1
|
Baizer JS, Sherwood CC, Hof PR, Baker JF, Witelson SF. Glycine is a transmitter in the human and chimpanzee cochlear nuclei. Front Neuroanat 2024; 18:1331230. [PMID: 38425805 PMCID: PMC10902441 DOI: 10.3389/fnana.2024.1331230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Auditory information is relayed from the cochlea via the eighth cranial nerve to the dorsal and ventral cochlear nuclei (DCN, VCN). The organization, neurochemistry and circuitry of the cochlear nuclei (CN) have been studied in many species. It is well-established that glycine is an inhibitory transmitter in the CN of rodents and cats, with glycinergic cells in the DCN and VCN. There are, however, major differences in the laminar and cellular organization of the DCN between humans (and other primates) and rodents and cats. We therefore asked whether there might also be differences in glycinergic neurotransmission in the CN. Methods We studied brainstem sections from humans, chimpanzees, and cats. We used antibodies to glycine receptors (GLYR) to identify neurons receiving glycinergic input, and antibodies to the neuronal glycine transporter (GLYT2) to immunolabel glycinergic axons and terminals. We also examined archival sections immunostained for calretinin (CR) and nonphosphorylated neurofilament protein (NPNFP) to try to locate the octopus cell area (OCA), a region in the VCN that rodents has minimal glycinergic input. Results In humans and chimpanzees we found widespread immunolabel for glycine receptors in DCN and in the posterior (PVCN) and anterior (AVCN) divisions of the VCN. We found a parallel distribution of GLYT2-immunolabeled fibers and puncta. The data also suggest that, as in rodents, a region containing octopus cells in cats, humans and chimpanzees has little glycinergic input. Discussion Our results show that glycine is a major transmitter in the human and chimpanzee CN, despite the species differences in DCN organization. The sources of the glycinergic input to the CN in humans and chimpanzees are not known.
Collapse
Affiliation(s)
- Joan S. Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, United States
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - James F. Baker
- Department of Neuroscience, Northwestern University Medical School, Chicago, IL, United States
| | - Sandra F. Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Baizer JS, Witelson SF. Comparative analysis of four nuclei in the human brainstem: Individual differences, left-right asymmetry, species differences. Front Neuroanat 2023; 17:1069210. [PMID: 36874056 PMCID: PMC9978016 DOI: 10.3389/fnana.2023.1069210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction It is commonly thought that while the organization of the cerebral cortex changes dramatically over evolution, the organization of the brainstem is conserved across species. It is further assumed that, as in other species, brainstem organization is similar from one human to the next. We will review our data on four human brainstem nuclei that suggest that both ideas may need modification. Methods We have studied the neuroanatomical and neurochemical organization of the nucleus paramedianus dorsalis (PMD), the principal nucleus of the inferior olive (IOpr), the arcuate nucleus of the medulla (Arc) and the dorsal cochlear nucleus (DC). We compared these human brainstem nuclei to nuclei in other mammals including chimpanzees, monkeys, cats and rodents. We studied human cases from the Witelson Normal Brain collection using Nissl and immunostained sections, and examined archival Nissl and immunostained sections from other species. Results We found significant individual variability in the size and shape of brainstem structures among humans. There is left-right asymmetry in the size and appearance of nuclei, dramatically so in the IOpr and Arc. In humans there are nuclei, e.g., the PMD and the Arc, not seen in several other species. In addition, there are brainstem structures that are conserved across species but show major expansion in humans, e.g., the IOpr. Finally, there are nuclei, e.g. the DC, that show major differences in structure among species. Discussion Overall, the results suggest several principles of human brainstem organization that distinguish humans from other species. Studying the functional correlates of, and the genetic contributions to, these brainstem characteristics are important future research directions.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Sandra F Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
3
|
Development of the human perihypoglossal nuclei from mid-gestation to the perinatal period: A morphological study. Neurosci Lett 2022; 782:136696. [PMID: 35623495 DOI: 10.1016/j.neulet.2022.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Morphological data on the development of the human perihypoglossal nuclei (PHN) are scarce. This study describes the morphology of the human PHN from mid-gestation to the perinatal period. MATERIALS AND METHODS Ten brains were collected from infants aged 21-43 postmenstrual weeks (PW). Serial sections were cut and stained using the Klüver-Barrera method. Morphometric parameters [volume, neuronal numerical density (Nv) and total number (Nt), and neuronal profile area (PA)] were analyzed from microscopic observations. RESULTS Four PHN [nucleus of Roller (RO), interfascicular nucleus (IF), intercalated nucleus (IC), and prepositus nucleus (PR)] were identified at 21 PW. Medium-sized to large, oval, or polygonal neurons were concentrated in the ventral nuclei (RO and IF) and localized regions near the IC-PR transition of the dorsal nuclei (IC and PR). Small to large neurons of various shapes were scattered across the dorsal nuclei. The PR showed rostrocaudal differences in the neuronal cytoarchitecture. The volume of each nucleus increased between 21 and 43 PW, with a typical exponential increase for the dorsal nuclei. The Nv in each nucleus exponentially decreased, whereas the Nt was almost stable. The median PA linearly increased for every nucleus, and the increasing rates were greater for the ventral nuclei than those for the dorsal nuclei. CONCLUSIONS The dorsal and ventral PHN are identifiable at mid-gestation. The topographic relationships of the four nuclei are conserved until the perinatal period. The characteristic neuronal cytoarchitecture of each group is rapidly formed by 28-30 PW.
Collapse
|
4
|
Baizer JS, Wong KM, Salvi RJ, Manohar S, Sherwood CC, Hof PR, Baker JF, Witelson SF. Species Differences in the Organization of the Ventral Cochlear Nucleus. Anat Rec (Hoboken) 2018; 301:862-886. [PMID: 29236365 PMCID: PMC5902649 DOI: 10.1002/ar.23751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/18/2017] [Accepted: 09/17/2017] [Indexed: 01/18/2023]
Abstract
The mammalian cochlear nuclei (CN) consist of two major subdivisions, the dorsal (DCN) and ventral (VCN) nuclei. We previously reported differences in the structural and neurochemical organization of the human DCN from that in several other species. Here we extend this analysis to the VCN, considering both the organization of subdivisions and the types and distributions of neurons. Classically, the VCN in mammals is composed of two subdivisions, the anteroventral (VCA) and posteroventral cochlear nuclei (VCP). Anatomical and electrophysiological data in several species have defined distinct neuronal types with different distributions in the VCA and VCP. We asked if VCN subdivisions and anatomically defined neuronal types might be distinguished by patterns of protein expression in humans. We also asked if the neurochemical characteristics of the VCN are the same in humans as in other mammalian species, analyzing data from chimpanzees, macaque monkeys, cats, rats and chinchillas. We examined Nissl- and immunostained sections, using antibodies that had labeled neurons in other brainstem nuclei in humans. Nissl-stained sections supported the presence of both VCP and VCA in humans and chimpanzees. However, patterns of protein expression did not differentiate classes of neurons in humans; neurons of different soma shapes and dendritic configurations all expressed the same proteins. The patterns of immunostaining in macaque monkey, cat, rat, and chinchilla were different from those in humans and chimpanzees and from each other. The results may correlate with species differences in auditory function and plasticity. Anat Rec, 301:862-886, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| | - Keit Men Wong
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| | - Richard J Salvi
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, Buffalo, New York
| | - Senthilvelan Manohar
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, Buffalo, New York
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James F Baker
- Department of Physiology, Northwestern University Medical School, Chicago, Illinois
| | - Sandra F Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
5
|
Baizer JS, Wong KM, Paolone NA, Weinstock N, Salvi RJ, Manohar S, Witelson SF, Baker JF, Sherwood CC, Hof PR. Laminar and neurochemical organization of the dorsal cochlear nucleus of the human, monkey, cat, and rodents. Anat Rec (Hoboken) 2014; 297:1865-84. [PMID: 25132345 DOI: 10.1002/ar.23000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 06/09/2014] [Indexed: 01/02/2023]
Abstract
The dorsal cochlear nucleus (DCN) is a brainstem structure that receives input from the auditory nerve. Many studies in a diversity of species have shown that the DCN has a laminar organization and identifiable neuron types with predictable synaptic relations to each other. In contrast, studies on the human DCN have found a less distinct laminar organization and fewer cell types, although there has been disagreement among studies in how to characterize laminar organization and which of the cell types identified in other animals are also present in humans. We have reexamined DCN organization in the human using immunohistochemistry to analyze the expression of several proteins that have been useful in delineating the neurochemical organization of other brainstem structures in humans: nonphosphorylated neurofilament protein (NPNFP), nitric oxide synthase (nNOS), and three calcium-binding proteins. The results for humans suggest a laminar organization with only two layers, and the presence of large projection neurons that are enriched in NPNFP. We did not observe evidence in humans of the inhibitory interneurons that have been described in the cat and rodent DCN. To compare humans and other animals directly we used immunohistochemistry to examine the DCN in the macaque monkey, the cat, and three rodents. We found similarities between macaque monkey and human in the expression of NPNFP and nNOS, and unexpected differences among species in the patterns of expression of the calcium-binding proteins.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Baizer JS. Unique features of the human brainstem and cerebellum. Front Hum Neurosci 2014; 8:202. [PMID: 24778611 PMCID: PMC3985031 DOI: 10.3389/fnhum.2014.00202] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/21/2014] [Indexed: 12/28/2022] Open
Abstract
The cerebral cortex is greatly expanded in the human brain. There is a parallel expansion of the cerebellum, which is interconnected with the cerebral cortex. We have asked if there are accompanying changes in the organization of pre-cerebellar brainstem structures. We have examined the cytoarchitectonic and neurochemical organization of the human medulla and pons. We studied human cases from the Witelson Normal Brain Collection, analyzing Nissl sections and sections processed for immunohistochemistry for multiple markers including the calcium-binding proteins calbindin, calretinin, and parvalbumin, non-phosphorylated neurofilament protein, and the synthetic enzyme for nitric oxide, nitric oxide synthase. We have also compared the neurochemical organization of the human brainstem to that of several other species including the chimpanzee, macaque and squirrel monkey, cat, and rodent, again using Nissl staining and immunohistochemistry. We found that there are major differences in the human brainstem, ranging from relatively subtle differences in the neurochemical organization of structures found in each of the species studied to the emergence of altogether new structures in the human brainstem. Two aspects of human cortical organization, individual differences and left–right asymmetry, are also seen in the brainstem (principal nucleus of the inferior olive) and the cerebellum (the dentate nucleus). We suggest that uniquely human motor and cognitive abilities derive from changes at all levels of the central nervous system, including the cerebellum and brainstem, and not just the cerebral cortex.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, NY , USA
| |
Collapse
|
7
|
Baizer JS, Paolone NA, Sherwood CC, Hof PR. Neurochemical organization of the vestibular brainstem in the common chimpanzee (Pan troglodytes). Brain Struct Funct 2012. [PMID: 23179862 DOI: 10.1007/s00429-012-0470-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chimpanzees are one of the closest living relatives of humans. However, the cognitive and motor abilities of chimpanzees and humans are quite different. The fact that humans are habitually bipedal and chimpanzees are not implies different uses of vestibular information in the control of posture and balance. Furthermore, bipedal locomotion permits the development of fine motor skills of the hand and tool use in humans, suggesting differences between species in the structures and circuitry for manual control. Much motor behavior is mediated via cerebro-cerebellar circuits that depend on brainstem relays. In this study, we investigated the organization of the vestibular brainstem in chimpanzees to gain insight into whether these structures differ in their anatomy from humans. We identified the four nuclei of vestibular nuclear complex in the chimpanzee and also looked at several other precerebellar structures. The size and arrangement of some of these nuclei differed between chimpanzees and humans, and also displayed considerable inter-individual variation. We identified regions within the cytoarchitectonically defined medial vestibular nucleus visualized by immunoreactivity to the calcium-binding proteins calretinin and calbindin as previously shown in other species including human. We have found that the nucleus paramedianus dorsalis, which is identified in the human but not in macaque monkeys, is present in the chimpanzee brainstem. However, the arcuate nucleus, which is present in humans, was not found in chimpanzees. The present study reveals major differences in the organization of the vestibular brainstem among Old World anthropoid primate species. Furthermore, in chimpanzees, as well as humans, there is individual variability in the organization of brainstem nuclei.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, 14214, USA,
| | | | | | | |
Collapse
|
8
|
Erichsen JT, May PJ. A perioculomotor nitridergic population in the macaque and cat. Invest Ophthalmol Vis Sci 2012; 53:5751-61. [PMID: 22836763 DOI: 10.1167/iovs.12-10287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE We determined the distribution of cells containing synthetic enzymes for the unconventional neurotransmitter, nitric oxide, with respect to the known populations within the oculomotor complex. METHODS The oculomotor complex was investigated in monkeys and cats by use of histochemistry to demonstrate nicotinamide adenine dinucleotide phosphate diaphorase positive (NADPHd(+)) cells and antibodies to localize neuronal nitric oxide synthase positive (NOS(+)) cells. In some cases, wheat germ agglutinin conjugated horseradish peroxidase (WGA-HRP) was injected into extraocular muscles to allow comparison of retrogradely labeled and NADPHd(+) cell distributions. RESULTS The distribution of the NADPHd(+) and NOS(+) neurons did not coincide with that of preganglionic and extraocular motoneurons in the oculomotor complex. However, labeled perioculomotor neurons were observed. Specifically, in monkeys, they lay in an arc that extended from between the oculomotor nuclei into the supraoculomotor area (SOA). Comparison of WGA-HRP-labeled medial and superior rectus motoneurons with NADPHd staining confirmed that the distributions overlapped, but showed that the C- and S-group cells were not NADPHd(+). This suggested that NADPHd(+) cells are part of the centrally projecting Edinger-Westphal population (EWcp). Examination of the NADPHd(+) cell distribution in the cat showed that these cells were indeed found primarily within its well-defined EWcp. CONCLUSIONS Based on their similar distributions, it appears that the peptidergic EWcp neurons, which project widely in the brain, also may be nitridergic. While the preganglionic and C- and S-group motoneuron populations do not use this nonsynaptic neurotransmitter, nitric oxide produced by surrounding NADPHd(+) cells may modulate the activity of these motoneurons.
Collapse
Affiliation(s)
- Jonathan T Erichsen
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | |
Collapse
|
9
|
Baizer JS, Sherwood CC, Hof PR, Witelson SF, Sultan F. Neurochemical and Structural Organization of the Principal Nucleus of the Inferior Olive in the Human. Anat Rec (Hoboken) 2011; 294:1198-216. [DOI: 10.1002/ar.21400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 02/06/2023]
|
10
|
Baizer JS, Corwin WL, Baker JF. Otolith stimulation induces c-Fos expression in vestibular and precerebellar nuclei in cats and squirrel monkeys. Brain Res 2010; 1351:64-73. [PMID: 20570661 DOI: 10.1016/j.brainres.2010.05.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/12/2010] [Accepted: 05/27/2010] [Indexed: 01/04/2023]
Abstract
Vestibular information is critical for the control of balance, posture, and eye movements. Signals from the receptors, the semicircular canals and otoliths, are carried by the eighth nerve and distributed to the four nuclei of the vestibular nuclear complex, the VNC. However, anatomical and physiological data suggest that many additional brainstem nuclei are engaged in the processing of vestibular signals and generation of motor responses. To assess the role of these structures in vestibular functions, we have used the expression of the immediate early gene c-Fos as a marker for neurons activated by stimulation of the otoliths or the semicircular canals. Excitation of the otolith organs resulted in widespread c-Fos expression in the VNC, but also in other nuclei, including the external cuneate nucleus, the postpyramidal nucleus of the raphé, the nucleus prepositus hypoglossi, the subtrigeminal nucleus, the pontine nuclei, the dorsal tegmental nucleus, the locus coeruleus, and the reticular formation. Rotations that excited the semicircular canals were much less effective in inducing c-Fos expression. The large number of brainstem nuclei that showed c-Fos expression may reflect the multiple functions of the vestibular system. Some of these neurons may be involved in sensory processing of the vestibular signals, while others provide input to the vestibulo-ocular, vestibulocollic, and vestibulospinal reflexes or mediate changes in autonomic function. The data show that otolith stimulation engages brainstem structures both within and outside of the VNC, many of which project to the cerebellum.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, School of Medicine and Biomedical Sciences, 123 Sherman Hall, Buffalo, NY 14214, USA.
| | - Will L Corwin
- Department of Physiology and Biophysics, University at Buffalo, School of Medicine and Biomedical Sciences, 123 Sherman Hall, Buffalo, NY 14214, USA
| | - James F Baker
- Department of Physiology, Physiology/Medical, Ward 5-071, M211, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611-3008, USA.
| |
Collapse
|
11
|
Baizer JS, Broussard DM. Expression of calcium-binding proteins and nNOS in the human vestibular and precerebellar brainstem. J Comp Neurol 2010; 518:872-95. [PMID: 20058225 DOI: 10.1002/cne.22250] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Information about the position and movement of the head in space is coded by vestibular receptors and relayed to four nuclei that comprise the vestibular nuclear complex (VNC). Many additional brainstem nuclei are involved in the processing of vestibular information, receiving signals either directly from the eighth nerve or indirectly via projections from the VNC. In cats, squirrel monkeys, and macaque monkeys, we found neurochemically defined subdivisions within the medial vestibular nucleus (MVe) and within the functionally related nucleus prepositus hypoglossi (PrH). In humans, different studies disagree about the borders, sizes, and possible subdivisions of the vestibular brainstem. In an attempt to clarify this organization, we have begun an analysis of the neurochemical characteristics of the human using brains from the Witelson Normal Brain Collection and standard techniques for antigen retrieval and immunohistochemistry. Using antibodies to calbindin, calretinin, parvalbumin, and nitric oxide synthase, we find neurochemically defined subdivisions within the MVe similar to the subdivisions described in cats and monkeys. The neurochemical organization of PrH is different. We also find unique neurochemical profiles for several structures that suggest reclassification of nuclei. These data suggest both quantitative and qualitative differences among cats, monkeys, and humans in the organization of the vestibular brainstem. These results have important implications for the analysis of changes in that organization subsequent to aging, disease, or loss of input.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214-3078, USA.
| | | |
Collapse
|
12
|
Baizer JS. Nonphosphorylated neurofilament protein is expressed by scattered neurons in the vestibular and precerebellar brainstem. Brain Res 2009; 1298:46-56. [PMID: 19728992 PMCID: PMC2761759 DOI: 10.1016/j.brainres.2009.08.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/20/2009] [Accepted: 08/22/2009] [Indexed: 10/20/2022]
Abstract
Vestibular information is essential for the control of posture, balance, and eye movements. The vestibular nerve projects to the four nuclei of the vestibular nuclear complex (VNC), as well as to several additional brainstem nuclei and the cerebellum. We have found that expression of the calcium-binding proteins calretinin (CR) and calbindin (CB), and the synthetic enzyme for nitric oxide synthase (nNOS) define subdivisions of the medial vestibular nucleus (MVe) and the nucleus prepositus (PrH), in cat, monkey, and human. We have asked if the pattern of expression of nonphosphorylated neurofilament protein (NPNFP) might define additional subdivisions of these or other nuclei that participate in vestibular function. We studied the distribution of cells immunoreactive to NPNFP in the brainstems of 5 cats and one squirrel monkey. Labeled cells were scattered throughout the four nuclei of the VNC, as well as in PrH, the reticular formation (RF) and the external cuneate nucleus. We used double-label immunofluorescence to visualize the distribution of these cells relative to other neurochemically defined subdivisions. NPNFP cells were excluded from the CR and CB regions of the MVe. In PrH, NPNFP and nNOS were not colocalized. Cells in the lateral vestibular nucleus and RF colocalized NPNFP and a marker for glutamatergic neurons. We also found that the cholinergic cells and axons of cranial nerve nuclei 3, 4, 6, 7,10 and 12 colocalize NPNFP. The data suggest that NPNFP is expressed by a subset of glutamatergic projection neurons of the vestibular brainstem. NPNFP may be a marker for those cells that are especially vulnerable to the effects of normal aging, neurological disease or disruption of sensory input.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA.
| |
Collapse
|
13
|
Baizer JS, Baker JF, Haas K, Lima R. Neurochemical organization of the nucleus paramedianus dorsalis in the human. Brain Res 2007; 1176:45-52. [PMID: 17869228 PMCID: PMC2078602 DOI: 10.1016/j.brainres.2007.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/07/2007] [Accepted: 08/08/2007] [Indexed: 11/26/2022]
Abstract
We have characterized the neurochemical organization of a small brainstem nucleus in the human brain, the nucleus paramedianus dorsalis (PMD). PMD is located adjacent and medial to the nucleus prepositus hypoglossi (PH) in the dorsal medulla and is distinguished by the pattern of immunoreactivity of cells and fibers to several markers including calcium-binding proteins, a synthetic enzyme for nitric oxide (neuronal nitric oxide synthase, nNOS) and a nonphosphorylated neurofilament protein (antibody SMI-32). In transverse sections, PMD is oval with its long axis aligned with the dorsal border of the brainstem. We identified PMD in eight human brainstems, but found some variability both in its cross-sectional area and in its A-P extent among cases. It includes calretinin immunoreactive large cells with oval or polygonal cell bodies. Cells in PMD are not immunoreactive for either calbindin or parvalbumin, but a few fibers immunoreactive to each protein are found within its central region. Cells in PMD are also immunoreactive to nNOS, and immunoreactivity to a neurofilament protein shows many labeled cells and fibers. No similar region is identified in atlases of the cat, mouse, rat or monkey brain, nor does immunoreactivity to any of the markers that delineate it in the human reveal a comparable region in those species. The territory that PMD occupies is included in PH in other species. Since anatomical and physiological data in animals suggest that PH may have multiple subregions, we suggest that the PMD in human may be a further differentiation of PH and may have functions related to the vestibular control of eye movements.
Collapse
Affiliation(s)
- Joan S. Baizer
- Department of Physiology and Biophysics, 123 Sherman Hall, University at Buffalo, State University of New York, Buffalo New York, 14214, phone: 716-829-3096, FAX: 716-829-2344,
| | - James F. Baker
- Department of Physiology, Institute for Neuroscience, Physiology/Medical, Ward 5-071, M211, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, ILL 60611-3008
| | - Kristin Haas
- Department of Physiology and Biophysics, 123 Sherman Hall, University at Buffalo, State University of New York, Buffalo New York, 14214, phone: 716-829-3096, FAX: 716-829-2344,
| | - Raquel Lima
- Department of Physiology and Biophysics, 123 Sherman Hall, University at Buffalo, State University of New York, Buffalo New York, 14214, phone: 716-829-3096, FAX: 716-829-2344,
| |
Collapse
|
14
|
Rahman FE, Baizer JS. Neurochemically defined cell types in the claustrum of the cat. Brain Res 2007; 1159:94-111. [PMID: 17582386 DOI: 10.1016/j.brainres.2007.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 05/08/2007] [Accepted: 05/08/2007] [Indexed: 11/22/2022]
Abstract
The claustrum is a subcortical structure reciprocally and topographically connected with all sensory and motor domains of the cerebral cortex. Previous anatomical and electrophysiological data suggested that most cells in the claustrum are large neurons that both receive cortical input and project back to cortex, forming excitatory connections with their cortical targets. These data have been interpreted to imply a relay function for the claustrum, with information from different functional cortical domains remaining segregated. The possibility that the claustrum might mediate a more "global" function has been recently been developed by Crick and Koch [Crick, F. C., Koch, C., 2005. What is the function of the claustrum? Philos. Trans. R. Soc. Lond., B Biol. Sci. 360, 1271-1279]. We have reexamined the anatomical substrate for information processing in the claustrum of the cat by analyzing the patterns of immunoreactivity to calcium-binding proteins, GAD, serotonin, nNOS and the glutamate transporter EAAC1. We found multiple neurochemically defined cell types, suggesting multiple classes of projection neurons and interneurons. Each class was found throughout the entire claustrum, in all functionally defined subdivisions. Many neurons in the claustrum were surrounded by parvalbumin, calretinin, GAD or nNOS immunoreactive terminals, suggesting that many neurons of the claustrum make extensive intraclaustral connections. The entire claustrum also receives a serotonergic input. The identification of multiple neurochemical cell classes, their distribution and the extent of their dendritic arborizations relative to functional compartments suggest a substrate for information processing in the claustrum that may allow integration of information across functional subdivisions.
Collapse
Affiliation(s)
- Fahad E Rahman
- Department of Physiology and Biophysics, 123 Sherman Hall, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | | |
Collapse
|