1
|
Sarkisova K, van Luijtelaar G. The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci Rep 2022; 13:436-468. [PMID: 36386598 PMCID: PMC9649966 DOI: 10.1016/j.ibneur.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
This review discusses the long-term effects of early-life environment on epileptogenesis, epilepsy, and neuropsychiatric comorbidities with an emphasis on the absence epilepsy. The WAG/Rij rat strain is a well-validated genetic model of absence epilepsy with mild depression-like (dysthymia) comorbidity. Although pathologic phenotype in WAG/Rij rats is genetically determined, convincing evidence presented in this review suggests that the absence epilepsy and depression-like comorbidity in WAG/Rij rats may be governed by early-life events, such as prenatal drug exposure, early-life stress, neonatal maternal separation, neonatal handling, maternal care, environmental enrichment, neonatal sensory impairments, neonatal tactile stimulation, and maternal diet. The data, as presented here, indicate that some early environmental events can promote and accelerate the development of absence seizures and their neuropsychiatric comorbidities, while others may exert anti-epileptogenic and disease-modifying effects. The early environment can lead to phenotypic alterations in offspring due to epigenetic modifications of gene expression, which may have maladaptive consequences or represent a therapeutic value. Targeting DNA methylation with a maternal methyl-enriched diet during the perinatal period appears to be a new preventive epigenetic anti-absence therapy. A number of caveats related to the maternal methyl-enriched diet and prospects for future research are discussed.
Collapse
Affiliation(s)
- Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str. 5a, Moscow 117485, Russia
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognition, Radboud University, Nijmegen, PO Box 9104, 6500 HE Nijmegen, the Netherlands
| |
Collapse
|
2
|
Kanwal JK, Coddington E, Frazer R, Limbania D, Turner G, Davila KJ, Givens MA, Williams V, Datta SR, Wasserman S. Internal State: Dynamic, Interconnected Communication Loops Distributed Across Body, Brain, and Time. Integr Comp Biol 2021; 61:867-886. [PMID: 34115114 PMCID: PMC8623242 DOI: 10.1093/icb/icab101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Internal state profoundly alters perception and behavior. For example, a starved fly may approach and consume foods that it would otherwise find undesirable. A socially engaged newt may remain engaged in the presence of a predator, whereas a solitary newt would otherwise attempt to escape. Yet, the definition of internal state is fluid and ill-defined. As an interdisciplinary group of scholars spanning five career stages (from undergraduate to full professor) and six academic institutions, we came together in an attempt to provide an operational definition of internal state that could be useful in understanding the behavior and the function of nervous systems, at timescales relevant to the individual. In this perspective, we propose to define internal state through an integrative framework centered on dynamic and interconnected communication loops within and between the body and the brain. This framework is informed by a synthesis of historical and contemporary paradigms used by neurobiologists, ethologists, physiologists, and endocrinologists. We view internal state as composed of both spatially distributed networks (body-brain communication loops), and temporally distributed mechanisms that weave together neural circuits, physiology, and behavior. Given the wide spatial and temporal scales at which internal state operates-and therefore the broad range of scales at which it could be defined-we choose to anchor our definition in the body. Here we focus on studies that highlight body-to-brain signaling; body represented in endocrine signaling, and brain represented in sensory signaling. This integrative framework of internal state potentially unites the disparate paradigms often used by scientists grappling with body-brain interactions. We invite others to join us as we examine approaches and question assumptions to study the underlying mechanisms and temporal dynamics of internal state.
Collapse
Affiliation(s)
- Jessleen K Kanwal
- Division of Biology and Biological Engineering, California Institute of
Technology, Pasadena, CA 91125, USA
| | - Emma Coddington
- Department of Biology, Willamette University, Salem, OR
97301, USA
| | - Rachel Frazer
- Division of Neurobiology and Behavior, Columbia Universitye,
New York, NY 10027, USA
| | - Daniela Limbania
- Department of Neuroscience, Wellesley College, Wellesley, MA
02481, USA
| | - Grace Turner
- Department of Neuroscience, Wellesley College, Wellesley, MA
02481, USA
| | - Karla J Davila
- Department of Biology, Willamette University, Salem, OR
97301, USA
| | - Michael A Givens
- Department of Biology, Willamette University, Salem, OR
97301, USA
| | - Valarie Williams
- Department of Dance, The Ohio State University, Columbus, OH
43210, USA
| | | | - Sara Wasserman
- Department of Neuroscience, Wellesley College, Wellesley, MA
02481, USA
| |
Collapse
|
3
|
Kamimura Y, Kuwagaki E, Hamano S, Kobayashi M, Yamada Y, Takahata Y, Yoshimoto W, Morimoto H, Yasukawa T, Uozumi Y, Nagasawa K. Reproducible induction of depressive-like behavior in C57BL/6J mice exposed to chronic social defeat stress with a modified sensory contact protocol. Life Sci 2021; 282:119821. [PMID: 34271059 DOI: 10.1016/j.lfs.2021.119821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 12/31/2022]
Abstract
AIMS C57BL/6J mice are well-known to exhibit resilience to chronic social defeat stress (CSDS) for induction of depressive-like behavior. Establishment of protocols for reproducible induction of depressive-like behavior in C57BL/6J mice would be useful to elucidate the underlying molecular mechanisms using target gene-knock-in and -out mice whose background is generally C57BL/6J. Here, we developed a modified CSDS protocol for reproducible induction of depressive-like behavior in C57BL/6J mice, and compared the profile of their gut microbiota with that with the standard CSDS protocol. MAIN METHODS To prevent acclimation of defeated C57BL/6J mice to aggressive ICR mice, the sensory contact following a daily 10 min-defeat episode was performed by housing an individual defeated mouse in a cage set next to a cage for the aggressor one. KEY FINDINGS The number of attacks by ICR mice on C57BL/6J ones was significantly increased with the modified CSDS protocol, and the susceptible mice exhibited greater hippocampal inflammation and an increased immobility time in the forced swim test, compared in the case of the standard CSDS protocol, and the reproducibility was confirmed in another set of experiments. Both the standard and modified CSDS protocols changed the diversity and relative composition of gut microbiota in the susceptible mice, but there was no apparent difference in them between the standard and modified CSDS-susceptible mice. SIGNIFICANCE We established a CSDS protocol for reproducible induction of depressive-like behavior in C57BL/6J mice, and the features of the gut microbiota were similar in the susceptible mice with and without the depressive-like behavior.
Collapse
Affiliation(s)
- Yusuke Kamimura
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Erina Kuwagaki
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Sakika Hamano
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Mami Kobayashi
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yukie Yamada
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yuka Takahata
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Waka Yoshimoto
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hirotoshi Morimoto
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako 678-0193, Japan
| | - Takeshi Yasukawa
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako 678-0193, Japan
| | - Yoshinobu Uozumi
- Technical Development Division, Ako Kasei, Co., Ltd., 329 Sakoshi, Ako 678-0193, Japan
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
4
|
Matheson K, Asokumar A, Anisman H. Resilience: Safety in the Aftermath of Traumatic Stressor Experiences. Front Behav Neurosci 2020; 14:596919. [PMID: 33408619 PMCID: PMC7779406 DOI: 10.3389/fnbeh.2020.596919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
The relationship between adverse experiences and the emergence of pathology has often focused on characteristics of the stressor or of the individual (stressor appraisals, coping strategies). These features are thought to influence multiple biological processes that favor the development of mental and physical illnesses. Less often has attention focused on the aftermath of traumatic experiences, and the importance of safety and reassurance that is necessary for longer-term well-being. In some cases (e.g., post-traumatic stress disorder) this may be reflected by a failure of fear extinction, whereas in other instances (e.g., historical trauma), the uncertainty about the future might foster continued anxiety. In essence, the question becomes one of how individuals attain feelings of safety when it is fully understood that the world is not necessarily a safe place, uncertainties abound, and feelings of agency are often illusory. We consider how individuals acquire resilience in the aftermath of traumatic and chronic stressors. In this respect, we review characteristics of stressors that may trigger particular biological and behavioral coping responses, as well as factors that undermine their efficacy. To this end, we explore stressor dynamics and social processes that foster resilience in response to specific traumatic, chronic, and uncontrollable stressor contexts (intimate partner abuse; refugee migration; collective historical trauma). We point to resilience factors that may comprise neurobiological changes, such as those related to various stressor-provoked hormones, neurotrophins, inflammatory immune, microbial, and epigenetic processes. These behavioral and biological stress responses may influence, and be influenced by, feelings of safety that come about through relationships with others, spiritual and place-based connections.
Collapse
Affiliation(s)
- Kimberly Matheson
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada.,The Royal Ottawa's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Ajani Asokumar
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada.,The Royal Ottawa's Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
5
|
Sarkisova KY, Gabova AV. Maternal care exerts disease-modifying effects on genetic absence epilepsy and comorbid depression. GENES BRAIN AND BEHAVIOR 2018; 17:e12477. [DOI: 10.1111/gbb.12477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/31/2022]
Affiliation(s)
- K. Y. Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences; Moscow Russia
| | - A. V. Gabova
- Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
6
|
Vogel Ciernia A, Pride MC, Durbin-Johnson B, Noronha A, Chang A, Yasui DH, Crawley JN, LaSalle JM. Early motor phenotype detection in a female mouse model of Rett syndrome is improved by cross-fostering. Hum Mol Genet 2017; 26:1839-1854. [PMID: 28334953 PMCID: PMC6075042 DOI: 10.1093/hmg/ddx087] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/14/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the gene encoding methyl CpG binding protein 2 (MeCP2) that occur sporadically in 1:10,000 female births. RTT is characterized by a period of largely normal development followed by regression in language and motor skills at 6-18 months of age. Mecp2 mutant mice recapitulate many of the clinical features of RTT, but the majority of behavioral assessments have been conducted in male Mecp2 hemizygous null mice as offspring of heterozygous dams. Given that RTT patients are predominantly female, we conducted a systematic analysis of developmental milestones, sensory abilities, and motor deficits, following the longitudinal decline of function from early postnatal to adult ages in female Mecp2 heterozygotes of the conventional Bird line (Mecp2tm1.1bird-/+), as compared to their female wildtype littermate controls. Further, we assessed the impact of postnatal maternal environment on developmental milestones and behavioral phenotypes. Cross-fostering to CD1 dams accelerated several developmental milestones independent of genotype, and induced earlier onset of weight gain in adult female Mecp2tm1.1bird-/+ mice. Cross-fostering improved the sensitivity of a number of motor behaviors that resulted in observable deficits in Mecp2tm1.1bird-/+ mice at much earlier (6-7 weeks) ages than were previously reported (6-9 months). Our findings indicate that female Mecp2tm1.1bird-/+ mice recapitulate many of the motor aspects of RTT syndrome earlier than previously appreciated. In addition, rearing conditions may impact the phenotypic severity and improve the ability to detect genotype differences in female Mecp2 mutant mice.
Collapse
Affiliation(s)
| | | | | | - Adriana Noronha
- Medical Microbiology and Immunology
- Genome Center
- MIND Institute
| | - Alene Chang
- Medical Microbiology and Immunology
- Genome Center
- MIND Institute
| | - Dag H. Yasui
- Medical Microbiology and Immunology
- Genome Center
- MIND Institute
- Department of Psychiatry and Behavioral Sciences
| | | | - Janine M. LaSalle
- Medical Microbiology and Immunology
- Genome Center
- MIND Institute
- Department of Psychiatry and Behavioral Sciences
- Center for Children's Environmental Health, University of California, Davis, UC Davis, CA, USA
| |
Collapse
|
7
|
Avraham Y, Hants Y, Vorobeiv L, Staum M, Abu Ahmad W, Mankuta D, Galun E, Arbel-Alon S. Brain neurotransmitters in an animal model with postpartum depressive-like behavior. Behav Brain Res 2017; 326:307-321. [PMID: 28300619 DOI: 10.1016/j.bbr.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 02/01/2023]
Abstract
Post-Partum Depression (PPD) occurs in 15% of pregnancies and its patho-physiology is not known. We studied female BALB/c ("depressive") and C57BL/6 (control) mice as a model for PPD and assessed their behavior and correlates with brain neurotransmitters (NTs) - norepinephrine, dopamine, serotonin and intermediates, during the pre-pregnancy (PREP), pregnancy (PREG) and post-partum (PP) periods. Depressive-like behavior was evaluated by the Open Field (OFT), Tail Suspension (TST) and Forced Swim (FST) tests. Neurotransmitters (NTs) were determined in the striatum (care-giving), hippocampus (cognitive function) and hypothalamus (maternal care & eating behavior). In the BALB/c mice, while their performance in all behavioral tests was significantly reduced during pregnancy and P-P indicative of the development of depressive-like responses, no changes were observed in the C57BL/6 mice. Changes in NTs in BALB/C were as follows: PREP, all NTs in the three brain areas were decreased, although an increase in dopamine release was observed in the hippocampus. PREG: No changes were observed in the NTs except for a decrease in 5-HT in the striatum. P-P: striatum, low 5-HT, NE and dopamine; Hippocampus: low 5-HT, NE and high Dopamine; hypothalamus: all NTs increased, especially NE. Following pregnancy and delivery, the BALB/c mice developed depressive-like behavior associated with a significant decrease in 5-HT, dopamine and NE in the striatum and 5-HT and NE in the hippocampus. Dopamine increased in the latter together with a significant increase in all NTs in the hypothalamus. These findings suggest that the development of PPD may be associated with NT changes. Normalization of these alterations may have a role in the treatment of PPD.
Collapse
Affiliation(s)
- Y Avraham
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem, Israel.
| | - Y Hants
- Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - L Vorobeiv
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem, Israel
| | - M Staum
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem, Israel
| | - Wiessam Abu Ahmad
- Department of Metabolism and Human Nutrition, Braun School of Public Health, Hadassah-Hebrew University Medical School, Jerusalem, Israel
| | - D Mankuta
- Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - E Galun
- Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - S Arbel-Alon
- Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
8
|
McCarty R. Cross-fostering: Elucidating the effects of gene×environment interactions on phenotypic development. Neurosci Biobehav Rev 2016; 73:219-254. [PMID: 28034661 DOI: 10.1016/j.neubiorev.2016.12.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 02/03/2023]
Abstract
Cross-fostering of litters from soon after birth until weaning is a valuable tool to study the ways in which gene×environment interactions program the development of neural, physiological and behavioral characteristics of mammalian species. In laboratory mice and rats, the primary focus of this review, cross-fostering of litters between mothers of different strains or treatment groups (intraspecific) or between mothers of different species (interspecific) has been conducted over the past 9 decades. Areas of particular interest have included maternal effects on emotionality, social preferences, responses to stressful stimulation, nutrition and growth, blood pressure regulation, and epigenetic effects on brain development and behavior. Results from these areas of research highlight the critical role of the postnatal maternal environment in programming the development of offspring phenotypic characteristics. In addition, experimental paradigms that have included cross-fostering have permitted investigators to tease apart prenatal versus postnatal effects of various treatments on offspring development and behavior.
Collapse
Affiliation(s)
- Richard McCarty
- Department of Psychology, Vanderbilt University, Nashville, TN 37240 USA.
| |
Collapse
|
9
|
Prenatal stress and adult drug-seeking behavior: interactions with genes and relation to nondrug-related behavior. ADVANCES IN NEUROBIOLOGY 2015; 10:75-100. [PMID: 25287537 DOI: 10.1007/978-1-4939-1372-5_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Addiction inflicts large personal, social, and economic burdens, yet its etiology is poorly defined and effective treatments are lacking. As with other neuropsychiatric disorders, addiction is characterized by a core set of symptoms and behaviors that are believed to be influenced by complex gene-environment interactions. Our group focuses on the interaction between early stress and genetic background in determining addiction vulnerability. Prior work by our group and others has indicated that a history of prenatal stress (PNS) in rodents elevates adult drug seeking in a number of behavioral paradigms. The focus of the present chapter is to summarize work in the area of PNS and addiction models as well as our recent studies of PNS on drug seeking in different strains of mice as a strategy to dissect gene-environment interactions underlying cocaine addiction vulnerability. These studies indicate that ability of PNS to elevate adult cocaine seeking is strain dependent. Further, PNS also alters other nondrug behaviors in a fashion that is dependent on different strains and independent from the strain dependence of drug seeking. Thus, it appears that the ability of PNS to alter behavior related to different psychiatric conditions is orthogonal, with similar nonspecific susceptibility to prenatal stress across genetic backgrounds but with the genetic background determining the specific nature of the PNS effects. Finally, the advent of recombinant inbred mouse strains is allowing us to determine the genetic bases of these gene-environment interactions. Understanding these effects will have broad implications to determining the nature of vulnerability to addiction and perhaps other disorders.
Collapse
|
10
|
What makes a good mother? Implication of inter-, and intrastrain strain "cross fostering" for emotional changes in mouse offspring. Behav Brain Res 2014; 274:270-81. [PMID: 25151929 DOI: 10.1016/j.bbr.2014.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/07/2014] [Accepted: 08/09/2014] [Indexed: 12/15/2022]
Abstract
Currently, the mouse represents the preferred model organism among mammals used for animal studies. Due to a great availability of mutant strains it represents a standard method to analyze in vivo the effects of targeted gene manipulations. While this - at least in theory - represents a valuable tool to elucidate the pathophysiology of certain human diseases, there are several caveats which need to be considered working with animals. In our study we aimed at elucidating, how a widely established breeding strategy, i.e. the use of "foster mothers" to save the survival of compromised mouse pups for ongoing experiments, per se, affects the emotional phenotype of the fostered offspring. Since it is a popular method to use outbred strains like NMRI to do this job, we sought to evaluate the potential effects of such an artificial postnatal condition and compare either offspring nurtured by their biological mothers or two different strains of foster mothers. Hence we analysed changes in maternal care and later on the emotional behaviour of male and female C57BL/6 mice reared by (i) their biological C57BL/6 mothers, (ii) C57BL/6 foster mothers and (iii) NMRI foster mothers in a behavioural test battery. In addition we assessed corticosterone levels as indicator for stress-physiological changes. Besides clear differences in maternal behaviour, our study indicates an altered emotional state (i.e. differences in anxiety and depressive-like features) in mice reared by different "categories" of mothers, which emphasizes the importance to embed such perinatal conditions in the evaluation of animal-deriving data.
Collapse
|
11
|
Cox KH, So NLT, Rissman EF. Foster dams rear fighters: strain-specific effects of within-strain fostering on aggressive behavior in male mice. PLoS One 2013; 8:e75037. [PMID: 24040381 PMCID: PMC3769275 DOI: 10.1371/journal.pone.0075037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/09/2013] [Indexed: 11/19/2022] Open
Abstract
It is well known that genes and environment interact to produce behavioral phenotypes. One environmental factor with long-term effects on gene transcription and behavior is maternal care. A classic paradigm for examining maternal care and genetic interactions is to foster pups of one genetic strain to dams of a different strain ("between-strain fostering"). In addition, fostering to a dam of the same strain ("within-strain fostering") is used to reduce indirect effects, via behavioral changes in the dams, of gestation treatments on offspring. Using within-and between-strain fostering we examined the contributions of genetics/prenatal environment, maternal care, and the effects of fostering per se, on adult aggressive behavior in two inbred mouse strains, C57BL/6J (B6) and DBA/2J (DBA). We hypothesized that males reared by dams of the more aggressive DBA strain would attack intruders faster than those reared by B6 dams. Surprisingly, we found that both methods of fostering enhanced aggressive behavior, but only in B6 mice. Since all the B6 offspring are genetically identical, we asked if maternal behavior of B6 dams was affected by the relatedness of their pups. In fact, B6 dams caring for foster B6 pups displayed significantly reduced maternal behaviors. Finally, we measured vasopressin and corticotrophin releasing hormone mRNA in the amygdalae of adult B6 males reared by foster or biological dams. Both genes correlated with aggressive behavior in within-strain fostered B6 mice, but not in mice reared by their biological dams. In sum, we have demonstrated in inbred laboratory mice, that dams behave differently when rearing their own newborn pups versus pups from another dam of the same strain. These differences in maternal care affect aggression in the male offspring and transcription of Avp and Crh in the brain. It is likely that rearing by foster dams has additional effects and implications for other species.
Collapse
Affiliation(s)
- Kimberly H. Cox
- Department of Biochemistry and Molecular Genetics and Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail:
| | - Nina L. T. So
- Department of Biochemistry and Molecular Genetics and Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Emilie F. Rissman
- Department of Biochemistry and Molecular Genetics and Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| |
Collapse
|
12
|
Blaney CE, Gunn RK, Stover KR, Brown RE. Maternal genotype influences behavioral development of 3×Tg-AD mouse pups. Behav Brain Res 2013; 252:40-8. [DOI: 10.1016/j.bbr.2013.05.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
|
13
|
Lin T, Duek O, Dori A, Kofman O. Differential long term effects of early diisopropylfluorophosphate exposure in Balb/C and C57Bl/J6 mice. Int J Dev Neurosci 2011; 30:113-20. [PMID: 22197972 DOI: 10.1016/j.ijdevneu.2011.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/01/2011] [Accepted: 12/08/2011] [Indexed: 11/17/2022] Open
Abstract
The long-term effect of postnatal administration of a sub-toxic dose of the irreversible acetylcholinesterase inhibitor diisopropylfluorophosphate (DFP) on depression and anxiety behavior was compared in two strains of inbred mice. C57BL/6J and Balb/C mice were injected for 7 consecutive days with either 1 mg/kg DFP or saline on postnatal days 14-20. Mice were tested at age 3-4 months for initial and learned anxiety using double-exposure elevated plus maze and to a novel enclosed environment. Depression was assayed using the sweet preference model of anhedonia and the forced swim test for despair. Postnatal DFP pretreatment led to less activity and more immobility in the elevated plus maze in both mouse strains in the first session. The effect was attenuated in the second session in the C57BL/6J strain but not the Balb/C strain. DFP did not affect the sweet preference or forced swim tests, suggesting a dissociation between the long-term effects of DFP on immobility in the context of approach-avoidance conflict (elevated plus maze) versus despair (forced swim).
Collapse
Affiliation(s)
- Tamar Lin
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
14
|
Savignac H, Finger B, Pizzo R, O'Leary O, Dinan T, Cryan J. Increased sensitivity to the effects of chronic social defeat stress in an innately anxious mouse strain. Neuroscience 2011; 192:524-36. [DOI: 10.1016/j.neuroscience.2011.04.054] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/25/2011] [Indexed: 01/03/2023]
|
15
|
Sartori SB, Landgraf R, Singewald N. The clinical implications of mouse models of enhanced anxiety. FUTURE NEUROLOGY 2011; 6:531-571. [PMID: 21901080 PMCID: PMC3166843 DOI: 10.2217/fnl.11.34] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mice are increasingly overtaking the rat model organism in important aspects of anxiety research, including drug development. However, translating the results obtained in mouse studies into information that can be applied in clinics remains challenging. One reason may be that most of the studies so far have used animals displaying 'normal' anxiety rather than 'psychopathological' animal models with abnormal (elevated) anxiety, which more closely reflect core features and sensitivities to therapeutic interventions of human anxiety disorders, and which would, thus, narrow the translational gap. Here, we discuss manipulations aimed at persistently enhancing anxiety-related behavior in the laboratory mouse using phenotypic selection, genetic techniques and/or environmental manipulations. It is hoped that such models with enhanced construct validity will provide improved ways of studying the neurobiology and treatment of pathological anxiety. Examples of findings from mouse models of enhanced anxiety-related behavior will be discussed, as well as their relation to findings in anxiety disorder patients regarding neuroanatomy, neurobiology, genetic involvement and epigenetic modifications. Finally, we highlight novel targets for potential anxiolytic pharmacotherapeutics that have been established with the help of research involving mice. Since the use of psychopathological mouse models is only just beginning to increase, it is still unclear as to the extent to which such approaches will enhance the success rate of drug development in translating identified therapeutic targets into clinical trials and, thus, helping to introduce the next anxiolytic class of drugs.
Collapse
Affiliation(s)
- Simone B Sartori
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| | - Rainer Landgraf
- Max Planck Institute of Psychiatry, Department of Behavioral Neuroendocrinology, Munich, Germany
| | - Nicolas Singewald
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| |
Collapse
|
16
|
Hidden Markov model analysis of maternal behavior patterns in inbred and reciprocal hybrid mice. PLoS One 2011; 6:e14753. [PMID: 21408086 PMCID: PMC3050935 DOI: 10.1371/journal.pone.0014753] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 01/31/2011] [Indexed: 11/19/2022] Open
Abstract
Individual variation in maternal care in mammals shows a significant heritable component, with the maternal behavior of daughters resembling that of their mothers. In laboratory mice, genetically distinct inbred strains show stable differences in maternal care during the first postnatal week. Moreover, cross fostering and reciprocal breeding studies demonstrate that differences in maternal care between inbred strains persist in the absence of genetic differences, demonstrating a non-genetic or epigenetic contribution to maternal behavior. In this study we applied a mathematical tool, called hidden Markov model (HMM), to analyze the behavior of female mice in the presence of their young. The frequency of several maternal behaviors in mice has been previously described, including nursing/grooming pups and tending to the nest. However, the ordering, clustering, and transitions between these behaviors have not been systematically described and thus a global description of maternal behavior is lacking. Here we used HMM to describe maternal behavior patterns in two genetically distinct mouse strains, C57BL/6 and BALB/c, and their genetically identical reciprocal hybrid female offspring. HMM analysis is a powerful tool to identify patterns of events that cluster in time and to determine transitions between these clusters, or hidden states. For the HMM analysis we defined seven states: arched-backed nursing, blanket nursing, licking/grooming pups, grooming, activity, eating, and sleeping. By quantifying the frequency, duration, composition, and transition probabilities of these states we were able to describe the pattern of maternal behavior in mouse and identify aspects of these patterns that are under genetic and nongenetic inheritance. Differences in these patterns observed in the experimental groups (inbred and hybrid females) were detected only after the application of HMM analysis whereas classical statistical methods and analyses were not able to highlight them.
Collapse
|
17
|
Effects of stressors and immune activating agents on peripheral and central cytokines in mouse strains that differ in stressor responsivity. Brain Behav Immun 2011; 25:468-82. [PMID: 21093579 DOI: 10.1016/j.bbi.2010.11.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/29/2022] Open
Abstract
The impact of inflammatory immune activation on behavioral and physiological processes varies with antecedent stressor experiences. We assessed whether immune activation would differentially influence such outcomes as a function of stressor reactivity related to genetic differences. To this end, we assessed the influence of a social stressor (exposure to a dominant mouse) in combination with an acute immune challenge on behavior and on peripheral and central cytokines in stressor-reactive BALB/cByJ mice and the less reactive C57BL/6ByJ strain. As C57BL/6ByJ and BALB/cByJ mice are highly T helper type-1 (Th1) and Th2 responsive, respectively, the stressor effects were assessed in response to different challenges, namely the viral analogue poly I:C and the bacterial endotoxin lipopolysaccharide (LPS). The stressor enhanced the effects of LPS on sickness behaviors and plasma corticosterone particularly in BALB/cByJ mice, whereas the effects of poly I:C, which primarily affects Th1 processes, were not augmented by the stressor. As well, the stressor increased circulating cytokines in LPS treated C57BL/6ByJ mice, whereas the effects of poly I:C were diminished. Finally, like circulating cytokines, mRNA expression of pro-inflammatory cytokines within the prefrontal cortex and hippocampus varied with the mouse strain and with the stressor experience, and with the specific cytokine considered. Together, the experiments indicated that the impact of stressors vary with the nature of the immune challenge to which animals had been exposed. Moreover, given the diversity of the stressor effects on central and peripheral processes, it seems likely that the cytokine changes, HPA activity and sickness operate through independent mechanisms.
Collapse
|
18
|
Tarantino LM, Sullivan PF, Meltzer-Brody S. Using animal models to disentangle the role of genetic, epigenetic, and environmental influences on behavioral outcomes associated with maternal anxiety and depression. Front Psychiatry 2011; 2:44. [PMID: 21811473 PMCID: PMC3141357 DOI: 10.3389/fpsyt.2011.00044] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/05/2011] [Indexed: 11/13/2022] Open
Abstract
The etiology of complex psychiatric disorders results from both genetics and the environment. No definitive environmental factor has been implicated, but studies suggest that deficits in maternal care and bonding may be an important contributing factor in the development of anxiety and depression. Perinatal mood disorders such as postpartum depression occur in approximately 10% of pregnant women and can result in detriments in infant care and bonding. The consequences of impaired maternal-infant attachment during critical early brain development may lead to adverse effects on socioemotional and neurocognitive development in infants resulting in long-term behavioral and emotional problems, including increased vulnerability for mental illness. The exact mechanisms by which environmental stressors such as poor maternal care increase the risk for psychiatric disorders are not known and studies in humans have proven challenging. Two inbred mouse strains may prove useful for studying the interaction between maternal care and mood disorders. BALB/c (BALB) mice are considered an anxious strain in comparison to C57BL/6 (B6) mice in behavioral models of anxiety. These strain differences are most often attributed to genetics but may also be due to environment and gene by environment interactions. For example, BALB mice are described as poor mothers and B6 mice as good mothers and mothering behavior in rodents has been reported to affect both anxiety and stress behaviors in offspring. Changes in gene methylation patterns in response to maternal care have also been reported, providing evidence for epigenetic mechanisms. Characterization of these two mouse inbred strains over the course of pregnancy and in the postpartum period for behavioral and neuroendocrine changes may provide useful information by which to inform human studies, leading to advances in our understanding of the etiology of anxiety and depression and the role of genetics and the environment.
Collapse
Affiliation(s)
- Lisa M Tarantino
- Department of Psychiatry, University of North Carolina Chapel Hill, NC, USA
| | | | | |
Collapse
|
19
|
Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci 2010; 30:15007-18. [PMID: 21068306 DOI: 10.1523/jneurosci.1436-10.2010] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
There is growing evidence suggesting that early life events have long-term effects on the neuroendocrine and behavioral developments of rodents. However, little is known about the involvement of early life events in the susceptibility to subsequent stress exposure during adulthood. The present study characterized the effect of maternal separation, an animal model of early life adversity, on the behavioral response to repeated restraint stress in adult rats and investigated the molecular mechanism underlying behavioral vulnerability to chronic stress induced by the maternal separation. Rat pups were separated from the dams for 180 min per day from postnatal day 2 through 14 (HMS180 rats). We found that, as young adults, HMS180 rats showed a greater hypothalamic-pituitary-adrenal axis response to acute restraint stress than nonseparated control rats. In addition, repeatedly restrained HMS180 rats showed increased depression-like behavior and an anhedonic response compared with nonrestrained HMS180 rats. Furthermore, HMS180 rats showed increased expression of REST4, a neuron-specific splicing variant of the transcriptional repressor REST (repressor element-1 silencing transcription factor), and a variety of REST target gene mRNAs and microRNAs in the medial prefrontal cortex (mPFC). Finally, REST4 overexpression in the mPFC of neonatal mice via polyethyleneimine-mediated gene transfer enhanced the expression of its target genes as well as behavioral vulnerability to repeated restraint stress. In contrast, REST4 overexpression in the mPFC of adult mice did not affect depression-like behaviors after repeated stress exposure. These results suggest that the activation of REST4-mediated gene regulation in the mPFC during postnatal development is involved in stress vulnerability.
Collapse
|
20
|
Koolhaas JM, de Boer SF, Coppens CM, Buwalda B. Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Front Neuroendocrinol 2010; 31:307-21. [PMID: 20382177 DOI: 10.1016/j.yfrne.2010.04.001] [Citation(s) in RCA: 601] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/01/2010] [Accepted: 04/04/2010] [Indexed: 01/29/2023]
Abstract
Individual variation in behavior and physiology is a widespread and ecologically functional phenomenon in nature in virtually all vertebrate species. Due to domestication of laboratory animals, studies may suffer from a strong selection bias. This paper summarizes behavioral, neuroendocrine and neurobiological studies using the natural individual variation in rats and mice. Individual behavioral characteristics appear to be consistent over time and across situations. The individual variation has at least two dimensions in which the quality of the response to a challenging condition (coping style) is independent from the quantity of that response (stress reactivity). The neurobiology reveals important differences in the homeostatic control of the serotonergic neuron and the neuropeptides vasopressin and oxytocin in relation to coping style. It is argued that a careful exploitation of the broad natural and biologically functional individual variation in behavior and physiology may help in developing better animal models for understanding individual disease vulnerability.
Collapse
Affiliation(s)
- J M Koolhaas
- Dept. of Behavioural Physiology, University Groningen, 9750 AA Haren, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Curley JP, Rock V, Moynihan AM, Bateson P, Keverne EB, Champagne FA. Developmental shifts in the behavioral phenotypes of inbred mice: the role of postnatal and juvenile social experiences. Behav Genet 2010; 40:220-32. [PMID: 20130977 DOI: 10.1007/s10519-010-9334-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 01/09/2010] [Indexed: 11/30/2022]
Abstract
The interaction between genotype and environment is an important feature of the process of development. We investigate this interaction by examining the influence of postnatal cross-fostering and post-weaning cross-housing on the behavioral development of 129S and B6 mice. Following cross-fostering, we found significant alterations in the frequency of maternal care as a function of maternal strain and pup type as well as interactions between these variables. In adulthood, we find there are sex-specific and strain-specific alterations in anxiety-like behavior as a function of rearing environment, with males exhibiting more pronounced rearing-induced effects. Mixed-strain housing of weanlings was found to lead to alterations in home-cage social and feeding behavior as well as changes in adult anxiety-like responses of 129S mice. Anxiety-like behavior in B6 mice was altered as a function of the interaction between housing condition and weaning weight. These data illustrate the complex pathways through which early and later social experiences may lead to variations in behavior.
Collapse
Affiliation(s)
- J P Curley
- Department of Psychology, Columbia University, Room 406 Schermerhorn Hall, 1190 Amsterdam Avenue, New York, NY, 10027, USA
| | | | | | | | | | | |
Collapse
|
22
|
Uchida S, Hara K, Kobayashi A, Otsuki K, Hobara T, Yamagata H, Watanabe Y. Maternal and genetic factors in stress-resilient and -vulnerable rats: A cross-fostering study. Brain Res 2010; 1316:43-50. [DOI: 10.1016/j.brainres.2009.11.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/25/2009] [Accepted: 11/25/2009] [Indexed: 11/29/2022]
|
23
|
Wu WL, Wang CH, Huang EYK, Chen CC. Asic3(-/-) female mice with hearing deficit affects social development of pups. PLoS One 2009; 4:e6508. [PMID: 19652708 PMCID: PMC2714966 DOI: 10.1371/journal.pone.0006508] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/01/2009] [Indexed: 12/17/2022] Open
Abstract
Background Infant crying is an important cue for mothers to respond adequately. Inappropriate response to infant crying can hinder social development in infants. In rodents, the pup-mother interaction largely depends on pup's calls. Mouse pups emit high frequency to ultrasonic vocalization (2–90 kHz) to communicate with their dam for maternal care. However, little is known about how the maternal response to infant crying or pup calls affects social development over the long term. Methodology/Principal Findings Here we used mice lacking acid-sensing ion channel 3 (Asic3−/−) to create a hearing deficit to probe the effect of caregiver hearing on maternal care and adolescent social development. Female Asic3−/− mice showed elevated hearing thresholds for low to ultrasonic frequency (4–32 kHz) on auditory brain stem response, which thus hindered their response to their pups' wriggling calls and ultrasonic vocalization, as well as their retrieval of pups. In adolescence, pups reared by Asic3−/− mice showed a social deficit in juvenile social behaviors as compared with those reared by wild-type or heterozygous dams. The social-deficit phenotype in juvenile mice reared by Asic3−/− mice was associated with the reduced serotonin transmission of the brain. However, Asic3−/− pups cross-fostered to wild-type dams showed rescued social deficit. Conclusions/Significance Inadequate response to pups' calls as a result of ASIC3-dependent hearing loss confers maternal deficits in caregivers and social development deficits in their young.
Collapse
Affiliation(s)
- Wei-Li Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | - Chih-Hung Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Eagle Yi-Kung Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
24
|
Girirajan S, Elsea SH. Abnormal maternal behavior, altered sociability, and impaired serotonin metabolism in Rai1-transgenic mice. Mamm Genome 2009; 20:247-55. [DOI: 10.1007/s00335-009-9180-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
|
25
|
Anisman H, Merali Z, Stead JDH. Experiential and genetic contributions to depressive- and anxiety-like disorders: clinical and experimental studies. Neurosci Biobehav Rev 2008; 32:1185-206. [PMID: 18423590 DOI: 10.1016/j.neubiorev.2008.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 12/31/2007] [Accepted: 02/23/2008] [Indexed: 10/22/2022]
Abstract
Stressful events have been implicated in the precipitation of depression and anxiety. These disorders may evolve owing to one or more of an array of neuronal changes that occur in several brain regions. It seems likely that these stressor-provoked neurochemical alterations are moderated by genetic determinants, as well as by a constellation of experiential and environmental factors. Indeed, animal studies have shown that vulnerability to depressive-like behaviors involve mechanisms similar to those associated with human depression (e.g., altered serotonin, corticotropin releasing hormone and their receptors, growth factors), and that the effects of stressors are influenced by previous stressor experiences, particularly those encountered early in life. These stressor effects might reflect sensitization of neuronal functioning, phenotypic changes of processes that lead to neurochemical release or receptor sensitivity, or epigenetic processes that modify expression of specific genes associated with stressor reactivity. It is suggested that depression is a life-long disorder, which even after effective treatment, has a high rate of re-occurrence owing to sensitized processes or epigenetic factors that promote persistent alterations of gene expression.
Collapse
Affiliation(s)
- Hymie Anisman
- Institute of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
| | | | | |
Collapse
|
26
|
van der Veen R, Abrous DN, de Kloet ER, Piazza PV, Koehl M. Impact of intra- and interstrain cross-fostering on mouse maternal care. GENES BRAIN AND BEHAVIOR 2008; 7:184-92. [PMID: 17608702 DOI: 10.1111/j.1601-183x.2007.00337.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The importance of maternal care in shaping an individual's phenotype in health and disease is becoming more and more apparent in both human and animal studies. However, in mouse studies using inbred strains or knockout mice to analyze the genetic influences on the development of normal and aberrant behavioral phenotypes, maternal behavior is very poorly characterized and often ignored. This study provides an extensive analysis of spontaneous maternal behavior of inbred mice in three conditions: (1) comparing two commonly used strains, (2) analyzing the impact of adopting pups from the same strain (intrastrain cross-fostering) and (3) analyzing the impact of adopting pups from a different strain (interstrain cross-fostering). For each condition, maternal behavior was analyzed continuously over 23-h periods on postnatal days 2, 4, 6 and 9. We report that (1) the maternal behavior of C57BL/6J and DBA/2J dams toward their biological offspring is highly similar, (2) intrastrain cross-fostering has minimal impact on maternal behavior of C57BL/6J and DBA/2J dams, (3) interstrain cross-fostering does not modify the strain differences in maternal care observed between AKR and C3H/He mothers and (4) the pup strain does influence the amount of maternal behavior shown by both mothers in interstrain cross-fostering. These latter findings demonstrate that both mother strain and pup strain are key determinants of maternal behavior.
Collapse
Affiliation(s)
- R van der Veen
- INSERM, U862, University Of Bordeaux 2, Bordeaux, France
| | | | | | | | | |
Collapse
|
27
|
Roy V, Merali Z, Poulter MO, Anisman H. Anxiety responses, plasma corticosterone and central monoamine variations elicited by stressors in reactive and nonreactive mice and their reciprocal F1 hybrids. Behav Brain Res 2007; 185:49-58. [PMID: 17692933 DOI: 10.1016/j.bbr.2007.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 11/25/2022]
Abstract
Stressor-provoked anxiety, plasma corticosterone, and variations of brain monoamine turnover are influenced by genetic factors, but may also be moderated by early life experiences. To evaluate the contribution of maternal influences, behavioral and neurochemical stress responses were assessed in strains of mice that were either stressor-reactive or -resilient (BALB/cByJ and C57BL/6ByJ, respectively) as well as in their reciprocal F(1) hybrids. BALB/cByJ mice demonstrated poorer maternal behaviors than did C57BL/6ByJ dams, irrespective of the pups being raised (inbred or F(1) hybrids). The BALB/cByJ mice appeared more anxious than C57BL/6ByJ mice, exhibiting greater reluctance to step-down from a platform and a greater startle response. Although the F(1) behavior generally resembled that of the C57BL/6ByJ parent strain, in the step-down test the influence of maternal factors were initially evident among the F(1) mice (particularly males) with a BALB/cByJ dam. However, over trials the C57BL/6ByJ-like behavior came to predominate. BALB/cByJ mice also exhibited greater plasma corticosterone elevations, 5-HT utilization in the central amygdala (CeA), and greater NE turnover in the paraventricular nucleus of the hypothalamus (PVN). Interestingly, among the F(1)'s corticosterone and 5-HIAA in the CeA resembled that of the BALB/cByJ parent strain, whereas MHPG accumulation in the PVN was more like that of C57BL/6ByJ mice. It seems that, to some extent, maternal factors influenced anxiety responses in the hybrids, but did not influence the corticosterone or the monoamine variations. The inheritance profiles suggest that anxiety was unrelated to either the corticosterone or monoamine changes.
Collapse
Affiliation(s)
- V Roy
- UPRES PSY.CO EA 1780, Faculté des Sciences, Université de Rouen, Mont Saint Aignan, France
| | | | | | | |
Collapse
|
28
|
Yang M, Zhodzishsky V, Crawley JN. Social deficits in BTBR T+tf/J mice are unchanged by cross-fostering with C57BL/6J mothers. Int J Dev Neurosci 2007; 25:515-21. [PMID: 17980995 DOI: 10.1016/j.ijdevneu.2007.09.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 09/23/2007] [Accepted: 09/25/2007] [Indexed: 11/26/2022] Open
Abstract
Inbred strains of mice are useful model systems for studying the interactions of genetic and environmental contributions during neurodevelopmental stages. We recently reported an inbred strain, BTBR T+tf/J (BTBR), which, as compared to the commonly used C57BL/6J (B6) strain, displays lower social interactions as juveniles, lower social approach in adult ages, and higher levels of repetitive self-grooming throughout developmental stages. The present study investigated whether the early postnatal maternal environment contributes substantially to the unusually low expression of social behaviors and high self-grooming in BTBR as compared to B6. Within 24h of birth, entire litters of pups were cross-fostered to either a dam of the same strain or a dam of the opposite strain. Control litters were left with their own mothers. Offspring were tested for juvenile play at postnatal day 21+/-1, for sociability at 8 weeks of age in an automated three-chambered social approach test, and for self-grooming at 9-11 weeks of age. Results indicate that deficits in play behaviors in juvenile BTBR pups were not rescued by a B6 maternal environment. Similarly, a BTBR maternal environment did not induce play deficits in B6 pups. Cross-fostering had no effect on sociability scores in adults. The high self-grooming in BTBR and low self-grooming in B6 were not affected by maternal environment. These findings favor a genetic interpretation of the unusual social behaviors and self-grooming traits of BTBR, and support the use of the BTBR inbred strain as a mouse model to study genetic mechanism of autism.
Collapse
Affiliation(s)
- Mu Yang
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, Bethesda, MD 20892-1375, USA.
| | | | | |
Collapse
|
29
|
Thapar A, Harold G, Rice F, Ge X, Boivin J, Hay D, van den Bree M, Lewis A. Do intrauterine or genetic influences explain the foetal origins of chronic disease? A novel experimental method for disentangling effects. BMC Med Res Methodol 2007; 7:25. [PMID: 17587444 PMCID: PMC1913535 DOI: 10.1186/1471-2288-7-25] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 06/22/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is much evidence to suggest that risk for common clinical disorders begins in foetal life. Exposure to environmental risk factors however is often not random. Many commonly used indices of prenatal adversity (e.g. maternal gestational stress, gestational diabetes, smoking in pregnancy) are influenced by maternal genes and genetically influenced maternal behaviour. As mother provides the baby with both genes and prenatal environment, associations between prenatal risk factors and offspring disease maybe attributable to true prenatal risk effects or to the "confounding" effects of genetic liability that are shared by mother and offspring. Cross-fostering designs, including those that involve embryo transfer have proved useful in animal studies. However disentangling these effects in humans poses significant problems for traditional genetic epidemiological research designs. METHODS We present a novel research strategy aimed at disentangling maternally provided pre-natal environmental and inherited genetic effects. Families of children aged 5 to 9 years born by assisted reproductive technologies, specifically homologous IVF, sperm donation, egg donation, embryo donation and gestational surrogacy were contacted through fertility clinics and mailed a package of questionnaires on health and mental health related risk factors and outcomes. Further data were obtained from antenatal records. RESULTS To date 741 families from 18 fertility clinics have participated. The degree of association between maternally provided prenatal risk factor and child outcome in the group of families where the woman undergoing pregnancy and offspring are genetically related (homologous IVF, sperm donation) is compared to association in the group where offspring are genetically unrelated to the woman who undergoes the pregnancy (egg donation, embryo donation, surrogacy). These comparisons can be then examined to infer the extent to which prenatal effects are genetically and environmentally mediated. CONCLUSION A study based on children born by IVF treatment and who differ in genetic relatedness to the woman undergoing the pregnancy is feasible. The present report outlines a novel experimental method that permits disaggregation of maternally provided inherited genetic and post-implantation prenatal effects.
Collapse
Affiliation(s)
- Anita Thapar
- Department of Psychological Medicine, School of Medicine, Heath Park, Cardiff University, CF14 4XN, UK
| | - Gordon Harold
- School of Psychology, Park Place, Cardiff University, Cardiff, UK
| | - Frances Rice
- Department of Psychological Medicine, School of Medicine, Heath Park, Cardiff University, CF14 4XN, UK
| | - XiaoJia Ge
- Department of Human and Community Development, University of California, Davis, Davis, USA
| | - Jacky Boivin
- School of Psychology, Park Place, Cardiff University, Cardiff, UK
| | - Dale Hay
- School of Psychology, Park Place, Cardiff University, Cardiff, UK
| | - Marianne van den Bree
- Department of Psychological Medicine, School of Medicine, Heath Park, Cardiff University, CF14 4XN, UK
| | - Allyson Lewis
- Department of Psychological Medicine, School of Medicine, Heath Park, Cardiff University, CF14 4XN, UK
| |
Collapse
|