1
|
Jia T, Chen J, Wang YD, Xiao C, Zhou CY. A subthalamo-parabrachial glutamatergic pathway is involved in stress-induced self-grooming in mice. Acta Pharmacol Sin 2023; 44:2169-2183. [PMID: 37322164 PMCID: PMC10618182 DOI: 10.1038/s41401-023-01114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Excessive self-grooming is an important behavioral phenotype of the stress response in rodents. Elucidating the neural circuit that regulates stress-induced self-grooming may suggest potential treatment to prevent maladaptation to stress that is implicated in emotional disorders. Stimulation of the subthalamic nucleus (STN) has been found to induce strong self-grooming. In this study we investigated the role of the STN and a related neural circuit in mouse stress-related self-grooming. Body-restraint and foot-shock stress-induced self-grooming models were established in mice. We showed that both body restraint and foot shock markedly increased the expression of c-Fos in neurons in the STN and lateral parabrachial nucleus (LPB). Consistent with this, the activity of STN neurons and LPB glutamatergic (Glu) neurons, as assessed with fiber photometry recording, was dramatically elevated during self-grooming in the stressed mice. Using whole-cell patch-clamp recordings in parasagittal brain slices, we identified a monosynaptic projection from STN neurons to LPB Glu neurons that regulates stress-induced self-grooming in mice. Enhanced self-grooming induced by optogenetic activation of the STN-LPB Glu pathway was attenuated by treatment with fluoxetine (18 mg·kg-1·d-1, p.o., for 2 weeks) or in the presence of a cage mate. Furthermore, optogenetic inhibition of the STN-LPB pathway attenuated stress-related but not natural self-grooming. Taken together, these results suggest that the STN-LPB pathway regulates the acute stress response and is a potential target for intervention in stress-related emotional disorders.
Collapse
Affiliation(s)
- Tao Jia
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jing Chen
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying-di Wang
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cheng Xiao
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Chun-Yi Zhou
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
2
|
Kikuchi E, Inui T, Su S, Sato Y, Funahashi M. Chemogenetic inhibition of the bed nucleus of the stria terminalis suppresses the intake of a preferable and learned aversive sweet taste solution in male mice. Behav Brain Res 2023; 439:114253. [PMID: 36509179 DOI: 10.1016/j.bbr.2022.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Conditioned taste aversion (CTA) is established by pairing a taste solution as a conditioned stimulus (CS) with visceral malaise as an unconditioned stimulus (US). CTA decreases the taste palatability of a CS. The bed nucleus of the stria terminalis (BNST) receives taste inputs from the brainstem. However, the involvement of the BNST in CTA remains unclear. Thus, this study examined the effects of chemogenetic inhibition of the BNST neurons on CS intake after CTA acquisition. An adeno-associated virus was microinjected into the BNST of male C57/BL6 mice to induce the inhibitory designer receptor hM4Di. The mice received a pairing of 0.2% saccharin solution (CS) with 0.3 M lithium chloride (2% BW, intraperitoneal). After conditioning, the administration of clozapine-N-oxide (CNO, 1 mg/kg) significantly enhanced the suppression of CS intake on the retrieval of CTA compared with its intake following saline administration (p < 0.01). We further assessed the effect of BNST neuron inhibition on the intake of water and taste solutions (saccharin, sucralose, sodium chloride, monosodium glutamate, quinine hydrochloride, and citric acid) using naïve (not learned CTA) mice. CNO administration significantly decreased the intake of saccharin and sucralose (p < 0.05). Our results indicate that BNST neurons mediate sweet taste and regulate sweet intake, regardless of whether sweets should be ingested or rejected. BNST neurons may be inhibited in the retrieval of CTA, thereby suppressing CS intake.
Collapse
Affiliation(s)
- Emi Kikuchi
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; Department of Orthodontics, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tadashi Inui
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Shaoyi Su
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshiaki Sato
- Department of Orthodontics, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Makoto Funahashi
- Department of Oral Physiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Yokota T, Katakura N, Morita T, Matsunaga T, Hiraba K. Two neuronal groups for NaCl with differential taste response properties and topographical distributions in the rat parabrachial nucleus. Physiol Rep 2020; 8:e14443. [PMID: 32441441 PMCID: PMC7243197 DOI: 10.14814/phy2.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/23/2019] [Accepted: 01/04/2020] [Indexed: 11/24/2022] Open
Abstract
It is crucial for animals to discriminate between palatable (safe) and aversive (toxic) tastants. The mechanisms underlying neuronal discrimination of taste stimuli remain unclear. We examined relations between taste response properties (spike counts, response duration, and coefficient of variation [CV]) and location of taste-sensitive neurons in the pontine parabrachial nucleus (PBN). Extracellular single units' activity in the PBN of Wistar rats was recorded using multibarrel glass micropipettes under urethane anesthesia. Forty taste-sensitive neurons were classified as NaCl (N)-best (n = 15), NaCl/HCl (NH)-best (n = 14), HCl (H)-best (n = 8), and sucrose (S)-best (n = 3) neurons. The net response to NaCl (15.2 ± 2.3 spikes/s) among the N-best neurons was significantly larger than that among the NH-best (4.5 ± 0.8 spikes/s) neurons. The response duration (4.5 ± 0.2 s) of the N-best neurons to NaCl was significantly longer than that of the NH-best (2.2 ± 0.3 s) neurons. These differences in the spike counts and the response durations between the two neuronal types in the PBN were similar to that previously reported in the rostral nucleus of the solitary tract (rNST). The CVs in the N-best and the NH-best neurons were significantly smaller in the PBN than those in the rNST. Histologically, most N-best neurons (12/13, 92%) were localized to the medial region, while NH-best neurons (11/13, 85%) were primarily found within the brachium conjunctivum. These results suggest that NaCl-specific taste information is transmitted by two distinct neuronal groups (N-best and NH-best), with different taste properties and locations within rNST to PBN tractography. Future studies on the higher order nuclei for taste could reveal more palatable and aversive taste pathways.
Collapse
Affiliation(s)
- Tatsuko Yokota
- Department of PhysiologySchool of DentistryAichi‐Gakuin UniversityNagoyaJapan
| | - Nubuo Katakura
- Department of PhysiologySchool of DentistryAichi‐Gakuin UniversityNagoyaJapan
| | - Takumi Morita
- Department of PhysiologySchool of DentistryAichi‐Gakuin UniversityNagoyaJapan
| | - Tomoko Matsunaga
- Department of PhysiologySchool of DentistryAichi‐Gakuin UniversityNagoyaJapan
| | - Katsunari Hiraba
- Department of PhysiologySchool of DentistryAichi‐Gakuin UniversityNagoyaJapan
| |
Collapse
|
4
|
Sweet and bitter taste stimuli activate VTA projection neurons in the parabrachial nucleus. Brain Res 2019; 1714:99-110. [PMID: 30807736 DOI: 10.1016/j.brainres.2019.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/22/2023]
Abstract
This study investigated neural projections from the parabrachial nucleus (PBN), a gustatory and visceral processing area in the brainstem, to the ventral tegmental area (VTA) in the midbrain. The VTA contains a large population of dopaminergic neurons that have been shown to play a role in reward processing. Anterograde neural tracing methods were first used to confirm that a robust projection from the caudal PBN terminates in the dorsal VTA; this projection was larger on the contralateral side. In the next experiment, we combined dual retrograde tracing from the VTA and the gustatory ventral posteromedial thalamus (VPMpc) with taste-evoked Fos protein expression, which labels activated neurons. Mice were stimulated through an intraoral cannula with sucrose, quinine, or water, and PBN sections were processed for immunofluorescent detection of Fos and retrograde tracers. The distribution of tracer-labeled PBN neurons demonstrated that the populations of cells projecting to the VTA or VPMpc are largely independent. Quantification of cells double labeled for Fos and either tracer demonstrated that sucrose and quinine were effective in activating both pathways. These results indicate that information about both appetitive and aversive tastes is delivered to a key midbrain reward interface via direct projections from the PBN.
Collapse
|
5
|
Chen JY, Campos CA, Jarvie BC, Palmiter RD. Parabrachial CGRP Neurons Establish and Sustain Aversive Taste Memories. Neuron 2018; 100:891-899.e5. [PMID: 30344042 DOI: 10.1016/j.neuron.2018.09.032] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/27/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022]
Abstract
Food aversions develop when the taste of a novel food is associated with sickness, which often occurs after food poisoning or chemotherapy treatment. We identified calcitonin-gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) as sufficient and necessary for establishing a conditioned taste aversion (CTA). Photoactivating projections from CGRPPBN neurons to either the central nucleus of the amygdala or the bed nucleus of the stria terminalis can also induce robust CTA. CGRPPBN neurons undergo plasticity following CTA, and inactivation of either Arc or Grin1 (genes involved in memory consolidation) prevents establishment of a strong CTA. Calcium imaging reveals that the novel food re-activates CGRPPBN neurons after conditioning. Inhibition of these neurons or inactivation of the Grin1 gene after conditioning attenuates CTA expression. Our results indicate that CGRPPBN neurons not only play a key role for learning food aversions but also contribute to the maintenance and expression of those memories.
Collapse
Affiliation(s)
- Jane Y Chen
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Carlos A Campos
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Brooke C Jarvie
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
6
|
King MS. Distribution of Fos-immunoreactive neurons in the gustatory cortex elicited by intra-oral infusion of taste solutions in conscious rats. Brain Res 2018; 1683:67-77. [PMID: 29371098 PMCID: PMC5818300 DOI: 10.1016/j.brainres.2018.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
Abstract
The location of neurons in the gustatory cortex (GC) activated by intra-oral infusion of solutions in conscious rats was mapped using Fos immunohistochemistry. Groups of adult male Wistar rats (N's = 5) received an infusion of one of the following: dH2O, 0.1 or 1.0 M NaCl, 0.1 or 1.0 M sucrose, 0.32 M MSG (with 100 µM amiloride and 2.5 M inosine 5'-monophosphate), 0.03 M HCl, or 0.003 M QHCl delivered via an intra-oral cannula (0.233 ml/min for 5 min). Unstimulated control rats received no infusion. Taste reactivity (TR) behaviors were videotaped and scored. The number of Fos-immunoreactive (Fos-IR) neurons was counted in eight sections throughout the anterior-posterior extent of the GC in the medial and lateral halves of the granular (GI), dysgranular (DI), and dorsal (AID) and ventral (AIV) agranular insular cortices. Intra-oral infusion of dH2O, NaCl, or sucrose altered the number of Fos-IR neurons in only specific subareas of the GC and the effects of these tastants were concentration-dependent. For example, 1.0 M NaCl increased Fos-IR neurons in the posterior lateral AID and DI and elicited more aversive TR responses than 0.1 M NaCl. Compared to dH2O, infusions of HCl or QHCl increased the total number of Fos-IR neurons in many subareas of the GC throughout its anterior-posterior extent and increased aversive TR behaviors. Linear regression analyses suggested that neurons in the medial AID of the posterior GC may influence aversive behavioral responses to HCl and QHCl while neurons in the posterior lateral AID and DI may play a role in aversive TR responses to 1.0 M NaCl.
Collapse
Affiliation(s)
- Michael S King
- Biology Department, Stetson University, 421 N. Woodland Blvd., DeLand, FL 32723, United States.
| |
Collapse
|
7
|
Baez-Santiago MA, Reid EE, Moran A, Maier JX, Marrero-Garcia Y, Katz DB. Dynamic taste responses of parabrachial pontine neurons in awake rats. J Neurophysiol 2016; 115:1314-23. [PMID: 26792879 DOI: 10.1152/jn.00311.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/02/2015] [Indexed: 12/29/2022] Open
Abstract
The parabrachial nuclei of the pons (PbN) receive almost direct input from taste buds on the tongue and control basic taste-driven behaviors. Thus it is reasonable to hypothesize that PbN neurons might respond to tastes in a manner similar to that of peripheral receptors, i.e., that these responses might be narrow and relatively "dynamics free." On the other hand, the majority of the input to PbN descends from forebrain regions such as gustatory cortex (GC), which processes tastes with "temporal codes" in which firing reflects first the presence, then the identity, and finally the desirability of the stimulus. Therefore a reasonable alternative hypothesis is that PbN responses might be dominated by dynamics similar to those observed in GC. Here we examined simultaneously recorded single-neuron PbN (and GC) responses in awake rats receiving exposure to basic taste stimuli. We found that pontine taste responses were almost entirely confined to canonically identified taste-PbN (t-PbN). Taste-specificity was found, furthermore, to be time varying in a larger percentage of these t-PbN responses than in responses recorded from the tissue around PbN (including non-taste-PbN). Finally, these time-varying properties were a good match for those observed in simultaneously recorded GC neurons-taste-specificity appeared after an initial nonspecific burst of action potentials, and palatability emerged several hundred milliseconds later. These results suggest that the pontine taste relay is closely allied with the dynamic taste processing performed in forebrain.
Collapse
Affiliation(s)
- Madelyn A Baez-Santiago
- Biology Department, Brandeis University, Waltham, Massachusetts; Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts;
| | - Emily E Reid
- Psychology Department, Brandeis University, Waltham, Massachusetts
| | - Anan Moran
- Psychology Department, Brandeis University, Waltham, Massachusetts; Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts; Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; and
| | - Joost X Maier
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Donald B Katz
- Biology Department, Brandeis University, Waltham, Massachusetts; Psychology Department, Brandeis University, Waltham, Massachusetts; Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
8
|
Tokita K, Boughter JD. Topographic organizations of taste-responsive neurons in the parabrachial nucleus of C57BL/6J mice: An electrophysiological mapping study. Neuroscience 2015; 316:151-66. [PMID: 26708748 DOI: 10.1016/j.neuroscience.2015.12.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 11/26/2022]
Abstract
The activities of 178 taste-responsive neurons were recorded extracellularly from the parabrachial nucleus (PbN) in the anesthetized C57BL/6J mouse. Taste stimuli included those representative of five basic taste qualities, sweet, salty, sour, bitter and umami. Umami synergism was represented by all sucrose-best and sweet-sensitive sodium chloride-best neurons. Mediolaterally the PbN was divided into medial, brachium conjunctivum (BC) and lateral subdivisions while rostrocaudally the PbN was divided into rostral and caudal subdivisions for mapping and reconstruction of recording sites. Neurons in the medial and BC subdivisions had a significantly greater magnitude of response to sucrose and to the mixture of monopotassium glutamate and inosine monophosphate than those found in the lateral subdivision. In contrast, neurons in the lateral subdivision possessed a more robust response to quinine hydrochloride. Rostrocaudally no difference was found in the mean magnitude of response. Analysis on the distribution pattern of neuron types classified by their best stimulus revealed that the proportion of neuron types in the medial vs. lateral and BC vs. lateral subdivisions was significantly different, with a greater amount of sucrose-best neurons found medially and within the BC, and a greater amount of sodium chloride-, citric acid- and quinine hydrochloride-best neurons found laterally. There was no significant difference in the neuron-type distribution between rostral and caudal PbN. We also assessed breadth of tuning in these neurons by calculating entropy (H) and noise-to-signal (N/S) ratio. The mean N/S ratio of all neurons (0.43) was significantly lower than that of H value (0.64). Neurons in the caudal PbN had a significantly higher H value than in the rostral PbN. In contrast, mean N/S ratios were not different both mediolaterally and rostrocaudally. These results suggest that although there is overlap in taste quality representation in the mouse PbN, taste-responsive neurons still possessed a topographic organization.
Collapse
Affiliation(s)
- K Tokita
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA.
| | - J D Boughter
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA
| |
Collapse
|
9
|
Boxwell AJ, Chen Z, Mathes CM, Spector AC, Le Roux CW, Travers SP, Travers JB. Effects of high-fat diet and gastric bypass on neurons in the caudal solitary nucleus. Physiol Behav 2015. [PMID: 26216080 DOI: 10.1016/j.physbeh.2015.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bariatric surgery is an effective treatment for obesity that involves both peripheral and central mechanisms. To elucidate central pathways by which oral and visceral signals are influenced by high-fat diet (HFD) and Roux-en-Y gastric bypass (RYGB) surgery, we recorded from neurons in the caudal visceral nucleus of the solitary tract (cNST, N=287) and rostral gustatory NST (rNST,N=106) in rats maintained on a HFD and lab chow (CHOW) or CHOW alone, and subjected to either RYGB or sham surgery. Animals on the HFD weighed significantly more than CHOW rats and RYGB reversed and then blunted weight gain regardless of diet. Using whole-cell patch clamp recording in a brainstem slice, we determined the membrane properties of cNST and rNST neurons associated with diet and surgery. We could not detect differences in rNST neurons associated with these manipulations. In cNST neurons, neither the threshold for solitary tract stimulation nor the amplitude of evoked EPSCs at threshold varied by condition; however suprathreshold EPSCs were larger in HFD compared to chow-fed animals. In addition, a transient outward current, most likely an IA current, was increased with HFD and RYGB reduced this current as well as a sustained outward current. Interestingly, hypothalamic projecting cNST neurons preferentially express IA and modulate transmission of afferent signals (Bailey, '07). Thus, diet and RYGB have multiple effects on the cellular properties of neurons in the visceral regions of NST, with potential to influence inputs to forebrain feeding circuits.
Collapse
Affiliation(s)
- A J Boxwell
- Ohio State Univ., Columbus, OH, United States
| | - Z Chen
- Ohio State Univ., Columbus, OH, United States
| | - C M Mathes
- Florida State Univ., Tallahassee, FL, United States
| | - A C Spector
- Florida State Univ., Tallahassee, FL, United States
| | | | - S P Travers
- Ohio State Univ., Columbus, OH, United States
| | - J B Travers
- Ohio State Univ., Columbus, OH, United States.
| |
Collapse
|
10
|
Systemic mechanism of taste, flavour and palatability in brain. Appl Biochem Biotechnol 2015; 175:3133-47. [PMID: 25733187 DOI: 10.1007/s12010-015-1488-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/09/2015] [Indexed: 01/10/2023]
Abstract
Taste is considered as one of the five traditional senses and has the ability to detect the flavour of food and certain minerals. Information of taste is transferred to the cortical gustatory area for identification and discrimination of taste quality. Animals have memory recognition power to maintain the familiar foods which are already encountered. Animal shows neophobic response when it encounters novel taste and shows no hesitation when the food is known to be safe. Palatability is the hedonic reward provided by foods and fluids. Palatability is closely related to neurochemicals, and this chemical influences the consumption of food and fluid. Even though, the food is palatable that can become aversive and avoided as a consequence of postingestional unpleasant experience such as malaise. This review presents the overall view on brain mechanisms of taste, flavour and palatability.
Collapse
|
11
|
Tokita K, Armstrong WE, St John SJ, Boughter JD. Activation of lateral hypothalamus-projecting parabrachial neurons by intraorally delivered gustatory stimuli. Front Neural Circuits 2014; 8:86. [PMID: 25120438 PMCID: PMC4114292 DOI: 10.3389/fncir.2014.00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
The present study investigated a subpopulation of neurons in the mouse parabrachial nucleus (PbN), a gustatory and visceral relay area in the brainstem, that project to the lateral hypothalamus (LH). We made injections of the retrograde tracer Fluorogold (FG) into LH, resulting in fluorescent labeling of neurons located in different regions of the PbN. Mice were stimulated through an intraoral cannula with one of seven different taste stimuli, and PbN sections were processed for immunohistochemical detection of the immediate early gene c-Fos, which labels activated neurons. LH projection neurons were found in all PbN subnuclei, but in greater concentration in lateral subnuclei, including the dorsal lateral subnucleus (dl). Fos-like immunoreactivity (FLI) was observed in the PbN in a stimulus-dependent pattern, with the greatest differentiation between intraoral stimulation with sweet (0.5 M sucrose) and bitter (0.003 M quinine) compounds. In particular, sweet and umami-tasting stimuli evoked robust FLI in cells in the dl, whereas quinine evoked almost no FLI in cells in this subnucleus. Double-labeled cells were also found in the greatest quantity in the dl. Overall, these results support the hypothesis that the dl contains direct a projection to the LH that is activated preferentially by appetitive compounds; this projection may be mediated by taste and/or postingestive mechanisms.
Collapse
Affiliation(s)
- Kenichi Tokita
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - William E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | | | - John D Boughter
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
12
|
Riley CA, King MS. Differential effects of electrical stimulation of the central amygdala and lateral hypothalamus on fos-immunoreactive neurons in the gustatory brainstem and taste reactivity behaviors in conscious rats. Chem Senses 2013; 38:705-17. [PMID: 23978688 PMCID: PMC3777562 DOI: 10.1093/chemse/bjt039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Projections from the central amygdala (CeA) and lateral hypothalamus (LH) modulate the activity of gustatory brainstem neurons, however, the role of these projections in gustatory behaviors is unclear. The goal of the current study was to determine the effects of electrical stimulation of the CeA or LH on unconditioned taste reactivity (TR) behaviors in response to intra-oral infusion of tastants. In conscious rats, electrical stimulation of the CeA or LH was delivered with and without simultaneous intra-oral infusion of taste solutions via an intra-oral cannula. Immunohistochemistry for the Fos protein was used to identify neurons in the gustatory brainstem activated by the electrical and/or intra-oral stimulation. In the absence of intra-oral infusion of a tastant, electrical stimulation of either the CeA or the LH increased the number of ingestive, but not aversive, TR behaviors performed. During intra-oral infusions of taste solutions, CeA stimulation tended to increase aversive behaviors whereas LH stimulation dramatically reduced the number of aversive responses to quinine hydrochloride (QHCl). These data indicate that projections from the CeA and LH alter TR behaviors. A few of the behavioral effects were accompanied by changes in the number of Fos-immunoreactive neurons in the gustatory brainstem, suggesting a possible anatomical substrate for these effects.
Collapse
Affiliation(s)
- Christopher A Riley
- Department of Biology Department, Unit 8264, Stetson University, 421 North Woodland Boulevard, DeLand, FL 32723, USA.
| | | |
Collapse
|
13
|
Neural Mechanisms That Underlie Angina-Induced Referred Pain in the Trigeminal Nerve Territory: A c-Fos Study in Rats. ISRN PAIN 2013; 2013:671503. [PMID: 27335881 PMCID: PMC4893399 DOI: 10.1155/2013/671503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/08/2013] [Indexed: 11/17/2022]
Abstract
The present study was designed to determine whether the trigeminal sensory nuclear complex (TSNC) is involved in angina-induced referred pain in the trigeminal nerve territory and to identify the peripheral nerve conducting nociceptive signals that are input into the TSNC. Following application of the pain producing substance (PPS) infusion, the number of Fos-labeled cells increased significantly in the subnucleus caudalis (Sp5C) compared with other nuclei in the TSNC. The Fos-labeled cells in the Sp5C disappeared when the left and right cervical vagus nerves were sectioned. Lesion of the C1-C2 spinal segments did not reduce the number of Fos-labeled cells. These results suggest that the nociceptive signals that conduct vagal afferent fibers from the cardiac region are input into the Sp5C and then projected to the thalamus.
Collapse
|
14
|
Chen K, Yan J, Li J, Lv B, Zhao X. c-Fos expression in rat brainstem following intake of sucrose or saccharin. Front Med 2011; 5:294-301. [PMID: 21964712 DOI: 10.1007/s11684-011-0144-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 06/10/2011] [Indexed: 11/28/2022]
Abstract
To examine whether the activation of brainstem neurons during intake of a sweet tastant is due to orosensory signals or post-ingestive factors, we compared the distribution of c-Fos-like immunoreactivity (c-FLI) in the nucleus of the solitary tract (NST) and parabrachial nucleus (PBN) of brainstem following ingestion of 0.25 Msucrose or 0.005 M saccharin solutions. Immunopositive neurons were localized mainly in the middle zone of the PBN and four rostral-caudal subregions of the NST. Intake of sucrose increased the number of FLI neurons in almost every subnucleus of the PBN (F((2,13)) = 7.610, P = 0.023), in addition to the caudal NST at the level of the area postrema (F((2,13)) = 10.777, P = 0.003) and the NST intermediate zone (F((2,13)) = 7.193, P = 0.014). No significant increase in the number of c-Fos positive neurons was detected in response to saccharin ingestion, although there was a trend towards a modest increase in a few select NST and PBN nuclei. These results suggest that the PBN and NST may be involved in sweet taste perception and modulation of sweet tastant intake, but the significantly enhanced intensity of Fos expression induced by sucrose indicates that PBN/NST neuronal activity is driven by the integrated effects of sweet taste sensation and post-ingestive signals.
Collapse
Affiliation(s)
- Ke Chen
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | | | | | | | | |
Collapse
|
15
|
Yamamoto T, Ueji K. Brain mechanisms of flavor learning. Front Syst Neurosci 2011; 5:76. [PMID: 21922004 PMCID: PMC3166791 DOI: 10.3389/fnsys.2011.00076] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 08/15/2011] [Indexed: 11/16/2022] Open
Abstract
Once the flavor of the ingested food (conditioned stimulus, CS) is associated with a preferable (e.g., good taste or nutritive satisfaction) or aversive (e.g., malaise with displeasure) signal (unconditioned stimulus, US), animals react to its subsequent exposure by increasing or decreasing ingestion to the food. These two types of association learning (preference learning vs. aversion learning) are known as classical conditioned reactions which are basic learning and memory phenomena, leading selection of food and proper food intake. Since the perception of flavor is generated by interaction of taste and odor during food intake, taste and/or odor are mainly associated with bodily signals in the flavor learning. After briefly reviewing flavor learning in general, brain mechanisms of conditioned taste aversion is described in more detail. The CS-US association leading to long-term potentiation in the amygdala, especially in its basolateral nucleus, is the basis of establishment of conditioned taste aversion. The novelty of the CS detected by the cortical gustatory area may be supportive in CS-US association. After the association, CS input is conveyed through the amygdala to different brain regions including the hippocampus for contextual fear formation, to the supramammillary and thalamic paraventricular nuclei for stressful anxiety or memory dependent fearful or stressful emotion, to the reward system to induce aversive expression to the CS, or hedonic shift from positive to negative, and to the CS-responsive neurons in the gustatory system to enhance the responsiveness to facilitate to detect the harmful stimulus.
Collapse
Affiliation(s)
- Takashi Yamamoto
- Department of Health and Nutrition, Faculty of Health Science, Kio UniversityNara, Japan
| | - Kayoko Ueji
- Department of Health and Nutrition, Faculty of Health Science, Kio UniversityNara, Japan
| |
Collapse
|
16
|
Subnuclear organization of parabrachial efferents to the thalamus, amygdala and lateral hypothalamus in C57BL/6J mice: a quantitative retrograde double labeling study. Neuroscience 2010; 171:351-65. [PMID: 20832453 DOI: 10.1016/j.neuroscience.2010.08.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/22/2010] [Accepted: 08/13/2010] [Indexed: 11/21/2022]
Abstract
The present study investigated the subnuclear organization of collateralized efferent projection patterns from the mouse parabrachial nucleus (PbN), the second taste relay in rodents, to higher gustatory centers, including the ventroposteromedial nucleus of the thalamus (VPMpc), central nucleus of the amygdala (CeA) and lateral hypothalamus (LH). We made injections of the retrograde tracer red and green latex microspheres into the VMPpc and CeA (VPMpc-CeA group), VMPpc and LH (VPMpc-LH group) or CeA and LH (CeA-LH group, n=6 for each group). Injections into these areas preferentially resulted in retrograde labeling in the ipsilateral PbN in all groups. Cells projecting to the VPMpc, CeA, and LH were generally found in all subnuclei, but were differentially distributed. VPMpc-projecting cells predominated in gustatory-related subnuclei, CeA-projecting neurons predominated in the external lateral (el) subnucleus, and concentrated labeling was observed in the dorsal lateral subnucleus (dl) following LH injection. Double-labeled neurons were found for all groups, almost entirely ipsilaterally and primarily in the medial (m), waist area (wa), ventral lateral (vl) and el subnuclei. These results suggest that PbN neurons in different subdivisions have different projection and collateralization patterns to the VPMpc, CeA and LH. Functional implications of these projections are discussed with an emphasis on their roles in taste.
Collapse
|
17
|
Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 2010; 65:7-19. [PMID: 20152109 DOI: 10.1016/j.neuron.2009.11.031] [Citation(s) in RCA: 2424] [Impact Index Per Article: 161.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2009] [Indexed: 12/11/2022]
Abstract
One literature treats the hippocampus as a purely cognitive structure involved in memory; another treats it as a regulator of emotion whose dysfunction leads to psychopathology. We review behavioral, anatomical, and gene expression studies that together support a functional segmentation into three hippocampal compartments: dorsal, intermediate, and ventral. The dorsal hippocampus, which corresponds to the posterior hippocampus in primates, performs primarily cognitive functions. The ventral (anterior in primates) relates to stress, emotion, and affect. Strikingly, gene expression in the dorsal hippocampus correlates with cortical regions involved in information processing, while genes expressed in the ventral hippocampus correlate with regions involved in emotion and stress (amygdala and hypothalamus).
Collapse
|
18
|
Haino T, Hironaka S, Ooka T, Tokita K, Kubota Y, Boughter JD, Inoue T, Mukai Y. Orosensory deprivation alters taste-elicited c-Fos expression in the parabrachial nucleus of neonatal rats. Neurosci Res 2010; 67:228-35. [PMID: 20302893 DOI: 10.1016/j.neures.2010.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
In the present study we examined the effects of neonatal orosensory deprivation on taste-elicited gustatory activity in the rat parabrachial nucleus (PBN) using the functional anatomical marker c-Fos. Animals in three groups (GG, GO and GM) received gastric cannula implantation surgery on postnatal day 9 (P9). Animals in the fourth group (MR) did not receive any surgery. GG rats were fed by infusion of artificial milk directly into the stomach. GO rats were fed by intraoral infusion of artificial milk. GM and MR rats were reared by their mother with free access to mother's milk, water and rat chow. Rats from all groups were similar in body weight and length by P21. On P21 rats in all groups were intraorally presented with 0.5M sucrose solution and the brains were extracted and processed for c-Fos immunohistochemistry. Taste-elicited c-Fos expression in both the gustatory waist area, and the external lateral subnucleus of the PBN in rats in the GG group was significantly more robust than in the other three groups. These findings suggest a substantial alteration in orosensory-evoked neuronal response in this nucleus, due to sensory or motor deprivation during a critical developmental stage.
Collapse
Affiliation(s)
- Toshiyuki Haino
- Department of Hygiene and Oral Health, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Yamamoto T, Takemura M, Inui T, Torii K, Maeda N, Ohmoto M, Matsumoto I, Abe K. Functional organization of the rodent parabrachial nucleus. Ann N Y Acad Sci 2009; 1170:378-82. [PMID: 19686162 DOI: 10.1111/j.1749-6632.2009.03883.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rodent parabrachial nucleus (PBN) is not merely a sensory relay station but also plays an important role in integrating various ascending and descending inputs together with plastic changes of neuronal responses after learning and experience. The limbic and reward systems receive ingestion-related information via the cortical areas in primates, whereas in rodents the information is sent to these systems mostly via the PBN. To explore how the rat PBN is functionally organized, we detected activation patterns of neurons mainly by means of c-fos immunohistochemistry to show neuronal activation in different situations of ingestive behavior. The expression pattern was different under nutritionally replete and deficient conditions, perceptually new and familiar conditions, and learned and unlearned conditions. As for the possible functions, the rostral part of the external lateral subnucleus is related to general visceral inputs; the caudal part of the external lateral subnucleus, aversive behavior; the dorsal lateral subnucleus, ingestive behavior; and the central medial subnucleus, taste of NaCl. Because several genes were localized in specific subnuclei, we are trying to correlate the gene expressions with possible functional significance.
Collapse
|
21
|
Small DM, Scott TR. Symposium overview: What Happens to the pontine processing? repercussions of interspecies differences in pontine taste representation for tasting and feeding. Ann N Y Acad Sci 2009; 1170:343-6. [PMID: 19686158 DOI: 10.1111/j.1749-6632.2009.03918.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dana M Small
- Department of Psychiatry, The John B Pierce Laboratory, Yale University School of Medicine, New Haven, Connecticut 06519, USA.
| | | |
Collapse
|
22
|
Tokita K, Inoue T, Boughter JD. Afferent connections of the parabrachial nucleus in C57BL/6J mice. Neuroscience 2009; 161:475-88. [PMID: 19327389 PMCID: PMC2705209 DOI: 10.1016/j.neuroscience.2009.03.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
Abstract
Although the mouse is an experimental model with an increasing importance in various fields of neuroscience, the characteristics of its central gustatory pathways have not yet been well documented. Recent electrophysiological studies using the rat and hamster have revealed that taste processing in the brainstem gustatory relays is under the strong influence of inputs from forebrain gustatory structures. In the present study, we investigated the organization of afferent projections to the mouse parabrachial nucleus (PbN), which is located at a key site between the brainstem and gustatory, viscerosensory and autonomic centers in the forebrain. We made injections of the retrograde tracer fluorogold centered around the "waist" area of the PbN, whose neurons are known to be highly responsive to taste stimuli. Retrogradely labeled neurons were found in the infralimbic, dysgranular and agranular insular cortex as well as the claustrum; the bed nucleus of the stria terminalis and the substantia innominata; the central nucleus of the amygdala; the lateral and medial preoptic areas, the paraventricular, the dorsomedial, the ventromedial, the arcuate, and the lateral hypothalamic areas; the periaqueductal gray, the substantia nigra pars compacta, and the ventral tegmental area; the supratrigeminal nucleus, rostral and caudal nucleus of the solitary tract; the parvicellular intermediate and gigantocellular reticular nucleus; the caudal and interpolar divisions of the spinal trigeminal nucleus, dorsomedial spinal trigeminal nucleus, and the area postrema. Numbers of labeled neurons in the main components of the gustatory system including the insular cortex, bed nucleus of the stria terminalis, central nucleus of the amygdala, lateral hypothalamus, and rostral nucleus of the solitary tract were quantified. These results are basically consistent with those of the previous rat and hamster studies, but some species differences were found. Functional implications of these afferent inputs are discussed with an emphasis on their role in taste.
Collapse
Affiliation(s)
- K Tokita
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
23
|
Inui T, Yamamoto T, Shimura T. GABAergic transmission in the rat ventral pallidum mediates a saccharin palatability shift in conditioned taste aversion. Eur J Neurosci 2009; 30:110-5. [PMID: 19523097 DOI: 10.1111/j.1460-9568.2009.06800.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously found that the blockade of gamma-aminobutyric acid (GABA)(A) receptors in the ventral pallidum (VP) alters the taste palatability of a conditioned stimulus (CS) from aversive to ingestive after the establishment of conditioned taste aversion (CTA). Because these results suggest that GABAergic transmission in the VP mediates decreased palatability of the taste in CTA, the present study aimed to examine the effects of taste stimulation on the extracellular release of GABA in the VP using in vivo microdialysis. Initially, rats received a paired presentation of 5 mm saccharin or 0.3 mm quinine solution with an intraperitoneal injection of 0.15 m lithium chloride (S-CTA and Q-CTA groups) or saline (S-control and Q-control groups). After conditioning, microdialysis was carried out before, during and after the presentation of the CS via an intra-oral cannula. We measured the latency of the first aversive orofacial responses to the CS as behavioral indices. In the S-CTA group, which rapidly rejected the CS (within 100 s), the GABA efflux was significantly increased (147%) and was maintained for 2 h. On the other hand, the S-control group expressed no aversive responses and showed no significant alterations in GABA efflux. Although the Q-CTA group immediately expressed aversive responses to the CS (within 30 s), GABA release was not changed by presentation of the CS, which was similar in the Q-control group. These findings suggest that the palatability shift from ingestive to aversive in conditioned aversion to saccharin, but not quinine, is mediated by the change in GABAergic transmission in the VP.
Collapse
Affiliation(s)
- Tadashi Inui
- Division of Behavioral Physiology, Department of Behavioral Sciences, Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
24
|
Central mechanisms of taste: Cognition, emotion and taste-elicited behaviors. JAPANESE DENTAL SCIENCE REVIEW 2008. [DOI: 10.1016/j.jdsr.2008.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|