1
|
Sex-specific hypothalamic expression of kisspeptin, gonadotropin releasing hormone, and kisspeptin receptor in progressive demyelination model. J Chem Neuroanat 2022; 123:102120. [PMID: 35718292 DOI: 10.1016/j.jchemneu.2022.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022]
Abstract
Demyelinating diseases, such as multiple sclerosis, decrease the quality of life of patients and can affect reproduction. Assisted reproductive therapies are available, which although effective, aggravate motor symptoms. For this reason, it is important to determine how the control of the hypothalamus-pituitary-gonadal axis is affected in order to develop better strategies for these patients. One way to determine this is using animal models such as the taiep rat, which shows progressive demyelination of the central nervous system, and was used in the present study to characterize the expression of gonadotrophin-releasing hormone (GnRH), Kisspeptin, and kisspeptin receptor (Kiss1R) and luteinizing hormone (LH) secretion. The expression of kisspeptin, GnRH, and Kiss1R was determined at the hypothalamic level by immunofluorescence and serum LH levels were determined by ELISA. The expression of kisspeptin at the hypothalamic level showed sexual dimorphism, where there was an increase in males and a decrease in females during oestrus. There was no change in the expression of GnRH or kisspeptin receptor, regardless of sex. However, a decrease in serum LH concentration was observed in both sexes. The taiep rat showed changes in the expression of kisspeptin at the hypothalamic level. These changes are different from those reported in the literature with the use of animals with experimental allergic encephalomyelitis, this is because both animal models represent different degrees of progression of multiple sclerosis. Our results suggest that the effects on the hypothalamus-pituitary-gonadal axis depend on the differences between the demyelinating processes, their progression, and even individual factors, and it is thus important that fertility treatments are individualized to maximize therapeutic effects.
Collapse
|
2
|
Ataie Z, Choopani S, Foolad F, Khodagholi F, Goudarzvand M. Vitamin D3 mediates spatial memory improvement through nitric oxide mechanism in demyelinated hippocampus of rat. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Zahra Ataie
- Alborz University of Medical Sciences, Iran; Alborz University of Medical Sciences, Iran
| | | | | | | | | |
Collapse
|
3
|
Vargas-Castro V, Gomez-Diaz R, Blanco-Alvarez VM, Tomas-Sanchez C, Gonzalez-Vazquez A, Aguilar-Peralta AK, Gonzalez-Barrios JA, Martinez-Fong D, Eguibar JR, Vivar C, Ugarte A, Soto-Rodriguez G, Brambila E, Millán-Perez-Peña L, Leon-Chavez BA. Long-term taurine administration improves motor skills in a tubulinopathy rat model by decreasing oxidative stress and promoting myelination. Mol Cell Neurosci 2021; 115:103643. [PMID: 34186187 DOI: 10.1016/j.mcn.2021.103643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 11/18/2022] Open
Abstract
The taiep rat undergoes hypomyelination and progressive demyelination caused by an abnormal microtubule accumulation in oligodendrocytes, which elicits neuroinflammation and motor behavior dysfunction. Based on taurine antioxidant and proliferative actions, this work explored whether its sustained administration from the embryonic age to adulthood could prevent neuroinflammation, stimulate cell proliferation, promote myelination, and relieve motor impairment. Taurine (50 mg/L of drinking water = 50 ppm) was given to taiep pregnant rats on gestational day 15 and afterward to the male offspring until eight months of age. We measured the levels of nitric oxide (NO), malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA), CXCL1, CXCR2 receptor, growth factors (BNDF and FGF2), cell proliferation, and myelin content over time. Integral motor behavior was also evaluated. Our results showed that taurine administration significantly decreased NO and MDA + 4-HDA levels, increased cell proliferation, and promoted myelination in an age- and brain region-dependent fashion compared with untreated taiep rats. Taurine effect on chemokines and growth factors was also variable. Taurine improved vestibular reflexes and limb muscular strength in perinatal rats and fine movements and immobility episodes in adult rats. These results show that chronic taurine administration partially alleviates the taiep neuropathology.
Collapse
Affiliation(s)
- Viridiana Vargas-Castro
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico
| | - Ricardo Gomez-Diaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico
| | - Victor M Blanco-Alvarez
- Facultad de Enfermería, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72304, Mexico
| | - Constantino Tomas-Sanchez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico
| | - Alejandro Gonzalez-Vazquez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico
| | - Ana Karina Aguilar-Peralta
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico
| | - Juan A Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional 1° de Octubre, ISSSTE, Mexico City C. P. 07760, Mexico
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, C. P. 07000 Mexico City, Mexico
| | - Jose R Eguibar
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72590, Mexico
| | - Carmen Vivar
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, C. P. 07000 Mexico City, Mexico
| | - Araceli Ugarte
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72590, Mexico
| | - Guadalupe Soto-Rodriguez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72304, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico
| | - Lourdes Millán-Perez-Peña
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico
| | - Bertha Alicia Leon-Chavez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue. C. P. 72570, Mexico.
| |
Collapse
|
4
|
Nava-Castro KE, Cortes C, Eguibar JR, Del Rio-Araiza VH, Hernández-Bello R, Morales-Montor J. The deficiency of myelin in the mutant taiep rat induces a differential immune response related to protection from the human parasite Trichinella spiralis. PLoS One 2020; 15:e0231803. [PMID: 32817660 PMCID: PMC7444528 DOI: 10.1371/journal.pone.0231803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Taiep rat is a myelin mutant with a progressive motor syndrome characterized by tremor, ataxia, immobility episodes, epilepsy and paralysis of the hindlimbs. Taiep had an initial hypomyelination followed by a progressive demyelination associated with an increased expression of some interleukins and their receptors. The pathology correlated with an increase in nitric oxide activity and lipoperoxidation. In base of the above evidences taiep rat is an appropriate model to study neuroimmune interactions. The aim of this study was to analyze the immune responses in male taiep rats after acute infection with Trichinella spiralis. Our results show that there is an important decrease in the number of intestinal larvae in the taiep rat with respect to Sprague-Dawley control rats. We also found differences in the percentage of innate and adaptive immune cell profile in the mesenteric lymphatic nodes and the spleen that correlated with the demyelination process that took place on taiep subjects. Finally, a clear pro-inflammatory cytokine pattern was seen on infected taiep rats, that could be responsible of the decrement in the number of larvae number. These results sustain the theory that neuroimmune interaction is a fundamental process capable of modulating the immune response, particularly against the parasite Trichinella spiralis in an animal model of progressive demyelination due to tubulinopathy, that could be an important mechanism for the clinical course of autoimmune diseases associated with parasite infection.
Collapse
Affiliation(s)
- Karen Elizabeth Nava-Castro
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Departamento de Genotoxicología y Medicina Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Carmen Cortes
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
- * E-mail: , (JM-M); (CC)
| | - José Ramón Eguibar
- Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
- Research Office of the Vice-Rectory of Research and Postgraduate Studies, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Víctor Hugo Del Rio-Araiza
- Departamento de Parasitología, Facultad de Veterinaria, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Romel Hernández-Bello
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail: , (JM-M); (CC)
| |
Collapse
|
5
|
Garduno-Robles A, Alata M, Piazza V, Cortes C, Eguibar JR, Pantano S, Hernandez VH. MRI Features in a Rat Model of H-ABC Tubulinopathy. Front Neurosci 2020; 14:555. [PMID: 32581692 PMCID: PMC7284052 DOI: 10.3389/fnins.2020.00555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/05/2020] [Indexed: 11/22/2022] Open
Abstract
Tubulinopathies are a group of recently described diseases characterized by mutations in the tubulin genes. Mutations in TUBB4A produce diseases such as dystonia type 4 (DYT4) and hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC), which are clinically diagnosed by magnetic resonance imaging (MRI). We propose the taiep rat as the first animal model for tubulinopathies. The spontaneous mutant suffers from a syndrome related to a central leukodystrophy and characterized by tremor, ataxia, immobility, epilepsy, and paralysis. The pathological signs presented by these rats and the morphological changes we found by our longitudinal MRI study are similar to those of patients with mutations in TUBB4A. The diffuse atrophy we found in brain, cerebellum and spinal cord is related to the changes detectable in many human tubulinopathies and in particular in H-ABC patients, where myelin degeneration at the level of putamen and cerebellum is a clinical trademark of the disease. We performed Tubb4a exon analysis to corroborate the genetic defect and formulated hypotheses about the effect of amino acid 302 change on protein physiology. Optical microscopy of taiep rat cerebella and spinal cord confirmed the optical density loss in white matter associated with myelin loss, despite the persistence of neural fibers.
Collapse
Affiliation(s)
- Angeles Garduno-Robles
- Departament of Chemical, Electronic and Biomedical Engineering, DCI, University of Guanajuato, Guanajuato, Mexico.,Center of Research in Optics, Leon, Mexico
| | | | | | - Carmen Cortes
- Institute of Physiology, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Jose R Eguibar
- Institute of Physiology, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico.,Research Office of the Vice-rectory of Research and Postgraduate Studies, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Sergio Pantano
- Group of Biomolecular Simulations, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Victor H Hernandez
- Departament of Chemical, Electronic and Biomedical Engineering, DCI, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
6
|
Singh S, Kumar V, Kumar N, Sharma P, Waheed SM. Protective and Modulatory Effects of Trapa bispinosa and Trigonella foenum-graecum on Neuroblastoma Cells Through Neuronal Nitric Oxide Synthase. Assay Drug Dev Technol 2019; 18:64-74. [PMID: 31742429 DOI: 10.1089/adt.2018.912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fruits of Trapa bispinosa (TB) and seeds of Trigonella foenum-graecum (TF) are used for their nutraceutical properties in various systems of traditional medicine practiced in India. In this study aqueous and methanolic extracts of TB fruits and TF seeds were prepared and their protective effect was studied on hydrogen peroxide (H2O2)-treated neuroblastoma (NB-41) cell line. Cell viability, nitric oxide (NO) levels, mRNA, and protein profiles were analyzed and compared with untreated control. Results show that aqueous extracts of both TB and TF provide significant protection to neuroblastoma cells with TF aqueous extract offering better protection through upregulation of neuronal nitric oxide synthase (nNOS) against hydrogen peroxide generated stress. This is the first report demonstrating protection of neuronal cell lines by use of TB and TF extracts through modulation of nNOS activity.
Collapse
Affiliation(s)
- Saumya Singh
- Department of Biotechnology, Graphic Era University, Dehradun, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Vinay Kumar
- Department of Biotechnology, Graphic Era University, Dehradun, India
| | - Nirmal Kumar
- Department of Biotechnology, Graphic Era University, Dehradun, India
| | - Promila Sharma
- Department of Biotechnology, Graphic Era University, Dehradun, India
| | | |
Collapse
|
7
|
Muñoz-de-la-Torre LP, Eguibar JR, Cortés C, Ugarte A, Trujillo A. Follicular Development and Secretion of Ovarian Hormones during the Juvenile and Adult Reproductive Lives of the Myelin Mutant taiep Rat: An Animal Model of Demyelinating Diseases. Int J Endocrinol 2018; 2018:5718782. [PMID: 30363667 PMCID: PMC6180977 DOI: 10.1155/2018/5718782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/26/2018] [Accepted: 08/05/2018] [Indexed: 11/18/2022] Open
Abstract
Infertility and reproductive problems have been reported in women with several neurological disorders, for example, demyelination. However, the physiology of such problems has remained unknown so far. The taiep rats are an animal neurological model that initially shows a hypomyelination followed by a progressive demyelination of the central nervous system. This animal has reproductive problems, and the aim of this work is to characterize the follicular development, secretion of ovarian hormones, and presence of noradrenaline in the ovaries of the female taiep rats in the juvenile and adult stages. The taiep rats have low body weight (approximately 19% less than that of SD rats), a delay of 4 days in the age of vaginal opening, and an irregularity in the estrous cycle by the absence or prolongation of some estral cycle stage. In the juvenile stage, we observed a decrease of approximately 44% in the total number of follicles with a 15% increase of atresia and an 80% decrease in the fluorescence intensity of catecholamines in the ovaries, with a 21% increment in plasma concentrations of testosterone. In the adult stage, we observed follicular cysts and a 50% decrease in fluorescence intensity of catecholamines in the ovaries, with changes in the secretion of ovarian hormones, an increase of 20 times in progesterone, and a decrement of a half in estradiol. The demyelination in taiep rats affects follicular development and steroidogenesis in the early stages of the animal's life, and this is maintained until adulthood.
Collapse
Affiliation(s)
| | - J. R. Eguibar
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla, 72000 Puebla, Mexico
| | - C. Cortés
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico
| | - A. Ugarte
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico
| | - A. Trujillo
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico
| |
Collapse
|
8
|
Prophylactic Chronic Zinc Administration Increases Neuroinflammation in a Hypoxia-Ischemia Model. J Immunol Res 2016; 2016:4039837. [PMID: 27635404 PMCID: PMC5007350 DOI: 10.1155/2016/4039837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/23/2016] [Accepted: 06/30/2016] [Indexed: 11/24/2022] Open
Abstract
Acute and subacute administration of zinc exert neuroprotective effects in hypoxia-ischemia animal models; yet the effect of chronic administration of zinc still remains unknown. We addressed this issue by injecting zinc at a tolerable dose (0.5 mg/kg weight, i.p.) for 14 days before common carotid artery occlusion (CCAO) in a rat. After CCAO, the level of zinc was measured by atomic absorption spectrophotometry, nitrites were determined by Griess method, lipoperoxidation was measured by Gerard-Monnier assay, and mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors was measured by qRT-PCR, whereas nitrotyrosine, chemokines, and their receptors were assessed by ELISA and histopathological changes in the temporoparietal cortex-hippocampus at different time points. Long-term memory was evaluated using Morris water maze. Following CCAO, a significant increase in nitrosative stress, inflammatory chemokines/receptors, and cell death was observed after 8 h, and a 2.5-fold increase in zinc levels was detected after 7 days. Although CXCL12 and FGF2 protein levels were significantly increased, the long-term memory was impaired 12 days after reperfusion in the Zn+CCAO group. Our data suggest that the chronic administration of zinc at tolerable doses causes nitrosative stress, toxic zinc accumulation, and neuroinflammation, which might account for the neuronal death and cerebral dysfunction after CCAO.
Collapse
|
9
|
Blanco-Alvarez VM, Soto-Rodriguez G, Gonzalez-Barrios JA, Martinez-Fong D, Brambila E, Torres-Soto M, Aguilar-Peralta AK, Gonzalez-Vazquez A, Tomás-Sanchez C, Limón ID, Eguibar JR, Ugarte A, Hernandez-Castillo J, Leon-Chavez BA. Prophylactic Subacute Administration of Zinc Increases CCL2, CCR2, FGF2, and IGF-1 Expression and Prevents the Long-Term Memory Loss in a Rat Model of Cerebral Hypoxia-Ischemia. Neural Plast 2015; 2015:375391. [PMID: 26355725 PMCID: PMC4556331 DOI: 10.1155/2015/375391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 01/12/2023] Open
Abstract
Prophylactic subacute administration of zinc decreases lipoperoxidation and cell death following a transient cerebral hypoxia-ischemia, thus suggesting neuroprotective and preconditioning effects. Chemokines and growth factors are also involved in the neuroprotective effect in hypoxia-ischemia. We explored whether zinc prevents the cerebral cortex-hippocampus injury through regulation of CCL2, CCR2, FGF2, and IGF-1 expression following a 10 min of common carotid artery occlusion (CCAO). Male rats were grouped as follows: (1) Zn96h, rats injected with ZnCl2 (one dose every 24 h during four days); (2) Zn96h + CCAO, rats treated with ZnCl2 before CCAO; (3) CCAO, rats with CCAO only; (4) Sham group, rats with mock CCAO; and (5) untreated rats. The cerebral cortex-hippocampus was dissected at different times before and after CCAO. CCL2/CCR2, FGF2, and IGF-1 expression was assessed by RT-PCR and ELISA. Learning in Morris Water Maze was achieved by daily training during 5 days. Long-term memory was evaluated on day 7 after learning. Subacute administration of zinc increased expression of CCL2, CCR2, FGF2, and IGF-1 in the early and late phases of postreperfusion and prevented the CCAO-induced memory loss in the rat. These results might be explained by the induction of neural plasticity because of the expression of CCL2 and growth factors.
Collapse
Affiliation(s)
| | | | - Juan Antonio Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional 1° de Octubre, ISSSTE, Avenida Instituto Politécnico Nacional No. 1669, 07760 México, DF, Mexico
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México, DF, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, BUAP, 14 Sur y Avenida San Claudio, 72570 Puebla, PUE, Mexico
| | - Maricela Torres-Soto
- Facultad de Ciencias Químicas, BUAP, 14 Sur y Avenida San Claudio, 72570 Puebla, PUE, Mexico
| | | | | | | | - I. Daniel Limón
- Facultad de Ciencias Químicas, BUAP, 14 Sur y Avenida San Claudio, 72570 Puebla, PUE, Mexico
| | - Jose R. Eguibar
- Instituto de Fisiología, BUAP, 14 Sur 6301, 72570 Puebla, PUE, Mexico
| | - Araceli Ugarte
- Instituto de Fisiología, BUAP, 14 Sur 6301, 72570 Puebla, PUE, Mexico
| | | | | |
Collapse
|
10
|
Analysis of chemokines and receptors expression profile in the myelin mutant taiep rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:397310. [PMID: 25883747 PMCID: PMC4390177 DOI: 10.1155/2015/397310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 11/18/2022]
Abstract
Taiep rat has a failure in myelination and remyelination processes leading to a state of hypomyelination throughout its life. Chemokines, which are known to play a role in inflammation, are also involved in the remyelination process. We aimed to demonstrate that remyelination-stimulating factors are altered in the brainstem of 1- and 6-month-old taiep rats. We used a Rat RT2 Profiler PCR Array to assess mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors. We also evaluated protein levels of CCL2, CCR1, CCR2, CCL5, CCR5, CCR8, CXCL1, CXCR2, CXCR4, FGF2, and VEGFA by ELISA. Sprague-Dawley rats were used as a control. PCR Array procedure showed that proinflammatory cytokines were not upregulated in the taiep rat. In contrast, some mRNA levels of beta and alpha chemokines were upregulated in 1-month-old rats, but CXCR4 was downregulated at their 6 months of age. ELISA results showed that CXCL1, CCL2, CCR2, CCR5, CCR8, and CXCR4 protein levels were decreased in brainstem at the age of 6 months. These results suggest the presence of a chronic neuroinflammation process with deficiency of remyelination-stimulating factors (CXCL1, CXCR2, and CXCR4), which might account for the demyelination in the taiep rat.
Collapse
|
11
|
Blanco S, Molina FJ, Castro L, Del Moral ML, Hernandez R, Jimenez A, Rus A, Martinez-Lara E, Siles E, Peinado MA. Study of the nitric oxide system in the rat cerebellum during aging. BMC Neurosci 2010; 11:78. [PMID: 20576087 PMCID: PMC2905430 DOI: 10.1186/1471-2202-11-78] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 06/24/2010] [Indexed: 11/30/2022] Open
Abstract
Background The cerebellum is the neural structure with the highest levels of nitric oxide, a neurotransmitter that has been proposed to play a key role in the brain aging, although knowledge concerning its contribution to cerebellar senescence is still unclear, due mainly to absence of integrative studies that jointly evaluate the main factors involved in its cell production and function. Consequently, in the present study, we investigate the expression, location, and activity of nitric oxide synthase isoenzymes; the protein nitration; and the production of nitric oxide in the cerebellum of adult and old rats. Results Our results show no variation in the expression of nitric oxide synthase isoforms with aging, although, we have detected some changes in the cellular distribution pattern of the inducible isoform particularly in the cerebellar nuclei. There is also an increase in nitric oxide synthase activity, as well as greater protein-nitration levels, and maintenance of nitrogen oxides (NOx) levels in the senescent cerebellum. Conclusions The nitric oxide/nitric oxide syntahses system suffers from a number of changes, mainly in the inducible nitric oxide synthase distribution and in overall nitric oxide synthases activity in the senescent cerebellum, which result in an increase of the protein nitration. These changes might be related to the oxidative damage detected with aging in the cerebellum.
Collapse
Affiliation(s)
- Santos Blanco
- Department of Experimental Biology, University of Jaen, Campus Las Lagunillas s/n, 23071, Jaén, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Izawa T, Takenaka S, Ihara H, Kotani T, Yamate J, Franklin RJ, Kuwamura M. Cellular responses in the spinal cord during development of hypomyelination in the mv rat. Brain Res 2008; 1195:120-9. [DOI: 10.1016/j.brainres.2007.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 10/22/2022]
|
13
|
Aguilar-Alonso P, Martinez-Fong D, Pazos-Salazar NG, Brambila E, Gonzalez-Barrios JA, Mejorada A, Flores G, Millan-Perezpeña L, Rubio H, Leon-Chavez BA. The increase in zinc levels and upregulation of zinc transporters are mediated by nitric oxide in the cerebral cortex after transient ischemia in the rat. Brain Res 2008; 1200:89-98. [PMID: 18289514 DOI: 10.1016/j.brainres.2007.11.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 11/13/2007] [Accepted: 11/15/2007] [Indexed: 11/19/2022]
Abstract
The transient occlusion of cerebral arteries causes an increase in zinc levels in the brain, which is associated with a production of nitric oxide (NO). The types of zinc transporters (ZnT) involved in zinc homeostasis in the cerebral cortex after hypoxia-ischemia are not completely known. We studied the effect of the transient occlusion (10 min) of the common carotid artery (CCA) on NO-induced zinc levels, ZnT mRNA expression, and cell-death markers in the cerebral cortex-hippocampus of the rat. Nitrites, zinc, and lipoperoxidation were quantified by colorimetric methods, ZnT expression was determined by RT-PCR, caspase-3 by ELISA and immunohistochemistry, and histopathological alterations by H&E staining. After restoration of the blood flow, the basal levels of NO and zinc increased in a biphasic manner over time, but the peaks of NO levels appeared earlier (2 h and 24 h) than those of zinc (6 h and 36 h). Upregulation of ZnT1, ZnT2, and ZnT4 mRNAs was determined after 8-h postreperfusion, but ZnT3 RNA levels were unaffected. Lipoperoxidation and caspase-3 levels were also increased, and necrosis and apoptosis were present at 24 h postreperfusion. All the effects determined were prevented by l-nitro-arginine methyl ester injected 1 h before the occlusion of the CCA. Our results suggest that the upregulation of ZnT1, ZnT2, and ZnT4 was to decrease the cytosolic zinc levels caused by NO after transient occlusion of the CCA, although this was unable to lead to physiological levels of zinc and to prevent cell damage in the cerebral cortex-hippocampus of the rat.
Collapse
Affiliation(s)
- Patricia Aguilar-Alonso
- Area de Bioquímica y Biología Molecular, Facultad de Ciencias químicas, BUAP. 14 sur y Av. San Claudio, 72570, Puebla, Pue. México
| | | | | | | | | | | | | | | | | | | |
Collapse
|