1
|
Ahmadian-Moghadam H, Sadat-Shirazi MS, Zarrindast MR. Cocaine- and amphetamine-regulated transcript (CART): A multifaceted neuropeptide. Peptides 2018; 110:56-77. [PMID: 30391426 DOI: 10.1016/j.peptides.2018.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Over the last 35 years, the continuous discovery of novel neuropeptides has been the key to the better understanding of how the central nervous system has integrated with neuronal signals and behavioral responses. Cocaine and amphetamine-regulated transcript (CART) was discovered in 1995 in the rat striatum but later was found to be highly expressed in the hypothalamus. The widespread distribution of CART peptide in the brain complicated the understanding of the role played by this neurotransmitter. The main objective of the current compact review is to piece together the fragments of available information about origin, expression, distribution, projection, and function of CART peptides. Accumulative evidence suggests CART as a neurotransmitter and neuroprotective agent that is mainly involved in regulation of feeding, addiction, stress, anxiety, innate fear, neurological disease, neuropathic pain, depression, osteoporosis, insulin secretion, learning, memory, reproduction, vision, sleep, thirst and body temperature. In spite of the vast number of studies about the CART, the overall pictures about the CART functions are sketchy. First, there is a lack of information about cloned receptor, specific agonist and antagonist. Second, CART peptides are detected in discrete sets of neurons that can modulate countless activities and third; CART peptides exist in several fragments due to post-translational processing. For these reasons the overall picture about the CART peptides are sketchy and confounding.
Collapse
Affiliation(s)
- Hamid Ahmadian-Moghadam
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
2
|
Señarís R, Ordás P, Reimúndez A, Viana F. Mammalian cold TRP channels: impact on thermoregulation and energy homeostasis. Pflugers Arch 2018; 470:761-777. [PMID: 29700598 DOI: 10.1007/s00424-018-2145-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
|
3
|
García-Luna C, Soberanes-Chávez P, de Gortari P. Impaired hypothalamic cocaine- and amphetamine-regulated transcript expression in lateral hypothalamic area and paraventricular nuclei of dehydration-induced anorexic rats. J Neuroendocrinol 2017; 29. [PMID: 28984394 DOI: 10.1111/jne.12541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/14/2017] [Accepted: 10/02/2017] [Indexed: 11/28/2022]
Abstract
Negative energy balance promotes physiological adaptations that ensure the survival of animals. The hypothalamic-pituitary-thyroid axis regulates basal energy expenditure and its down-regulating adaptation to negative energy balance is well described: in fasting, the serum content of thyrotrophin (TSH) and thyroid hormones (TH) decreases, enhancing the survival odds of individuals. By contrast, dehydration-induced anorexic (DIA) rats present an impaired hypothalamic-pituitary-thyroid (HPT) axis adaptation despite their negative energy balance: increased circulating TSH levels. The implication of cocaine- and amphetamine-regulated transcript (CART), an anorexic peptide, in HPT axis function impairment and food-avoidance behaviour displayed by DIA animals is unknown. Because CART is co-expressed with the peptide that regulates the HPT axis in hypophysiotrophic paraventricular nucleus (PVN) neurones (TSH-releasing hormone), we analysed CART expression and possible implications with respect to high TSH levels of DIA animals. We examined whether changes in CART expression from the lateral hypothalamic area (LHA) and arcuate nucleus (ARC) could participate in food-avoidance of DIA rats. DIA and forced-food restricted (FFR) animals reduced their body weight and food intake. FFR rats had a down-regulation of their HPT axis (reduced serum TH and TSH content), whereas DIA animals had reduced TH but increased TSH levels. CART mRNA expression in the ARC decreased similarly between experimental groups and diminished in anterior, medial PVN and in LHA of FFR animals, whereas DIA animals showed unchanged levels. This impaired CART mRNA expression in the anterior PVN and LHA could be related to the aberrant feeding behaviour of DIA rats but not to their deregulated HPT axis function.
Collapse
Affiliation(s)
- C García-Luna
- Molecular Neurophysiology Laboratory, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - P Soberanes-Chávez
- Molecular Neurophysiology Laboratory, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - P de Gortari
- Molecular Neurophysiology Laboratory, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
4
|
Wanlong Z, Di Z, Dongmin H, Guang Y. Roles of hypothalamic neuropeptide gene expression in body mass regulation in Eothenomys miletus (Mammalia: Rodentia: Cricetidae). THE EUROPEAN ZOOLOGICAL JOURNAL 2017. [DOI: 10.1080/24750263.2017.1334840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Z. Wanlong
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| | - Z. Di
- School of Life Sciences, Kunming, People’s Republic of China
| | - H. Dongmin
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| | - Y. Guang
- College of Life Sciences, Nanjing Normal University, Nanjing, People’s Republic of China
| |
Collapse
|
5
|
Joseph-Bravo P, Jaimes-Hoy L, Uribe RM, Charli JL. 60 YEARS OF NEUROENDOCRINOLOGY: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis. J Endocrinol 2015; 226:T85-T100. [PMID: 26101376 DOI: 10.1530/joe-15-0124] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 12/25/2022]
Abstract
This review presents the findings that led to the discovery of TRH and the understanding of the central mechanisms which control hypothalamus-pituitary-thyroid axis (HPT) activity. The earliest studies on thyroid physiology are now dated a century ago when basal metabolic rate was associated with thyroid status. It took over 50 years to identify the key elements involved in the HPT axis. Thyroid hormones (TH: T4 and T3) were characterized first, followed by the semi-purification of TSH whose later characterization paralleled that of TRH. Studies on the effects of TH became possible with the availability of synthetic hormones. DNA recombinant techniques facilitated the identification of all the elements involved in the HPT axis, including their mode of regulation. Hypophysiotropic TRH neurons, which control the pituitary-thyroid axis, were identified among other hypothalamic neurons which express TRH. Three different deiodinases were recognized in various tissues, as well as their involvement in cell-specific modulation of T3 concentration. The role of tanycytes in setting TRH levels due to the activity of deiodinase type 2 and the TRH-degrading ectoenzyme was unraveled. TH-feedback effects occur at different levels, including TRH and TSH synthesis and release, deiodinase activity, pituitary TRH-receptor and TRH degradation. The activity of TRH neurons is regulated by nutritional status through neurons of the arcuate nucleus, which sense metabolic signals such as circulating leptin levels. Trh expression and the HPT axis are activated by energy demanding situations, such as cold and exercise, whereas it is inhibited by negative energy balance situations such as fasting, inflammation or chronic stress. New approaches are being used to understand the activity of TRHergic neurons within metabolic circuits.
Collapse
Affiliation(s)
- Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Rosa-María Uribe
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| |
Collapse
|
6
|
Jaroslawska J, Chabowska-Kita A, Kaczmarek MM, Kozak LP. Npvf: Hypothalamic Biomarker of Ambient Temperature Independent of Nutritional Status. PLoS Genet 2015; 11:e1005287. [PMID: 26070086 PMCID: PMC4466399 DOI: 10.1371/journal.pgen.1005287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 05/18/2015] [Indexed: 01/25/2023] Open
Abstract
The mechanism by which mice, exposed to the cold, mobilize endogenous or exogenous fuel sources for heat production is unknown. To address this issue we carried out experiments using 3 models of obesity in mice: C57BL/6J+/+ (wild-type B6) mice with variable susceptibility to obesity in response to being fed a high-fat diet (HFD), B6. Ucp1-/- mice with variable diet-induced obesity (DIO) and a deficiency in brown fat thermogenesis and B6. Lep-/- with defects in thermogenesis, fat mobilization and hyperphagia. Mice were exposed to the cold and monitored for changes in food intake and body composition to determine their energy balance phenotype. Upon cold exposure wild-type B6 and Ucp1-/- mice with diet-induced obesity burned endogenous fat in direct proportion to their fat reserves and changes in food intake were inversely related to fat mass, whereas leptin-deficient and lean wild-type B6 mice fed a chow diet depended on increased food intake to fuel thermogenesis. Analysis of gene expression in the hypothalamus to uncover a central regulatory mechanism revealed suppression of the Npvf gene in a manner that depends on the reduced ambient temperature and degree of exposure to the cold, but not on adiposity, leptin levels, food intake or functional brown fat. Current knowledge does not provide a clear, definite view of central mechanisms controlling energy balance upon cold-activated thermogenesis. Here we show that upon cold exposure lean mice maintain body composition but increase food intake to fuel thermogenesis, whereas cold-exposed mice with DIO utilize endogenous fat stores and then transition to increased food intake as body composition approaches that of the lean controls. Using knockout mice with leptin and Ucp1 gene deficiency our study indicates that the relative energy utilization from food intake and endogenous energy reserves to maintain body temperature during cold exposure is independent of both leptin action and brown fat-linked thermogenesis. Using a combination of genetic and biological approaches, we demonstrate that Npvf gene expression in the hypothalamus is regulated by changes in ambient temperature in a manner independent of the nutritional status of the mouse.
Collapse
Affiliation(s)
- Julia Jaroslawska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Monika M. Kaczmarek
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Leslie P. Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- * E-mail:
| |
Collapse
|
7
|
Joseph-Bravo P, Jaimes-Hoy L, Charli JL. Regulation of TRH neurons and energy homeostasis-related signals under stress. J Endocrinol 2015; 224:R139-59. [PMID: 25563352 DOI: 10.1530/joe-14-0593] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Energy homeostasis relies on a concerted response of the nervous and endocrine systems to signals evoked by intake, storage, and expenditure of fuels. Glucocorticoids (GCs) and thyroid hormones are involved in meeting immediate energy demands, thus placing the hypothalamo-pituitary-thyroid (HPT) and hypothalamo-pituitary-adrenal axes at a central interface. This review describes the mode of regulation of hypophysiotropic TRHergic neurons and the evidence supporting the concept that they act as metabolic integrators. Emphasis has been be placed on i) the effects of GCs on the modulation of transcription of Trh in vivo and in vitro, ii) the physiological and molecular mechanisms by which acute or chronic situations of stress and energy demands affect the activity of TRHergic neurons and the HPT axis, and iii) the less explored role of non-hypophysiotropic hypothalamic TRH neurons. The partial evidence gathered so far is indicative of a contrasting involvement of distinct TRH cell types, manifested through variability in cellular phenotype and physiology, including rapid responses to energy demands for thermogenesis or physical activity and nutritional status that may be modified according to stress history.
Collapse
Affiliation(s)
- Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología MolecularInstituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), A.P. 510-3, Cuernavaca, Morelos 62250, Mexico
| |
Collapse
|
8
|
Rodríguez-Molina V, Patiño J, Vargas Y, Sánchez-Jaramillo E, Joseph-Bravo P, Charli JL. TRH regulates action potential shape in cerebral cortex pyramidal neurons. Brain Res 2014; 1571:1-11. [PMID: 24842001 DOI: 10.1016/j.brainres.2014.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 05/03/2014] [Accepted: 05/08/2014] [Indexed: 11/28/2022]
Abstract
Thyrotropin releasing hormone (TRH) is a neuropeptide with a wide neural distribution and a variety of functions. It modulates neuronal electrophysiological properties, including resting membrane potential, as well as excitatory postsynaptic potential and spike frequencies. We explored, with whole-cell patch clamp, TRH effect on action potential shape in pyramidal neurons of the sensorimotor cortex. TRH reduced spike and after hyperpolarization amplitudes, and increased spike half-width. The effect varied with dose, time and cortical layer. In layer V, 0.5µM of TRH induced a small increase in spike half-width, while 1 and 5µM induced a strong but transient change in spike half-width, and amplitude; after hyperpolarization amplitude was modified at 5µM of TRH. Cortical layers III and VI neurons responded intensely to 0.5µM TRH; layer II neurons response was small. The effect of 1µM TRH on action potential shape in layer V neurons was blocked by G-protein inhibition. Inhibition of the activity of the TRH-degrading enzyme pyroglutamyl peptidase II (PPII) reproduced the effect of TRH, with enhanced spike half-width. Many cortical PPII mRNA+ cells were VGLUT1 mRNA+, and some GAD mRNA+. These data show that TRH regulates action potential shape in pyramidal cortical neurons, and are consistent with the hypothesis that PPII controls its action in this region.
Collapse
Affiliation(s)
- Víctor Rodríguez-Molina
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), AP 70250, México, D.F. 04510, México; Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Javier Patiño
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Yamili Vargas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad 2001, Chamilpa, Cuernavaca, Morelos 62210, México
| | - Edith Sánchez-Jaramillo
- Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñíz, México D.F., México
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad 2001, Chamilpa, Cuernavaca, Morelos 62210, México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad 2001, Chamilpa, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
9
|
Subhedar NK, Nakhate KT, Upadhya MA, Kokare DM. CART in the brain of vertebrates: circuits, functions and evolution. Peptides 2014; 54:108-30. [PMID: 24468550 DOI: 10.1016/j.peptides.2014.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 12/12/2022]
Abstract
Cocaine- and amphetamine-regulated transcript peptide (CART) with its wide distribution in the brain of mammals has been the focus of considerable research in recent years. Last two decades have witnessed a steady rise in the information on the genes that encode this neuropeptide and regulation of its transcription and translation. CART is highly enriched in the hypothalamic nuclei and its relevance to energy homeostasis and neuroendocrine control has been understood in great details. However, the occurrence of this peptide in a range of diverse circuitries for sensory, motor, vegetative, limbic and higher cortical areas has been confounding. Evidence that CART peptide may have role in addiction, pain, reward, learning and memory, cognition, sleep, reproduction and development, modulation of behavior and regulation of autonomic nervous system are accumulating, but an integration has been missing. A steady stream of papers has been pointing at the therapeutic potentials of CART. The current review is an attempt at piecing together the fragments of available information, and seeks meaning out of the CART elements in their anatomical niche. We try to put together the CART containing neuronal circuitries that have been conclusively demonstrated as well as those which have been proposed, but need confirmation. With a view to finding out the evolutionary antecedents, we visit the CART systems in sub-mammalian vertebrates and seek the answer why the system is shaped the way it is. We enquire into the conservation of the CART system and appreciate its functional diversity across the phyla.
Collapse
Affiliation(s)
- Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Sai Trinity Building, Sutarwadi, Pashan, Pune 411 021, Maharashtra, India.
| | - Kartik T Nakhate
- Rungta College of Pharmaceutical Sciences and Research, Rungta Educational Campus, Kohka-Kurud Road, Bhilai 490 024, Chhattisgarh, India
| | - Manoj A Upadhya
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| |
Collapse
|
10
|
Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev 2014; 35:159-94. [PMID: 24423980 PMCID: PMC3963261 DOI: 10.1210/er.2013-1087] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022]
Abstract
TRH is a tripeptide amide that functions as a neurotransmitter but also serves as a neurohormone that has a critical role in the central regulation of the hypothalamic-pituitary-thyroid axis. Hypophysiotropic TRH neurons involved in this neuroendocrine process are located in the hypothalamic paraventricular nucleus and secrete TRH into the pericapillary space of the external zone of the median eminence for conveyance to anterior pituitary thyrotrophs. Under basal conditions, the activity of hypophysiotropic TRH neurons is regulated by the negative feedback effects of thyroid hormone to ensure stable, circulating, thyroid hormone concentrations, a mechanism that involves complex interactions between hypophysiotropic TRH neurons and the vascular system, cerebrospinal fluid, and specialized glial cells called tanycytes. Hypophysiotropic TRH neurons also integrate other humoral and neuronal inputs that can alter the setpoint for negative feedback regulation by thyroid hormone. This mechanism facilitates adaptation of the organism to changing environmental conditions, including the shortage of food and a cold environment. The thyroid axis is also affected by other adverse conditions such as infection, but the central mechanisms mediating suppression of hypophysiotropic TRH may be pathophysiological. In this review, we discuss current knowledge about the mechanisms that contribute to the regulation of hypophysiotropic TRH neurons under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Csaba Fekete
- Department of Endocrine Neurobiology (C.F.), Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism (C.F., R.M.L.), Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111; and Department of Neuroscience (R.M.L.), Tufts University School of Medicine, Boston, Massachusetts 02111
| | | |
Collapse
|
11
|
Lee SJ, Kirigiti M, Lindsley SR, Loche A, Madden CJ, Morrison SF, Smith MS, Grove KL. Efferent projections of neuropeptide Y-expressing neurons of the dorsomedial hypothalamus in chronic hyperphagic models. J Comp Neurol 2013; 521:1891-914. [PMID: 23172177 DOI: 10.1002/cne.23265] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/15/2012] [Accepted: 11/06/2012] [Indexed: 12/31/2022]
Abstract
The dorsomedial hypothalamus (DMH) has long been implicated in feeding behavior and thermogenesis. The DMH contains orexigenic neuropeptide Y (NPY) neurons, but the role of these neurons in the control of energy homeostasis is not well understood. NPY expression in the DMH is low under normal conditions in adult rodents but is significantly increased during chronic hyperphagic conditions such as lactation and diet-induced obesity (DIO). To understand better the role of DMH-NPY neurons, we characterized the efferent projections of DMH-NPY neurons using the anterograde tracer biotinylated dextran amine (BDA) in lactating rats and DIO mice. In both models, BDA- and NPY-colabeled fibers were limited mainly to the hypothalamus, including the paraventricular nucleus of the hypothalamus (PVH), lateral hypothalamus/perifornical area (LH/PFA), and anteroventral periventricular nucleus (AVPV). Specifically in lactating rats, BDA-and NPY-colabeled axonal swellings were in close apposition to cocaine- and amphetamine-regulated transcript (CART)-expressing neurons in the PVH and AVPV. Although the DMH neurons project to the rostral raphe pallidus (rRPa), these projections did not contain NPY immunoreactivity in either the lactating rat or the DIO mouse. Instead, the majority of BDA-labeled fibers in the rRPa were orexin positive. Furthermore, DMH-NPY projections were not observed within the nucleus of the solitary tract (NTS), another brainstem site critical for the regulation of sympathetic outflow. The present data suggest that NPY expression in the DMH during chronic hyperphagic conditions plays important roles in feeding behavior and thermogenesis by modulating neuronal functions within the hypothalamus, but not in the brainstem.
Collapse
Affiliation(s)
- Shin J Lee
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gutiérrez-Mariscal M, Sánchez E, García-Vázquez A, Rebolledo-Solleiro D, Charli JL, Joseph-Bravo P. Acute response of hypophysiotropic thyrotropin releasing hormone neurons and thyrotropin release to behavioral paradigms producing varying intensities of stress and physical activity. ACTA ACUST UNITED AC 2012; 179:61-70. [PMID: 22960404 DOI: 10.1016/j.regpep.2012.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/04/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
The activity of the hypothalamus-pituitary-thyroid (HPT) axis is essential for energy homeostasis and is differentially modulated by physical and by psychological stress. Contradictory effects of stressful behavioral paradigms on TSH or thyroid hormone release are due to type, length and controllability of the stressor. We hypothesized that an additional determinant of the activity of the HPT axis is the energy demand due to physical activity. We thus evaluated the response of thyrotropin releasing hormone (TRH) neurons of the hypothalamic paraventricular nucleus (PVN) in Wistar male rats submitted to the elevated plus maze (EPM), the open field test (OFT), or restraint, and sacrificed within 1h after test completion; the response to OFT was compared during light (L) or dark (D) phases. Locomotion and anxiety behaviors were similar if animals were tested in L or D phases but their relation to the biochemical parameters differed. All paradigms increased serum corticosterone concentration; the levels of corticotropin releasing hormone receptor 1 and of glucocorticoid receptor (GR) mRNAs in the PVN were enhanced after restraint or OFT-L. Levels of proTRH mRNA increased in the PVN after exposure to EPM-L or OFT-D; serum levels of thyrotropin (TSH) and T(4) only after OFT-D. In contrast, restraint decreased TRH mRNA and serum TSH levels, while it increased TRH content in the mediobasal hypothalamus, implying reduced release. Expression of proTRH in the PVN varied proportionally to the degree of locomotion in OFT-D, while inversely to anxiety in the EPM-L, and to corticosterone in EPM-L and OFT-D. TRH mRNA levels were analyzed by in situ hybridization in the rostral, middle and caudal zones of the PVN in response to OFT-D; they increased in the middle PVN, where most TRH hypophysiotropic neurons reside; levels correlated positively with the velocity attained in the periphery of the OF and negatively, with anxiety. Variations of serum TSH levels correlated positively with locomotor activity in EPM-L and OFT-L or -D, while negatively to serum corticosterone levels in all paradigms. These results support the proposal that the hypophysiotropic PVN TRH neurons are activated by short term physical activity but that this response may be blunted by the inhibitory effect of stress.
Collapse
Affiliation(s)
- Mariana Gutiérrez-Mariscal
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca MOR, México
| | | | | | | | | | | |
Collapse
|
13
|
Comparative distribution of cocaine- and amphetamine-regulated transcript (CART) in the hypothalamus of the capuchin monkey (Cebus apella) and the common marmoset (Callithrix jacchus). Brain Res 2011; 1425:47-61. [DOI: 10.1016/j.brainres.2011.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 08/27/2011] [Accepted: 09/10/2011] [Indexed: 11/17/2022]
|
14
|
The neuroendocrine basis of lactation-induced suppression of GnRH: role of kisspeptin and leptin. Brain Res 2010; 1364:139-52. [PMID: 20727862 DOI: 10.1016/j.brainres.2010.08.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 11/22/2022]
Abstract
Lactation is an important physiological model of the integration of energy balance and reproduction, as it involves activation of potent appetitive neuropeptide systems coupled to a profound inhibition of pulsatile GnRH/LH secretion. There are multiple systems that contribute to the chronic hyperphagia of lactation: 1) suppression of the metabolic hormones, leptin and insulin, 2) activation of hypothalamic orexigenic neuropeptide systems NPY, AGRP, orexin (OX) and melanin concentrating hormone (MCH), 3) special induction of NPY expression in the dorsomedial hypothalamus, and 4) suppression of anorexigenic systems POMC and CART. These changes ensure adequate energy intake to meet the metabolic needs of milk production. There is significant overlap in all of the systems that regulate food intake with the regulation of GnRH, suggesting there could be several redundant factors acting to suppress GnRH/LH during lactation. In addition to an overall increase in inhibitory tone acting directly on GnRH cell bodies that is brought about by increases in orexigenic systems, there are also effects at the ARH to disrupt Kiss1/neurokinin B/dynorphin neuronal function through inhibition of Kiss1 and NKB. These changes could lead to an increase in inhibitory auto-regulation of the Kiss1 neurons and a possible disruption of pulsatile GnRH release. While the low levels of leptin and insulin contribute to the changes in ARH appetitive systems, they do not appear to contribute to the suppression of ARH Kiss1 or NKB. The inhibition of Kiss1 may be the key factor in the suppression of GnRH during lactation, although the mechanisms responsible for its inhibition are unknown.
Collapse
|
15
|
Tang GB, Cui JG, Wang DH. Role of hypoleptinemia during cold adaptation in Brandt's voles (Lasiopodomys brandtii). Am J Physiol Regul Integr Comp Physiol 2009; 297:R1293-301. [DOI: 10.1152/ajpregu.00185.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Brandt's voles Lasiopodomys brandtii exhibit large increases in nonshivering thermogenesis to cope with chronic cold exposure, resulting in compensatory hyperphagia and fat mobilization. These physiological events are accompanied by a remarkable reduction in serum leptin levels. However, the role of hypoleptinemia in cold adaptation in this species is still unknown. In the present study, we tested the hypothesis that hypoleptinemia contributes to increases in food intake and brown adipose tissue (BAT) thermogenesis by modifying hypothalamic neuropeptides in cold-exposed Brandt's voles. Adult male voles were transferred to 5°C for 28 days. Accompanied by a decrease in serum leptin levels, hypothalamic agouti-related protein (AgRP) mRNA levels were significantly increased, but there were no changes in the long form of leptin receptor (Ob-Rb), suppressor of cytokine signaling 3 (SOCS3), neuropeptide Y (NPY) mRNA, proopiomelanocortin (POMC), and cocaine- and amphetamine-regulated peptide (CART) mRNA levels in the hypothalamus. When cold-exposed voles were returned to warm (23°C) for 28 days, body mass, food intake, serum leptin, and AgRP mRNA were restored to control levels. Leptin administration in cold-exposed voles decreased food intake as well as hypothalamic AgRP mRNA levels. There were no significant effects of leptin administration on hypothalamic Ob-Rb, SOCS3, NPY, POMC, CART mRNA, and uncoupling protein 1 levels under cold conditions. These results suggest that hypoleptinemia partially contributes to cold-induced hyperphagia, which might involve the elevation of hypothalamic AgRP gene expression.
Collapse
Affiliation(s)
- Gang-Bin Tang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing; and
- Graduate School of the Chinese Academy of Sciences, Yuquan Lu, Beijing, China
| | - Jian-Guo Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing; and
- Graduate School of the Chinese Academy of Sciences, Yuquan Lu, Beijing, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing; and
| |
Collapse
|
16
|
Uribe RM, Zacarias M, Corkidi G, Cisneros M, Charli JL, Joseph-Bravo P. 17β-Oestradiol indirectly inhibits thyrotrophin-releasing hormone expression in the hypothalamic paraventricular nucleus of female rats and blunts thyroid axis response to cold exposure. J Neuroendocrinol 2009; 21:439-48. [PMID: 19302192 DOI: 10.1111/j.1365-2826.2009.01861.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Energy expenditure and thermogenesis are regultated by thyroid and sex hormones. Several parameters of hypothalamic-pituitary-thyroid (HPT) axis function are modulated by 17β-oestradiol (E(2)) but its effects on thyrotrophin-releasing hormone (TRH) mRNA levels remain unknown. We evaluated, by in situ hybridisation and Northern bloting, TRH expression in the paraventricular nucleus of the hypothalamus (PVN) of cycling rats, 2 weeks-ovariectomised (OVX) and OVX animals injected s.c. during 1-4 days with E(2) (5, 50, 100 or 200 μg ⁄ kg) (OVX-E). Serum levels of E(2), thyroid-stimulating hormone (TSH), prolactin, corticosterone and triiodothyronine (T(3)) were quantified by radioimmunoassay. Increased serum E(2) levels were observed after 4 days injection of 50 μg ⁄ kg E(2) (to 68.5 ± 4.8 pg ⁄ ml) in OVX rats. PVN-TRH mRNA levels were slightly higher in OVX than in virgin females at dioestrous 1 or pro-oestrous, decreasing proportionally to increased serum E(2) levels. E(2) injections augmented serum T(3), prolactin, and corticosterone levels. Serum TSH levels augmented with 4 days 50 μg ⁄ kg E(2), but not with the higher doses that enhanced serum T(3) levels. Exposure to cold for 1 h resulted in marked HPT axis activation in OVX rats, increasing the levels of TRH mRNA along the rostro-caudal PVN areas, as well as serum TSH, T(3), corticosterone and prolactin levels. By contrast, no significant changes in any of these parameters were observed in cold-exposed OVX-E (50 μg ⁄ kg E(2)) rats. Very few PVN-TRHergic neurones expressed the oestrogen receptor type-α, suggesting that the effects of E(2) on PVN-TRH expression are indirect, most probably as a result of its multiple modulatory effects on circulating hormones and their receptor sensitivity. The blunted response of OVX-E rats to cold coincides with the effects of E(2) on the autonomic nervous system and increased cold tolerance.
Collapse
Affiliation(s)
- R M Uribe
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | | | |
Collapse
|
17
|
Füzesi T, Sánchez E, Wittmann G, Singru PS, Fekete C, Lechan RM. Regulation of cocaine- and amphetamine-regulated transcript-synthesising neurons of the hypothalamic paraventricular nucleus by endotoxin; implications for lipopolysaccharide-induced regulation of energy homeostasis. J Neuroendocrinol 2008; 20:1058-66. [PMID: 18624928 PMCID: PMC2714541 DOI: 10.1111/j.1365-2826.2008.01758.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infectious diseases and the administration of bacterial lipopolysaccharide (LPS) result in decreased food intake and increased energy expenditure. Because the hypothalamic paraventricular nucleus (PVN) has pivotal roles in the regulation of energy homeostasis and expresses an anorexic peptide, cocaine- and amphetamine-regulated transcript (CART), we hypothesised that increased CART synthesis in this nucleus may contribute to LPS-induced changes in energy homeostasis. Therefore, we studied the effects of intraperitoneal administration of LPS on CART gene expression in the PVN by semiquantitative in situ hybridisation. LPS caused a rapid increase in CART mRNA levels in the PVN. One hour after treatment, the density of silver grains was increased by three-fold in the PVN, and remained elevated 3 h after treatment. Because the dorsal vagal complex, an important vegetative centre in the brainstem, is heavily innervated by CART-containing axons, we determined whether the retrograde tracer, cholera toxin B subunit (CTB), accumulates in CART neurons in the PVN following stereotaxic injection of the tracer into the dorsal vagal complex. One week after injection, CTB accumulated in CART neurons in the ventral, medial, and lateral parvocellular subdivisions of the PVN. In addition, LPS administration induced c-fos expression in a population of CART neurons in the PVN that project to the dorsal vagal complex. These data indicate that increased CART gene expression in neurons of PVN may contribute to LPS-induced anorexia, and suggest that this action may be mediated, at least in part, through a PVN-dorsal vagal complex pathway.
Collapse
Affiliation(s)
- T Füzesi
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
18
|
Gutiérrez-Mariscal M, de Gortari P, López-Rubalcava C, Martínez A, Joseph-Bravo P. Analysis of the anxiolytic-like effect of TRH and the response of amygdalar TRHergic neurons in anxiety. Psychoneuroendocrinology 2008; 33:198-213. [PMID: 18079066 DOI: 10.1016/j.psyneuen.2007.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 11/01/2007] [Accepted: 11/05/2007] [Indexed: 11/16/2022]
Abstract
Thyrotropin-releasing hormone (TRH) was first described for its neuroendocrine role in controlling the hypothalamus-pituitary-thyroid axis (HPT). Anatomical and pharmacological data evidence its participation as a neuromodulator in the central nervous system. Administration of TRH induces various behavioural effects including arousal, locomotion, analepsy, and in certain paradigms, it reduces fear behaviours. In this work we studied the possible involvement of TRHergic neurons in anxiety tests. We first tested whether an ICV injection of TRH had behavioural effects on anxiety in the defensive burying test (DBT). Corticosterone serum levels were quantified to evaluate the stress response and, the activity of the HPT axis to distinguish the endocrine response of TRH injection. Compared to a saline injection, TRH reduced cumulative burying, and decreased serum corticosterone levels, supporting anxiolytic-like effects of TRH administration. The response of TRH neurons was evaluated in brain regions involved in the stress circuitry of animals submitted to the DBT and to the elevated plus maze (EPM), tests that allow to correlate biochemical parameters with anxiety-like behaviour. In the DBT, the response of Wistar rats was compared with that of the stress-hypersensitive Wistar Kyoto (WKY) strain. Behavioural parameters were analysed in recorded videos. Animals were sacrificed 30 or 60min after test completion. In various limbic areas, the relative mRNA levels of TRH, its receptors TRH-R1 and -R2, and its inactivating ectoenzyme pyroglutamyl peptidase II (PPII), were determined by RT-PCR, TRH tissue content by radioimmunoassay (RIA). The extent of the stress response was evaluated by measuring the expression profile of CRH, CRH-R1 and GR mRNA in the paraventricular nucleus (PVN) of the hypothalamus and in amygdala, corticosterone levels in serum. As these tests demand increased physical activity, the response of the HPT axis was also evaluated. Both tasks increased the levels of serum corticosterone. WKY rats showed higher anxiety-like behaviour in the DBT than Wistar, as well as increased PVN mRNA levels of CRH and GR. TRH mRNA levels increased in the PVN and TSH values remained unchanged in both strains although TRH content decreased in the medial basal hypothalamus of Wistar rats only. TRH content was measured in several limbic regions but only amygdala showed specific task-related changes after DBT exposure of both strains: increased TRH content. Expression of TRH mRNA decreased in the amygdala of Wistar, suggesting inhibition of TRHergic neuronal activity in this region. The participation of amygdalar TRH neurons in anxiety was confirmed in the EPM where TRH expression and release correlated with the number of entries, and the % of time spent in open arms, supporting an anxiolytic role of these TRH-neurons. These results contribute to the understanding of the involvement of TRH during emotionally charged situations and shed light on the participation of particular circuits in related behaviours.
Collapse
Affiliation(s)
- Mariana Gutiérrez-Mariscal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca, MOR 62210, México
| | | | | | | | | |
Collapse
|
19
|
Jaimes-Hoy L, Joseph-Bravo P, de Gortari P. Differential response of TRHergic neurons of the hypothalamic paraventricular nucleus (PVN) in female animals submitted to food-restriction or dehydration-induced anorexia and cold exposure. Horm Behav 2008; 53:366-77. [PMID: 18191132 DOI: 10.1016/j.yhbeh.2007.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 11/22/2022]
Abstract
TRH neurons of the hypothalamic paraventricular nucleus (PVN), regulate pituitary-thyroid axis (HPT). Fasting activates expression of orexigenic peptides from the arcuate nucleus, increases corticosterone while reduces leptin, and pro-TRH mRNA levels despite low serum thyroid hormone concentration (tertiary hypothyroidism). TRH synthesis is positively regulated by anorexigenic peptides whose expression is reduced in fasting. The model of dehydration-induced anorexia (DIA) leads to decreased voluntary food intake but peptide expression in the arcuate is similar to forced-food restriction (FFR), where animals remain hungered. We compared the response of HPT axis of female Wistar rats submitted to DIA (2.5% saline solution, food ad libitum, 7 days) with FFR (provided with the amount of food ingested by DIA) and naïve (N) group fed ad libitum, as well as their response to acute cold exposure. Pro-TRH and pro-CRH mRNA levels in the PVN were measured by RT-PCR, TRH content, serum concentration of TSH and thyroid hormones by radioimmunoassay. DIA rats reduced 80% their food consumption compared to N, decreased PVN pro-CRH expression, serum estradiol and leptin levels, increased corticosterone similar to FFR. HPT axis of DIA animals failed to adapt: FFR presented tertiary hypothyroidism and DIA, primary. Response to cold stimulation leading to increased pro-TRH mRNA levels and TRH release was preserved under reduced energy availability in FFR rats but not in DIA, although the dynamics of hormonal release differed: TSH release augmented only in naïve; thyroxine in all but highest in DIA, and triiodothyronine in FFR and DIA suggesting a differential regulation of deiodinases.
Collapse
Affiliation(s)
- Lorraine Jaimes-Hoy
- División de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría RFM, México D.F., México
| | | | | |
Collapse
|
20
|
Genetic regulation of hypothalamic cocaine and amphetamine-regulated transcript (CART) in BxD inbred mice. Brain Res 2007; 1194:1-7. [PMID: 18199428 DOI: 10.1016/j.brainres.2007.11.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 11/27/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
Abstract
Cocaine and Amphetamine-Regulated Transcript (CART) peptides are implicated in a wide range of behaviors including in the reinforcing properties of psychostimulants, feeding and energy balance and stress and anxiety responses. We conducted a complex trait analysis to examine natural variation in the regulation of CART transcript abundance (CARTta) in the hypothalamus. CART transcript abundance was measured in total hypothalamic RNA from 26 BxD recombinant inbred (RI) mouse strains and in the C57BL/6 (B6) and DBA/2J (D2) progenitor strains. The strain distribution pattern for CARTta was continuous across the RI panel, which is consistent with this being a quantitative trait. Marker regression and interval mapping revealed significant quantitative trait loci (QTL) on mouse chromosome 4 (around 58.2 cM) and chromosome 11 (between 20-36 cM) that influence CARTta and account for 31% of the between strain variance in this phenotype. There are numerous candidate genes and QTL in these chromosomal regions that may indicate shared genetic regulation between CART expression and other neurobiological processes referable to known actions of this neuropeptide.
Collapse
|