoNT/G). The natural target of these toxins is represented by the neuromuscular junction, where BoNTs block acetylcholine release. In this review, we describe the actions of botulinum toxins after direct delivery to the central nervous system (CNS), where BoNTs block exocytosis of several transmitters, with near-complete silencing of neural networks. The use of clostridial neurotoxins in the CNS has allowed us to investigate specifically the role of synaptic activity in different physiological and pathological processes. The silencing properties of BoNTs can be exploited for therapeutic purposes, for example to counteract pathological hyperactivity and seizures in epileptogenic brain foci, or to investigate the role of activity in degenerative diseases like prion disease. Altogether, clostridial neurotoxins and their derivatives hold promise as powerful tools for both the basic understanding of brain function and the dissection and treatment of activity-dependent pathogenic pathways.
Collapse
Affiliation(s)
- Matteo Caleo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Laura Restani
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
20
|
Botulinum Toxin Type A-A Modulator of Spinal Neuron-Glia Interactions under Neuropathic Pain Conditions. Toxins (Basel) 2018; 10:toxins10040145. [PMID: 29614835 PMCID: PMC5923311 DOI: 10.3390/toxins10040145] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 12/29/2022] Open
Abstract
Neuropathic pain represents a significant clinical problem because it is a chronic condition often refractory to available therapy. Therefore, there is still a strong need for new analgesics. Botulinum neurotoxin A (BoNT/A) is used to treat a variety of clinical diseases associated with pain. Glia are in continuous bi-directional communication with neurons to direct the formation and refinement of synaptic connectivity. This review addresses the effects of BoNT/A on the relationship between glia and neurons under neuropathic pain. The inhibitory action of BoNT/A on synaptic vesicle fusion that blocks the release of miscellaneous pain-related neurotransmitters is known. However, increasing evidence suggests that the analgesic effect of BoNT/A is mediated through neurons and glial cells, especially microglia. In vitro studies provide evidence that BoNT/A exerts its anti-inflammatory effect by diminishing NF-κB, p38 and ERK1/2 phosphorylation in microglia and directly interacts with Toll-like receptor 2 (TLR2). Furthermore, BoNT/A appears to have no more than a slight effect on astroglia. The full activation of TLR2 in astroglia appears to require the presence of functional TLR4 in microglia, emphasizing the significant interaction between those cell types. In this review, we discuss whether and how BoNT/A affects the spinal neuron–glia interaction and reduces the development of neuropathy.
Collapse
|
21
|
Finocchiaro A, Marinelli S, De Angelis F, Vacca V, Luvisetto S, Pavone F. Botulinum Toxin B Affects Neuropathic Pain but Not Functional Recovery after Peripheral Nerve Injury in a Mouse Model. Toxins (Basel) 2018; 10:toxins10030128. [PMID: 29562640 PMCID: PMC5869416 DOI: 10.3390/toxins10030128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Clinical use of neurotoxins from Clostridium botulinum is well established and is continuously expanding, including in treatment of pain conditions. Background: The serotype A (BoNT/A) has been widely investigated, and current data demonstrate that it induces analgesia and modulates nociceptive processing initiated by inflammation or nerve injury. Given that data concerning the serotype B (BoNT/B) are limited, the aim of the present study was to verify if also BoNT/B is able not only to counteract neuropathic pain, but also to interfere with inflammatory and regenerative processes associated with the nerve injury. Methods: As model of neuropathic pain, chronic constriction injury (CCI) of the sciatic nerve was performed in CD1 male mice. Mice were intraplantarly injected with saline (control) or BoNT/B (5 or 7.5 pg/mouse) into the injured hindpaw. For comparison, another mouse group was injected with BoNT/A (15 pg/mouse). Mechanical allodynia and functional recovery of the injured paw was followed for 101 days. Spinal cords and sciatic nerves were collected at day 7 for immunohistochemistry. Results and Conclusions: The results of this study show that BoNT/B is a powerful biological molecule that, similarly to BoNT/A, can reduce neuropathic pain over a long period of time. However, the analgesic effects are not associated with an improvement in functional recovery, clearly highlighting an important difference between the two serotypes for the treatment of this chronic pain state.
Collapse
Affiliation(s)
- Alba Finocchiaro
- National Research Council of Italy-CNR, Institute of Cell Biology and Neurobiology-IBCN, 00143 Roma, Italy.
- Department of Psycology, PhD School of Behavioural Neuroscience, Sapienza University, 00185 Roma, Italy.
| | - Sara Marinelli
- National Research Council of Italy-CNR, Institute of Cell Biology and Neurobiology-IBCN, 00143 Roma, Italy.
- IRCCS Santa Lucia Foundation, 00143-Roma, Italy.
| | | | - Valentina Vacca
- National Research Council of Italy-CNR, Institute of Cell Biology and Neurobiology-IBCN, 00143 Roma, Italy.
- IRCCS Santa Lucia Foundation, 00143-Roma, Italy.
| | - Siro Luvisetto
- National Research Council of Italy-CNR, Institute of Cell Biology and Neurobiology-IBCN, 00143 Roma, Italy.
- IRCCS Santa Lucia Foundation, 00143-Roma, Italy.
| | - Flaminia Pavone
- National Research Council of Italy-CNR, Institute of Cell Biology and Neurobiology-IBCN, 00143 Roma, Italy.
- IRCCS Santa Lucia Foundation, 00143-Roma, Italy.
| |
Collapse
|
22
|
|
23
|
Hong B, Yao L, Ni L, Wang L, Hu X. Antinociceptive effect of botulinum toxin A involves alterations in AMPA receptor expression and glutamate release in spinal dorsal horn neurons. Neuroscience 2017; 357:197-207. [DOI: 10.1016/j.neuroscience.2017.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 11/29/2022]
|
24
|
Cobianchi S, Jaramillo J, Luvisetto S, Pavone F, Navarro X. Botulinum neurotoxin A promotes functional recovery after peripheral nerve injury by increasing regeneration of myelinated fibers. Neuroscience 2017; 359:82-91. [PMID: 28716587 DOI: 10.1016/j.neuroscience.2017.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022]
Abstract
The injection of safe doses of botulinum neurotoxin A (BoNT/A) have been reported to be useful for the treatment of neuropathic pain, but it is still unknown how functional recovery is induced after peripheral nerve injury. We evaluated the effects of intranerve application of BoNT/A, on regeneration and sensorimotor functional recovery in partial and complete peripheral nerve injuries in the mouse. After sciatic nerve crush (SNC) and intranerve delivery of BoNT/A (15pg), axonal regeneration was measured by nerve pinch test at different days. Regeneration of myelinated and unmyelinated fibers was assessed by immunohistochemical double labeling for NF200/GAP43 and CGRP/GAP43. S100 was used as Schwann cells marker. Medial footpad skin reinnervation was assessed by PGP staining. Motor functions were assessed by means of nerve conduction tests. In other mice groups, nerve conduction tests were performed also after chronic constriction injury (CCI) of the sciatic nerve and intraplantar injection of BoNT/A (15pg). In SNC mice, BoNT/A increased the rate of axonal regeneration. The advantage of regrowing myelinated axons after BoNT/A injection was evidenced by longer NF200+ nerve profiles and confirmed by nerve histology. We observed also a higher expression of S100 in the distal portion of BoNT/A-injected regenerated nerves. In CCI mice, BoNT/A induced an increase in reinnervation of gastrocnemius and plantar muscles. These results show that a low dose of BoNT/A, insufficient to produce muscular dysfunction, conversely speeds up sensorimotor recovery by stimulating myelinated axonal regeneration, and points out its application as a multipotent treatment for peripheral neuropathies.
Collapse
Affiliation(s)
- Stefano Cobianchi
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| | - Jessica Jaramillo
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Siro Luvisetto
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Flaminia Pavone
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
25
|
Li G, Lv CA, Tian L, Jin LJ, Sun P, Zhao W. A randomized controlled trial of botulinum toxin A for treating neuropathic pain in patients with spinal cord injury. Medicine (Baltimore) 2017; 96:e6919. [PMID: 28514309 PMCID: PMC5440146 DOI: 10.1097/md.0000000000006919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/17/2017] [Accepted: 04/25/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND To assess the effect of botulinum toxin A (BTA) for treating neuropathic pain in patients with spinal cord injury (SCI). METHODS A total of 44 patients with SCI with neuropathic pain were randomly divided into the intervention group and the placebo group, each group 21 patients. The subjects in the intervention group received BTA (200 U subcutaneous injection, once daily) at the painful area, whereas those in the placebo group were administered a saline placebo. This study was conducted from December 2014 to November 2016. The primary outcome was measured using the visual analog scale (VAS). The secondary outcomes were measured using the short-form McGill Pain Questionnaire (SF-MPQ), and World Health Organization quality of life (WHOQOL-BREF) questionnaire. All outcome measurements were performed before and after 4 and 8 weeks of intervention. RESULTS Forty-one participants completed the study. The intervention with BTA showed greater efficacy than placebo in decreasing the VAS score after week 4 and week 8 of treatment. Significant differences in the SF-MPQ and WHOQOL-BREF were also found between the 2 groups. CONCLUSION The results of this study demonstrated that BTA might decrease intractable neuropathic pain for patients with SCI.
Collapse
Affiliation(s)
- Gang Li
- Department of Orthopedic Surgery
| | | | - Li Tian
- Department of Orthopedic Surgery
| | - Lian-jin Jin
- Department of Anesthesia, The Affiliated Hongqi Hospital, Mudanjiang Medical University
| | - Ping Sun
- Department of Anatomy, Mudanjiang Medical University, Mudanjiang, China
| | - Wei Zhao
- Department of Anatomy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
26
|
Piotrowska A, Popiolek-Barczyk K, Pavone F, Mika J. Comparison of the Expression Changes after Botulinum Toxin Type A and Minocycline Administration in Lipopolysaccharide-Stimulated Rat Microglial and Astroglial Cultures. Front Cell Infect Microbiol 2017; 7:141. [PMID: 28491822 PMCID: PMC5405066 DOI: 10.3389/fcimb.2017.00141] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022] Open
Abstract
Botulinum neurotoxin type A (BoNT/A) and minocycline are potent drugs used in clinical therapies. The primary molecular mechanism of BoNT/A is the cleavage of SNARE proteins, which prevents cells from releasing neurotransmitters from vesicles, while the effects of minocycline are related to the inhibition of p38 activation. Both BoNT/A and minocycline exhibit analgesic effects, however, their direct impact on glial cells is not fully known. Therefore, the aim of the present study was to determine the effects of those drugs on microglial and astroglial activity after lipopolysaccharide (LPS) stimulation and their potential synergistic action. Our results show that BoNT/A and minocycline influenced primary microglial cells by inhibiting intracellular signaling pathways, such as p38, ERK1/2, NF-κB, and the release of pro-inflammatory factors, including IL-1β, IL-18, IL-6, and NOS2. We have revealed that, in contrast to minocycline, BoNT/A treatment did not decrease LPS-induced release of pro-inflammatory factors in the astroglia. In addition, BoNT/A decreased SNAP-23 in both types of glial cells and also SNAP-25 expressed only in astrocytes. Moreover, BoNT/A increased TLR2 and its adaptor protein MyD88, but not TLR4 exclusively in microglial cells. Furthermore, we have shown the impact of BoNT/A on microglial and astroglial cells, with a particular emphasis on its molecular target, TLR2. In contrast, minocycline did not affect any of those factors. We have revealed that despite of different molecular targets, minocycline, and BoNT/A reduced the release of microglia-derived pro-inflammatory factors. In conclusion, we have shown that BoNT/A and minocycline are effective drugs for the management of neuroinflammation by dampening the activation of microglial cells, with minocycline also affecting astroglial activity.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of SciencesKrakow, Poland
| | | | - Flaminia Pavone
- CNR, Institute of Cell Biology and NeurobiologyRome, Italy
- IRCCS, Santa Lucia FoundationRome, Italy
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of SciencesKrakow, Poland
| |
Collapse
|
27
|
Favre-Guilmard C, Chabrier PE, Kalinichev M. Bilateral analgesic effects of abobotulinumtoxinA (Dysport®) following unilateral administration in the rat. Eur J Pain 2017; 21:927-937. [DOI: 10.1002/ejp.995] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
|
28
|
Zychowska M, Rojewska E, Makuch W, Luvisetto S, Pavone F, Marinelli S, Przewlocka B, Mika J. Participation of pro- and anti-nociceptive interleukins in botulinum toxin A-induced analgesia in a rat model of neuropathic pain. Eur J Pharmacol 2016; 791:377-388. [DOI: 10.1016/j.ejphar.2016.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/28/2022]
|
29
|
Matak I, Lacković Z, Relja M. Botulinum toxin type A in motor nervous system: unexplained observations and new challenges. J Neural Transm (Vienna) 2016; 123:1415-1421. [PMID: 27586162 DOI: 10.1007/s00702-016-1611-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022]
Abstract
In the motor system, botulinum toxin type A (BoNT/A) actions were classically attributed to its well-known peripheral anticholinergic actions in neuromuscular junctions. However, the enzymatic activity of BoNT/A, assessed by the detection of cleaved synaptosomal-associated protein 25 (SNAP-25), was recently detected in motor and sensory regions of the brainstem and spinal cord after toxin peripheral injection in rodents. In sensory regions, the function of BoNT/A activity is associated with its antinociceptive effects, while in motor regions we only know that BoNT/A activity is present. Is it possible that BoNT/A presence in central motor nuclei is without any function? In this brief review, we analyze this question. Limited data available in the literature warrant further investigations of BoNT/A actions in motor nervous system.
Collapse
Affiliation(s)
- I Matak
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10000, Zagreb, Croatia.
| | - Z Lacković
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10000, Zagreb, Croatia
| | - M Relja
- Department of Neurology, Movement Disorders Centre, Clinical Medical Centre, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
30
|
Yang KY, Kim MJ, Ju JS, Park SK, Lee CG, Kim ST, Bae YC, Ahn DK. Antinociceptive Effects of Botulinum Toxin Type A on Trigeminal Neuropathic Pain. J Dent Res 2016; 95:1183-90. [PMID: 27418174 DOI: 10.1177/0022034516659278] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous studies have demonstrated that botulinum toxin type A (BoNT-A) attenuates orofacial nociception. However, there has been no evidence of the participation of the voltage-gated sodium channels (Navs) in the antinociceptive mechanisms of BoNT-A. This study investigated the cellular mechanisms underlying the antinociceptive effects of BoNT-A in a male Sprague-Dawley rat model of trigeminal neuropathic pain produced by malpositioned dental implants. The left mandibular second molar was extracted under anesthesia, followed by a miniature dental implant placement to induce injury to the inferior alveolar nerve. Mechanical allodynia was monitored after subcutaneous injection of BoNT-A at 3, 7, or 12 d after malpositioned dental implant surgery. Subcutaneous injections of 1 or 3 U/kg of BoNT-A on postoperative day 3 significantly attenuated mechanical allodynia, although 0.3 U/kg of BoNT-A did not affect the air-puff threshold. A single injection of 3 U/kg of BoNT-A produced prolonged antiallodynic effects over the entire experimental period. Treatment with BoNT-A on postoperative days 7 and 12, when pain had already been established, also produced prolonged antiallodynic effects. Double treatments with 1 U/kg of BoNT-A produced prolonged, more antiallodynic effects as compared with single treatments. Subcutaneous administration of 3 U/kg of BoNT-A significantly inhibited the upregulation of Nav isoform 1.7 (Nav1.7) expression in the trigeminal ganglion in the nerve-injured animals. These results suggest that antinociceptive effects of BoNT-A are mediated by an inhibition of upregulated Nav1.7 expression in the trigeminal ganglion. BoNT-A is therefore a potential new therapeutic agent for chronic pain control, including neuropathic pain.
Collapse
Affiliation(s)
- K Y Yang
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - M J Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - J S Ju
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - S K Park
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - C G Lee
- Research and Development Division, Hugel, Inc., Chuncheon, Korea
| | - S T Kim
- Department of Orofacial Pain and Oral Medicine, School of Dentistry, Yonsei University, Seoul, Korea
| | - Y C Bae
- Department of Oral Anatomy, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - D K Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| |
Collapse
|
31
|
Olbrich K, Costard L, Möser CV, Syhr KMJ, King-Himmelreich TS, Wolters MC, Schmidtko A, Geisslinger G, Niederberger E. Cleavage of SNAP-25 ameliorates cancer pain in a mouse model of melanoma. Eur J Pain 2016; 21:101-111. [PMID: 27301493 DOI: 10.1002/ejp.904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cancer pain is associated with increased pain sensitivity to noxious (hyperalgesia) and normally innocuous (allodynia) stimuli due to activation of nociceptors by tumour-derived mediators or tumour infiltration of nerves. The pain sensitization is accompanied by modifications in gene expression, but specifically regulated genes are largely unknown. The 25 kDa synaptosomal-associated protein (SNAP-25) is involved in chemical neurotransmission at the synaptic cleft. Its inhibition by Botulinum neurotoxin A (BoNT/A) has been associated with antinociceptive effects in migraine, inflammatory and neuropathic pain. However, its potential to reduce tumour-associated pain remains to be clarified. METHODS We applied a melanoma model of tumour pain in C57BL/6 mice and investigated SNAP-25 expression and regulation by qRT-PCR, Western Blot and immunofluorescence as well as tumour-associated mechanical allodynia with and without BoNT/A treatment. RESULTS We found increased SNAP-25 expression in the dorsal root ganglia and the sciatic nerve. Intraplantar injection of BoNT/A induced the cleavage of SNAP-25 in these tissues and was associated with decreased mechanical allodynia after therapeutic treatment at early and late stages of tumour pain while the tumour size was not affected. CONCLUSIONS Our data indicate that SNAP-25 plays a role in tumour pain but has no influence on the initiation and progression of skin cancer. Its cleavage inhibits the development of allodynia in the mouse melanoma model and might be useful as new therapeutic approach for the treatment of cancer pain. WHAT DOES THIS STUDY ADD?: SNAP-25 is differentially regulated during melanoma-induced tumour pain. Its cleavage by BoNT/A might be a suitable therapeutic option for tumour pain patients since tumour-associated pain can be strongly and significantly reduced after preventive and therapeutic BoNT/A treatment, respectively.
Collapse
Affiliation(s)
- K Olbrich
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - L Costard
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - C V Möser
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - K M J Syhr
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - T S King-Himmelreich
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - M C Wolters
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - A Schmidtko
- Institut für Pharmakologie und Toxikologie, Universität Witten/Herdecke, Zentrum für Biomedizinische Ausbildung und Forschung, Witten, Germany
| | - G Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - E Niederberger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
32
|
Galazka M, Soszynski D, Dmitruk K. Central Action of Botulinum Toxin Type A – Is It Possible? NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Current status and future directions of botulinum neurotoxins for targeting pain processing. Toxins (Basel) 2015; 7:4519-63. [PMID: 26556371 PMCID: PMC4663519 DOI: 10.3390/toxins7114519] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Current evidence suggests that botulinum neurotoxins (BoNTs) A1 and B1, given locally into peripheral tissues such as skin, muscles, and joints, alter nociceptive processing otherwise initiated by inflammation or nerve injury in animal models and humans. Recent data indicate that such locally delivered BoNTs exert not only local action on sensory afferent terminals but undergo transport to central afferent cell bodies (dorsal root ganglia) and spinal dorsal horn terminals, where they cleave SNAREs and block transmitter release. Increasing evidence supports the possibility of a trans-synaptic movement to alter postsynaptic function in neuronal and possibly non-neuronal (glial) cells. The vast majority of these studies have been conducted on BoNT/A1 and BoNT/B1, the only two pharmaceutically developed variants. However, now over 40 different subtypes of botulinum neurotoxins (BoNTs) have been identified. By combining our existing and rapidly growing understanding of BoNT/A1 and /B1 in altering nociceptive processing with explorations of the specific characteristics of the various toxins from this family, we may be able to discover or design novel, effective, and long-lasting pain therapeutics. This review will focus on our current understanding of the molecular mechanisms whereby BoNTs alter pain processing, and future directions in the development of these agents as pain therapeutics.
Collapse
|
34
|
Botulinum Toxin for Neuropathic Pain: A Review of the Literature. Toxins (Basel) 2015; 7:3127-54. [PMID: 26287242 PMCID: PMC4549742 DOI: 10.3390/toxins7083127] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 12/16/2022] Open
Abstract
Botulinum neurotoxin (BoNT), derived from Clostridium botulinum, has been used therapeutically for focal dystonia, spasticity, and chronic migraine. Its spectrum as a potential treatment for neuropathic pain has grown. Recent opinions on the mechanism behind the antinociceptive effects of BoNT suggest that it inhibits the release of peripheral neurotransmitters and inflammatory mediators from sensory nerves. There is some evidence showing the axonal transport of BoNT, but it remains controversial. The aim of this review is to summarize the experimental and clinical evidence of the antinociceptive effects, mechanisms, and therapeutic applications of BoNT for neuropathic pain conditions, including postherpetic neuralgia, complex regional pain syndrome, and trigeminal neuralgia. The PubMed and OvidSP databases were searched from 1966 to May 2015. We assessed levels of evidence according to the American Academy of Neurology guidelines. Recent studies have suggested that BoNT injection is an effective treatment for postherpetic neuralgia and is likely efficient for trigeminal neuralgia and post-traumatic neuralgia. BoNT could also be effective as a treatment for diabetic neuropathy. It has not been proven to be an effective treatment for occipital neuralgia or complex regional pain syndrome.
Collapse
|
35
|
Kim HJ, Lee GW, Kim MJ, Yang KY, Kim ST, Bae YC, Ahn DK. Antinociceptive Effects of Transcytosed Botulinum Neurotoxin Type A on Trigeminal Nociception in Rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:349-55. [PMID: 26170739 PMCID: PMC4499647 DOI: 10.4196/kjpp.2015.19.4.349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/07/2015] [Accepted: 04/17/2015] [Indexed: 01/24/2023]
Abstract
We examined the effects of peripherally or centrally administered botulinum neurotoxin type A (BoNT-A) on orofacial inflammatory pain to evaluate the antinociceptive effect of BoNT-A and its underlying mechanisms. The experiments were carried out on male Sprague-Dawley rats. Subcutaneous (3 U/kg) or intracisternal (0.3 or 1 U/kg) administration of BoNT-A significantly inhibited the formalin-induced nociceptive response in the second phase. Both subcutaneous (1 or 3 U/kg) and intracisternal (0.3 or 1 U/kg) injection of BoNT-A increased the latency of head withdrawal response in the complete Freund's adjuvant (CFA)-treated rats. Intracisternal administration of N-methyl-D-aspartate (NMDA) evoked nociceptive behavior via the activation of trigeminal neurons, which was attenuated by the subcutaneous or intracisternal injection of BoNT-A. Intracisternal injection of NMDA up-regulated c-Fos expression in the trigeminal neurons of the medullary dorsal horn. Subcutaneous (3 U/kg) or intracisternal (1 U/kg) administration of BoNT-A significantly reduced the number of c-Fos immunoreactive neurons in the NMDA-treated rats. These results suggest that the central antinociceptive effects the peripherally or centrally administered BoNT-A are mediated by transcytosed BoNT-A or direct inhibition of trigeminal neurons. Our data suggest that central targets of BoNT-A might provide a new therapeutic tool for the treatment of orofacial chronic pain conditions.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Geun-Woo Lee
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Min-Ji Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Kui-Ye Yang
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Seong-Taek Kim
- Department of Orofacial Pain and Oral Medicine, School of Dentistry, Yonsei University, Seoul 110-749, Korea
| | - Yong-Cheol Bae
- Department of Oral Anatomy, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Dong-Kuk Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| |
Collapse
|
36
|
Luvisetto S, Vacca V, Cianchetti C. Analgesic effects of botulinum neurotoxin type A in a model of allyl isothiocyanate- and capsaicin-induced pain in mice. Toxicon 2014; 94:23-8. [PMID: 25529549 DOI: 10.1016/j.toxicon.2014.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/21/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
Abstract
We evaluate analgesic effects of BoNT/A in relation to the two main transient receptor potentials (TRP), the vanilloid 1 (TRPV1) and the ankyrin 1 (TRPA1), having a role in migraine pain. BoNT/A (15 pg/mouse) was injected in the inner side of the medial part of hindlimb thigh of mice, where the superficial branch of femoral artery is located. We chosen this vascular structure because it is similar to other vascular structures, such as the temporal superficial artery, whose perivascular nociceptive fibres probably contributes to migraine pain. After an interval, ranging from 7 to 30 days, capsaicin (agonist of TRPV1) or allyl isothiocyanate (AITC; agonist of TRPA1) were injected in the same region previously treated with BoNT/A and nocifensive response to chemicals-induced pain was recorded. In absence of BoNT/A, capsaicin and AITC induced extensive nocifensive response, with a markedly different temporal profile: capsaicin induced maximal pain during the first 5 min, while AITC induced maximal pain at 15-30 min after injection. Pretreatment with BoNT/A markedly reduced both the capsaicin- and AITC-induced pain for at least 21 days. These data suggest a long lasting analgesic effect of BoNT/A exerted via prevention of responsiveness of TRPV1 and TRPA1 toward their respective agonists.
Collapse
Affiliation(s)
- Siro Luvisetto
- CNR - National Research Council of Italy, Institute of Cell Biology and Neurobiology, Roma, Italy; IRCCS Santa Lucia Foundation, Roma, Italy.
| | - Valentina Vacca
- CNR - National Research Council of Italy, Institute of Cell Biology and Neurobiology, Roma, Italy; IRCCS Santa Lucia Foundation, Roma, Italy
| | - Carlo Cianchetti
- Child Neuropsychiatry Clinic, AOU, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
37
|
Matak I, Lacković Z. Botulinum toxin A, brain and pain. Prog Neurobiol 2014; 119-120:39-59. [PMID: 24915026 DOI: 10.1016/j.pneurobio.2014.06.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/25/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Botulinum neurotoxin type A (BoNT/A) is one of the most potent toxins known and a potential biological threat. At the same time, it is among the most widely used therapeutic proteins used yearly by millions of people, especially for cosmetic purposes. Currently, its clinical use in certain types of pain is increasing, and its long-term duration of effects represents a special clinical value. Efficacy of BoNT/A in different types of pain has been found in numerous clinical trials and case reports, as well as in animal pain models. However, sites and mechanisms of BoNT/A actions involved in nociception are a matter of controversy. In analogy with well known neuroparalytic effects in peripheral cholinergic synapses, presently dominant opinion is that BoNT/A exerts pain reduction by inhibiting peripheral neurotransmitter/inflammatory mediator release from sensory nerves. On the other hand, growing number of behavioral and immunohistochemical studies demonstrated the requirement of axonal transport for BoNT/A's antinociceptive action. In addition, toxin's enzymatic activity in central sensory regions was clearly identified after its peripheral application. Apart from general pharmacology, this review summarizes the clinical and experimental evidence for BoNT/A antinociceptive activity and compares the data in favor of peripheral vs. central site and mechanism of action. Based on literature review and published results from our laboratory we propose that the hypothesis of peripheral site of BoNT/A action is not sufficient to explain the experimental data collected up to now.
Collapse
Affiliation(s)
- Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia
| | - Zdravko Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia.
| |
Collapse
|
38
|
Gao X, Lu Q, Chou G, Wang Z, Pan R, Xia Y, Hu H, Dai Y. Norisoboldine attenuates inflammatory pain via the adenosine A1 receptor. Eur J Pain 2014; 18:939-48. [DOI: 10.1002/j.1532-2149.2013.00439.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- X. Gao
- State Key Laboratory of Natural Medicines; Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing China
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia USA
| | - Q. Lu
- State Key Laboratory of Natural Medicines; Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing China
| | - G. Chou
- Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; China
| | - Z. Wang
- Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; China
| | - R. Pan
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia USA
| | - Y. Xia
- State Key Laboratory of Natural Medicines; Department of Chinese Materia Medica Analysis; China Pharmaceutical University; Nanjing China
| | - H. Hu
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia USA
| | - Y. Dai
- State Key Laboratory of Natural Medicines; Department of Pharmacology of Chinese Materia Medica; China Pharmaceutical University; Nanjing China
| |
Collapse
|
39
|
Marino MJ, Terashima T, Steinauer JJ, Eddinger KA, Yaksh TL, Xu Q. Botulinum toxin B in the sensory afferent: transmitter release, spinal activation, and pain behavior. Pain 2013; 155:674-684. [PMID: 24333775 DOI: 10.1016/j.pain.2013.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/22/2013] [Accepted: 12/04/2013] [Indexed: 01/11/2023]
Abstract
We addressed the hypothesis that intraplantar botulinum toxin B (rimabotulinumtoxin B: BoNT-B) has an early local effect upon peripheral afferent terminal releasing function and, over time, will be transported to the central terminals of the primary afferent. Once in the terminals it will cleave synaptic protein, block spinal afferent transmitter release, and thereby prevent spinal nociceptive excitation and behavior. In mice, C57Bl/6 males, intraplantar BoNT-B (1 U) given unilaterally into the hind paw had no effect upon survival or motor function, but ipsilaterally decreased: (1) intraplantar formalin-evoked flinching; (2) intraplantar capsaicin-evoked plasma extravasation in the hind paw measured by Evans blue in the paw; (3) intraplantar formalin-evoked dorsal horn substance P (SP) release (neurokinin 1 [NK1] receptor internalization); (4) intraplantar formalin-evoked dorsal horn neuronal activation (c-fos); (5) ipsilateral dorsal root ganglion (DRG) vesicle-associated membrane protein (VAMP); (6) ipsilateral SP release otherwise evoked bilaterally by intrathecal capsaicin; (7) ipsilateral activation of c-fos otherwise evoked bilaterally by intrathecal SP. These results indicate that BoNT-B, after unilateral intraplantar delivery, is taken up by the peripheral terminal, is locally active (blocking plasma extravasation), is transported to the ipsilateral DRG to cleave VAMP, and is acting presynaptically to block release from the spinal peptidergic terminal. The observations following intrathecal SP offer evidence for a possible transsynaptic effect of intraplantar BoNT. These results provide robust evidence that peripheral BoNT-B can alter peripheral and central terminal release from a nociceptor and attenuate downstream nociceptive processing via a presynaptic effect, with further evidence suggesting a possible postsynaptic effect.
Collapse
Affiliation(s)
- Marc J Marino
- Anesthesiology Research, Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA Department of Anesthesiology, Dokkyo Medical University, School of Medicine, Mibu, Tochigi, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Vacca V, Marinelli S, Luvisetto S, Pavone F. Botulinum toxin A increases analgesic effects of morphine, counters development of morphine tolerance and modulates glia activation and μ opioid receptor expression in neuropathic mice. Brain Behav Immun 2013; 32:40-50. [PMID: 23402794 DOI: 10.1016/j.bbi.2013.01.088] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 02/02/2023] Open
Abstract
The use of botulinum neurotoxin type A (BoNT/A) against pain, with emphasis for its possible use in alleviating chronic pain, still represents an outstanding challenge for experimental research. In this study, we examined the effects of BoNT/A on morphine-induced tolerance during chronic morphine treatment in neuropathic CD1 mice subjected to sciatic nerve lesion according to the Chronic Constriction Injury (CCI) model of neuropathic pain. We measured the effects of BoNT/A on CCI-induced allodynia and hyperalgesia and on the expression of glial fibrillary acidic protein (GFAP, marker of astrocytes), complement receptor 3/cluster of differentiation 11b (CD11b, marker of microglia), and neuronal nuclei (NeuN) at the spinal cord level. We also analyzed the colocalized expression of GFAP, CD11b and NeuN with phosphorylated p-38 mitogen-activated protein kinase and with μ-opioid receptor (MOR). A single intraplantar injection of BoNT/A (15 pg/paw) into the injured hindpaw, the day before the beginning of chronic morphine treatment (9 days of twice daily injections of 40 mg/kg morphine), was able to counteract allodynia and enhancement of astrocytes expression/activation induced by CCI. In addition, BoNT/A increased the analgesic effect of morphine and countered morphine-induced tolerance during chronic morphine treatment. These effects were accompanied, in neurons, by re-expression of MORs that had been reduced by repeated morphine administration. The combinatory effects of BoNT/A and morphine could have relevant therapeutic implications for sufferers of chronic pain who could benefit of pain relief reducing tolerance due to repeated treatment with opiates.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR - National Research Council of Italy, Cell Biology and Neurobiology Institute/IRCCS - Santa Lucia Foundation, Rome, Italy
| | | | | | | |
Collapse
|
41
|
Marinelli S, Vacca V, Ricordy R, Uggenti C, Tata AM, Luvisetto S, Pavone F. The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxin A involves Schwann cells and astrocytes. PLoS One 2012; 7:e47977. [PMID: 23110146 PMCID: PMC3480491 DOI: 10.1371/journal.pone.0047977] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/19/2012] [Indexed: 11/19/2022] Open
Abstract
In recent years a growing debate is about whether botulinum neurotoxins are retrogradely transported from the site of injection. Immunodetection of cleaved SNAP-25 (cl-SNAP-25), the protein of the SNARE complex targeted by botulinum neurotoxin serotype A (BoNT/A), could represent an excellent approach to investigate the mechanism of action on the nociceptive pathways at peripheral and/or central level. After peripheral administration of BoNT/A, we analyzed the expression of cl-SNAP-25, from the hindpaw's nerve endings to the spinal cord, together with the behavioral effects on neuropathic pain. We used the chronic constriction injury of the sciatic nerve in CD1 mice as animal model of neuropathic pain. We evaluated immunostaining of cl-SNAP-25 in the peripheral nerve endings, along the sciatic nerve, in dorsal root ganglia and in spinal dorsal horns after intraplantar injection of saline or BoNT/A, alone or colocalized with either glial fibrillar acidic protein, GFAP, or complement receptor 3/cluster of differentiation 11b, CD11b, or neuronal nuclei, NeuN, depending on the area investigated. Immunofluorescence analysis shows the presence of the cl-SNAP-25 in all tissues examined, from the peripheral endings to the spinal cord, suggesting a retrograde transport of BoNT/A. Moreover, we performed in vitro experiments to ascertain if BoNT/A was able to interact with the proliferative state of Schwann cells (SC). We found that BoNT/A modulates the proliferation of SC and inhibits the acetylcholine release from SC, evidencing a new biological effect of the toxin and further supporting the retrograde transport of the toxin along the nerve and its ability to influence regenerative processes. The present results strongly sustain a combinatorial action at peripheral and central neural levels and encourage the use of BoNT/A for the pathological pain conditions difficult to treat in clinical practice and dramatically impairing patients' quality of life.
Collapse
Affiliation(s)
- Sara Marinelli
- National Research Council of Italy (Cell Biology and Neurobiology Institute)/Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| | - Valentina Vacca
- National Research Council of Italy (Cell Biology and Neurobiology Institute)/Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| | - Ruggero Ricordy
- National Research Council of Italy - Institute of Molecular Biology and Pathology, Rome, Italy
| | - Carolina Uggenti
- Department of Biology and Biotechnologies Charles Darwin, Center of Neurobiology Research Daniel Bovet, Sapienza University, Rome, Italy
| | - Ada Maria Tata
- Department of Biology and Biotechnologies Charles Darwin, Center of Neurobiology Research Daniel Bovet, Sapienza University, Rome, Italy
| | - Siro Luvisetto
- National Research Council of Italy (Cell Biology and Neurobiology Institute)/Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
| | - Flaminia Pavone
- National Research Council of Italy (Cell Biology and Neurobiology Institute)/Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy
- * E-mail:
| |
Collapse
|
42
|
Vacca V, Marinelli S, Eleuteri C, Luvisetto S, Pavone F. Botulinum neurotoxin A enhances the analgesic effects on inflammatory pain and antagonizes tolerance induced by morphine in mice. Brain Behav Immun 2012; 26:489-99. [PMID: 22281280 DOI: 10.1016/j.bbi.2012.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 11/30/2022] Open
Abstract
Over the recent years compelling evidence has accumulated indicating that botulinum neurotoxin serotype A (BoNT/A) results in analgesic effects on neuropathic as well as inflammatory pain, both in humans and in animal models. In the present study, the pharmacological interaction of BoNT/A with morphine in fighting inflammatory pain was investigated in mice using the formalin test. Moreover, the effects of BoNT/A on the tolerance-induced by chronic administration of morphine were tested and the behavioral effects were correlated with immunofluorescence staining of glial fibrillary acidic protein, the specific marker of astrocytes, at the spinal cord level. An ineffective dose of BoNT/A (2 pg/paw) combined with an ineffective dose of morphine (1 mg/kg) exerted a significant analgesic action both during the early and the late phases of formalin test. A single intraplantar injection of BoNT/A (15 pg/paw; i.pl.), administered the day before the beginning of chronic morphine treatment (7 days of s.c. injections of 20 mg/kg), was able to counteract the occurrence of tolerance to morphine. Moreover, BoNT/A reduces the enhancement of the expression of astrocytes induced by inflammatory formalin pain. Side effects of opiates, including the development of tolerance during repeated use, may limit their therapeutic use, the possibility of using BoNT/A for lowering the effective dose of morphine and preventing the development of opioid tolerance would have relevant implications in terms of potential therapeutic perspectives.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR-National Research Council of Italy (Cell Biology and Neurobiology Institute IBCN)/IRCCS Fondazione Santa Lucia, Roma, Italy
| | | | | | | | | |
Collapse
|
43
|
Neurotherapeutics to inhibit exocytosis from sensory neurons for the control of chronic pain. Curr Opin Pharmacol 2012; 12:100-8. [DOI: 10.1016/j.coph.2011.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 11/19/2022]
|
44
|
Shin MC, Wakita M, Xie DJ, Yamaga T, Iwata S, Torii Y, Harakawa T, Ginnaga A, Kozaki S, Akaike N. Inhibition of Membrane Na+ Channels by A Type Botulinum Toxin at Femtomolar Concentrations in Central and Peripheral Neurons. J Pharmacol Sci 2012; 118:33-42. [DOI: 10.1254/jphs.11060fp] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 11/06/2011] [Indexed: 10/14/2022] Open
|
45
|
Piovesan EJ, Leite LDS, Teive HG, Kowacs PA, Mulinari RA, Radunz V, Utiumi M, Campos HG, Werneck LC. Botulinum toxin type-A effect as a preemptive treatment in a model of acute trigeminal pain: a pre-clinical double-blind and placebo-controlled study. ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 69:56-63. [PMID: 21359424 DOI: 10.1590/s0004-282x2011000100012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/17/2010] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate if botulinum neurotoxin type-A (BoNT/A) had a preemptive antinociceptive effect in a formalin-induced orofacial pain model (FT). To test this hypothesis, male Rattus norvegicus were injected with isotonic saline solution 0.9% or BoNT/A administered as a 40 μl bolus, lateral to their nose, at 24 hours, 8, 15, 22, 29 or 36 days pre-FT. The procedures were repeated 42 days later. Influence on motor activity was assessed through the open-field test. Pain scores corresponded to the time spent rubbing and flicking the injected area. Animals pre-treated with BoNT/A at the first protocol (8 days subgroup) showed reduced inflammatory scores (p=0.011). For the other groups no significant results were observed at any phase. Motor activity was similar in both groups. BoNT/A showed to be effective preventing inflammatory pain up to eight days after the first treatment, an effect not reproduced on the second dose administration.
Collapse
Affiliation(s)
- Elcio Juliato Piovesan
- Unit of Headache, Neurology Division, Internal Medicine Department, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba PR, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Carroll I, Fischbein N, Barad M, Mackey S. Human response to unintended intrathecal injection of botulinum toxin. PAIN MEDICINE 2011; 12:1094-7. [PMID: 21627762 DOI: 10.1111/j.1526-4637.2011.01135.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Describe the first reported human intrathecal (IT) botulinum toxin injection. DESIGN Case report. SETTING AND PATIENTS We report here the sequelae to an unintended IT injection of botulinum toxin type B (BTB) in a 60-year-old woman with chronic back pain. RESULTS Following the IT administration of BTB, the patient experienced the onset of symmetric ascending stocking distribution painful dysesthesias, which persisted for approximately 6 months before receding. Objective neurologic deficits were not appreciated, and analgesic effects were prominently absent. CONCLUSIONS Analgesic actions of botulinum toxins in animals and in humans have led to speculation that IT botulinum toxin might exert significant analgesic effects. The unusual and unexpected subsequent clinical course, neurologic sequelae, dysesthesias, and absence of analgesia suggest that botulinum toxin will not be a therapeutic modality to treat pain as proposed by those studying botulinum toxin in animal models.
Collapse
Affiliation(s)
- Ian Carroll
- Division of Pain Management, Department of Anesthesiology, Stanford University, Palo Alto, CA 94040, USA.
| | | | | | | |
Collapse
|
47
|
Huang PP, Khan I, Suhail MSA, Malkmus S, Yaksh TL. Spinal botulinum neurotoxin B: effects on afferent transmitter release and nociceptive processing. PLoS One 2011; 6:e19126. [PMID: 21559464 PMCID: PMC3084763 DOI: 10.1371/journal.pone.0019126] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/25/2011] [Indexed: 12/01/2022] Open
Abstract
Botulinum neurotoxin B (BoNT-B) mediates proteolytic cleavage of VAMP I/II (synaptobrevins I/II), which prevents vesicle-membrane fusion and blocks neurotransmitter release. In the present study, we investigated the effects of BoNT-B on neurotransmitter release in vivo from spinal primary afferent sensory fibers and the effects of this blockade on nociception. With intrathecally (IT) delivered BoNT-B in C57B/l6 mice, we characterized the effects of such block on the release of substance P (SP) from spinal afferent nociceptors (as measured by neurokinin-1 receptor, NK1-R, internalization), spinal neuronal activation (as indicated by spinal C-Fos expression) and nociceptive behavior after intraplantar (IPLT) formalin. In addition, we investigated the effect of IT BoNT-B on spinal nerve ligation-induced tactile allodynia. A single percutaneous IT injection of BoNT-B 0.5 U at 2 or 5 days prior to IPLT formalin reduced NK1-R internalization and C-Fos expression. These effects correlated with BoNT-B cleavage of VAMPI/II protein in tissue lysate. IT BoNT-B also produced a corresponding reduction in phase 2 of formalin-evoked flinching behavior for over 30 days after IT injection. In mice with spinal nerve ligation (SNL), tactile allodynia was observed, which was attenuated by IT BoNT-B 0.5 U over the next 15 days, as compared to vehicle animals. These effects were observed without effects upon motor function. The specificity of the IT BoNT-B effect is indicated by: i) IT co-injection of BoNT-B and anti-BoNTB antibody prevented effects on SP release, and ii) IT BoNT-B 50 U in the Sprague Dawley rats showed no effect on formalin-evoked flinching or SNL-induced tactile allodynia, which is consistent with rat resistance to BoNT-B. IT BoNT-B blocks transmitter release from spinal primary afferents, and attenuates inflammatory nociceptive response and spinal nerve injury-induced neuropathic pain, in the absence of motor impairment. These observations provide an initial assessment of the ability of IT BoNT-B to regulate spinal nociceptive processing.
Collapse
Affiliation(s)
- Polly P. Huang
- Department of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Imran Khan
- United States Food and Drug Administration, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Mohammed S. A. Suhail
- School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Shelle Malkmus
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Ranoux D. [Botulinum toxin and painful peripheral neuropathies: what should be expected?]. Rev Neurol (Paris) 2010; 167:46-50. [PMID: 21194720 DOI: 10.1016/j.neurol.2010.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/12/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
Botulinum toxin type A (BTX-A) is a potent neurotoxin that blocks acetylcholine release from presynaptic nerve terminals by cleaving the SNARE complex. BTX-A has been reported to have analgesic effects independent of its action on muscle tone. The most robust results have been observed in patients with neuropathic pain. Neuropathic pain due to peripheral lesions has been the most widely studied. BTX-A has shown its efficacy on pain and allodynia in various animal models of inflammatory neuropathic pain. The only randomized, double-blind, placebo-controlled trial in patients with focal painful neuropathies due to nerve trauma or postherpetic neuralgia demonstrated significant effects on average pain intensity from 2 weeks after the injections to 14 weeks. Most patients reported pain during the injections, but there were no further local or systemic side effects. The efficacy of BTX-A in painful peripheral neuropathies has been more recently studied. Results were positive in the only study in an animal model of peripheral neuropathy. One study in patients with diabetic painful peripheral neuropathy demonstrated a significant decrease in Visual Analog Scale. In conclusion, one session of multiple intradermal injection of BTX-A produces long-lasting analgesic effects in patients with focal painful neuropathies and diabetic neuropathic pain, and is particularly well tolerated. The findings are consistent with a reduction of peripheral sensitisation, the place of a possible central effect remaining to define. Further studies are needed to assess some important issues, i.e. BTX-A efficacy in patients with small fiber neuropathies and the relevance of early and repeated injections. Future studies could also provide valuable insights into pathophysiology of neuropathic pain.
Collapse
Affiliation(s)
- D Ranoux
- Service de neurochirurgie, CHU de Limoges, Limoges cedex, France.
| |
Collapse
|
49
|
The role of botulinum toxin in management of pain: an evidence-based review. Curr Opin Anaesthesiol 2010; 23:602-10. [PMID: 20585245 DOI: 10.1097/aco.0b013e32833c3405] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In the present review we discuss the role of botulinum neurotoxins (BoNTs) in the management of different pain conditions, with evidence-based data on the toxins' efficacy on pain and its mechanisms. RECENT FINDINGS Experimental in-vitro studies have reported promising results of a novel recombinant chimera of BoNT A and E that inhibits the calcitonin gene-related peptide exocytosis from brainstem sensory neurons. Animal studies in neuropathic pain rat models have reported an analgesic effect of BoNT A given after the neuropathic procedure and a bilateral antinociceptive effect to the unilateral noxious stimuli. There is a growing body of evidence that BoNTs are effective in myofascial pain syndrome, neuropathic pain, and joint pain. The pre-existing evidence that BoNTs are ineffective in migraine or other headache disorders has not yet been challenged. In other pain syndromes, studies published in the last review year have not contributed significantly in either demonstrating or invalidating the research that has so far proved inconclusive. SUMMARY The role of BoNTs in management of pain is not yet well established. Larger studies in neuropathic pain, joint pain, and myofascial pain syndrome are needed to fully ascertain the role for BoNT therapy in those areas.
Collapse
|
50
|
Pavone F, Luvisetto S. Botulinum neurotoxin for pain management: insights from animal models. Toxins (Basel) 2010; 2:2890-913. [PMID: 22069581 PMCID: PMC3153188 DOI: 10.3390/toxins2122890] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 01/09/2023] Open
Abstract
The action of botulinum neurotoxins (BoNTs) at the neuromuscular junction has been extensively investigated and knowledge gained in this field laid the foundation for the use of BoNTs in human pathologies characterized by excessive muscle contractions. Although much more is known about the action of BoNTs on the peripheral system, growing evidence has demonstrated several effects also at the central level. Pain conditions, with special regard to neuropathic and intractable pain, are some of the pathological states that have been recently treated with BoNTs with beneficial effects. The knowledge of the action and potentiality of BoNTs utilization against pain, with emphasis for its possible use in modulation and alleviation of chronic pain, still represents an outstanding challenge for experimental research. This review highlights recent findings on the effects of BoNTs in animal pain models.
Collapse
Affiliation(s)
- Flaminia Pavone
- CNR, Institute of Neuroscience-Roma, via del Fosso di Fiorano 64, I-00143 Roma, Italy.
| | | |
Collapse
|