1
|
Cirigliano SM, Fine HA. Bridging the gap between tumor and disease: Innovating cancer and glioma models. J Exp Med 2025; 222:e20220808. [PMID: 39626263 PMCID: PMC11614461 DOI: 10.1084/jem.20220808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024] Open
Abstract
Recent advances in cancer biology and therapeutics have underscored the importance of preclinical models in understanding and treating cancer. Nevertheless, current models often fail to capture the complexity and patient-specific nature of human tumors, particularly gliomas. This review examines the strengths and weaknesses of such models, highlighting the need for a new generation of models. Emphasizing the critical role of the tumor microenvironment, tumor, and patient heterogeneity, we propose integrating our advanced understanding of glioma biology with innovative bioengineering and AI technologies to create more clinically relevant, patient-specific models. These innovations are essential for improving therapeutic development and patient outcomes.
Collapse
Affiliation(s)
| | - Howard A. Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Pridham KJ, Hutchings KR, Beck P, Liu M, Xu E, Saechin E, Bui V, Patel C, Solis J, Huang L, Tegge A, Kelly DF, Sheng Z. Selective regulation of chemosensitivity in glioblastoma by phosphatidylinositol 3-kinase beta. iScience 2024; 27:109921. [PMID: 38812542 PMCID: PMC11133927 DOI: 10.1016/j.isci.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Resistance to chemotherapies such as temozolomide is a major hurdle to effectively treat therapy-resistant glioblastoma. This challenge arises from the activation of phosphatidylinositol 3-kinase (PI3K), which makes it an appealing therapeutic target. However, non-selectively blocking PI3K kinases PI3Kα/β/δ/γ has yielded undesired clinical outcomes. It is, therefore, imperative to investigate individual kinases in glioblastoma's chemosensitivity. Here, we report that PI3K kinases were unequally expressed in glioblastoma, with levels of PI3Kβ being the highest. Patients deficient of O6-methylguanine-DNA-methyltransferase (MGMT) and expressing elevated levels of PI3Kβ, defined as MGMT-deficient/PI3Kβ-high, were less responsive to temozolomide and experienced poor prognosis. Consistently, MGMT-deficient/PI3Kβ-high glioblastoma cells were resistant to temozolomide. Perturbation of PI3Kβ, but not other kinases, sensitized MGMT-deficient/PI3Kβ-high glioblastoma cells or tumors to temozolomide. Moreover, PI3Kβ-selective inhibitors and temozolomide synergistically mitigated the growth of glioblastoma stem cells. Our results have demonstrated an essential role of PI3Kβ in chemoresistance, making PI3Kβ-selective blockade an effective chemosensitizer for glioblastoma.
Collapse
Affiliation(s)
- Kevin J. Pridham
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Kasen R. Hutchings
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Patrick Beck
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Min Liu
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Eileen Xu
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Erin Saechin
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Vincent Bui
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Chinkal Patel
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Jamie Solis
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Leah Huang
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Allison Tegge
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhi Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Faculty of Health Science, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
A Preliminary Study of the Effect of Quercetin on Cytotoxicity, Apoptosis, and Stress Responses in Glioblastoma Cell Lines. Int J Mol Sci 2022; 23:ijms23031345. [PMID: 35163269 PMCID: PMC8836052 DOI: 10.3390/ijms23031345] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
A growing body of evidence indicates that dietary polyphenols show protective effects against various cancers. However, little is known yet about their activity in brain tumors. Here we investigated the interaction of dietary flavonoid quercetin (QCT) with the human glioblastoma A172 and LBC3 cell lines. We demonstrated that QCT evoked cytotoxic effect in both tested cell lines. Microscopic observations, Annexin V-FITC/PI staining, and elevated expression and activity of caspase 3/7 showed that QCT caused predominantly apoptotic death of A172 cells. Further analyses confirmed enhanced ROS generation, deregulated expression of SOD1 and SOD2, depletion of ATP levels, and an overexpression of CHOP, suggesting the activation of oxidative stress and ER stress upon QCT exposure. Finally, elevated expression and activity of caspase 9, indicative of a mitochondrial pathway of apoptosis, was detected. Conversely, in LBC3 cells the pro-apoptotic effect was observed only after 24 h incubation with QCT, and a shift towards necrotic cell death was observed after 48 h of treatment. Altogether, our data indicate that exposure to QCT evoked cell death via activation of intrinsic pathway of apoptosis in A172 cells. These findings suggest that QCT is worth further investigation as a potential pharmacological agent in therapy of brain tumors.
Collapse
|
4
|
Čuperlović-Culf M, Khieu NH, Surendra A, Hewitt M, Charlebois C, Sandhu JK. Analysis and Simulation of Glioblastoma Cell Lines-Derived Extracellular Vesicles Metabolome. Metabolites 2020; 10:E88. [PMID: 32131411 PMCID: PMC7142482 DOI: 10.3390/metabo10030088] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive cancers of the central nervous system. Despite current advances in non-invasive imaging and the advent of novel therapeutic modalities, patient survival remains very low. There is a critical need for the development of effective biomarkers for GBM diagnosis and therapeutic monitoring. Extracellular vesicles (EVs) produced by GBM tumors have been shown to play an important role in cellular communication and modulation of the tumor microenvironment. As GBM-derived EVs contain specific "molecular signatures" of their parental cells and are able to transmigrate across the blood-brain barrier into biofluids such as the blood and cerebrospinal fluid (CSF), they are considered as a valuable source of potential diagnostic biomarkers. Given the relatively harsh extracellular environment of blood and CSF, EVs have to endure and adapt to different conditions. The ability of EVs to adjust and function depends on their lipid bilayer, metabolic content and enzymes and transport proteins. The knowledge of EVs metabolic characteristics and adaptability is essential for their utilization as diagnostic and therapeutic tools. The main aim of this study was to determine the metabolome of small EVs or exosomes derived from different GBM cells and compare to the metabolic profile of their parental cells using NMR spectroscopy. In addition, a possible flux of metabolic processes in GBM-derived EVs was simulated using constraint-based modeling from published proteomics information. Our results showed a clear difference between the metabolic profiles of GBM cells, EVs and media. Machine learning analysis of EV metabolomics, as well as flux simulation, supports the notion of active metabolism within EVs, including enzymatic reactions and the transfer of metabolites through the EV membrane. These results are discussed in the context of novel GBM diagnostics and therapeutic monitoring.
Collapse
Affiliation(s)
- Miroslava Čuperlović-Culf
- Digital Technologies Research Centre, Bldg-M50, 1200 Montreal Road, National Research Council Canada, Ottawa, ON K1A0R6, Canada;
| | - Nam H. Khieu
- Human Health Therapeutics Research Centre, Bldg-M54, 1200 Montreal Road, National Research Council Canada, Ottawa, ON K1A0R6, Canada; (N.H.K.); (M.H.); (C.C.)
| | - Anuradha Surendra
- Digital Technologies Research Centre, Bldg-M50, 1200 Montreal Road, National Research Council Canada, Ottawa, ON K1A0R6, Canada;
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, Bldg-M54, 1200 Montreal Road, National Research Council Canada, Ottawa, ON K1A0R6, Canada; (N.H.K.); (M.H.); (C.C.)
| | - Claudie Charlebois
- Human Health Therapeutics Research Centre, Bldg-M54, 1200 Montreal Road, National Research Council Canada, Ottawa, ON K1A0R6, Canada; (N.H.K.); (M.H.); (C.C.)
| | - Jagdeep K. Sandhu
- Human Health Therapeutics Research Centre, Bldg-M54, 1200 Montreal Road, National Research Council Canada, Ottawa, ON K1A0R6, Canada; (N.H.K.); (M.H.); (C.C.)
| |
Collapse
|
5
|
De La Rosa J, Urdiciain A, Zazpe I, Zelaya MV, Meléndez B, Rey JA, Idoate MA, Castresana JS. The synergistic effect of DZ‑NEP, panobinostat and temozolomide reduces clonogenicity and induces apoptosis in glioblastoma cells. Int J Oncol 2019; 56:283-300. [PMID: 31746375 DOI: 10.3892/ijo.2019.4905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/29/2019] [Indexed: 11/06/2022] Open
Abstract
Current treatment against glioblastoma consists of surgical resection followed by temozolomide, with or without combined radiotherapy. Glioblastoma frequently acquires resistance to chemotherapy and/or radiotherapy. Novel therapeutic approaches are thus required. The inhibition of enhancer of zeste homolog 2 (EZH2; a histone methylase) and histone deacetylases (HDACs) are possible epigenetic treatments. Temozolomide, 3‑deazaneplanocin A (DZ‑Nep; an EZH2 inhibitor) and panobinostat (an HDAC inhibitor) were tested in regular and temozolomide‑resistant glioblastoma cells to confirm whether the compounds could behave in a synergistic, additive or antagonistic manner. A total of six commercial cell lines, two temozolomide‑induced resistant cell lines and two primary cultures derived from glioblastoma samples were used. Cell lines were exposed to single treatments of the drugs in addition to all possible two‑ and three‑drug combinations. Colony formation assays, synergistic assays and reverse transcription‑quantitative PCR analysis of apoptosis‑associated genes were performed. The highest synergistic combination was DZ‑Nep + panobinostat. Triple treatment was also synergistic. Reduced clonogenicity and increased apoptosis were both induced. It was concluded that the therapeutic potential of the combination of these three drugs in glioblastoma was evident and should be further explored.
Collapse
Affiliation(s)
- Javier De La Rosa
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, 31008 Pamplona, Spain
| | - Alejandro Urdiciain
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, 31008 Pamplona, Spain
| | - Idoya Zazpe
- Department of Neurosurgery, Hospital Complex of Navarra, 31008 Pamplona, Spain
| | - María V Zelaya
- Department of Pathology, Hospital Complex of Navarra, 31008 Pamplona, Spain
| | - Bárbara Meléndez
- Molecular Pathology Research Unit, Department of Pathology, Virgen de la Salud Hospital, 45005 Toledo, Spain
| | - Juan A Rey
- IdiPaz Research Unit, La Paz University Hospital, 28046 Madrid, Spain
| | - Miguel A Idoate
- Department of Pathology, University of Navarra Clinic, 31008 Pamplona, Spain
| | - Javier S Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, 31008 Pamplona, Spain
| |
Collapse
|
6
|
Gan Y, Chen Q, Lei Y. Regulation of paclitaxel sensitivity in prostate cancer cells by PTEN/maspin signaling. Oncol Lett 2017; 14:4977-4982. [PMID: 29085510 DOI: 10.3892/ol.2017.6793] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/21/2017] [Indexed: 01/17/2023] Open
Abstract
Taxol is the first-line chemotherapeutic agent for patients with castration-resistant prostate cancer. However, the mechanism of the sensitivity of prostate cancer cells to Taxol treatment remains to be elucidated. In the present study, it was found that paclitaxel induced more apoptosis and maspin expression in phosphatase and tensin homolog (PTEN)-positive 22Rv1 cells than PTEN-negative LNCaP cells. Knockdown of PTEN in 22Rv1 cells resulted in increased resistance to paclitaxel and impaired the induction of maspin expression by paclitaxel. Overexpression of PTEN sensitized LNCaP cells to paclitaxel treatment and increased maspin induction by paclitaxel. Furthermore, knocking down maspin abrogated PTEN-induced paclitaxel sensitivity in LNCaP cells. PTEN/maspin signaling may be important for regulating the susceptibility to paclitaxel in prostate cancer.
Collapse
Affiliation(s)
- Yu Gan
- Qingshan Clinic, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Qing Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Lei
- Pharmacy of University Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
7
|
Immune microenvironment of gliomas. J Transl Med 2017; 97:498-518. [PMID: 28287634 DOI: 10.1038/labinvest.2017.19] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 12/13/2022] Open
Abstract
High-grade gliomas are rapidly progressing tumors of the central nervous system (CNS) with a very poor prognosis despite extensive resection combined with radiation and/or chemotherapy. Histopathological and flow cytometry analyses of human and rodent experimental gliomas revealed heterogeneity of a tumor and its niche, composed of reactive astrocytes, endothelial cells, and numerous immune cells. Infiltrating immune cells consist of CNS resident (microglia) and peripheral macrophages, granulocytes, myeloid-derived suppressor cells (MDSCs), and T lymphocytes. Intratumoral density of glioma-associated microglia/macrophages (GAMs) and MDSCs is the highest in malignant gliomas and inversely correlates with patient survival. Although GAMs have a few innate immune functions intact, their ability to be stimulated via TLRs, secrete cytokines, and upregulate co-stimulatory molecules is not sufficient to initiate antitumor immune responses. Moreover, tumor-reprogrammed GAMs release immunosuppressive cytokines and chemokines shaping antitumor responses. Both GAMs and MDSCs have ability to attract T regulatory lymphocytes to the tumor, but MDSCs inhibit cytotoxic responses mediated by natural killer cells, and block the activation of tumor-reactive CD4+ T helper cells and cytotoxic CD8+ T cells. The presence of regulatory T cells may further contribute to the lack of effective immune activation against malignant gliomas. We review the immunological aspects of glioma microenvironment, in particular composition and various roles of the immune cells infiltrating malignant human gliomas and experimental rodent gliomas. We describe tumor-derived signals and mechanisms driving myeloid cell accumulation and reprogramming. Although, understanding the complexity of cell-cell interactions in glioma microenvironment is far from being achieved, recent studies demonstrated several glioma-derived factors that trigger migration, accumulation, and reprogramming of immune cells. Identification of these factors may facilitate development of immunotherapy for gliomas as immunomodulatory and immune evasion mechanisms employed by malignant gliomas pose an appalling challenge to brain tumor immunotherapy.
Collapse
|
8
|
Jones NM, Rowe MR, Shepherd PR, McConnell MJ. Targeted inhibition of dominant PI3-kinase catalytic isoforms increase expression of stem cell genes in glioblastoma cancer stem cell models. Int J Oncol 2016; 49:207-16. [PMID: 27176780 DOI: 10.3892/ijo.2016.3510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/02/2016] [Indexed: 11/05/2022] Open
Abstract
Cancer stem cells (CSC) exhibit therapy resistance and drive self-renewal of the tumour, making cancer stem cells an important target for therapy. The PI3K signalling pathway has been the focus of considerable research effort, including in glioblastoma (GBM), a cancer that is notoriously resistant to conventional therapy. Different isoforms of the catalytic sub-unit have been associated with proliferation, migration and differentiation in stem cells and cancer stem cells. Blocking these processes in CSC would improve patient outcome. We examined the effect of isoform specific PI3K inhibitors in two models of GBM CSC, an established GBM stem cell line 08/04 and a neurosphere formation model. We identified the dominant catalytic PI3K isoform for each model, and inhibition of the dominant isoform blocked AKT phosphorylation, as did pan-PI3K/mTOR inhibition. Analysis of SOX2, OCT4 and MSI1 expression revealed that inhibition of the dominant p110 subunit increased expression of cancer stem cell genes, while pan-PI3K/mTOR inhibition caused a similar, though not identical, increase in cancer stem cell gene expression. This suggested that PI3K inhibition enhanced, rather than blocked, CSC activity. Careful analysis of the response to specific isoform inhibition will be necessary before specific subunit inhibitors can be successfully deployed against GBM CSC.
Collapse
Affiliation(s)
- Nicole M Jones
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Matthew R Rowe
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Melanie J McConnell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
9
|
Hermansen SK, Nielsen BS, Aaberg-Jessen C, Kristensen BW. miR-21 Is Linked to Glioma Angiogenesis: A Co-Localization Study. J Histochem Cytochem 2016; 64:138-48. [PMID: 26701969 PMCID: PMC4812682 DOI: 10.1369/0022155415623515] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/30/2015] [Indexed: 01/19/2023] Open
Abstract
MicroRNA-21 (miR-21) is the most consistently over-expressed microRNA (miRNA) in malignant gliomas. We have previously reported that miR-21 is upregulated in glioma vessels and subsets of glioma cells. To better understand the role of miR-21 in glioma angiogenesis and to characterize miR-21-positive tumor cells, we systematically stained consecutive serial sections from ten astrocytomas for miR-21, hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), phosphatase and tensin homolog (PTEN), octamer-binding transcription factor 4 (Oct4), sex-determining region Y box 2 (Sox2) and CD133. We developed an image analysis-based co-localization approach allowing global alignment and quantitation of the individual markers, and measured the miR-21 in situ hybridization signal against the immunohistochemical staining of the six different markers. miR-21 significantly co-localized with the hypoxia- and angiogenesis-associated markers HIF-1α (p=0.0020) and VEGF (p=0.0096), whereas the putative miR-21 target, PTEN, was expressed independently of miR-21. Expression of stem cell markers Oct4, Sox2 and CD133 was not associated with miR-21. In six glioblastoma cultures, miR-21 did not correlate with the six markers. These findings suggest that miR-21 is linked to glioma angiogenesis, that miR-21 is unlikely to regulate PTEN, and that miR-21-positive tumor cells do not possess stem cell characteristics.
Collapse
Affiliation(s)
| | | | | | - Bjarne Winther Kristensen
- Bjarne Winther Kristensen, Department of Pathology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 15, 5000 Odense C, Denmark.
| |
Collapse
|
10
|
CKD712, a synthetic isoquinoline alkaloid, enhances the anti-cancer effects of paclitaxel in MDA-MB-231 cells through regulation of PTEN. Life Sci 2014; 112:49-58. [DOI: 10.1016/j.lfs.2014.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 11/22/2022]
|
11
|
Riva G, Baronchelli S, Paoletta L, Butta V, Biunno I, Lavitrano M, Dalprà L, Bentivegna A. In vitro anticancer drug test: A new method emerges from the model of glioma stem cells. Toxicol Rep 2014; 1:188-199. [PMID: 28962238 PMCID: PMC5598297 DOI: 10.1016/j.toxrep.2014.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 11/03/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV astrocytoma and the most common malignant brain tumor. Current therapies provide a median survival of 12–15 months after diagnosis, due to the high recurrence rate. The failure of current therapies may be due to the presence, within the tumor, of cells characterized by enhanced self-renewal capacity, multilineage differentiation potential and elevated invasive behavior, called glioma stem cells (GSCs). To evaluate the pharmacological efficacy of selected drugs on six GSC lines, we set up a multiple drug responsivity assay based on the combined evaluation of cytomorphological and functional parameters, including the analysis of polymorphic nuclei, mitotic index and cell viability. In order to understand the real pharmacological efficacy of the tested drugs, we assigned a specific drug responsivity score to each GSC line, integrating the data produced by multiple assays. In this work we explored the antineoplastic effects of paclitaxel (PTX), an inhibitor of microtubule depolymerization, utilized as standard treatment in several cancers, and of valproic acid (VPA), an inhibitor of histone deacetylases (HDACs) with multiple anticancer properties. We classified the six GSC lines as responsive or resistant to these drugs, on the basis of their responsivity scores. This method can also be useful to identify the best way to combine two or more drugs. In particular, we utilized the pro-differentiating effect of VPA to improve the PTX effectiveness and we observed a significant reduction of cell viability compared to single treatments.
Collapse
Affiliation(s)
- Gabriele Riva
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Simona Baronchelli
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.,Institute for Genetic and Biomedical Research - National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy
| | - Laura Paoletta
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Valentina Butta
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Ida Biunno
- Institute for Genetic and Biomedical Research - National Research Council (IRGB-CNR), via Fantoli 16/15, 20138 Milan, Italy.,IRCCS MultiMedica, Science and Technology Pole, via Fantoli 16/15, 20138 Milan, Italy
| | - Marialuisa Lavitrano
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Leda Dalprà
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.,Medical Genetics Laboratory, S. Gerardo Hospital, via Pergolesi 33, 20900 Monza, Italy
| | - Angela Bentivegna
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| |
Collapse
|
12
|
Dual effect of serum amyloid A on the invasiveness of glioma cells. Mediators Inflamm 2013; 2013:509089. [PMID: 23533307 PMCID: PMC3596950 DOI: 10.1155/2013/509089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/04/2013] [Accepted: 01/22/2013] [Indexed: 02/02/2023] Open
Abstract
Evidence sustains a role for the acute-phase protein serum amyloid A (SAA) in carcinogenesis and metastasis, and the protein has been suggested as a marker for tumor progression. Nevertheless, the demonstration of a direct activity of SAA on tumor cells is still incipient. We have investigated the effect of human recombinant SAA (rSAA) on two human glioma cell lines, A172 and T98G. rSAA stimulated the [(3)H]-thymidine incorporation of both lines, but had dual effects on migration and invasiveness which varied according to the cell line. In T98G, the rSAA increased migration and invasion behaviors whereas in A172 it decreased these behaviors. These findings agree with the effect triggered by rSAA on matrix metalloproteinases (MMPs) activities measured in a gelatinolytic assay. rSAA inhibited activity of both MMPs in A172 cells while increasing them in T98G cells. rSAA also affected the production of compounds present in the tumor microenvironment that orchestrate tumor progression, such as IL-8, the production of reactive oxygen species (ROS) and nitric oxide (NO). We also observed that both lines expressed all three of the isoforms of SAA: SAA1, SAA2, and SAA4. These data suggest that some tumor cells are responsive to SAA and, in these cases, SAA may have a role in cancer progression that varies according to the cell type.
Collapse
|
13
|
Roy Choudhury S, Karmakar S, Banik NL, Ray SK. Valproic acid induced differentiation and potentiated efficacy of taxol and nanotaxol for controlling growth of human glioblastoma LN18 and T98G cells. Neurochem Res 2011; 36:2292-305. [PMID: 21786169 PMCID: PMC11877315 DOI: 10.1007/s11064-011-0554-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/11/2011] [Accepted: 07/14/2011] [Indexed: 10/18/2022]
Abstract
Glioblastoma shows poor response to current therapies and warrants new therapeutic strategies. We examined the efficacy of combination of valproic acid (VPA) and taxol (TX) or nanotaxol (NTX) in human glioblastoma LN18 and T98G cell lines. Cell differentiation was manifested in changes in morphological features and biochemical markers. Cell growth was controlled with down regulation of vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR), nuclear factor-kappa B (NF-κB), phospho-Akt (p-Akt), and multi-drug resistance (MDR) marker, indicating suppression of angiogenic, survival, and multi-drug resistance pathways. Cell cycle analysis showed that combination therapy (VPA and TX or NTX) increased the apoptotic sub G1 population and apoptosis was further confirmed by Annexin V-FITC/PI binding assay and scanning electron microscopy. Combination therapy caused activation of caspase-8 and cleavage of Bid to tBid and increased Bax:Bcl-2 ratio and mitochondrial release of cytochrome c and apoptosis-inducing factor (AIF). Upregulation of calpain and caspases (caspase-9 and caspase-3) and substrate degradation were also detected in course of apoptosis. The combination of VPA and NTX most effectively controlled the growth of LN18 and T98G cells. Therefore, this combination of drugs can be used as an effective treatment for controlling growth of human glioblastoma cells.
Collapse
Affiliation(s)
- Subhasree Roy Choudhury
- Department of Pathology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | | | | | | |
Collapse
|
14
|
Grunder E, D'Ambrosio R, Fiaschetti G, Abela L, Arcaro A, Zuzak T, Ohgaki H, Lv SQ, Shalaby T, Grotzer M. MicroRNA-21 suppression impedes medulloblastoma cell migration. Eur J Cancer 2011; 47:2479-90. [PMID: 21775132 DOI: 10.1016/j.ejca.2011.06.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/07/2011] [Accepted: 06/17/2011] [Indexed: 12/19/2022]
Abstract
Medulloblastoma (MB), the most common malignant brain tumour in children, is characterised by a high risk of leptomeningeal dissemination. But little is known about the molecular mechanisms that promote cancer cell migration in MB. Aberrant expression of miR-21 is recognised to be causatively linked to metastasis in a variety of human neoplasms including brain tumours; however its function in MB is still unknown. In this study we investigated the expression level and the role of miR-21 in MB cell migration. miR-21 was found to be up-regulated, compared to normal cerebellum, in 29/29 MB primary samples and 6/6 MB-derived cell lines. Inverse correlation was observed between miR-21 expression and the metastasis suppressor PDCD4, while miR-21 repression increased the release of PDCD4 protein, suggesting negative regulation of PDCD4 by miR-21 in MB cells. Anti-miR-21 decreased protein expression of the tumour cell invasion mediators MAP4K1 and JNK, which are also known to be negatively regulated by PDCD4, and down-regulated integrin protein that is essential for MB leptomeningeal dissemination. Moreover miR-21 knockdown in MB cells increased the expression of two eminent negative modulators of cancer cell migration, E-Cadherin and TIMP2 proteins that are known to be positively regulated by PDCD4. Finally and importantly, suppression of miR-21 decreased the motility of MB cells and reduced their migration across basement membranes in vitro. Together, these compelling data propose miR-21 pathway as a novel mechanism impacting MB cell dissemination and raises the possibility that curability of selected MB may be improved by pharmaceutical strategies directed towards microRNA-21.
Collapse
Affiliation(s)
- Eveline Grunder
- Oncology Department, University Children's Hospital of Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ferla R, Bonomi M, Otvos L, Surmacz E. Glioblastoma-derived leptin induces tube formation and growth of endothelial cells: comparison with VEGF effects. BMC Cancer 2011; 11:303. [PMID: 21771332 PMCID: PMC3146945 DOI: 10.1186/1471-2407-11-303] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 07/19/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Leptin is a pleiotropic hormone whose mitogenic and angiogenic activity has been implicated in the development and progression of several malignancies, including brain tumors. In human brain cancer, especially in glioblastoma multiforme (GBM), leptin and its receptor (ObR) are overexpressed relative to normal tissue. Until present, the potential of intratumoral leptin to exert proangiogenic effects on endothelial cells has not been addressed. Using in vitro models, we investigated if GBM can express leptin, if leptin can affect angiogenic and mitogenic potential of endothelial cells, and if its action can be inhibited with specific ObR antagonists. Leptin effects were compared with that induced by the best-characterized angiogenic regulator, VEGF. RESULTS We found that GBM cell lines LN18 and LN229 express leptin mRNA and LN18 cells secrete detectable amounts of leptin protein. Both lines also expressed and secreted VEGF. The conditioned medium (CM) of LN18 and LN 229 cultures as well as 200 ng/mL pure leptin or 50 ng/mL pure VEGF stimulated proliferation of human umbilical vein endothelial cells (HUVEC) at 24 h of treatment. Mitogenic effects of CM were ~2-fold greater than that of pure growth factors. Furthermore, CM treatment of HUVEC for 24 h increased tube formation by ~5.5-fold, while leptin increased tube formation by ~ 80% and VEGF by ~60% at 8 h. The mitogenic and angiogenic effects of both CM were blocked by Aca 1, a peptide ObR antagonist, and by SU1498, which inhibits the VEGF receptor. The best anti-angiogenic and cytostatic effects of Aca1 were obtained with 10 nM and 25 nM, respectively, while for SU1498, the best growth and angiogenic inhibition was observed at 5 μM. The combination of 5 μM SU1498 and Aca1 at 25 nM (growth inhibition) or at 10 nM (reduction of tube formation) produced superior effects compared with single agent treatments. CONCLUSIONS Our data provide the first evidence that LN18 and LN 229 human GBM cells express leptin mRNA and might produce biologically active leptin, which can stimulate tube formation and enhance proliferation of endothelial cells. Furthermore, we demonstrate for the first time that a peptide ObR antagonist inhibits proangiogenic and growth effects of leptin on endothelial cells, and that the pharmacological potential of this compound might be combined with drugs targeting the VEGF pathway.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Cell Division/drug effects
- Cell Line, Tumor/metabolism
- Cells, Cultured/drug effects
- Cinnamates/pharmacology
- Culture Media, Conditioned/pharmacology
- Endothelial Cells/drug effects
- Gene Expression Regulation, Neoplastic
- Glioblastoma/blood supply
- Glioblastoma/metabolism
- Humans
- In Vitro Techniques
- Leptin/biosynthesis
- Leptin/genetics
- Leptin/pharmacology
- Morphogenesis/drug effects
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/pharmacology
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/physiopathology
- Oligopeptides/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Receptors, Leptin/antagonists & inhibitors
- Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
- Signal Transduction/drug effects
- Umbilical Cord
- Up-Regulation
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/pharmacology
Collapse
Affiliation(s)
- Rita Ferla
- Sbarro Institute for Cancer Research and Molecular Medicine, Biotechnology Center, Temple University, 1900 N 12th street, Philadelphia, PA 19122, USA
| | - Maria Bonomi
- Sbarro Institute for Cancer Research and Molecular Medicine, Biotechnology Center, Temple University, 1900 N 12th street, Philadelphia, PA 19122, USA
- Department of Medical Oncology, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Laszlo Otvos
- Department of Biology, College of Science and Technology, Temple University, 1900 N 12th Street, Philadelphia, PA 19122, USA
| | - Eva Surmacz
- Sbarro Institute for Cancer Research and Molecular Medicine, Biotechnology Center, Temple University, 1900 N 12th street, Philadelphia, PA 19122, USA
| |
Collapse
|
16
|
Dual blockade of phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways overcomes paclitaxel-resistance in colorectal cancer. Cancer Lett 2011; 306:151-60. [PMID: 21429662 DOI: 10.1016/j.canlet.2011.02.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 02/08/2011] [Accepted: 02/28/2011] [Indexed: 11/21/2022]
Abstract
Paclitaxel, one of key drugs to treat a wide range of malignancies, exhibits relative low sensitivity for colorectal cancer. The present study was to examine whether and how phosphatidylinositol 3'-kinase (PI3K) signals affect the sensitivity of colorectal cancer to paclitaxel. Four colorectal cancer cell lines were exposed to paclitaxel in the presence of PI3K signal inhibitors, such as LY294002, siRNA for Akt, or rapamycin, with or without MAPK inhibitor, PD98059. Cell viability and apoptosis were determined by MTT assay, cell cycle analysis in flow cytometer and Hoechst nuclear staining. To analyze the PI3K activity, the expression in phosphorylated Akt and downstream effectors of p70S6 kinase (S6K) were evaluated by Western blot analysis. Paclitaxel alone (5-10 nM) did not induce the apoptosis in all four cell lines. Although LY294002 alone did not affect the cell viability, it suppressed the Akt and S6K activities and induced the sub-G1 arrest/apoptosis when paclitaxel was co-administered, as well as the Akt siRNA and rapamycin did. Simultaneous blockade of PI3K and MAPK pathways more suppressed the S6K activity and further increased the apoptosis. In conclusion, PI3K is involved in low susceptibility of colorectal cancer to paclitaxel and dual PI3K/MAPK targeting agents may evolve a new paclitaxel-based chemotherapy for colorectal cancer.
Collapse
|
17
|
Bayrac AT, Sefah K, Parekh P, Bayrac C, Gulbakan B, Oktem HA, Tan W. In vitro Selection of DNA Aptamers to Glioblastoma Multiforme. ACS Chem Neurosci 2011; 2:175-181. [PMID: 21892384 PMCID: PMC3164477 DOI: 10.1021/cn100114k] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/10/2011] [Indexed: 02/08/2023] Open
Abstract
Aptamer probes for specific recognition of glioblastoma multiforme were generated using a repetitive and broad cell-SELEX-based procedure without negative selection. The 454 sequencing technology was used to monitor SELEX, and bioinformatics tools were used to identify aptamers from high throughput data. A group of aptamers were generated that can bind to target cells specifically with dissociation constants (K(d)) in the nanomolar range. Selected aptamers showed high affinity to different types of glioblastoma cell lines, while showing little or no affinity to other cancer cell lines. The aptamers generated in this study have potential use in different applications, such as probes for diagnosis and devices for targeted drug delivery, as well as tools for molecular marker discovery for glioblastomas.
Collapse
Affiliation(s)
- Abdullah Tahir Bayrac
- Department of Biotechnology, Nanobiotechnology Research and Development Group, Middle East Technical University, 06531 Ankara, Turkey
- Center for Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Genetics Institute and McKnight Brain Institute, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Kwame Sefah
- Center for Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Genetics Institute and McKnight Brain Institute, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Parag Parekh
- Center for Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Genetics Institute and McKnight Brain Institute, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Ceren Bayrac
- Department of Biotechnology, Nanobiotechnology Research and Development Group, Middle East Technical University, 06531 Ankara, Turkey
- Center for Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Genetics Institute and McKnight Brain Institute, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Basri Gulbakan
- Center for Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Genetics Institute and McKnight Brain Institute, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Huseyin Avni Oktem
- Department of Biotechnology, Nanobiotechnology Research and Development Group, Middle East Technical University, 06531 Ankara, Turkey
| | - Weihong Tan
- Center for Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Genetics Institute and McKnight Brain Institute, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
18
|
Sunayama J, Sato A, Matsuda KI, Tachibana K, Suzuki K, Narita Y, Shibui S, Sakurada K, Kayama T, Tomiyama A, Kitanaka C. Dual blocking of mTor and PI3K elicits a prodifferentiation effect on glioblastoma stem-like cells. Neuro Oncol 2010; 12:1205-19. [PMID: 20861085 DOI: 10.1093/neuonc/noq103] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma, the most intractable cerebral tumor, is highly lethal. Recent studies suggest that cancer stem-like cells (CSLCs) have the capacity to repopulate tumors and mediate radio- and chemoresistance, implying that future therapies may need to turn from the elimination of rapidly dividing, but differentiated, tumor cells to specifically targeting the minority of tumor cells that repopulate the tumor. However, the mechanism by which glioblastoma CSLCs maintain their immature stem-like state or, alternatively, become committed to differentiation is poorly understood. Here, we show that the inactivation of mammalian target of rapamycin (mTor) by the mTor inhibitor rapamycin or knockdown of mTor reduced sphere formation and the expression of neural stem cell (NSC)/progenitor markers in CSLCs of the A172 glioblastoma cell line. Interestingly, combination treatment with rapamycin and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, not only reduced the expression of NSC/progenitor markers more efficiently than single-agent treatment, but also increased the expression of βIII-tubulin, a neuronal differentiation marker. Consistent with these results, a dual PI3K/mTor inhibitor, NVP-BEZ235, elicited a prodifferentiation effect on A172 CSLCs. Moreover, A172 CSLCs, which were induced to undergo differentiation by pretreatment with NVP-BEZ235, exhibited a significant decrease in their tumorigenicity when transplanted either subcutaneously or intracranially. Importantly, similar results were obtained when patient-derived glioblastoma CSLCs were used. These findings suggest that the PI3K/mTor signaling pathway is critical for the maintenance of glioblastoma CSLC properties, and targeting both mTor and PI3K of CSLCs may be an effective therapeutic strategy in glioblastoma.
Collapse
Affiliation(s)
- Jun Sunayama
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shin SY, Yong Y, Kim CG, Lee YH, Lim Y. Deoxypodophyllotoxin induces G2/M cell cycle arrest and apoptosis in HeLa cells. Cancer Lett 2010; 287:231-9. [DOI: 10.1016/j.canlet.2009.06.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 11/26/2022]
|