1
|
Sutkus LT, Li Z, Dilger RN. Establishing the pig as a translational animal model for neurodevelopment. Transl Neurosci 2025; 16:20250369. [PMID: 40292422 PMCID: PMC12032983 DOI: 10.1515/tnsci-2025-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Background Within the last few decades, the domestic pig has emerged as an advantageous biomedical animal model due to a vast number of similarities in realms of development and neuroanatomical features. Even so, a major challenge remains in how to translate time between the pig and human. Previously, researchers have developed a Translating Mammalian Time model that estimates the timing of 95 neurodevelopmental events across 9 mammalian species. By identifying the timing of these various events, one can include an additional animal into the model and assign a unique species score to predict the post-conception day (PCD) that other events will occur. Objective Our objective was to conduct a comprehensive literature review of pig neurodevelopmental events to enable chronological comparison to other mammalian species, including humans. Methods A total of 30 neurodevelopmental events with corresponding PCDs were identified, that were then used to optimize the pig's species score using grid search and gradient descent approaches. Results and Conclusion Across both methods, the same species score of 2.157 was derived with a residual sum of squares of 4260.46. This species score places the domestic pig between the cat (1.808) and the macaque (2.255), thereby reinforcing the translational power of the pig comparable to non-human primates.
Collapse
Affiliation(s)
- Loretta Teresa Sutkus
- Neuroscience Program, University of Illinois, Urbana, Illinois, 61801, United States
| | - Zimu Li
- Neuroscience Program, University of Illinois, Urbana, Illinois, 61801, United States
| | - Ryan Neil Dilger
- Neuroscience Program, University of Illinois, Urbana, Illinois, 61801, United States
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, 61801, United States
| |
Collapse
|
2
|
Yu Q, Liu Y, Liu S, Li S, Zhai Y, Zhang Q, Zheng L, Zheng H, Zhai Y, Wang X. Lactobacillus melliventris promotes hive productivity and immune functionality in Bombus terrestris performance in the greenhouse. INSECT SCIENCE 2024; 31:911-926. [PMID: 37830269 DOI: 10.1111/1744-7917.13281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023]
Abstract
Bumblebees are important pollinators in agricultural ecosystems, but their abundance is declining globally. There is an urgent need to protect bumblebee health and their pollination services. Bumblebees possess specialized gut microbiota with potential to be used as probiotics to help defend at-risk bumblebee populations. However, evidence for probiotic benefits on bumblebees is lacking. Here, we evaluated how supplementation with Lactobacillus melliventris isolated from bumblebee gut affected the colony development of Bombus terrestris. This native strain colonized robustly and persisted long-term in bumblebees, leading to a significantly higher quality of offspring. Subsequently, the tyrosine pathway was upregulated in the brain and fat body, while the Wnt and mTOR pathways of the gut were downregulated. Notably, the field experiment in the greenhouse revealed the supplementation of L. melliventris led to a 2.5-fold increase in the bumblebee survival rate and a more than 10% increase in the number of flowers visited, indicating a better health condition and pollination ability in field conditions. Our study represents a first screening for the potential use of the native gut member, L. melliventris, as probiotic strains in hive supplement for bumblebee breeding, which may be a practical approach to improve immunity and hive health.
Collapse
Affiliation(s)
- Qianhui Yu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, China
| | - Shaogang Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yifan Zhai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qingchao Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Satoh Y, Fukui K, Koma D, Shen N, Lee TS. Engineered Escherichia coli platforms for tyrosine-derivative production from phenylalanine using phenylalanine hydroxylase and tetrahydrobiopterin-regeneration system. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:115. [PMID: 37464414 DOI: 10.1186/s13068-023-02365-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Aromatic compounds derived from tyrosine are important and diverse chemicals that have industrial and commercial applications. Although these aromatic compounds can be obtained by extraction from natural producers, their growth is slow, and their content is low. To overcome these problems, many of them have been chemically synthesized from petroleum-based feedstocks. However, because of the environmental burden and depleting availability of feedstock, microbial cell factories are attracting much attention as sustainable and environmentally friendly processes. RESULTS To facilitate development of microbial cell factories for producing tyrosine derivatives, we developed simple and convenient tyrosine-producing Escherichia coli platforms with a bacterial phenylalanine hydroxylase, which converted phenylalanine to tyrosine with tetrahydromonapterin as a cofactor, using a synthetic biology approach. By introducing a tetrahydrobiopterin-regeneration system, the tyrosine titer of the plasmid-based engineered strain was 4.63 g/L in a medium supplemented with 5.00 g/L phenylalanine with a test tube. The strains were successfully used to produce industrially attractive compounds, such as tyrosol with a yield of 1.58 g/L by installing a tyrosol-producing module consisting of genes encoding tyrosine decarboxylase and tyramine oxidase on a plasmid. Gene integration into E. coli chromosomes has an advantage over the use of plasmids because it increases genetic stability without antibiotic feeding to the culture media and enables more flexible pathway engineering by accepting more plasmids with artificial pathway genes. Therefore, we constructed a plasmid-free tyrosine-producing platform by integrating five modules, comprising genes encoding the phenylalanine hydroxylase and tetrahydrobiopterin-regeneration system, into the chromosome. The platform strain could produce 1.04 g/L of 3,4-dihydroxyphenylalanine, a drug medicine, by installing a gene encoding tyrosine hydroxylase and the tetrahydrobiopterin-regeneration system on a plasmid. Moreover, by installing the tyrosol-producing module, tyrosol was produced with a yield of 1.28 g/L. CONCLUSIONS We developed novel E. coli platforms for producing tyrosine from phenylalanine at multi-gram-per-liter levels in test-tube cultivation. The platforms allowed development and evaluation of microbial cell factories installing various designed tyrosine-derivative biosynthetic pathways at multi-grams-per-liter levels in test tubes.
Collapse
Affiliation(s)
- Yasuharu Satoh
- Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
| | - Keita Fukui
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kanagawa, 210-8681, Japan
| | - Daisuke Koma
- Osaka Research Institute of Industrial Science and Technology, Osaka, 536-8553, Japan
| | - Ning Shen
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Taek Soon Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
4
|
LUHMES Cells: Phenotype Refinement and Development of an MPP +-Based Test System for Screening Antiparkinsonian Drugs. Int J Mol Sci 2023; 24:ijms24010733. [PMID: 36614176 PMCID: PMC9821222 DOI: 10.3390/ijms24010733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The low effectiveness of symptomatic pharmacotherapy for Parkinson's disease (PD), which compensates for dopamine (DA) deficiency under degeneration of nigrostriatal dopaminergic (DAergic) neurons, could apparently be improved with neuroprotective therapy, which slows down neurodegeneration and PD progression. For this, it is necessary to have a DAergic cell line for the development of a PD model to screen neuroprotectors. We used immortalized human embryonic mesencephalon LUHMES cells (LCs) differentiated into DAergic neurons. The aim of this study was to characterize the phenotype of differentiated LCs and develop an 1-methyl-4-phenylpyridinium iodide (MPP+)-based test system for screening neuroprotectors. Using polymerase chain reaction (PCR) and immunocytochemistry, it has been shown that all differentiated LCs express genes and synthesize proteins characteristic of all neurons (microtubule-associated protein 2, bIII-tubulin, synaptotagmin 1) and specifically of DAergic neurons (tyrosine hydroxylase, aromatic L-amino acid decarboxylase, DA transporter, vesicular monoamine transporter 2). Furthermore, LCs are able to produce a small amount of DA, but under special conditions. To assess the mechanisms of neurodegeneration and neuroplasticity under the influence of toxins and antiparkinsonian drugs, including neuroprotectors, we have developed an LCs-based MPP+ PD model and proposed an original panel of markers for testing functional and structural cell disorders.
Collapse
|
5
|
Wang K, Ren Q, Shen XL, Li B, Du J, Yu XD, Du ZQ. Molecular characterization and expression analysis of dopa decarboxylase involved in the antibacterial innate immunity of the freshwater crayfish, Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2019; 91:19-28. [PMID: 31077848 DOI: 10.1016/j.fsi.2019.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Dopa decarboxylase (DDC) is responsible for the synthesis of dopamine, which acts as an important modulator in the nervous systems of vertebrates and invertebrates. Recent studies have indicated that DDC also plays crucial roles in the insect innate immune system. However, the functions of DDC in immunomodulation in crustaceans have not been thoroughly elucidated to date. In this study, a new full-length cDNA of the DDC protein was identified from red swamp crayfish, Procambarus clarkii (named Pc-ddc). The ORF of Pc-ddc encoded 474 amino acids, which possessed a 377-amino-acid domain. Pc-ddc was expressed at a relatively high level in the hemocytes and gills of crayfish. This protein was expressed at a relatively low level in the hepatopancreas and intestine. The expression level of Pc-ddc was clearly upregulated in hemocytes, hepatopancreas, gills, and intestine tissues after challenge with S. aureus or E. ictaluri. The results of the enzyme catalysis assay showed that the enzyme catalysis activity of rPc-DDC was 35 ± 2.8 ng h-1 mg-1 (n = 3). In addition, the results of the mimetic crayfish hemocytes encapsulation assay showed that the encapsulation rate of beads coated with rPc-DDC was clearly increased. The results of the bacterial binding assay showed that rPc-DDC strongly binds to S. aureus and E. ictaluri. Finally, when Pc-ddc was knocked down, the number of surviving crayfish clearly decreased after S. aureus or E. ictaluri was injected. All of these results indicate that Pc-DDC is an important immunomodulating enzyme in the neuroendocrine-immune (NEI) system of crayfish.
Collapse
Affiliation(s)
- Kai Wang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Xiu-Li Shen
- Library, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Bo Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Jie Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Xiao-Dong Yu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China
| | - Zhi-Qiang Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, 014010, China.
| |
Collapse
|
6
|
Gao K, Pi Y, Mu C, Farzi A, Liu Z, Zhu W. Increasing carbohydrate availability in the hindgut promotes hypothalamic neurotransmitter synthesis: aromatic amino acids linking the microbiota–brain axis. J Neurochem 2019; 149:641-659. [DOI: 10.1111/jnc.14709] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/30/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Kan Gao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health College of Animal Science and Technology Nanjing Agricultural University Nanjing China
- National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| | - Yu Pi
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health College of Animal Science and Technology Nanjing Agricultural University Nanjing China
- National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| | - Chun‐Long Mu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health College of Animal Science and Technology Nanjing Agricultural University Nanjing China
- National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology Otto Loewi Research Center Pharmacology Section Medical University of Graz Graz Austria
| | - Zhuang Liu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health College of Animal Science and Technology Nanjing Agricultural University Nanjing China
- National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| | - Wei‐Yun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health College of Animal Science and Technology Nanjing Agricultural University Nanjing China
- National Center for International Research on Animal Gut Nutrition Nanjing Agricultural University Nanjing China
| |
Collapse
|
7
|
Ren LQ, Chen M, Hultborn H, Guo S, Zhang Y, Zhang M. Heterogenic Distribution of Aromatic L-Amino Acid Decarboxylase Neurons in the Rat Spinal Cord. Front Integr Neurosci 2017; 11:31. [PMID: 29225571 PMCID: PMC5706469 DOI: 10.3389/fnint.2017.00031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
Aromatic L-amino acid decarboxylase (AADC) is an essential enzyme in the synthesis of serotonin, dopamine, and certain trace amines and is present in a variety of organs including the brain and spinal cord. It is previously reported that in mammalian spinal cord AADC cells (called D-cells) were largely confined to a region around the central canal and that they do not produce monoamines. To date, there has not been a detailed description of their distribution and morphology in mammals. In the present study this issue is systematically investigated using immunohistochemistry. We have found that AADC cells in the rat spinal cord are both more numerous and more widely distributed than previously reported. In the gray matter, AADC neurons immunolabeled for NeuN were not only found in the region around the central canal but also in the dorsal horn, intermediate zone, and ventral horn. In the white matter a large number of glial cells were AADC-immunopositive in different spinal segments and the vast majority of these cells expressed oligodendrocyte and radial glial phenotypes. Additionally, a small number of AADC neurons labeled for NeuN were found in the white matter along the ventral median fissure. The shapes and sizes of AADC neurons varied according to their location. For example, throughout cervical and lumbar segments AADC neurons in the intermediate zone and ventral horn tended to be rather large and weakly immunolabeled, whereas those in comparable regions of sacrocaudal segments were smaller and more densely immunolabeled. The diverse morphological characteristics of the AADC cells suggests that they could be further divided into several subtypes. These results indicate that AADC cells are heterogeneously distributed in the rat spinal cord and they may exert different functions in different physiological and pathological situations.
Collapse
Affiliation(s)
- Li-Qun Ren
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Spinal Injury and Rehabilitation, Chengde Medical College, Chengde, China
| | - Meng Chen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Spinal Injury and Rehabilitation, Chengde Medical College, Chengde, China
| | - Hans Hultborn
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Spinal Injury and Rehabilitation, Chengde Medical College, Chengde, China
| | - Sen Guo
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Spinal Injury and Rehabilitation, Chengde Medical College, Chengde, China
| | - Yifan Zhang
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Mengliang Zhang
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Neuronano Research Center, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
8
|
De Deurwaerdère P, Di Giovanni G, Millan MJ. Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry. Prog Neurobiol 2016; 151:57-100. [PMID: 27389773 DOI: 10.1016/j.pneurobio.2016.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 01/11/2023]
Abstract
Though a multi-facetted disorder, Parkinson's disease is prototypically characterized by neurodegeneration of nigrostriatal dopaminergic neurons of the substantia nigra pars compacta, leading to a severe disruption of motor function. Accordingly, L-DOPA, the metabolic precursor of dopamine (DA), is well-established as a treatment for the motor deficits of Parkinson's disease despite long-term complications such as dyskinesia and psychiatric side-effects. Paradoxically, however, despite the traditional assumption that L-DOPA is transformed in residual striatal dopaminergic neurons into DA, the mechanism of action of L-DOPA is neither simple nor entirely clear. Herein, focussing on its influence upon extracellular DA and other neuromodulators in intact animals and experimental models of Parkinson's disease, we highlight effects other than striatal generation of DA in the functional profile of L-DOPA. While not excluding a minor role for glial cells, L-DOPA is principally transformed into DA in neurons yet, interestingly, with a more important role for serotonergic than dopaminergic projections. Moreover, in addition to the striatum, L-DOPA evokes marked increases in extracellular DA in frontal cortex, nucleus accumbens, the subthalamic nucleus and additional extra-striatal regions. In considering its functional profile, it is also important to bear in mind the marked (probably indirect) influence of L-DOPA upon cholinergic, GABAergic and glutamatergic neurons in the basal ganglia and/or cortex, while anomalous serotonergic transmission is incriminated in the emergence of L-DOPA elicited dyskinesia and psychosis. Finally, L-DOPA may exert intrinsic receptor-mediated actions independently of DA neurotransmission and can be processed into bioactive metabolites. In conclusion, L-DOPA exerts a surprisingly complex pattern of neurochemical effects of much greater scope that mere striatal transformation into DA in spared dopaminergic neurons. Their further experimental and clinical clarification should help improve both L-DOPA-based and novel strategies for controlling the motor and other symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- CNRS (Centre National de la Recherche Scientifique), Institut des Maladies Neurodégénératives, UMR CNRS 5293, F-33000 Bordeaux, France.
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK; Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Mark J Millan
- Institut de Recherche Servier, Pole for Therapeutic Innovation in Neuropsychiatry, 78290 Croissy/Seine,Paris, France
| |
Collapse
|
9
|
Winge I, Teigen K, Fossbakk A, Mahootchi E, Kleppe R, Sköldberg F, Kämpe O, Haavik J. Mammalian CSAD and GADL1 have distinct biochemical properties and patterns of brain expression. Neurochem Int 2015; 90:173-84. [PMID: 26327310 DOI: 10.1016/j.neuint.2015.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/30/2015] [Accepted: 08/22/2015] [Indexed: 11/17/2022]
Abstract
Variants in the gene encoding the enzyme glutamic acid decarboxylase like 1 (GADL1) have been associated with response to lithium therapy. Both GADL1 and the related enzyme cysteine sulfinic acid decarboxylase (CSAD) have been proposed to be involved in the pyridoxal-5'-phosphate (PLP)-dependent biosynthesis of taurine. In the present study, we compared the catalytic properties, inhibitor sensitivity and expression profiles of GADL1 and CSAD in brain tissue. In mouse and human brain we observed distinct patterns of expression of the PLP-dependent decarboxylases CSAD, GADL1 and glutamic acid decarboxylase 67 (GAD67). CSAD levels were highest during prenatal and early postnatal development; GADL1 peaked early in prenatal development, while GAD67 increased rapidly after birth. Both CSAD and GADL1 are being expressed in neurons, whereas only CSAD mRNA was detected in astrocytes. Cysteine sulfinic acid was the preferred substrate for both mouse CSAD and GADL1, although both enzymes also decarboxylated cysteic acid and aspartate. In silico screening and molecular docking using the crystal structure of CSAD and in vitro assays led to the discovery of eight new enzyme inhibitors with partial selectivity for either CSAD or GADL1. Lithium had minimal effect on their enzyme activities. In conclusion, taurine biosynthesis in vertebrates involves two structurally related PLP-dependent decarboxylases (CSAD and GADL1) that have partially overlapping catalytic properties but different tissue distribution, indicating divergent physiological roles. Development of selective enzyme inhibitors targeting these enzymes is important to further dissect their (patho)physiological roles.
Collapse
Affiliation(s)
- Ingeborg Winge
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Norway
| | - Knut Teigen
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Norway
| | - Agnete Fossbakk
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Norway
| | - Elaheh Mahootchi
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Norway
| | - Rune Kleppe
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Norway
| | - Filip Sköldberg
- Department of Medical Sciences, University Hospital, Uppsala University, Uppsala, Sweden
| | - Olle Kämpe
- Department of Medical Sciences, University Hospital, Uppsala University, Uppsala, Sweden; Centre of Molecular Medicine (CMM L8:01), Dept. of Medicine (Solna), Karolinska Instituttet, Stockholm, Sweden
| | - Jan Haavik
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
10
|
Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions. PLoS One 2013; 8:e71741. [PMID: 23940784 PMCID: PMC3734303 DOI: 10.1371/journal.pone.0071741] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/02/2013] [Indexed: 01/01/2023] Open
Abstract
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children.
Collapse
|
11
|
Satoh Y, Tajima K, Munekata M, Keasling JD, Lee TS. Engineering of l-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol. Metab Eng 2012; 14:603-10. [DOI: 10.1016/j.ymben.2012.08.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/07/2012] [Accepted: 08/20/2012] [Indexed: 11/28/2022]
|
12
|
Blechingberg J, Holm IE, Nielsen AL. Characterization and expression analysis in the developing embryonic brain of the porcine FET family: FUS, EWS, and TAF15. Gene 2012; 493:27-35. [DOI: 10.1016/j.gene.2011.11.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/31/2011] [Accepted: 11/16/2011] [Indexed: 01/28/2023]
|
13
|
Open conformation of human DOPA decarboxylase reveals the mechanism of PLP addition to Group II decarboxylases. Proc Natl Acad Sci U S A 2011; 108:20514-9. [PMID: 22143761 DOI: 10.1073/pnas.1111456108] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DOPA decarboxylase, the dimeric enzyme responsible for the synthesis of neurotransmitters dopamine and serotonin, is involved in severe neurological diseases such as Parkinson disease, schizophrenia, and depression. Binding of the pyridoxal-5'-phosphate (PLP) cofactor to the apoenzyme is thought to represent a central mechanism for the regulation of its activity. We solved the structure of the human apoenzyme and found it exists in an unexpected open conformation: compared to the pig kidney holoenzyme, the dimer subunits move 20 Å apart and the two active sites become solvent exposed. Moreover, by tuning the PLP concentration in the crystals, we obtained two more structures with different conformations of the active site. Analysis of three-dimensional data coupled to a kinetic study allows to identify the structural determinants of the open/close conformational change occurring upon PLP binding and thereby propose a model for the preferential degradation of the apoenzymes of Group II decarboxylases.
Collapse
|