1
|
Luciani M, Garsia C, Beretta S, Cifola I, Peano C, Merelli I, Petiti L, Miccio A, Meneghini V, Gritti A. Human iPSC-derived neural stem cells displaying radial glia signature exhibit long-term safety in mice. Nat Commun 2024; 15:9433. [PMID: 39487141 PMCID: PMC11530573 DOI: 10.1038/s41467-024-53613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NSCs) hold promise for treating neurodegenerative and demyelinating disorders. However, comprehensive studies on their identity and safety remain limited. In this study, we demonstrate that hiPSC-NSCs adopt a radial glia-associated signature, sharing key epigenetic and transcriptional characteristics with human fetal neural stem cells (hfNSCs) while exhibiting divergent profiles from glioblastoma stem cells. Long-term transplantation studies in mice showed robust and stable engraftment of hiPSC-NSCs, with predominant differentiation into glial cells and no evidence of tumor formation. Additionally, we identified the Sterol Regulatory Element Binding Transcription Factor 1 (SREBF1) as a regulator of astroglial differentiation in hiPSC-NSCs. These findings provide valuable transcriptional and epigenetic reference datasets to prospectively define the maturation stage of NSCs derived from different hiPSC sources and demonstrate the long-term safety of hiPSC-NSCs, reinforcing their potential as a viable alternative to hfNSCs for clinical applications.
Collapse
Affiliation(s)
- Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Garsia
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Clelia Peano
- Institute of Genetics and Biomedical Research, UoS of Milan, National Research Council, Rozzano, Milan, Italy
- Human Technopole, Via Rita Levi Montalcini 1, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Luca Petiti
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), via F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Annarita Miccio
- IMAGINE Institute, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
2
|
Neuregulin1 alpha activates migration of neuronal progenitors expressing ErbB4. Mol Cell Neurosci 2016; 77:87-94. [PMID: 27989735 DOI: 10.1016/j.mcn.2016.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 10/20/2016] [Accepted: 10/26/2016] [Indexed: 12/27/2022] Open
Abstract
Deficits in neuronal migration during development in the central nervous system may contribute to psychiatric diseases. The ligand neuregulin1 (NRG1) and its receptor ErbB4 are genes conferring susceptibility to schizophrenia, playing a key role in the control of neuronal migration both during development and adulthood. Several NRG1 and ErbB4 isoforms were identified, which deeply differ in their characteristics. Here we focused on the four ErbB4 isoforms and the two NRG1 isoforms differing in their EGF-like domain, namely α and β. We hypothesized that these isoforms, which are differently regulated in schizophrenic patients, could play different roles in neuronal migration. Our hypothesis was strengthened by the observation that both NRG1α and NRG1β and the four ErbB4 isoforms are expressed in the medial and lateral ganglionic eminences and in the cortex during development in rat. We analysed in vitro the signal transduction pathways activated by the different ErbB4 isoforms following the treatment with soluble recombinant NRG1α or NRG1β and the ability to stimulate migration. Our data show that two ErbB4 isoforms, namely JMa-cyt2 and JMb-cyt1, following NRG1α and NRG1β treatment, strongly activate AKT phosphorylation, conferring high migratory activity to neuronal progenitors, thus demonstrating that both NRG1α and NRG1β can play a role in neuronal migration.
Collapse
|
3
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|
4
|
Liu X, Bates R, Yin DM, Shen C, Wang F, Su N, Kirov SA, Luo Y, Wang JZ, Xiong WC, Mei L. Specific regulation of NRG1 isoform expression by neuronal activity. J Neurosci 2011; 31:8491-501. [PMID: 21653853 PMCID: PMC3154699 DOI: 10.1523/jneurosci.5317-10.2011] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 04/19/2011] [Accepted: 04/28/2011] [Indexed: 01/18/2023] Open
Abstract
Neuregulin 1 (NRG1) is a trophic factor that has been implicated in neural development, neurotransmission, and synaptic plasticity. NRG1 has multiple isoforms that are generated by usage of different promoters and alternative splicing of a single gene. However, little is known about NRG1 isoform composition profile, whether it changes during development, or the underlying mechanisms. We found that each of the six types of NRG1 has a distinct expression pattern in the brain at different ages, resulting in a change in NRG1 isoform composition. In both human and rat, the most dominant are types III and II, followed by either type I or type V, while types IV and VI are the least abundant. The expression of NRG1 isoforms is higher in rat brains at ages of E13 and P5 (in particular type V), suggesting roles in early neural development and in the neonatal critical period. At the cellular level, the majority of NRG1 isoforms (types I, II, and III) are expressed in excitatory neurons, although they are also present in GABAergic neurons and astrocytes. Finally, the expression of each NRG1 isoform is distinctly regulated by neuronal activity, which causes significant increase in type I and IV NRG1 levels. Neuronal activity regulation of type IV expression requires a CRE cis-element in the 5' untranslated region (UTR) that binds to CREB. These results indicate that expression of NRG1 isoforms is regulated by distinct mechanisms, which may contribute to versatile functions of NRG1 and pathologic mechanisms of brain disorders such as schizophrenia.
Collapse
Affiliation(s)
- Xihui Liu
- Institute of Molecular Medicine and Genetics and
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Ryan Bates
- Institute of Molecular Medicine and Genetics and
| | - Dong-Min Yin
- Institute of Molecular Medicine and Genetics and
| | | | - Fay Wang
- Advanced Cell Diagnostics, Inc., Hayward, California 94545, and
| | - Nan Su
- Advanced Cell Diagnostics, Inc., Hayward, California 94545, and
| | - Sergei A. Kirov
- Department of Neurosurgery, Georgia Health Sciences University, Augusta, Georgia 30912
| | - Yuling Luo
- Advanced Cell Diagnostics, Inc., Hayward, California 94545, and
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Wen-Cheng Xiong
- Institute of Molecular Medicine and Genetics and
- Department of Neurology, Georgia Health Sciences University, Augusta, Georgia 30912
| | - Lin Mei
- Institute of Molecular Medicine and Genetics and
- Department of Neurology, Georgia Health Sciences University, Augusta, Georgia 30912
| |
Collapse
|
5
|
Kane AJ, Sughrue ME, Rutkowski MJ, Tihan T, Parsa AT. The molecular pathology of central neurocytomas. J Clin Neurosci 2011; 18:1-6. [DOI: 10.1016/j.jocn.2010.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 06/09/2010] [Indexed: 11/29/2022]
|
6
|
Ehrlichman RS, Luminais SN, White SL, Rudnick ND, Ma N, Dow HC, Kreibich AS, Abel T, Brodkin ES, Hahn CG, Siegel SJ. Neuregulin 1 transgenic mice display reduced mismatch negativity, contextual fear conditioning and social interactions. Brain Res 2009; 1294:116-27. [PMID: 19643092 PMCID: PMC2771287 DOI: 10.1016/j.brainres.2009.07.065] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 07/13/2009] [Accepted: 07/18/2009] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Neuregulin-1 (NRG1) is one of susceptibility genes for schizophrenia and plays critical roles in glutamatergic, dopaminergic and GABAergic signaling. Using mutant mice heterozygous for Nrg1 (Nrg1(+/-)) we studied the effects of Nrg1 signaling on behavioral and electrophysiological measures relevant to schizophrenia. EXPERIMENTAL PROCEDURE Behavior of Nrg1(+/-) mice and their wild type littermates was evaluated using pre-pulse inhibition, contextual fear conditioning, novel object recognition, locomotor, and social choice paradigms. Event-related potentials (ERPs) were recorded to assess auditory gating and novel stimulus detection. RESULTS Gating of ERPs was unaffected in Nrg1(+/-) mice, but mismatch negativity in response to novel stimuli was attenuated. The Nrg1(+/-) mice exhibited behavioral deficits in contextual fear conditioning and social interactions, while locomotor activity, pre-pulse inhibition and novel object recognition were not impaired. SUMMARY Nrg1(+/-) mice had impairments in a subset of behavioral and electrophysiological tasks relevant to the negative/cognitive symptom domains of schizophrenia that are thought to be influenced by glutamatergic and dopaminergic neurotransmission. These mice are a valuable tool for studying endophenotypes of schizophrenia, but highlight that single genes cannot account for the complex pathophysiology of the disorder.
Collapse
Affiliation(s)
| | - Steven N. Luminais
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Samantha L. White
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Noam D. Rudnick
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Nan Ma
- Department of Biology, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Holly C. Dow
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Arati S. Kreibich
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Edward S. Brodkin
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Steven J. Siegel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, U.S.A
| |
Collapse
|
7
|
Freese C, Garratt AN, Fahrenholz F, Endres K. The effects of alpha-secretase ADAM10 on the proteolysis of neuregulin-1. FEBS J 2009; 276:1568-80. [PMID: 19220854 DOI: 10.1111/j.1742-4658.2009.06889.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although ADAM10 is a major alpha-secretase involved in non-amyloidogenic processing of the amyloid precursor protein, several additional substrates have been identified, most of them in vitro. Thus, therapeutical approaches for the prevention of Alzheimer's disease by upregulation of this metalloproteinase may have severe side effects. In the present study, we examined whether the ErbB receptor ligand neuregulin-1, which is essential for myelination and other important neuronal functions, is cleaved by ADAM10. Studies with beta- and gamma-secretase inhibitors, as well as with the metalloproteinase inhibitor GM6001, revealed an inhibition of neuregulin-1 processing in human astroglioma cell line U373; however, specific RNA interference-induced knockdown of ADAM10 remained without effect. In vivo investigations of mice overexpressing either ADAM10 or dominant negative ADAM10 showed unaltered cleavage of neuregulin-1 compared to wild-type animals. As a consequence, the myelin sheath thickness of peripheral nerves was unaffected in mice with altered ADAM10 activity. Thus, although the beta-secretase BACE-1 acts as a neuregulin-1 sheddase, ADAM10 does not lead to altered neuregulin-1 processing either in cell culture or in vivo. Adverse reactions of an ADAM10-based therapy of Alzheimer's disease due to neuregulin-1 cleavage are therefore unlikely.
Collapse
Affiliation(s)
- Christian Freese
- Institute of Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | |
Collapse
|
8
|
Intoh A, Kurisaki A, Yamanaka Y, Hirano H, Fukuda H, Sugino H, Asashima M. Proteomic analysis of membrane proteins expressed specifically in pluripotent murine embryonic stem cells. Proteomics 2009; 9:126-37. [DOI: 10.1002/pmic.200800496] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2008; 15:79-101. [PMID: 18185067 DOI: 10.1097/med.0b013e3282f4f084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|