1
|
Ristori S, Bertoni G, Bientinesi E, Monti D. The Role of Nutraceuticals and Functional Foods in Mitigating Cellular Senescence and Its Related Aspects: A Key Strategy for Delaying or Preventing Aging and Neurodegenerative Disorders. Nutrients 2025; 17:1837. [PMID: 40507106 PMCID: PMC12157746 DOI: 10.3390/nu17111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/13/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025] Open
Abstract
As life expectancy continues to increase, it becomes increasingly important to extend healthspan by targeting mechanisms associated with aging. Cellular senescence is recognized as a significant contributor to aging and neurodegenerative disorders. This review examines the emerging role of nutraceuticals and functional foods as potential modulators of cellular senescence, which may, in turn, influence the development of neurodegenerative diseases. An analysis of experimental studies indicates that bioactive compounds, including polyphenols, vitamins, and spices, possess substantial antioxidants, anti-inflammatory and epigenetic properties. These nutritional senotherapeutic agents effectively scavenge reactive oxygen species, modulate gene expression, and decrease the secretion of senescence-associated secretory phenotype factors, minimizing cellular damage. Nutraceuticals can enhance mitochondrial function, reduce oxidative stress, and regulate inflammation, key factors in aging and diseases like Alzheimer's and Parkinson's. Furthermore, studies reveal that specific bioactive compounds can reduce senescence markers in cellular models, while others exhibit senostatic and senolytic properties, both directly and indirectly. Diets enriched with these nutraceuticals, such as the Mediterranean diet, have been correlated with improved brain health and the deceleration of aging. Despite these promising outcomes, direct evidence linking these compounds to reducing senescent cell numbers remains limited, highlighting the necessity for further inquiry. This review presents compelling arguments for the potential of nutraceuticals and functional foods to promote longevity and counteract neurodegeneration by exploring their molecular mechanisms. The emerging relationship between dietary bioactive compounds and cellular senescence sets the stage for future research to develop effective preventive and therapeutic strategies for age-related diseases.
Collapse
Affiliation(s)
| | | | | | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.R.); (G.B.); (E.B.)
| |
Collapse
|
2
|
Hu X, Zhou J, Sun Y, Wang Z. Association of antioxidants intake in diet and supplements with risk of Alzheimer's disease: a systematic review and dose-response meta-analysis of prospective cohort studies. Aging Clin Exp Res 2025; 37:166. [PMID: 40415164 DOI: 10.1007/s40520-024-02893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/18/2024] [Indexed: 05/27/2025]
Abstract
BACKGROUND & AIMS Previous studies have shown that antioxidants may be associated with risk of Alzheimer's disease (AD). However, some findings have failed to demonstrate a significant correlation. To rigorously evaluate this relationship, a comprehensive review and meta-analysis were conducted. METHODS All relevant cohort studies reporting association between antioxidants intake (diet and/or supplement use) and AD risk were searched in 9 electronic databases and 4 registration platforms from their inception up to March 15, 2023. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using either a fixed-effects or random-effects model. Heterogeneity was assessed using I2 statistics. Furthermore, a dose-response meta-analysis was conducted to explore potential dose-response relationships. RESULTS Eleven cohort studies were included. The pooled HRs of AD were 0.90 (95% CI = 0.60-1.34) and 0.94 (95% CI = 0.75-1.17) for the dietary intake of vitamin E, 0.90 (95% CI = 0.76-1.07) for the vitamin E supplement use. The pooled HRs of AD were 0.84 (95% CI = 0.76-0.93) and 0.60 (95% CI = 0.35-1.02) for the dietary intake of vitamin C, 0.85 (95% CI = 0.72-1.00) for the vitamin C supplement use. The pooled HRs of AD were 1.02 (95% CI = 0.85-1.22) and 0.86 (95% CI = 0.68-1.07) for the dietary intake of beta-carotene. Notably, no significant dose-response relationship was observed. CONCLUSIONS A high dietary intake of vitamin C (≥ 75 mg/d) was found to have a statistically significant impact on reducing the risk of AD. However, no significant association was observed between dietary intake of vitamin E or beta-carotene, or the use of vitamin E or vitamin C supplement use, and the risk of AD.
Collapse
Affiliation(s)
- Xin Hu
- School of Nursing, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Jia Zhou
- School of Nursing, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yue Sun
- School of Nursing, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Zhiwen Wang
- School of Nursing, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
3
|
Neha V, Parithathvi A, Dsouza HS. Ameliorative role of bioactive compounds against lead-induced neurotoxicity. Neuroscience 2025; 568:46-56. [PMID: 39805419 DOI: 10.1016/j.neuroscience.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Lead (Pb) is an environmental toxin ubiquitously present in the human environment due to anthropogenic activities and industrialization. Lead can enter the human body through various sources and pathways, such as inhalation, ingestion and dermal contact, leading to detrimental health effects. The majority of lead that enters the body is removed by urine or feces; however, under chronic exposure conditions, lead is not efficient, as lead is absorbed and transferred to numerous organs, such as the brain, liver, kidney, muscles, and heart, and it is ultimately stored in mineralizing tissues such as bones and teeth. The central nervous system is the most affected among all the organs and systems affected, as lead is a known neurotoxin. Lead absorption is elevated in the fasting state than in the fed state. Chelation therapy, which is used to treat lead poisoning, has various adverse effects, making this treatment detrimental because it disrupts the levels of other essential elements and redistributes lead to various tissues. One of the main mechanisms by which lead induces toxicity is through the generation of reactive oxygen species. Hence, bioactive compounds that are the source of antioxidants if consumed along with ongoing lead exposure can ameliorate the toxic effects of lead.
Collapse
Affiliation(s)
- Venkatesan Neha
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Aluru Parithathvi
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences,Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
4
|
Woubshete M, Chan LI, Diallinas G, Byrne B. The dimer of human SVCT1 is key for transport function. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184390. [PMID: 39369805 DOI: 10.1016/j.bbamem.2024.184390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Humans and other primates lack the ability to synthesize the essential nutrient, Vitamin C, which is derived exclusively from the diet. Crucial for effective vitamin C uptake are the Na+ dependent Vitamin C transporters, SVCT1 and SVCT2, members of the nucleobase ascorbate transporter (NAT) family. SVCT1 and 2 actively transport the reduced form of Vitamin C, ascorbic acid, into key tissues. The recent structure of the mouse SVCT1 revealed the molecular basis of substrate binding and that, like the other structurally characterised members of the NAT family, it exists as a closely associated dimer. SVCT1 is likely to function via the elevator mechanism with the core domain of each protomer able to bind substrate and move through the membrane carrying the substrate across the membrane. Here we explored the function of a range of variants of the human SVCT1, revealing a range of residues involved in substrate selection and binding, and confirming the importance of the C-terminus in membrane localisation. Furthermore, using a dominant negative mutant we show that the dimer is essential for transport function, as previously seen in the fungal homologue, UapA. In addition, we show that a localisation deficient C-terminal truncation of SVCT1 blocks correct localisation of co-expressed, associated wildtype SVCT1. These results clearly show the importance of the dimer in both correct SVCT1 trafficking and transport activity.
Collapse
Affiliation(s)
- Menebere Woubshete
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Lok I Chan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
5
|
Appiah D, Ingabire-Gasana E, Appiah L, Yang J. The Relation of Serum Vitamin C Concentrations with Alzheimer's Disease Mortality in a National Cohort of Community-Dwelling Elderly Adults. Nutrients 2024; 16:1672. [PMID: 38892605 PMCID: PMC11174700 DOI: 10.3390/nu16111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The relation of vitamin C with Alzheimer's disease (AD) is equivocal. The aim of this study was to assess the relation of serum vitamin C levels with AD-related mortality, and to evaluate the threshold beyond which the potential benefits of higher serum concentrations of vitamin C for AD mortality ceases. The cohort consisted of 4504 adults aged ≥60 years enrolled in the National Health and Nutrition Examination Survey who had serum measures of vitamin C and no cognitive impairment at baseline (1988-1994) and were followed-up for mortality until 2019. Vitamin C was assayed from fasting blood samples using isocratic high-performance liquid chromatography. At baseline, the mean age of participants was 70 years, with 42.7% being men. At the end of follow-up (median: 15 years), the AD mortality rate was 2.4 per 1000 person-years. In the Cox regression models, compared to participants in the lowest tertile of serum vitamin C (<0.56 mg/dL), those in the highest tertile (>0.98 mg/dL) had a lower risk of AD mortality (hazard ratio: 0.44, 95% confidence intervals: 0.25-0.77) after adjusting for sociodemographic factors, behavior/lifestyle factors, prevalent health conditions, and dietary vitamin C intake. In dose-response analysis using restricted cubic splines, vitamin C concentrations beyond 2.3 mg/dL were associated with the elevated risk of AD-related mortality. The findings from this national sample of community-dwelling elderly adults suggest that higher levels of serum vitamin C are associated with slower AD disease progression, although levels beyond the normal reference values were associated with a higher risk of AD mortality.
Collapse
Affiliation(s)
- Duke Appiah
- Department of Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Linda Appiah
- College of Education, Texas Tech University, Lubbock, TX 79409, USA
| | - Jeanne Yang
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
6
|
Wang Y, Huang Y, Ma A, You J, Miao J, Li J. Natural Antioxidants: An Effective Strategy for the Treatment of Alzheimer's Disease at the Early Stage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11854-11870. [PMID: 38743017 DOI: 10.1021/acs.jafc.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The critical role of oxidative stress in Alzheimer's disease (AD) has been recognized by researchers recently, and natural antioxidants have been demonstrated to have anti-AD activity in animal models, such as Ginkgo biloba extract, soy isoflavones, lycopene, and so on. This paper summarized these natural antioxidants and points out that natural antioxidants always have multiple advantages which are help to deal with AD, such as clearing free radicals, regulating signal transduction, protecting mitochondrial function, and synaptic plasticity. Based on the available data, we have created a relatively complete pathway map of reactive oxygen species (ROS) and AD-related targets and concluded that oxidative stress caused by ROS is the core of AD pathogenesis. In the prospect, we introduced the concept of a combined therapeutic strategy, termed "Antioxidant-Promoting Synaptic Remodeling," highlighting the integration of antioxidant interventions with synaptic remodeling approaches as a novel avenue for therapeutic exploration.
Collapse
Affiliation(s)
- Yifeng Wang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Yan Huang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Aixia Ma
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jiahe You
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jing Miao
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- National Demonstration Center for Experimental Biology Education, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jinyao Li
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- National Demonstration Center for Experimental Biology Education, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| |
Collapse
|
7
|
Dong Y, Lu J, Zhang S, Chen L, Wen J, Wang F, Mao Y, Li L, Zhang J, Liao S, Dong L. Design, synthesis and bioevaluation of 1,2,4-thiadiazolidine-3,5-dione derivatives as potential GSK-3β inhibitors for the treatment of Alzheimer's disease. Bioorg Chem 2023; 134:106446. [PMID: 36868127 DOI: 10.1016/j.bioorg.2023.106446] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Tideglusib is a non-competitive GSK-3β inhibitor which contain 1,2,4-thiadiazolidine-3,5-dione moiety, and now mainly used for progressive supranuclear palsy due to the lack of some primary cognitive endpoints and secondary endpoints in a phase IIb trail for Alzheimer's disease. Additionally, insufficient evidence exists to support that there are obvious covalent bonds between Tideglusib and GSK-3β. Targeted covalent inhibition strategy could improve the binding efficiency, selectivity and duration of kinase inhibitors. Based on the above premise, two series of targeted compounds with acryloyl warheads were designed and synthesized. The kinase inhibitory activity of the selected compound 10a with better neuroprotective effect improved 2.7 fold than that of Tideglusib. After the preliminary screening of GSK-3β inhibition and neuroprotective activity, the mechanism action of the selected compound 10a was investigated in vitro and in vivo. The results confirmed that 10a with excellent selectivity among the whole tested kinases could significantly reduce the expressions of APP and p-Tau via increasing the level of p-GSK-3β. The pharmacodynamic assay in vivo showed that 10a could markedly improve the learning and memory functions in AD mice induced by AlCl3 combined with d-galactose. At the same time, the damage of hippocampal neurons in AD mice was obviously reduced. Accordingly, the introduction of acryloyl warheads could increase the GSK-3β inhibitory activity of 1,2,4-thiadiazolidine-3,5-dione derivatives, and the selected compound 10a deserves further research as an effective GSK-3β inhibitor for the potential treatment of AD.
Collapse
Affiliation(s)
- Yongxi Dong
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China.
| | - Jun Lu
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China
| | - Shanhui Zhang
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China
| | - Lina Chen
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China
| | - Jinlan Wen
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China
| | - Fang Wang
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China
| | - Yongqing Mao
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China
| | - Lei Li
- Guizhou provincial Center for Disease Control and Prevention, Guiyang 550004, China
| | - Jiquan Zhang
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China
| | - Shanggao Liao
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China.
| | - Li Dong
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China.
| |
Collapse
|
8
|
Effect of antioxidant intake patterns on risks of dementia and cognitive decline. Eur Geriatr Med 2023; 14:9-17. [PMID: 36445640 DOI: 10.1007/s41999-022-00720-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Previous studies have suggested that increased antioxidant intakes might reduce risk of cognitive disorders including Alzheimer's disease (AD). Which avenue of antioxidant intake (vitamin E/C) is more effective for decreasing risk, however, is largely unknown. OBJECTIVES To quantitatively investigate the relationships between the pattern of antioxidant intakes and risks of dementia and cognitive decline. METHODS We searched all related prospective cohort studies reporting antioxidant intakes (diet and/or supplement) from patients with cognitive disorders. We conducted dose-response meta-analyses to assess potential linear and non-linear dose-response relationships. Summary RRs and 95% CIs were calculated using a random- or fixed-effects model. RESULTS 73 eligible cohort studies totaling > 28,257 participants were included in the meta-analysis; the pooled relative risks of AD were 0.75 (95% CI 0.57-0.99; I2 = 59.9%) for the dietary only intake of vitamin E, 0.73 (95% CI 0.54-1.00; I2 = 0%) for the dietary plus supplemental intake of vitamin E, and 0.70 (95% CI 0.51-0.95; I2 = 0%) for the dietary plus supplemental intake of vitamin C. Moreover, pooled RRs of AD and vitamin C intake per 20 mg/day increase were 0.98 (95% CI 0.97-0.99) via dietary plus supplemental intake, 0.98 (95% CI 0.96-1.00) in the dietary only intake and 0.98 (95% CI 0.98-0.99) in the overall intake. There were no significant associations of all-cause dementia or cognitive impairment no dementia with the antioxidant intake. CONCLUSIONS The risk of incident AD is significantly reduced by higher consumption of vitamin C by the intake avenue of diet plus supplement.
Collapse
|
9
|
Mani S, Dubey R, Lai IC, Babu MA, Tyagi S, Swargiary G, Mody D, Singh M, Agarwal S, Iqbal D, Kumar S, Hamed M, Sachdeva P, Almutary AG, Albadrani HM, Ojha S, Singh SK, Jha NK. Oxidative Stress and Natural Antioxidants: Back and Forth in the Neurological Mechanisms of Alzheimer's Disease. J Alzheimers Dis 2023; 96:877-912. [PMID: 37927255 DOI: 10.3233/jad-220700] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by the progressive degeneration of neuronal cells. With the increase in aged population, there is a prevalence of irreversible neurodegenerative changes, causing a significant mental, social, and economic burden globally. The factors contributing to AD are multidimensional, highly complex, and not completely understood. However, it is widely known that aging, neuroinflammation, and excessive production of reactive oxygen species (ROS), along with other free radicals, substantially contribute to oxidative stress and cell death, which are inextricably linked. While oxidative stress is undeniably important in AD, limiting free radicals and ROS levels is an intriguing and potential strategy for deferring the process of neurodegeneration and alleviating associated symptoms. Therapeutic compounds from natural sources have recently become increasingly accepted and have been effectively studied for AD treatment. These phytocompounds are widely available and a multitude of holistic therapeutic efficiencies for treating AD owing to their antioxidant, anti-inflammatory, and biological activities. Some of these compounds also function by stimulating cholinergic neurotransmission, facilitating the suppression of beta-site amyloid precursor protein-cleaving enzyme 1, α-synuclein, and monoamine oxidase proteins, and deterring the occurrence of AD. Additionally, various phenolic, flavonoid, and terpenoid phytocompounds have been extensively described as potential palliative agents for AD progression. Preclinical studies have shown their involvement in modulating the cellular redox balance and minimizing ROS formation, displaying them as antioxidant agents with neuroprotective abilities. This review emphasizes the mechanistic role of natural products in the treatment of AD and discusses the various pathological hypotheses proposed for AD.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Chun Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Deepansh Mody
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Manisha Singh
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Shriya Agarwal
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province, Kingdom of Saudi Arabia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| |
Collapse
|
10
|
The Use of Bioactive Compounds in Hyperglycemia- and Amyloid Fibrils-Induced Toxicity in Type 2 Diabetes and Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14020235. [PMID: 35213966 PMCID: PMC8879577 DOI: 10.3390/pharmaceutics14020235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
It has become increasingly apparent that defective insulin signaling may increase the risk for developing Alzheimer’s disease (AD), influence neurodegeneration through promotion of amyloid formation or by increasing inflammatory responses to intraneuronal β-amyloid. Recent work has demonstrated that hyperglycemia is linked to cognitive decline, with elevated levels of glucose causing oxidative stress in vulnerable tissues such as the brain. The ability of β-amyloid peptide to form β-sheet-rich aggregates and induce apoptosis has made amyloid fibrils a leading target for the development of novel pharmacotherapies used in managing and treatment of neuropathological conditions such as AD-related cognitive decline. Additionally, deposits of β-sheets folded amylin, a glucose homeostasis regulator, are also present in diabetic patients. Thus, therapeutic compounds capable of reducing intracellular protein aggregation in models of neurodegenerative disorders may prove useful in ameliorating type 2 diabetes mellitus symptoms. Furthermore, both diabetes and neurodegenerative conditions, such as AD, are characterized by chronic inflammatory responses accompanied by the presence of dysregulated inflammatory biomarkers. This review presents current evidence describing the role of various small bioactive molecules known to ameliorate amyloidosis and subsequent effects in prevention and development of diabetes and AD. It also highlights the potential efficacy of peptide–drug conjugates capable of targeting intracellular targets.
Collapse
|
11
|
Donner L, Feige T, Freiburg C, Toska LM, Reichert AS, Chatterjee M, Elvers M. Impact of Amyloid-β on Platelet Mitochondrial Function and Platelet-Mediated Amyloid Aggregation in Alzheimer's Disease. Int J Mol Sci 2021; 22:9633. [PMID: 34502546 PMCID: PMC8431787 DOI: 10.3390/ijms22179633] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by an accumulation of amyloid β (Aβ) peptides in the brain and mitochondrial dysfunction. Platelet activation is enhanced in AD and platelets contribute to AD pathology by their ability to facilitate soluble Aβ to form Aβ aggregates. Thus, anti-platelet therapy reduces the formation of cerebral amyloid angiopathy in AD transgenic mice. Platelet mitochondrial dysfunction plays a regulatory role in thrombotic response, but its significance in AD is unknown and explored herein. METHODS The effects of Aβ-mediated mitochondrial dysfunction in platelets were investigated in vitro. RESULTS Aβ40 stimulation of human platelets led to elevated reactive oxygen species (ROS) and superoxide production, while reduced mitochondrial membrane potential and oxygen consumption rate. Enhanced mitochondrial dysfunction triggered platelet-mediated Aβ40 aggregate formation through GPVI-mediated ROS production, leading to enhanced integrin αIIbβ3 activation during synergistic stimulation from ADP and Aβ40. Aβ40 aggregate formation of human and murine (APP23) platelets were comparable to controls and could be reduced by the antioxidant vitamin C. CONCLUSIONS Mitochondrial dysfunction contributes to platelet-mediated Aβ aggregate formation and might be a promising target to limit platelet activation exaggerated pathological manifestations in AD.
Collapse
Affiliation(s)
- Lili Donner
- Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.F.); (C.F.); (L.M.T.)
| | - Tobias Feige
- Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.F.); (C.F.); (L.M.T.)
| | - Carolin Freiburg
- Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.F.); (C.F.); (L.M.T.)
| | - Laura Mara Toska
- Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.F.); (C.F.); (L.M.T.)
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, Universitätsklinikum Tübingen, Medizinische Klinik III, 72076 Tübingen, Germany;
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.F.); (C.F.); (L.M.T.)
| |
Collapse
|
12
|
Neuroprotective Activity of Mentha Species on Hydrogen Peroxide-Induced Apoptosis in SH-SY5Y Cells. Nutrients 2020; 12:nu12051366. [PMID: 32397683 PMCID: PMC7285141 DOI: 10.3390/nu12051366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with an unclear cause. It appears that multiple factors participate in the process of neuronal damage including oxidative stress and accumulation of the protein amyloid β (Aβ) in the brain. The search for a treatment for this disorder is essential as current medications are limited to alleviating symptoms and palliative effects. The aim of this study is to investigate the effects of mint extracts on selected mechanisms implicated in the development of AD. To enable a thorough investigation of mechanisms, including effects on β-secretase (the enzyme that leads to the formation of Aβ), on Aβ aggregation, and on oxidative stress and apoptosis pathways, a neuronal cell model, SH-SY5Y cells, was selected. Six Mentha taxa were investigated for their in vitro β-secretase (BACE) and Aβ-aggregation inhibition activities. Moreover, their neuroprotective effects on H2O2-induced oxidative stress and apoptosis in SH-SY5Y cells were evaluated through caspase activity. Real-time PCR and Western blot analysis were carried out for the two most promising extracts to determine their effects on signalling pathways in SH-SY5Y cells. All mint extracts had strong BACE inhibition activity. M. requienii extracts showed excellent inhibition of Aβ-aggregation, while other extracts showed moderate inhibition. M. diemenica and M. requienii extracts lowered caspase activity. Exposure of SH-SY5Y cells to M. diemenica extracts resulted in a decrease in the expression of pro-apoptotic protein, Bax, and an elevation in the anti-apoptotic protein, Bcl-xL, potentially mediated by down-regulation of the ASK1-JNK pathway. These results indicate that mint extracts could prevent the formation of Aβ and also could prevent their aggregation if they had already formed. M. diemenica and M. requienii extracts have potential to suppress apoptosis at the cellular level. Hence, mint extracts could provide a source of efficacious compounds for a therapeutic approach for AD.
Collapse
|
13
|
Moldogazieva NT, Mokhosoev IM, Mel'nikova TI, Zavadskiy SP, Kuz'menko AN, Terentiev AA. Dual Character of Reactive Oxygen, Nitrogen, and Halogen Species: Endogenous Sources, Interconversions and Neutralization. BIOCHEMISTRY (MOSCOW) 2020; 85:S56-S78. [PMID: 32087054 DOI: 10.1134/s0006297920140047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress resulting from accumulation of reactive oxygen, nitrogen, and halogen species (ROS, RNS, and RHS, respectively) causes the damage of cells and biomolecules. However, over the long evolutionary time, living organisms have developed the mechanisms for adaptation to oxidative stress conditions including the activity of the antioxidant system (AOS), which maintains low intracellular levels of RONS (ROS and RNS) and RHS. Moreover, living organisms have adapted to use low concentrations of these electrophiles for the regulation of cell functions through the reversible post-translational chemical modifications of redox-sensitive amino acid residues in intracellular effectors of signal transduction pathways (protein kinases and protein phosphatases), transcription factors, etc. An important fine-tuning mechanism that ensures involvement of RONS and RHS in the regulation of physiological processes is interconversion between different reactive species. This review focuses on the complex networks of interacting RONS and RHS types and their endogenous sources, such as NOX family of NADPH oxidases, complexes I and III of the mitochondrial electron transport chain, NO synthases, cytochrome P450-containing monooxygenase system, xanthine oxidoreductase, and myeloperoxidases. We highlight that kinetic parameters of reactions involving RONS and RHS determine the effects of these reactive species on cell functions. We also describe the functioning of enzymatic and non-enzymatic AOS components and the mechanisms of RONS and RHS scavenging under physiological conditions. We believe that analysis of interactions between RONS and relationships between different endogenous sources of these compounds will contribute to better understanding of their role in the maintenance of cell redox homeostasis as well as initiation and progression of diseases.
Collapse
Affiliation(s)
- N T Moldogazieva
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia.
| | - I M Mokhosoev
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| | - T I Mel'nikova
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - S P Zavadskiy
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - A N Kuz'menko
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - A A Terentiev
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
14
|
Development and In Vitro Evaluation of Linear PEI-Shelled Heparin/Berberine Nanoparticles in Human Osteosarcoma U-2 OS Cells. Molecules 2018; 23:molecules23123122. [PMID: 30487471 PMCID: PMC6320921 DOI: 10.3390/molecules23123122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 01/05/2023] Open
Abstract
Berberine (BBR), a natural isoquinoline alkaloid derived from Chinese herbs, exerts many biological effects, including antiviral, antimicrobial, antidiarrhea, anti-inflammatory, and antitumor effects. In this study, a novel berberine nanoparticle (NP) consisting of heparin (HP) and BBR with or without being shelled with linear polyethyleneimine (LPEI) was developed to enhance its antitumor activity on osteosarcoma U-2 OS cells. With varying ratios of HP to BBR, HP/BBR NPs had a size ranging from 218.4 ± 3.9 to 282.0 ± 5.1 nm and zeta potential from -35.7 ± 0.4 to -51.9 ± 1.8 mV. After shelling with LPEI, the resultant NPs (HP/BBR/LPEI) possessed a size ranging from 226.3 ± 3.0 to 405.7 ± 85.2 nm and zeta potential from -46.5 ± 0.3 to -35.6 ± 0.5 mV; the encapsulation rate of BBR was close to 80%. The release profiles of both NPs were revealed to be slower than that of BBR solution. Results also showed that BBR and its two derived NPs reduced the viability of U-2 OS cells, and BBR NPs increased the cellular uptake of BBR. Cells were arrested at the G₁ phase when treated individually with BBR and the two NPs (HP/BBR and HP/BBR/LPEI) and DNA condensation was induced. In addition, BBR and BBR NPs reduced the expression of mouse double minute 2 homolog (MDM2) but increased that of p53, and BBR NPs enhanced apoptotic effects. In short, heparin-based nanoparticles could be potential carriers for osteosarcoma treatment.
Collapse
|
15
|
Gan SY, Wong LZ, Wong JW, Tan EL. Fucosterol exerts protection against amyloid β-induced neurotoxicity, reduces intracellular levels of amyloid β and enhances the mRNA expression of neuroglobin in amyloid β-induced SH-SY5Y cells. Int J Biol Macromol 2018; 121:207-213. [PMID: 30300695 DOI: 10.1016/j.ijbiomac.2018.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that leads to progressive loss of neurons which often results in deterioration of memory and cognitive function. The development of AD is highly associated with the formation of senile plaques and neurofibrillary tangles. Amyloid β (Aβ) induces neurotoxicity and contributes to the development of AD. Recent evidences also highlighted the importance of neuroglobin (Ngb) in ameliorating AD. This study assessed the ability of fucosterol, a phytosterol found in brown alga, in protecting SH-SY5Y cells against Aβ-induced neurotoxicity. Its effects on the mRNA levels of APP and Ngb as well as the intracellular Aβ levels were also determined in Aβ-induced SH-SY5Y cells. SH-SY5Y cells were exposed to fucosterol prior to Aβ treatment. The effect on apoptosis was determined using Annexin V FITC staining and mRNA expression was studied using RT-PCR. Flow cytometry confirmed the protective effects of fucosterol on SH-SY5Y cells against Aβ-induced apoptosis. Pretreatment with fucosterol increased the Ngb mRNA levels but reduced the levels of APP mRNA and intracellular Aβ in Aβ-induced SH-SY5Y cells. These observations demonstrated the protective properties of fucosterol against Aβ-induced neurotoxicity in neuronal cells.
Collapse
Affiliation(s)
- Sook Yee Gan
- Department of Life Science, School of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Li Zhe Wong
- School of Postgraduate Studies, International Medical University, Jalan Jalil Perkasa 19, 57000 Kuala Lumpur, Malaysia
| | - Jia Wun Wong
- BPharm, School of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Eng Lai Tan
- Department of Life Science, School of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res 2018; 52:507-543. [PMID: 29589770 DOI: 10.1080/10715762.2018.1457217] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.
Collapse
Affiliation(s)
- N T Moldogazieva
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - I M Mokhosoev
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - N B Feldman
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - S V Lutsenko
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| |
Collapse
|
17
|
Perillyl alcohol alleviates amyloid-β peptides-induced mitochondrial dysfunction and cytotoxicity in SH-SY5Y cells. Int J Biol Macromol 2018; 109:1029-1038. [DOI: 10.1016/j.ijbiomac.2017.11.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/21/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
|
18
|
Jiang S, Zhao Y, Zhang T, Lan J, Yang J, Yuan L, Zhang Q, Pan K, Zhang K. Galantamine inhibits β-amyloid-induced cytostatic autophagy in PC12 cells through decreasing ROS production. Cell Prolif 2018; 51:e12427. [PMID: 29292543 DOI: 10.1111/cpr.12427] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Alzheimer's disease (AD) is one of the most prevalent brain diseases among the elderly, majority of which is caused by abnormal deposition of amyloid beta-peptide (Aβ). Galantamine, currently the first-line drug in treatment of AD, has been shown to diminish Aβ-induced neurotoxicity and exert favourable neuroprotective effects, but the detail mechanisms remain unclear. MATERIALS AND METHODS Effects of galantamine on Aβ-induced cytotoxicity were checked by MTT, clone formation and apoptosis assays. The protein variations and reactive oxygen species (ROS) production were measured by western blotting analysis and dichloro-dihydro-fluorescein diacetate assay, respectively. RESULTS Galantamine reversed Aβ-induced cell growth inhibition and apoptosis in neuron cells PC12. Aβ activated the entire autophagy flux and accumulation of autophagosomes, and the inhibition of autophagy decreased the protein level of cleaved-caspase-3 and Aβ-induced cytotoxicity. Meanwhile, galantamine suppressed Aβ-mediated autophagy flux and accumulation of autophagosomes. Moreover, Aβ upregulated ROS accumulation, while ROS scavengers N-acetyl-l-cysteine impaired Aβ-mediated autophagy. Further investigation showed that galantamine downregulated NOX4 expression to inhibit Aβ-mediated ROS accumulation and autophagy. CONCLUSIONS Galantamine inhibits Aβ-induced cytostatic autophagy through decreasing ROS accumulation, providing new insights into deep understanding of AD progression and molecular basis of galantamine in neuroprotection.
Collapse
Affiliation(s)
- Sheng Jiang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Ye Zhao
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Tao Zhang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Jingbin Lan
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Jing Yang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Longhui Yuan
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Qiyu Zhang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Kejian Pan
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| | - Kun Zhang
- School of Biomedical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
19
|
Dixit S, Fessel JP, Harrison FE. Mitochondrial dysfunction in the APP/PSEN1 mouse model of Alzheimer's disease and a novel protective role for ascorbate. Free Radic Biol Med 2017; 112:515-523. [PMID: 28863942 PMCID: PMC5623070 DOI: 10.1016/j.freeradbiomed.2017.08.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/21/2017] [Accepted: 08/27/2017] [Indexed: 01/23/2023]
Abstract
Mitochondrial dysfunction is elevated in very early stages of Alzheimer's disease and exacerbates oxidative stress, which contributes to disease pathology. Mitochondria were isolated from 4-month-old wild-type mice, transgenic mice carrying the APPSWE and PSEN1dE9 mutations, mice with decreased brain and mitochondrial ascorbate (vitamin C) via heterozygous knockout of the sodium dependent vitamin C transporter (SVCT2+/-) and transgenic APP/PSEN1 mice with heterozygous SVCT2 expression. Mitochondrial isolates from SVCT2+/- mice were observed to consume less oxygen using high-resolution respirometry, and also exhibited decreased mitochondrial membrane potential compared to wild type isolates. Conversely, isolates from young (4 months) APP/PSEN1 mice consumed more oxygen, and exhibited an increase in mitochondrial membrane potential, but had a significantly lower ATP/ADP ratio compared to wild type isolates. Greater levels of reactive oxygen species were also produced in mitochondria isolated from both APP/PSEN1 and SVCT2+/- mice compared to wild type isolates. Acute administration of ascorbate to mitochondria isolated from wild-type mice increased oxygen consumption compared with untreated mitochondria suggesting ascorbate may support energy production. This study suggests that both presence of amyloid and ascorbate deficiency can contribute to mitochondrial dysfunction, even at an early, prodromal stage of Alzheimer's disease, although occurring via different pathways. Ascorbate may, therefore, provide a useful preventative strategy against neurodegenerative disease, particularly in populations most at risk for Alzheimer's disease in which stores are often depleted through mitochondrial dysfunction and elevated oxidative stress.
Collapse
Affiliation(s)
- Shilpy Dixit
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA; Graduate Program in Neuroscience, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Joshua P Fessel
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Fiona E Harrison
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| |
Collapse
|
20
|
Chen YC. Impact of a discordant helix on β-amyloid structure, aggregation ability and toxicity. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:681-687. [DOI: 10.1007/s00249-017-1235-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/26/2017] [Accepted: 06/26/2017] [Indexed: 11/24/2022]
|
21
|
Vitamin C, Aging and Alzheimer's Disease. Nutrients 2017; 9:nu9070670. [PMID: 28654021 PMCID: PMC5537785 DOI: 10.3390/nu9070670] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence in mice models of accelerated senescence indicates a rescuing role of ascorbic acid in premature aging. Supplementation of ascorbic acid appeared to halt cell growth, oxidative stress, telomere attrition, disorganization of chromatin, and excessive secretion of inflammatory factors, and extend lifespan. Interestingly, ascorbic acid (AA) was also found to positively modulate inflamm-aging and immunosenescence, two hallmarks of biological aging. Moreover, ascorbic acid has been shown to epigenetically regulate genome integrity and stability, indicating a key role of targeted nutrition in healthy aging. Growing in vivo evidence supports the role of ascorbic acid in ameliorating factors linked to Alzheimer’s disease (AD) pathogenesis, although evidence in humans yielded equivocal results. The neuroprotective role of ascorbic acid not only relies on the general free radical trapping, but also on the suppression of pro-inflammatory genes, mitigating neuroinflammation, on the chelation of iron, copper, and zinc, and on the suppression of amyloid-beta peptide (Aβ) fibrillogenesis. Epidemiological evidence linking diet, one of the most important modifiable lifestyle factors, and risk of Alzheimer's disease is rapidly increasing. Thus, dietary interventions, as a way to epigenetically modulate the human genome, may play a role in the prevention of AD. The present review is aimed at providing an up to date overview of the main biological mechanisms that are associated with ascorbic acid supplementation/bioavailability in the process of aging and Alzheimer’s disease. In addition, we will address new fields of research and future directions.
Collapse
|
22
|
Alam P, Beg AZ, Siddiqi MK, Chaturvedi SK, Rajpoot RK, Ajmal MR, Zaman M, Abdelhameed AS, Khan RH. Ascorbic acid inhibits human insulin aggregation and protects against amyloid induced cytotoxicity. Arch Biochem Biophys 2017; 621:54-62. [DOI: 10.1016/j.abb.2017.04.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/22/2017] [Accepted: 04/10/2017] [Indexed: 12/28/2022]
|
23
|
Goes VF, Mello-Carpes PB, de Oliveira LO, Hack J, Magro M, Bonini JS. Evaluation of dysphagia risk, nutritional status and caloric intake in elderly patients with Alzheimer's. Rev Lat Am Enfermagem 2016; 22:317-24. [PMID: 26107841 PMCID: PMC4292605 DOI: 10.1590/0104-1169.3252.2418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 12/19/2013] [Indexed: 11/25/2022] Open
Abstract
Objective to evaluate the risk of dysphagia and its relationship with the stage of
Alzheimer's Disease, as well as the relationship between the risk of
dysphagia and nutritional status and caloric intake in elderly people with
Alzheimer's disease. Methods the sample consisted of 30 subjects of both genders with probable
Alzheimer's disease. The stage of the disease, nutritional status, energy
intake, and risk of dysphagia were assessed. Results it was found that increased risk of dysphagia is associated with the advance
in the stages of Alzheimer's disease and that even patients in the early
stages of disease have a slight risk of developing dysphagia. No association
was found between nutritional status and the risk of dysphagia. High levels
of inadequate intake of micronutrients were also verified in the patients.
Conclusion an association between dysphagia and the development of Alzheimer's disease
was found. The results indicate the need to monitor the presence of
dysphagia and the micronutrient intake in patients with Alzheimer's
disease.
Collapse
Affiliation(s)
| | | | | | - Jaqueline Hack
- Departamento de Nutrição, Universidade Estadual do Centro-Oeste, Guarapuava, PR, Brasil
| | - Marcela Magro
- Departamento de Nutrição, Universidade Estadual do Centro-Oeste, Guarapuava, PR, Brasil
| | | |
Collapse
|
24
|
Bioactive Compounds and Their Neuroprotective Effects in Diabetic Complications. Nutrients 2016; 8:nu8080472. [PMID: 27483315 PMCID: PMC4997385 DOI: 10.3390/nu8080472] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022] Open
Abstract
Hyperglycemia, hyperlipidemia and impaired insulin signaling during the development of diabetes can cause diabetic complications, such as diabetic neuropathy, resulting in significant morbidity and mortality. Although various therapeutics are available for the treatment of diabetic neuropathy, no absolute cure exists, and additional research is necessary to comprehensively understand the underlying pathophysiological pathways. A number of studies have demonstrated the potential health benefits of bioactive compounds, i.e., flavonoids and vitamins, which may be effective as supplementary treatments for diabetes and its complications. In this review, we highlight the most recent reports about the mechanisms of action of bioactive compounds (flavonoids and vitamins) possessing potential neuroprotective properties in diabetic conditions. Additional clinical studies are required to determine the appropriate dose and duration of bioactive compound supplementation for neuroprotection in diabetic patients.
Collapse
|
25
|
Valero N, Mosquera J, Alcocer S, Bonilla E, Salazar J, Álvarez-Mon M. Melatonin, minocycline and ascorbic acid reduce oxidative stress and viral titers and increase survival rate in experimental Venezuelan equine encephalitis. Brain Res 2015; 1622:368-76. [PMID: 26168898 DOI: 10.1016/j.brainres.2015.06.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 01/27/2023]
Abstract
Venezuelan equine encephalitis (VEE) virus causes an acute central nervous system infection in human and animals. Melatonin (MLT), minocycline (MIN) and ascorbic acid (AA) have been shown to have antiviral activities in experimental infections; however, the mechanisms involved are poorly studied. Therefore, the aim of this study was to determine the effects of those compounds on the viral titers, NO production and lipid peroxidation in the brain of mice and neuroblastoma cultures infected by VEE virus. Infected mouse (10 LD50) were treated with MLT (500 μg/kg bw), MIN (50mg/kg bw) or AA (50mg/kg bw). Infected neuroblastoma cultures (MOI: 1); MLT: 0.5, 1, 5mM, MIN: 0.1, 0.2, 2 μM or AA: 25, 50, 75 μM. Brains were obtained at days 1, 3 and 5. In addition, survival rate of infected treated mice was also analyzed. Viral replication was determined by the plaque formation technique. NO and lipid peroxidation were measured by Griess׳ reaction and thiobarbituric acid assay respectively. Increased viral replication, NO production and lipid peroxidation were observed in both, infected brain and neuroblastoma cell cultures compared with uninfected controls. Those effects were diminished by the studied treatments. In addition, increased survival rate (50%) in treated infected animals compared with untreated infected mice (0%) was found. MLT, MIN and AA have an antiviral effect involving their anti-oxidant properties, and suggesting a potential use of these compounds for human VEE virus infection.
Collapse
Affiliation(s)
- Nereida Valero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette". Facultad de Medicina, Universidad del Zulia. Maracaibo, Venezuela; Sociedad Venezolana de Microbiología, Venezuela.
| | - Jesús Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette". Facultad de Medicina, Universidad del Zulia. Maracaibo, Venezuela.
| | - Sirley Alcocer
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette". Facultad de Medicina, Universidad del Zulia. Maracaibo, Venezuela.
| | - Ernesto Bonilla
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette". Facultad de Medicina, Universidad del Zulia. Maracaibo, Venezuela.
| | - Jenny Salazar
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette". Facultad de Medicina, Universidad del Zulia. Maracaibo, Venezuela.
| | - Melchor Álvarez-Mon
- Department of Immune System Diseases and Oncology, University Hospital "Príncipe de Asturias", Alcala University, Madrid, Spain.
| |
Collapse
|
26
|
Dixit S, Bernardo A, Walker JM, Kennard JA, Kim GY, Kessler ES, Harrison FE. Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally aging mice. ACS Chem Neurosci 2015; 6:570-81. [PMID: 25642732 DOI: 10.1021/cn500308h] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Subclinical vitamin C deficiency is widespread in many populations, but its role in both Alzheimer's disease and normal aging is understudied. In the present study, we decreased brain vitamin C in the APPSWE/PSEN1deltaE9 mouse model of Alzheimer's disease by crossing APP/PSEN1(+) bigenic mice with SVCT2(+/-) heterozygous knockout mice, which have lower numbers of the sodium-dependent vitamin C transporter required for neuronal vitamin C transport. SVCT2(+/-) mice performed less well on the rotarod task at both 5 and 12 months of age compared to littermates. SVCT2(+/-) and APP/PSEN1(+) mice and the combination genotype SVCT2(+/-)APP/PSEN1(+) were also impaired on multiple tests of cognitive ability (olfactory memory task, Y-maze alternation, conditioned fear, Morris water maze). In younger mice, both low vitamin C (SVCT2(+/-)) and APP/PSEN1 mutations increased brain cortex oxidative stress (malondialdehyde, protein carbonyls, F2-isoprostanes) and decreased total glutathione compared to wild-type controls. SVCT2(+/-) mice also had increased amounts of both soluble and insoluble Aβ1-42 and a higher Aβ1-42/1-40 ratio. By 14 months of age, oxidative stress levels were similar among groups, but there were more amyloid-β plaque deposits in both hippocampus and cortex of SVCT2(+/-)APP/PSEN1(+) mice compared to APP/PSEN1(+) mice with normal brain vitamin C. These data suggest that even moderate intracellular vitamin C deficiency plays an important role in accelerating amyloid pathogenesis, particularly during early stages of disease development, and that these effects are likely modulated by oxidative stress pathways.
Collapse
Affiliation(s)
- Shilpy Dixit
- Division
of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Alexandra Bernardo
- Division
of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jennifer Michelle Walker
- Division
of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - John Andrew Kennard
- Division
of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Grace Youngeun Kim
- Division
of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Program
in Neuroscience, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Eric Sean Kessler
- Division
of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Program
in Neuroscience, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Fiona Edith Harrison
- Division
of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
27
|
Ascorbic acid prevents high glucose-induced apoptosis in human brain pericytes. Biochem Biophys Res Commun 2014; 452:112-7. [PMID: 25152398 DOI: 10.1016/j.bbrc.2014.08.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 02/07/2023]
Abstract
High glucose concentrations due to diabetes increase apoptosis of vascular pericytes, impairing vascular regulation and weakening vessels, especially in brain and retina. We sought to determine whether vitamin C, or ascorbic acid, could prevent such high glucose-induced increases in pericyte apoptosis. Culture of human microvascular brain pericytes at 25 mM compared to 5mM glucose increased apoptosis measured as the appearance of cleaved caspase 3. Loading the cells with ascorbate during culture decreased apoptosis, both at 5 and 25 mM glucose. High glucose-induced apoptosis was due largely to activation of the receptor for advanced glycation end products (RAGE), since it was prevented by specific RAGE inhibition. Culture of pericytes for 24h with RAGE agonists also increased apoptosis, which was completely prevented by inclusion of 100 μM ascorbate. Ascorbate also prevented RAGE agonist-induced apoptosis measured as annexin V binding in human retinal pericytes, a cell type with relevance to diabetic retinopathy. RAGE agonists decreased intracellular ascorbate and GSH in brain pericytes. Despite this evidence of increased oxidative stress, ascorbate prevention of RAGE-induced apoptosis was not mimicked by several antioxidants. These results show that ascorbate prevents pericyte apoptosis due RAGE activation. Although RAGE activation decreases intracellular ascorbate and GSH, the prevention of apoptosis by ascorbate may involve effects beyond its function as an antioxidant.
Collapse
|
28
|
Heo JH, Hyon-Lee, Lee KM. The possible role of antioxidant vitamin C in Alzheimer's disease treatment and prevention. Am J Alzheimers Dis Other Demen 2013; 28:120-5. [PMID: 23307795 PMCID: PMC10852723 DOI: 10.1177/1533317512473193] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxidative stress is suggested to play a major role in the pathogenesis of Alzheimer's disease (AD). Among the antioxidants, vitamin C has been regarded as the most important one in neural tissue. It also decreases β-amyloid generation and acetylcholinesterase activity and prevents endothelial dysfunction by regulating nitric oxide, a newly discovered factor in the pathogenesis and progression of AD. However, clinical trials using antioxidants, including vitamin C, in patients with AD yielded equivocal results. The current article discusses the relevance of vitamin C in the cellular and molecular pathogenesis of AD and explores its therapeutic potential against this neurodegenerative disorder.
Collapse
Affiliation(s)
- Jae-Hyeok Heo
- Department of Neurology, Seoul Medical Center, Seoul, Korea
| | - Hyon-Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Kyoung-Min Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
29
|
Urate and its transgenic depletion modulate neuronal vulnerability in a cellular model of Parkinson's disease. PLoS One 2012; 7:e37331. [PMID: 22606360 PMCID: PMC3351394 DOI: 10.1371/journal.pone.0037331] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/19/2012] [Indexed: 02/03/2023] Open
Abstract
Urate is a major antioxidant as well as the enzymatic end product of purine metabolism in humans. Higher levels correlate with a reduced risk of developing Parkinson's disease (PD) and with a slower rate of PD progression. In this study we investigated the effects of modulating intracellular urate concentration on 1-methyl-4-phenyl-pyridinium (MPP+)-induced degeneration of dopaminergic neurons in cultures of mouse ventral mesencephalon prepared to contain low (neuron-enriched cultures) or high (neuron-glial cultures) percentage of astrocytes. Urate, added to the cultures 24 hours before and during treatment with MPP+, attenuated the loss of dopaminergic neurons in neuron-enriched cultures and fully prevented their loss and atrophy in neuron-astrocyte cultures. Exogenous urate was found to increase intracellular urate content in cortical neuronal cultures. To assess the effect of reducing cellular urate content on MPP+-induced toxicity, mesencephalic neurons were prepared from mice over-expressing urate oxidase (UOx). Transgenic UOx expression decreased endogenous urate content both in neurons and astrocytes. Dopaminergic neurons expressing UOx were more susceptible to MPP+ in mesencephalic neuron-enriched cultures and to a greater extent in mesencephalic neuron-astrocyte cultures. Our findings correlate intracellular urate content in dopaminergic neurons with their toxin resistance in a cellular model of PD and suggest a facilitative role for astrocytes in the neuroprotective effect of urate.
Collapse
|
30
|
Martha KRM, Rosangkima G, Amenla L, Rongpi T, Prasad SB. Cisplatin- and dietary ascorbic acid-mediated changes in the mitochondria of Dalton's lymphoma-bearing mice. Fundam Clin Pharmacol 2011; 27:329-38. [PMID: 22211279 DOI: 10.1111/j.1472-8206.2011.01019.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cisplatin treatment caused a significant increase in the life span of ascites Dalton's lymphoma (DL) Tumor-bearing (TB) mice. However, as compared to cisplatin (CP) alone, combination treatment with ascorbic acid plus CP resulted in better therapeutic efficacy against murine DL. Cisplatin treatment of TB mice resulted in the appearance of thickened and irregular arrangement of mitochondrial cristae in the liver, kidney and DL tumor cells. Combination treatment of the hosts with ascorbic acid and CP lessened deformities in the mitochondria of liver and kidney, while in tumor cells, this increased the formation of vacuoles and disruption in mitochondrial cristae. Cisplatin treatment decreased the succinate dehydrogenase (SDH) activity in the mitochondria of kidney and DL cells and combination treatment caused further decrease in SDH activity in kidney and DL cells during 24-48 h of treatment. After CP treatment, the protein content in the mitochondria of these tissues decreased, and during combination treatment, it showed significant improvement. Mitochondrial lipid peroxidation (LPO) increased in these tissues after CP treatment. However, combination treatment significantly decreased mitochondrial LPO in liver and kidney but increased in DL cells. This increase in mitochondrial LPO in DL cells and decrease in liver and kidney could play an important role in the antitumor activity of combination treatment and at the same time reduce CP-induced toxicity in the host. However, further study may be desirable to explore some aspects of the mechanism(s) involved in these changes in mitochondria.
Collapse
Affiliation(s)
- Kham R M Martha
- Cell & Tumor Biology Lab., Department of Zoology, North-Eastern Hill University, Shillong-973022, India
| | | | | | | | | |
Collapse
|
31
|
Portugal CC, da Encarnação TG, Socodato R, Moreira SR, Brudzewsky D, Ambrósio AF, Paes-de-Carvalho R. Nitric oxide modulates sodium vitamin C transporter 2 (SVCT-2) protein expression via protein kinase G (PKG) and nuclear factor-κB (NF-κB). J Biol Chem 2011; 287:3860-72. [PMID: 22041898 DOI: 10.1074/jbc.m111.260166] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ascorbate is an important antioxidant, which also displays important functions in neuronal tissues, including the retina. The retina is responsible for the initial steps of visual processing, which is further refined in cerebral high-order centers. The retina is also a prototypical model for studying physiologic aspects of cells that comprise the nervous system. Of major importance also is the cellular messenger nitric oxide (NO). Previous studies have demonstrated the significance of NO for both survival and proliferation of cultured embryonic retinal cells. Cultured retinal cells express a high-affinity ascorbate transporter, and the release of ascorbate is delicately regulated by ionotropic glutamate receptors. Therefore, we proposed whether there is interplay between the ascorbate transport system and NO signaling pathway in retinal cells. Here we show compelling evidence that ascorbate uptake is tightly controlled by NO and its downstream signaling pathway in culture. NO also modulates the expression of SVCT-2, an effect mediated by cGMP and PKG. Kinetic studies suggest that NO increases the transport capacity for ascorbate, but not the affinity of SVCT-2 for its substrate. Interestingly, NO utilizes the NF-κB pathway, in a PKG-dependent manner, to modulate both SVCT-2 expression and ascorbate uptake. These results demonstrate that NO exerts a fine-tuned control of the availability of ascorbate to cultured retinal cells and strongly reinforces ascorbate as an important bioactive molecule in neuronal tissues.
Collapse
Affiliation(s)
- Camila Cabral Portugal
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ 24001-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Barreto GE, Gonzalez J, Torres Y, Morales L. Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury. Neurosci Res 2011; 71:107-13. [PMID: 21693140 DOI: 10.1016/j.neures.2011.06.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 04/28/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
The older neurocentric view of the central nervous system (CNS) has changed radically with the growing understanding of the many essential functions of astrocytes. Advances in our understanding of astrocytes include new observations about their structure, organization, function and supportive actions to other cells. Although the contribution of astrocytes to the process of brain injury has not been clearly defined, it is thought that their ability to provide support to neurons after cerebral damage is critical. Astrocytes play a fundamental role in the pathogenesis of brain injury-associated neuronal death, and this secondary injury is primarily a consequence of the failure of astrocytes to support the essential metabolic needs of neurons. These needs include K+ buffering, glutamate clearance, brain antioxidant defense, close metabolic coupling with neurons, and the modulation of neuronal excitability. In this review, we will focus on astrocytic activities that can both protect and endanger neurons, and discuss how manipulating these functions provides a novel and important strategy to enhance neuronal survival and improve the outcome following brain injury.
Collapse
Affiliation(s)
- George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia.
| | | | | | | |
Collapse
|
33
|
Lang F, Ullrich S, Gulbins E. Ceramide formation as a target in beta-cell survival and function. Expert Opin Ther Targets 2011; 15:1061-71. [PMID: 21635197 DOI: 10.1517/14728222.2011.588209] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Ceramide may be synthesized de novo or generated by sphingomyelinase-dependent hydrolysis of sphingomyelin. AREAS COVERED The role of ceramide, ceramide-sensitive signaling and ion channels in β-cell apoptosis, lipotoxicity and amyloid-induced β-cell death. EXPERT OPINION Ceramide participates in β-cell dysfunction and apoptosis after exposure to TNFα, IL-1β and IFN-γ, excessive amyloid and islet amyloid polypeptide or non-esterified fatty acids (lipotoxicity). Knockout of sphingomyelin synthase 1, which converts ceramide to sphingomyelin, leads to impairment of insulin secretion. Increased ceramidase activity or pharmacological inhibition of ceramide synthetase, inhibits β-cell apoptosis. Ceramide contributes to endoplasmatic reticulum (ER) stress, decreased mitochondrial membrane potential in insulin-secreting cells and mitochondrial release of cytochrome c into the cytosol, which are all triggers of apoptotic cell death. Ceramide-dependent signaling involves activation of extracellularly regulated kinases 1 and 2 (ERK1/2), downregulation of Period (Per)-aryl hydrocarbon receptor nuclear translocator (Arnt)-single-minded (Sim) kinase (PASK), activation of okadaic-acid-sensitive protein phosphatase 2A (PP2A) and stimulation of NADPH-oxidase with generation of superoxides and lipid peroxides. Ceramide reduces the activity of voltage gated potassium (Kv)-channels in insulin-secreting cells. The role of ceramide in β-cell survival and function may be therapeutically relevant, because ceramide formation can be suppressed by pharmacological inhibition of ceramide synthetase and/or sphingomyelinase.
Collapse
Affiliation(s)
- Florian Lang
- University of Tübingen, Institute of Physiology, Germany.
| | | | | |
Collapse
|
34
|
Gess B, Sevimli S, Strecker JK, Young P, Schäbitz WR. Sodium-dependent vitamin C transporter 2 (SVCT2) expression and activity in brain capillary endothelial cells after transient ischemia in mice. PLoS One 2011; 6:e17139. [PMID: 21347255 PMCID: PMC3037964 DOI: 10.1371/journal.pone.0017139] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/21/2011] [Indexed: 11/24/2022] Open
Abstract
Expression and transport activity of Sodium-dependent Vitamin C Transporter 2 (SVCT2) was shown in various tissues and organs. Vitamin C was shown to be cerebroprotective in several animal models of stroke. Data on expression, localization and transport activity of SVCT2 after cerebral ischemia, however, has been scarce so far. Thus, we studied the expression of SVCT2 after middle cerebral artery occlusion (MCAO) in mice by immunohistochemistry. We found an upregulation of SVCT2 after stroke. Co-stainings with Occludin, Von-Willebrand Factor and CD34 demonstrated localization of SVCT2 in brain capillary endothelial cells in the ischemic area after stroke. Time-course analyses of SVCT2 expression by immunohistochemistry and western blots showed upregulation in the subacute phase of 2–5 days. Radioactive uptake assays using 14C-labelled ascorbic acid showed a significant increase of ascorbic acid uptake into the brain after stroke. Taken together, these results provide evidence for the expression and transport activity of SVCT2 in brain capillary endothelial cells after transient ischemia in mice. These results may lead to the development of novel neuroprotective strategies in stroke therapy.
Collapse
Affiliation(s)
- Burkhard Gess
- Department of Neurology, University Clinic Muenster, Muenster, Germany.
| | | | | | | | | |
Collapse
|
35
|
Liu B, Moloney A, Meehan S, Morris K, Thomas SE, Serpell LC, Hider R, Marciniak SJ, Lomas DA, Crowther DC. Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation. J Biol Chem 2011; 286:4248-56. [PMID: 21147772 PMCID: PMC3039358 DOI: 10.1074/jbc.m110.158980] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 12/01/2010] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that overexpressing subunits of the iron-binding protein ferritin can rescue the toxicity of the amyloid β (Aβ) peptide in our Drosophila model system. These data point to an important pathogenic role for iron in Alzheimer disease. In this study, we have used an iron-selective chelating compound and RNAi-mediated knockdown of endogenous ferritin to further manipulate iron in the brain. We confirm that chelation of iron protects the fly from the harmful effects of Aβ. To understand the pathogenic mechanisms, we have used biophysical techniques to see how iron affects Aβ aggregation. We find that iron slows the progression of the Aβ peptide from an unstructured conformation to the ordered cross-β fibrils that are characteristic of amyloid. Finally, using mammalian cell culture systems, we have shown that iron specifically enhances Aβ toxicity but only if the metal is present throughout the aggregation process. These data support the hypothesis that iron delays the formation of well ordered aggregates of Aβ and so promotes its toxicity in Alzheimer disease.
Collapse
Affiliation(s)
- Beinan Liu
- From the Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY
- the Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH
| | - Aileen Moloney
- From the Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY
- the Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH
| | - Sarah Meehan
- the Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - Kyle Morris
- the Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Sussex BN1 6PD, and
| | - Sally E. Thomas
- From the Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY
| | - Louise C. Serpell
- the Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Sussex BN1 6PD, and
| | - Robert Hider
- the Department of Chemical Biology, Pharmaceutical Science Research Division, King's College London, London WC2R 2LS, United Kingdom
| | - Stefan J. Marciniak
- From the Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY
| | - David A. Lomas
- From the Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY
| | - Damian C. Crowther
- From the Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY
- the Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH
| |
Collapse
|
36
|
Costa S, Cervellati R, Speroni E, Guerra M, Greco E. Free radicals and antioxidants in two oxidative-stress cell models exposed to ochratoxin A and amyloid β: unexpected results. WORLD MYCOTOXIN J 2010. [DOI: 10.3920/wmj2010.1221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oxidative stress is reported to be closely related to pathogenetic mechanisms and plays a central role in several molecular toxicities. It seems reasonable to hypothesize that antioxidant molecules and/or free radical scavengers can protect from oxidative stress-induced damage by quenching free-radical reactions. Leontopodic acid (LA) is a fully substituted, hexaric acid derivative isolated from Leontopodium alpinum Cass., commonly known as ‘Edelweiss’ (Asteraceae family), and exhibits significant chemical antioxidant power. The present study was designed to evaluate LA’s capacity to counteract induced oxidative stress in two in vitro cell models: one exposed the LLC-PK1 cell line to ochratoxin A and the other exposed the differentiated SH-SY5Y cells to amyloid β. The effects of a 24 h pretreatment with LA on induced ROS (reactive oxygen species) production and cytotoxicity were evaluated in the two models. Surprisingly, the results showed that while LA decreased ROS production, it did not increase cell survival.
Collapse
Affiliation(s)
- S. Costa
- Department of Pharmacology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - R. Cervellati
- Department of Chemistry G. Ciamician, Via Selmi 2, 40126 Bologna, Italy
| | - E. Speroni
- Department of Pharmacology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - M. Guerra
- Department of Pharmacology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - E. Greco
- Department of Chemistry G. Ciamician, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
37
|
Prasad SB, Rosangkima G, Nicol BM. Cyclophosphamide and ascorbic acid-mediated ultrastructural and biochemical changes in Dalton's lymphoma cells in vivo. Eur J Pharmacol 2010; 645:47-54. [PMID: 20655303 DOI: 10.1016/j.ejphar.2010.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 07/06/2010] [Accepted: 07/11/2010] [Indexed: 01/12/2023]
Abstract
Cyclophosphamide, an antineoplastic drug effective against a wide variety of cancers is cytotoxic to normal cells also. Ascorbic acid (vitamin C) at higher concentrations possesses cytotoxic effects and it can also enhance the cytotoxicity of 5-fluorouracil in a dose-dependent manner in mouse lymphoma. In the present study, effect of cyclophosphamide treatment alone and in combination with ascorbic acid in vivo on the ultrastructure and some biochemical changes in Dalton's lymphoma tumor cells were investigated. Cyclophosphamide treatment causes disappearance of cell membrane processes, thickening and reduction in the number of mitochondrial cristae as well as the manifestation of rounded shape of mitochondria. The combination treatment with ascorbic acid plus cyclophosphamide caused further changes in tumor cells showing disintegration in the cell surface membrane, disruption in the nuclear membrane and roundish mitochondria with reduction and disruption in the mitochondrial cristae. The observed ascorbic acid plus cyclophosphamide-mediated decrease in reduced glutathione (GSH) in tumor cells may play an important role in the antitumor activity of cyclophosphamide by weakening cellular antioxidant-mediated defense mechanism, thereby increasing tumor cell's susceptibility to cell death. The cyclophosphamide-mediated decrease in lactate dehydrogenase activity in tumor cells and simultaneous increase in ascites supernatant may possibly indicate alteration in the membrane permeability of tumor cells for lactate dehydrogenase as well as tumor cell injury. Further investigation should determine detailed mechanism(s) involved in cyclophosphamide-induced ultrastructural and biochemical changes in tumor cells.
Collapse
Affiliation(s)
- Surya Bali Prasad
- Cell and Tumor Biology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong-793022, India.
| | | | | |
Collapse
|
38
|
Harrison FE, Allard J, Bixler R, Usoh C, Li L, May JM, McDonald MP. Antioxidants and cognitive training interact to affect oxidative stress and memory in APP/PSEN1 mice. Nutr Neurosci 2009; 12:203-18. [PMID: 19761651 DOI: 10.1179/147683009x423364] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The present study investigated the relationships among oxidative stress, beta-amyloid and cognitive abilities in the APP/PSEN1 double-transgenic mouse model of Alzheimer's disease. In two experiments, long-term dietary supplements were given to aged APP/PSEN1 mice containing vitamin C alone (1 g/kg diet; Experiment 1) or in combination with a high (750 IU/kg diet, Experiments 1 and 2) or lower (400 IU/kg diet, Experiment 2) dose of vitamin E. Oxidative stress, measured by F(4)-neuroprostanes or malondialdehyde, was elevated in cortex of control-fed APP/PSEN1 mice and reduced to wild-type levels by vitamin supplementation. High-dose vitamin E with C was less effective at reducing oxidative stress than vitamin C alone or the low vitamin E+C diet combination. The high-dose combination also impaired water maze performance in mice of both genotypes. In Experiment 2, the lower vitamin E+C treatment attenuated spatial memory deficits in APP/PSEN1 mice and improved performance in wild-type mice in the water maze. Amyloid deposition was not reduced by antioxidant supplementation in either experiment.
Collapse
Affiliation(s)
- F E Harrison
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0475, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Alzheimer's disease (AD) is the epidemic of the 21st century but still relatively little is known about the causes of the disease. Nutrient deficiencies, associated with loss of cognitive function, are frequently reported in patients with AD and currently available epidemiologic evidence suggests that an increased intake of certain nutrients may lower the risk of AD. Current treatment options offer only symptomatic relief, however, there is a growing body of evidence that nutrition in general and 'nutritional intervention' in a clinical setting may be able to play a key role in the management of the disease. However, randomized clinical trials are needed to test this approach. The Souvenir study is the first randomized, controlled, double-blind, multi-centre study designed to evaluate the efficacy of a multi-nutrient dietary approach on cognitive performance in drug-naïve early AD patients.
Collapse
Affiliation(s)
- P Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Zhang JJ, Zhang RF, Meng XK. Protective effect of pyrroloquinoline quinone against Abeta-induced neurotoxicity in human neuroblastoma SH-SY5Y cells. Neurosci Lett 2009; 464:165-9. [PMID: 19699263 DOI: 10.1016/j.neulet.2009.08.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 08/11/2009] [Accepted: 08/14/2009] [Indexed: 01/03/2023]
Abstract
The neurotoxicity of aggregated beta-amyloid (Abeta) has been implicated as a critical cause in the pathogenesis of Alzheimer's disease (AD). It can cause neurotoxicity in AD by evoking a cascade of oxidative damage-dependent apoptosis to neurons. In the present study, we for the first time investigated the protective effect of pyrroloquinoline quinone (PQQ), an anionic, water soluble compound that acts as a redox cofactor of bacterial dehydrogenases, on Abeta-induced SH-SY5Y cytotoxicity. Abeta(25-35) significantly reduced cell viability, increased the number of apoptotic-like cells, and increased ROS production. All of these phenotypes induced by Abeta(25-35) were markedly reversed by PQQ. PQQ pretreatment recovered cells from Abeta(25-35)-induced cell death, prevented Abeta(25-35)-induced apoptosis, and decreased ROS production. PQQ strikingly decreased Bax/Bcl-2 ratio, and suppressed the cleavage of caspase-3. These results indicated that PQQ could protect SH-SY5Y cells against beta-amyloid induced neurotoxicity.
Collapse
Affiliation(s)
- Jun-Jing Zhang
- Department of Surgery, The Affiliated Hospital of Inner Mongolia Medical College, 1 Tongdao Beijie, Hohhot, 010050, China.
| | | | | |
Collapse
|
41
|
Wang H, Xu Y, Yan J, Zhao X, Sun X, Zhang Y, Guo J, Zhu C. Acteoside protects human neuroblastoma SH-SY5Y cells against β-amyloid-induced cell injury. Brain Res 2009; 1283:139-47. [DOI: 10.1016/j.brainres.2009.05.101] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/24/2009] [Accepted: 05/27/2009] [Indexed: 12/21/2022]
|
42
|
Sphingomyelinase dependent apoptosis following treatment of pancreatic beta-cells with amyloid peptides Aß1-42 or IAPP. Apoptosis 2009; 14:878-89. [DOI: 10.1007/s10495-009-0364-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Effect of Chronic Administration of Morphine on the Gene Expression Level of Sodium-Dependent Vitamin C Transporters in Rat Hippocampus and Lumbar Spinal Cord. J Mol Neurosci 2009; 38:236-42. [DOI: 10.1007/s12031-009-9203-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
|
44
|
Qiao H, Li L, Qu ZC, May JM. Cobalt-induced oxidant stress in cultured endothelial cells: prevention by ascorbate in relation to HIF-1alpha. Biofactors 2009; 35:306-13. [PMID: 19396871 PMCID: PMC2714551 DOI: 10.1002/biof.43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Endothelial cells respond to hypoxia by decreased degradation of hypoxia-inducible factor 1alpha (HIF-1alpha), accumulation of which leads to increased transcription of numerous proteins involved in cell growth and survival. Ascorbic acid prevents HIF-1alpha stabilization in many cell types, but the physiologic relevance of such effects is uncertain. Given their relevance for angiogenesis, endothelial cells in culture were used to evaluate the effects of ascorbate on HIF-1alpha expression induced by hypoxia and the hypoxia mimic cobalt. Although EA.hy926 cells in culture under oxygenated conditions did not contain ascorbate, HIF-1alpha expression was very low, showing that the vitamin is not necessary to suppress HIF-1alpha. On the other hand, hypoxia- or cobalt-induced HIF-1alpha expression/stabilization was almost completely suppressed by what are likely physiologic intracellular ascorbate concentrations. Increased HIF-1alpha expression was not associated with significant changes in expression of the SVCT2, the major transporter for ascorbate in these cells. Cobalt at concentrations sufficient to stabilize HIF-1alpha both oxidized intracellular ascorbate and induced an oxidant stress in the cells that was prevented by ascorbate. Whereas the interaction of ascorbate and cobalt is complex, the presence of physiologic low millimolar concentrations of ascorbate in endothelial cells effectively decreases HIF-1alpha expression and protects against cobalt-induced oxidant stress.
Collapse
Affiliation(s)
- Huan Qiao
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0475
| | - Liying Li
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0475
| | - Zhi-chao Qu
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0475
| | - James M. May
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0475
| |
Collapse
|
45
|
Miranda CL, Reed RL, Kuiper HC, Alber S, Stevens JF. Ascorbic acid promotes detoxification and elimination of 4-hydroxy-2(E)-nonenal in human monocytic THP-1 cells. Chem Res Toxicol 2009; 22:863-74. [PMID: 19326901 PMCID: PMC2730585 DOI: 10.1021/tx900042u] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
4-Hydroxy-2(E)-nonenal (HNE), a reactive aldehyde derived from oxidized lipids, has been implicated in the pathogenesis of cardiovascular and neurological diseases, in part by its ability to induce oxidative stress and by protein carbonylation in target cells. The effects of intracellular ascorbic acid (vitamin C) on HNE-induced cytotoxicity and protein carbonylation were investigated in human THP-1 monocytic leukemia cells. HNE treatment of these cells resulted in apoptosis, necrosis, and protein carbonylation. Ascorbic acid accumulated in the cells at concentrations of 6.4 or 8.9 mM after treatment with 0.1 or 1 mM ascorbate in the medium for 18 h. Pretreatment of cells with 1.0 mM ascorbate decreased HNE-induced formation of reactive oxygen species and formation of protein carbonyls. The protective effects of ascorbate were associated with an increase in the formation of GSH-HNE conjugate and its phase 1 metabolites, measured by LC-MS/MS, and with increased transport of GSH conjugates from the cells into the medium. Ascorbate pretreatment enhanced the efflux of the multidrug resistant protein (MRP) substrate, carboxy-2',7'-dichlorofluorescein (CDF), and it prevented the HNE-induced inhibition of CDF export from THP-1 cells, suggesting that the protective effect of ascorbate against HNE cytotoxicity is through modulation of MRP-mediated transport of GSH-HNE conjugate metabolites. The formation of ascorbate adducts of HNE was observed in the cell exposure experiments, but it represented a minor pathway contributing to the elimination of HNE and to the protective effects of ascorbate.
Collapse
Affiliation(s)
- Cristobal L. Miranda
- Linus Pauling Institute and the Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331
| | - Ralph L. Reed
- Linus Pauling Institute and the Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331
| | - Heather C. Kuiper
- Linus Pauling Institute and the Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331
| | - Susan Alber
- Department of Statistics, Oregon State University, Corvallis, OR 97331
| | - Jan F. Stevens
- Linus Pauling Institute and the Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
46
|
Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med 2009; 46:719-30. [PMID: 19162177 PMCID: PMC2649700 DOI: 10.1016/j.freeradbiomed.2008.12.018] [Citation(s) in RCA: 441] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/29/2008] [Accepted: 12/30/2008] [Indexed: 02/07/2023]
Abstract
Ascorbate (vitamin C) is a vital antioxidant molecule in the brain. However, it also has a number of other important functions, participating as a cofactor in several enzyme reactions, including catecholamine synthesis, collagen production, and regulation of HIF-1 alpha. Ascorbate is transported into the brain and neurons via the sodium-dependent vitamin C transporter 2 (SVCT2), which causes accumulation of ascorbate within cells against a concentration gradient. Dehydroascorbic acid, the oxidized form of ascorbate, is transported via glucose transporters of the GLUT family. Once in cells, it is rapidly reduced to ascorbate. The highest concentrations of ascorbate in the body are found in the brain and in neuroendocrine tissues such as adrenal, although the brain is the most difficult organ to deplete of ascorbate. Combined with regional asymmetry in ascorbate distribution within different brain areas, these facts suggest an important role for ascorbate in the brain. Ascorbate is proposed as a neuromodulator of glutamatergic, dopaminergic, cholinergic, and GABAergic transmission and related behaviors. Neurodegenerative diseases typically involve high levels of oxidative stress and thus ascorbate has been posited to have potential therapeutic roles against ischemic stroke, Alzheimer's disease, Parkinson's disease, and Huntington's disease.
Collapse
Affiliation(s)
- Fiona E. Harrison
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303
| | - James M. May
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303
| |
Collapse
|
47
|
Promotion of IL-4- and IL-5-dependent differentiation of anti-mu-primed B cells by ascorbic acid 2-glucoside. Immunol Lett 2009; 122:219-26. [PMID: 19201381 DOI: 10.1016/j.imlet.2009.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/05/2009] [Accepted: 01/18/2009] [Indexed: 11/23/2022]
Abstract
The stable ascorbic acid derivative 2-O-alpha-D-glucopyranosyl-L-ascorbic acid (AA-2G) was used to investigate the role of ascorbic acid (AA) in B cell differentiation in vitro. AA-2G is stable in a solution unlike AA but is hydrolyzed by cellular alpha-glucosidase to release AA. Mouse spleen B cells were primed for 2 days with an anti-mu antibody in the presence of interleukin (IL)-4 and IL-5 and then washed and recultured with AA-2G in the presence of IL-4 and IL-5. AA-2G, but not AA, dose-dependently increased IgM production, the greatest enhancement being 150% at concentrations of more than 0.5mM. In the absence of IL-4 and IL-5, primed B cells produced a negligible amount of IgM, and AA-2G had no effect. AA-2G-induced IgM production in the presence of IL-4 and IL-5 was inhibited by the alpha-glucosidase inhibitor castanospermine. Intracellular AA content, depleted during the priming period, increased by adding AA-2G at the start of reculture. Treatment of B cells with AA-2G resulted in an increase in the number of IgM-secreting cells, CD138-positive cells and CD45R/B220-negative cells. The number of viable cells in untreated cultures decreased gradually, but the decrease was significantly attenuated by AA-2G, resulting in about 70% more viable cells in AA-2G-treated cultures. AA-2G caused a slight but reproducible enhancement of DNA synthesis and a slight decrease in the number of cells with a sub-G1 DNA content. These results demonstrated that AA released from AA-2G enhanced cytokine-dependent IgM production in anti-mu-primed B cells and suggest that its effect is caused through promoting the differentiation of B cells to plasma cells and attenuating the gradual decrease in the number of viable cells.
Collapse
|
48
|
Qiu S, Li L, Weeber EJ, May JM. Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity. J Neurosci Res 2007; 85:1046-56. [PMID: 17304569 DOI: 10.1002/jnr.21204] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurons maintain relatively high intracellular concentrations of ascorbic acid, which is achieved primarily by the activity of the sodium-dependent vitamin C transporter SVCT2. In this work, we studied the mechanisms by which neuronal cells in culture transport and maintain ascorbate as well as whether this system contributes to maturation of neuronal function and cellular defense against oxidative stress and excitotoxic injury. We found that the SVCT2 helps to maintain high intracellular ascorbate levels, normal ascorbate transport kinetics, and activity-dependent ascorbate recycling. Immunocytochemistry studies revealed that SVCT2 is expressed primarily in the axons of mature hippocampal neurons in culture. In the absence of SVCT2, hippocampal neurons exhibited stunted neurite outgrowth, less glutamate receptor clustering, and reduced spontaneous neuronal activity. Finally, hippocampal cultures from SVCT2-deficient mice showed increased susceptibility to oxidative damage and N-methyl-D-aspartate-induced excitotoxicity. Our results revealed that maintenance of intracellular ascorbate as a result of SVCT2 activity is crucial for neuronal development, functional maturation, and antioxidant responses.
Collapse
Affiliation(s)
- Shenfeng Qiu
- Department Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
49
|
Nicolay JP, Gatz S, Liebig G, Gulbins E, Lang F. Amyloid induced suicidal erythrocyte death. Cell Physiol Biochem 2007; 19:175-84. [PMID: 17310111 DOI: 10.1159/000099205] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2006] [Indexed: 01/21/2023] Open
Abstract
Amyloid peptides are known to induce apoptosis in a wide variety of cells. Erythrocytes may similarly undergo suicidal death or eryptosis, which is characterized by scrambling of the cell membrane with subsequent exposure of phosphatidylserine (PS) at the cell surface. Eryptosis is triggered by increase of cytosolic Ca(2+) activity and by activation of acid sphingomyelinase with subsequent formation of ceramide. Triggers of eryptosis include energy depletion and isosmotic cell shrinkage (replacement of extracellular Cl(-) by impermeable gluconate for 24 h). The present study explored whether amyloid peptide Abeta (1-42) could trigger eryptosis and to possibly identify underlying mechanisms. Erythrocytes from healthy volunteers were exposed to amyloid and PS-exposure (annexin V binding), cell volume (forward scatter), cytosolic Ca(2+) activity (Fluo3 fluorescence) and ceramide formation (anti-ceramide antibody) were determined by FACS analysis. Exposure of erythrocytes to the amyloid peptide Abeta (1-42) (> or = 0.5 microM) for 24 h significantly triggered annexin V binding, an effect mimicked to a lesser extent by the amyloid peptide Abeta (1-40) (1 microM). Abeta (1-42) (> or = 1.0 microM) further significantly decreased forward scatter of erythrocytes. The effect of Abeta (1-42) (> or = 0.5 microM) on erythrocyte annexin V binding was paralleled by formation of ceramide but not by significant increase of cytosolic Ca(2+) activity. The presence of Abeta (1-42) further significantly enhanced the eryptosis following Cl(-) depletion but not of glucose depletion for 24 hours. The present observations disclose a novel action of Abeta (1-42), which may well contribute to the pathophysiological effects of amyloid peptides, such as vascular complications in Alzheimer's disease.
Collapse
Affiliation(s)
- Jan P Nicolay
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|