1
|
Simmons AM, Warnecke M, Simmons JA. Microseconds-level coding of echo delay in the auditory brainstem of an FM-echolocating bat. J Neurophysiol 2024; 132:2012-2022. [PMID: 39570280 PMCID: PMC11687828 DOI: 10.1152/jn.00305.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/25/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024] Open
Abstract
Echolocating big brown bats (Eptesicus fuscus) detect changes in ultrasonic echo delay with an acuity as sharp as 1 µs or less. How this perceptual feat is accomplished in the nervous system remains unresolved. Here, we examined the precision of latency registration (latency jitter) in neural population responses as a possible mechanism underlying the bat's hyperacuity. We recorded local field potentials in the cochlear nucleus and inferior colliculus of anesthetized big brown bats to sequences of sounds consisting of a simulated frequency-modulated broadcast followed, at various echo delays, by a four-echo cascade. Latencies of the first negative response peak to the broadcast and to the first echo in the cascade were shorter in the cochlear nucleus than in the inferior colliculus, but latency jitter of this peak was comparable in both brainstem nuclei. Mean latency jitter, averaged over all stimulus conditions, was 51 µs in the cochlear nucleus and 56 µs in the inferior colliculus. Latency jitter to the successive echoes in the echo cascades was larger, with means of 125 µs and 111 µs, respectively. These values are lower than values commonly reported for single-neuron latency variability in bats and other mammals, and they approach within an order of magnitude the big brown bat's psychophysical performance. Latency jitter for synchronized population responses on a scale of microseconds reduces the gap between neurophysiological and behavioral measures of acuity. Further systems-level analysis is necessary for understanding neural mechanisms of perception.NEW & NOTEWORTHY Echolocating big brown bats resolve time delays with a sharp precision of 1 µs or less. How this hyperacuity is accomplished in the auditory system is unknown. We now report that the precision of latency registration (latency jitter) in population activity from two brainstem nuclei in response to simulated echolocation sounds is in the range of tens of microseconds. These values are smaller than observed in single neuron responses and approach the bat's psychophysical acuity.
Collapse
Affiliation(s)
- Andrea Megela Simmons
- Department of Cognitive and Psychological Sciences, Brown University, Providence, Rhode Island, United States
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States
| | - Michaela Warnecke
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States
| | - James A Simmons
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
2
|
Simmons AM, Warnecke M, Simmons JA. Representation of frequency-modulated sweeps in the cochlear nucleus of the big brown bat. JASA EXPRESS LETTERS 2023; 3:104402. [PMID: 37787696 DOI: 10.1121/10.0021188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
The cochlear nucleus (CN) receives ipsilateral input from the auditory nerve and projects to other auditory brainstem nuclei. Little is known about CN processing of signals used for echolocation. This study recorded multiple unit activity in the CN of anesthetized big brown bats (Eptesicus fuscus) to ultrasonic frequency-modulated (FM) sweeps differing in sweep direction. FM up-sweeps evoke larger peak amplitudes at shorter onset latencies and with smaller amplitude-latency trading ratios than FM down-sweeps. Variability of onset latencies is in the tens of microsecond ranges, indicating sharp temporal precision in the CN for coding of FM signals.
Collapse
Affiliation(s)
- Andrea Megela Simmons
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island 02912, USA
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, ; ;
| | - Michaela Warnecke
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | - James A Simmons
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, ; ;
| |
Collapse
|
3
|
Accomando AW, Johnson MA, McLaughlin MA, Simmons JA, Simmons AM. Connexin36 RNA Expression in the Cochlear Nucleus of the Echolocating Bat, Eptesicus fuscus. J Assoc Res Otolaryngol 2023; 24:281-290. [PMID: 37253961 PMCID: PMC10335991 DOI: 10.1007/s10162-023-00898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 03/30/2023] [Indexed: 06/01/2023] Open
Abstract
PURPOSE The echolocating bat is used as a model for studying the auditory nervous system because its specialized sensory capabilities arise from general mammalian auditory percepts such as pitch and sound source localization. These percepts are mediated by precise timing within neurons and networks of the lower auditory brainstem, where the gap junction protein Connexin36 (CX36) is expressed. Gap junctions and electrical synapses in the central nervous system are associated with fast transmission and synchronous patterns of firing within neuronal networks. The purpose of this study was to identify areas where CX36 was expressed in the bat cochlear nucleus to shed light on auditory brainstem networks in a hearing specialist animal model. METHODS We investigated the distribution of CX36 RNA throughout the cochlear nucleus complex of the echolocating big brown bat, Eptesicus fuscus, using in situ hybridization. As a qualitative comparison, we visualized Gjd2 gene expression in the cochlear nucleus of transgenic CX36 reporter mice, species that hear ultrasound but do not echolocate. RESULTS In both the bat and the mouse, CX36 is expressed in the anteroventral and in the dorsal cochlear nucleus, with more limited expression in the posteroventral cochlear nucleus. These results are generally consistent with previous work based on immunohistochemistry. CONCLUSION Our data suggest that the anatomical substrate for CX36-mediated electrical neurotransmission is conserved in the mammalian CN across echolocating bats and non-echolocating mice.
Collapse
Affiliation(s)
- Alyssa W. Accomando
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI 02912 USA
| | - Mark A. Johnson
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI 02912 USA
- Taconic Biosciences, Rensselaer, NY 12144 USA
| | - Madeline A. McLaughlin
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI 02912 USA
| | - James A. Simmons
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI 02912 USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912 USA
| | - Andrea Megela Simmons
- Division of Biology and Medicine, Department of Neuroscience, Brown University, Providence, RI 02912 USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912 USA
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912 USA
| |
Collapse
|
4
|
Zoidl GR, Spray DC. The Roles of Calmodulin and CaMKII in Cx36 Plasticity. Int J Mol Sci 2021; 22:4473. [PMID: 33922931 PMCID: PMC8123330 DOI: 10.3390/ijms22094473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 01/07/2023] Open
Abstract
Anatomical and electrophysiological evidence that gap junctions and electrical coupling occur between neurons was initially confined to invertebrates and nonmammals and was thought to be a primitive form of synaptic transmission. More recent studies revealed that electrical communication is common in the mammalian central nervous system (CNS), often coexisting with chemical synaptic transmission. The subsequent progress indicated that electrical synapses formed by the gap junction protein connexin-36 (Cx36) and its paralogs in nonmammals constitute vital elements in mammalian and fish synaptic circuitry. They govern the collective activity of ensembles of coupled neurons, and Cx36 gap junctions endow them with enormous adaptive plasticity, like that seen at chemical synapses. Moreover, they orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie the fundamental integrative processes, such as memory and learning. Here, we review the available mechanistic evidence and models that argue for the essential roles of calcium, calmodulin, and the Ca2+/calmodulin-dependent protein kinase II in integrating calcium signals to modulate the strength of electrical synapses through interactions with the gap junction protein Cx36.
Collapse
Affiliation(s)
- Georg R. Zoidl
- Department of Biology & Center for Vision Research (CVR), York University, Toronto, ON M3J 1P3, Canada
| | - David C. Spray
- Dominick P. Purpura Department of Neuroscience & Department of Medicine (Cardiology), Albert Einstein College of Medicine, New York, NY 10461, USA;
| |
Collapse
|
5
|
Rubio ME, Nagy JI. Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: Evidence for neurons forming purely electrical synapses and morphologically mixed synapses. Neuroscience 2015; 303:604-29. [PMID: 26188286 PMCID: PMC4576740 DOI: 10.1016/j.neuroscience.2015.07.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
Abstract
Electrical synapses formed by gap junctions composed of connexin36 (Cx36) are widely distributed in the mammalian central nervous system (CNS). Here, we used immunofluorescence methods to document the expression of Cx36 in the cochlear nucleus and in various structures of the auditory pathway of rat and mouse. Labeling of Cx36 visualized exclusively as Cx36-puncta was densely distributed primarily on the somata and initial dendrites of neuronal populations in the ventral cochlear nucleus, and was abundant in superficial layers of the dorsal cochlear nucleus. Other auditory centers displaying Cx36-puncta included the medial nucleus of the trapezoid body (MNTB), regions surrounding the lateral superior olivary nucleus, the dorsal nucleus of the medial lemniscus, the nucleus sagulum, all subnuclei of the inferior colliculus, and the auditory cerebral cortex. In EGFP-Cx36 transgenic mice, EGFP reporter was detected in neurons located in each of auditory centers that harbored Cx36-puncta. In the ventral cochlear nuclei and the MNTB, many neuronal somata were heavily innervated by nerve terminals containing vesicular glutamate transporter-1 (vglut1) and Cx36 was frequently localized at these terminals. Cochlear ablation caused a near total depletion of vglut1-positive terminals in the ventral cochlear nuclei, with a commensurate loss of labeling for Cx36 around most neuronal somata, but preserved Cx36-puncta at somatic neuronal appositions. The results suggest that electrical synapses formed by Cx36-containing gap junctions occur in most of the widely distributed centers of the auditory system. Further, it appears that morphologically mixed chemical/electrical synapses formed by nerve terminals are abundant in the ventral cochlear nucleus, including those at endbulbs of Held formed by cochlear primary afferent fibers, and those at calyx of Held synapses on MNTB neurons.
Collapse
Affiliation(s)
- M E Rubio
- Departments of Otolaryngology and Neurobiology, University of Pittsburgh Medical School, Pittsburgh, USA
| | - J I Nagy
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
6
|
Blakley BW, Garcia CEA, da Sliva SR, Florêncio VMB, Nagy JI. Elevated auditory brainstem response thresholds in mice with Connexin36 gene ablation. Acta Otolaryngol 2015; 135:814-8. [PMID: 25891643 DOI: 10.3109/00016489.2015.1034880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Expression of connexin36 (Cx36) and electrical synapses formed by Cx36-containing gap junctions contribute to normal auditory brainstem response thresholds in mice. OBJECTIVES Electrical synaptic transmission mediated by gap junctions has not been intensively studied in the auditory system. This study used transgenic mice with knockout of the gene coding for the major protein that forms neuronal gap junctions in mammalian brain (Cx36) to evaluate the role of Cx36 in murine hearing. METHODS Auditory brainstem response (ABR) thresholds and distortion product otoacoustic emissions (DPOAEs) were measured in 26 wild-type and 26 Cx36 knockout mice. ABR thresholds were used to assess auditory brainstem function at four frequencies. DPOAEs were delivered for seven frequency pairs to assess cochlear function. RESULTS The magnitudes of the 2f1-f2 distortion products were not different between Cx36 knockout and wild-type mice, suggesting similar cochlear function in the two groups. ABR thresholds were significantly elevated in the Cx36 knockout compared with the wild-type groups, suggesting impaired function in the auditory brainstem. The results suggest that electrical synapses formed by Cx36-containing gap junctions contribute to auditory sound processing and function at the level of the brainstem, not the cochlea. These findings may be important for understanding human auditory pathology.
Collapse
Affiliation(s)
- Brian W Blakley
- Department of Otolaryngology, University of Manitoba , Winnipeg , Canada
| | | | | | | | | |
Collapse
|
7
|
Liu WJ, Yang J. Preferentially regulated expression of connexin 43 in the developing spiral ganglion neurons and afferent terminals in post-natal rat cochlea. Eur J Histochem 2015; 59:2464. [PMID: 25820563 PMCID: PMC4378217 DOI: 10.4081/ejh.2015.2464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 11/23/2022] Open
Abstract
The expression pattern of connexin 43 (Cx43) in the cochlea is not determined and is controversial. Since the presence of Cx43 is essential for hearing, we re-examined its distribution during post-natal development of rat cochlea. Cx43 protein was expressed in spiral ganglion neurons (SGNs) and their neurite terminals innervating the inner and outer hair cells (IHCs and OHCs) as early as birth (postnatal day 0, P0), and persisted until P14. Double immunofluorescence staining, using two antibodies against Cx43 and TUJ1, a marker for all SGNs and afferent terminals, showed that immunoreactivity for Cx43 and TUJ1 was perfectly colocalized in SGNs and afferent terminals associated with the IHCs and OHCs. However, beyond P14, Cx43 immunostaining could no longer be detected in the region of the synaptic terminals at the bases of IHCs and OHCs (P17, adult). In contrast, Cx43 maintained its expression in SGNs into adulthood. We further performed quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) to identify the presence of Cx43 mRNA in the modiolus (mainly containing SGNs). Cx43 mRNA was higher at P8, compared with P1, and subsequently decreased at P14. These results indicated that Cx43 correlated with cochlear synaptogenesis and establishment of auditory neurotransmission.
Collapse
Affiliation(s)
- W J Liu
- Xinhua Hospital, Shanghai Jiaotong University, Shanghai Jiaotong University Ear Institute.
| | | |
Collapse
|
8
|
Liu W, Boström M, Kinnefors A, Rask-Andersen H. Unique expression of connexins in the human cochlea. Hear Res 2009; 250:55-62. [PMID: 19450429 DOI: 10.1016/j.heares.2009.01.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/19/2009] [Accepted: 01/28/2009] [Indexed: 11/16/2022]
Abstract
Mutations in the genes GJB2 and GJB6, which encode the proteins Connexin 26 (Cx26) and Connexin 30 (Cx30), have been linked to nonsyndromic prelingual deafness in humans. These proteins may form so-called gap junctions (GJ) or transcellular pathways between cells. The pathogenesis of deafness due to GJ Connexin mutations remains unclear partly because examinations performed in the human ear are infrequent. Here we analysed the expression and distribution of Cx26 and Cx30 in five fresh normal human cochleae taken out at occasional surgery. Immunohistochemistry including confocal microscopy in decalcified specimen showed that these proteins are widely expressed in the human cochlea. In the lateral wall there was strong antibody co-labeling for Cx26 and Cx30 that support the existence of channels comprising heteromeric Cx26/Cx30 connexons. In the organ of Corti there were some co-labeling in the supporting cell area including mainly the Claudius cells and Deiter cells of these two Cxs, apart from isolated Cx26 and Cx30 labeling in the same area, suggestive of both homomeric/homotypic pattern and hybrid pattern (heteromeric or heterotypic). Cx30, Cx26 and Connexin 36 (Cx36) immunoreactivity was also associated with spiral ganglion type I neurons, the latter being a gap junction protein specific to neurons. Gap-junction-based electrical synapses are not known to occur in mammalian auditory system other than in bats where they may play a role for fast electrical nerve transmission useful for echolocation. Their potential role in the processing of human auditory nerve signaling as well as non-GJ roles of the connexins in human cochlea is discussed.
Collapse
Affiliation(s)
- Wei Liu
- Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | |
Collapse
|