1
|
Sztachera M, Wendlandt-Stanek W, Serwa RA, Stanaszek L, Smuszkiewicz M, Wronka D, Piwecka M. Interrogation of RNA-bound proteome with XRNAX illuminates molecular alterations in the mouse brain affected with dysmyelination. Cell Rep 2025; 44:115095. [PMID: 39709601 DOI: 10.1016/j.celrep.2024.115095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/21/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024] Open
Abstract
RNA-protein interactions orchestrate hundreds of pathways in homeostatic and stressed cells. We applied an RNA-protein interactome capture method called protein cross-linked RNA extraction (XRNAX) to shed light on the RNA-bound proteome in dysmyelination. We found sets of canonical RNA-binding proteins (RBPs) regulating alternative splicing and engaged in the cytoplasmic granules to be perturbed at the level of their RNA interactome. We validated these observations for PCBP1 and MBNL1. We show that the number of PCBP1 bodies is markedly increased in the mossy cells of the hippocampus and that the pattern of MBNL1-regulated alternatively spliced exons differs between the myelin-deficient and the wild-type brain, which is likely associated with Mbnl1 splicing perturbation and circular RNA generation from this locus. In the broader perspective, our results demonstrate that, with the application of the RNA-protein interactome approach, we can uncover alterations in RBP functioning in the disease context that are not always directly visible from their mRNA or protein levels.
Collapse
Affiliation(s)
- Marta Sztachera
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Weronika Wendlandt-Stanek
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Remigiusz A Serwa
- Proteomics Core Facility, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michał Smuszkiewicz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Dorota Wronka
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 61-704 Poznan, Poland.
| |
Collapse
|
2
|
Mey GM, Mahajan KR, DeSilva TM. Neurodegeneration in multiple sclerosis. WIREs Mech Dis 2023; 15:e1583. [PMID: 35948371 PMCID: PMC9839517 DOI: 10.1002/wsbm.1583] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
Axonal loss in multiple sclerosis (MS) is a key component of disease progression and permanent neurologic disability. MS is a heterogeneous demyelinating and neurodegenerative disease of the central nervous system (CNS) with varying presentation, disease courses, and prognosis. Immunomodulatory therapies reduce the frequency and severity of inflammatory demyelinating events that are a hallmark of MS, but there is minimal therapy to treat progressive disease and there is no cure. Data from patients with MS, post-mortem histological analysis, and animal models of demyelinating disease have elucidated patterns of MS pathogenesis and underlying mechanisms of neurodegeneration. MRI and molecular biomarkers have been proposed to identify predictors of neurodegeneration and risk factors for disease progression. Early signs of axonal dysfunction have come to light including impaired mitochondrial trafficking, structural axonal changes, and synaptic alterations. With sustained inflammation as well as impaired remyelination, axons succumb to degeneration contributing to CNS atrophy and worsening of disease. These studies highlight the role of chronic demyelination in the CNS in perpetuating axonal loss, and the difficulty in promoting remyelination and repair amidst persistent inflammatory insult. Regenerative and neuroprotective strategies are essential to overcome this barrier, with early intervention being critical to rescue axonal integrity and function. The clinical and basic research studies discussed in this review have set the stage for identifying key propagators of neurodegeneration in MS, leading the way for neuroprotective therapeutic development. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Gabrielle M. Mey
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
| | - Kedar R. Mahajan
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
- Mellen Center for MS Treatment and ResearchNeurological Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Tara M. DeSilva
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
3
|
Warnock A, Toomey LM, Wright AJ, Fisher K, Won Y, Anyaegbu C, Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J Neurotrauma 2020; 37:739-769. [DOI: 10.1089/neu.2019.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Lillian M. Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Alexander J. Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Katherine Fisher
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yerim Won
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
4
|
Naidu PSR, Denham E, Bartlett CA, McGonigle T, Taylor NL, Norret M, Smith NM, Dunlop SA, Iyer KS, Fitzgerald M. Protein corona formation moderates the release kinetics of ion channel antagonists from transferrin-functionalized polymeric nanoparticles. RSC Adv 2020; 10:2856-2869. [PMID: 35496130 PMCID: PMC9048831 DOI: 10.1039/c9ra09523c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/25/2019] [Indexed: 11/21/2022] Open
Abstract
Transferrin (Tf)-functionalized p(HEMA-ran-GMA) nanoparticles were designed to incorporate and release a water-soluble combination of three ion channel antagonists, namely zonampanel monohydrate (YM872), oxidized adenosine triphosphate (oxATP) and lomerizine hydrochloride (LOM) identified as a promising therapy for secondary degeneration that follows neurotrauma. Coupled with a mean hydrodynamic size of 285 nm and near-neutral surface charge of −5.98 mV, the hydrophilic nature of the functionalized polymeric nanoparticles was pivotal in effectively encapsulating the highly water soluble YM872 and oxATP, as well as lipophilic LOM dissolved in water-based medium, by a back-filling method. Maximum loading efficiencies of 11.8 ± 1.05% (w/w), 13.9 ± 1.50% (w/w) and 22.7 ± 4.00% (w/w) LOM, YM872 and oxATP respectively were reported. To obtain an estimate of drug exposure in vivo, drug release kinetics assessment by HPLC was conducted in representative physiological milieu containing 55% (v/v) human serum at 37 °C. In comparison to serum-free conditions, it was demonstrated that the inevitable adsorption of serum proteins on the Tf-functionalized nanoparticle surface as a protein corona impeded the rate of release of LOM and YM872 at both pH 5 and 7.4 over a period of 1 hour. While the release of oxATP from the nanoparticles was detectable for up to 30 minutes under serum-free conditions at pH 7.4, the presence of serum proteins and a slightly acidic environment impaired the detection of the drug, possibly due to its molecular instability. Nevertheless, under representative physiological conditions, all three drugs were released in combination from Tf-functionalized p(HEMA-ran-GMA) nanoparticles and detected for up to 20 minutes. Taken together, the study provided enhanced insight into potential physiological outcomes in the presence of serum proteins, and suggests that p(HEMA-ran-GMA)-based therapeutic nanoparticles may be promising drug delivery vehicles for CNS therapy. Transferrin (Tf)-functionalized p(HEMA-ran-GMA) nanoparticles were designed to incorporate and release a water-soluble combination of three ion channel antagonists, identified as a promising therapy for secondary degeneration following neurotrauma.![]()
Collapse
Affiliation(s)
- Priya S. R. Naidu
- School of Molecular Sciences
- The University of Western Australia
- Crawley
- Australia
| | - Eleanor Denham
- Curtin Health Innovation Research Institute
- Curtin University
- Bentley
- Australia
| | - Carole A. Bartlett
- Curtin Health Innovation Research Institute
- Curtin University
- Bentley
- Australia
| | - Terry McGonigle
- Curtin Health Innovation Research Institute
- Curtin University
- Bentley
- Australia
| | - Nicolas L. Taylor
- School of Molecular Sciences
- The University of Western Australia
- Crawley
- Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology
| | - Marck Norret
- School of Molecular Sciences
- The University of Western Australia
- Crawley
- Australia
| | - Nicole. M. Smith
- School of Molecular Sciences
- The University of Western Australia
- Crawley
- Australia
| | - Sarah A. Dunlop
- School of Biological Sciences
- The University of Western Australia
- Crawley
- Australia
| | - K. Swaminathan Iyer
- School of Molecular Sciences
- The University of Western Australia
- Crawley
- Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute
- Curtin University
- Bentley
- Australia
- School of Biological Sciences
| |
Collapse
|
5
|
Evonuk KS, Doyle RE, Moseley CE, Thornell IM, Adler K, Bingaman AM, Bevensee MO, Weaver CT, Min B, DeSilva TM. Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation. SCIENCE ADVANCES 2020; 6:eaax5936. [PMID: 31934627 PMCID: PMC6949032 DOI: 10.1126/sciadv.aax5936] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Glutamate dysregulation occurs in multiple sclerosis (MS), but whether excitotoxic mechanisms in mature oligodendrocytes contribute to demyelination and axonal injury is unexplored. Although current treatments modulate the immune system, long-term disability ensues, highlighting the need for neuroprotection. Glutamate is elevated before T2-visible white matter lesions appear in MS. We previously reported that myelin-reactive T cells provoke microglia to release glutamate from the system xc - transporter promoting myelin degradation in experimental autoimmune encephalomyelitis (EAE). Here, we explore the target for glutamate in mature oligodendrocytes. Most glutamate-stimulated calcium influx into oligodendrocyte somas is AMPA receptor (AMPAR)-mediated, and genetic deletion of AMPAR subunit GluA4 decreased intracellular calcium responses. Inducible deletion of GluA4 on mature oligodendrocytes attenuated EAE and loss of myelinated axons was selectively reduced compared to unmyelinated axons. These data link AMPAR signaling in mature oligodendrocytes to the pathophysiology of myelinated axons, demonstrating glutamate regulation as a potential neuroprotective strategy in MS.
Collapse
Affiliation(s)
- Kirsten S. Evonuk
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ryan E. Doyle
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Carson E. Moseley
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- University of California, San Francisco, CA, USA
| | - Ian M. Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Keith Adler
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Amanda M. Bingaman
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mark O. Bevensee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Booki Min
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tara M. DeSilva
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
6
|
Pelisch N, Gomes C, Nally JM, Petruska JC, Stirling DP. Differential expression of ryanodine receptor isoforms after spinal cord injury. Neurosci Lett 2017; 660:51-56. [PMID: 28899787 DOI: 10.1016/j.neulet.2017.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 11/24/2022]
Abstract
Ryanodine receptors (RyRs) are highly conductive intracellular Ca2+ release channels and are widely expressed in many tissues, including the central nervous system. RyRs have been implicated in intracellular Ca2+ overload which can drive secondary damage following traumatic injury to the spinal cord (SCI), but the spatiotemporal expression of the three isoforms of RyRs (RyR1-3) after SCI remains unknown. Here, we analyzed the gene and protein expression of RyR isoforms in the murine lumbar dorsal root ganglion (DRG) and the spinal cord lesion site at 1, 2 and 7 d after a mild contusion SCI. Quantitative RT PCR analysis revealed that RyR3 was significantly increased in lumbar DRGs and at the lesion site at 1 and 2 d post contusion compared to sham (laminectomy only) controls. Additionally, RyR2 expression was increased at 1 d post injury within the lesion site. RyR2 and -3 protein expression was localized to lumbar DRG neurons and their spinal projections within the lesion site acutely after SCI. In contrast, RyR1 expression within the DRG and lesion site remained unaltered following trauma. Our study shows that SCI initiates acute differential expression of RyR isoforms in DRG and spinal cord.
Collapse
Affiliation(s)
- Nicolas Pelisch
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - Cynthia Gomes
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Jacqueline M Nally
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - Jeffrey C Petruska
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA; Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
7
|
Deletion of mitochondrial anchoring protects dysmyelinating shiverer: implications for progressive MS. J Neurosci 2015; 35:5293-306. [PMID: 25834054 DOI: 10.1523/jneurosci.3859-14.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The demyelinating disease multiple sclerosis (MS) has an early inflammatory phase followed by an incurable progressive phase with subdued inflammation and poorly understood neurodegenerative mechanism. In this study, we identified various parallelisms between progressive MS and the dysmyelinating mouse model Shiverer and then genetically deleted a major neuron-specific mitochondrial anchoring protein Syntaphilin (SNPH) from the mouse. Prevailing evidence suggests that deletion of SNPH is harmful in demyelination. Surprisingly, SNPH deletion produces striking benefits in the Shiverer by prolonging survival, reducing cerebellar damage, suppressing oxidative stress, and improving mitochondrial health. In contrast, SNPH deletion does not benefit clinical symptoms in experimental autoimmune encephalomyelitis (EAE), a model for early-phase MS. We propose that deleting mitochondrial anchoring is a novel, specific treatment for progressive MS.
Collapse
|
8
|
Evonuk KS, Baker BJ, Doyle RE, Moseley CE, Sestero CM, Johnston BP, De Sarno P, Tang A, Gembitsky I, Hewett SJ, Weaver CT, Raman C, DeSilva TM. Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination. THE JOURNAL OF IMMUNOLOGY 2015; 195:450-463. [PMID: 26071560 DOI: 10.4049/jimmunol.1401108] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/11/2015] [Indexed: 01/15/2023]
Abstract
T cell infiltration into the CNS is a significant underlying pathogenesis in autoimmune inflammatory demyelinating diseases. Several lines of evidence suggest that glutamate dysregulation in the CNS is an important consequence of immune cell infiltration in neuroinflammatory demyelinating diseases; yet, the causal link between inflammation and glutamate dysregulation is not well understood. A major source of glutamate release during oxidative stress is the system Xc(-) transporter; however, this mechanism has not been tested in animal models of autoimmune inflammatory demyelination. We find that pharmacological and genetic inhibition of system Xc(-) attenuates chronic and relapsing-remitting experimental autoimmune encephalomyelitis (EAE). Remarkably, pharmacological blockade of system Xc(-) 7 d after induction of EAE attenuated T cell infiltration into the CNS, but not T cell activation in the periphery. Mice harboring a Slc7a11 (xCT) mutation that inactivated system Xc(-) were resistant to EAE, corroborating a central role for system Xc(-) in mediating immune cell infiltration. We next examined the role of the system Xc(-) transporter in the CNS after immune cell infiltration. Pharmacological inhibitors of the system Xc(-) transporter administered during the first relapse in a SJL animal model of relapsing-remitting EAE abrogated clinical disease, inflammation, and myelin loss. Primary coculture studies demonstrate that myelin-specific CD4(+) Th1 cells provoke microglia to release glutamate via the system Xc(-) transporter, causing excitotoxic death to mature myelin-producing oligodendrocytes. Taken together, these studies support a novel role for the system Xc(-) transporter in mediating T cell infiltration into the CNS as well as promoting myelin destruction after immune cell infiltration in EAE.
Collapse
Affiliation(s)
- Kirsten S Evonuk
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Physical Medicine Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Brandi J Baker
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Physical Medicine Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Ryan E Doyle
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Physical Medicine Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Carson E Moseley
- Department of Pathology, University of Alabama at Birmingham, AL, 35294
| | - Christine M Sestero
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Biology, Chemistry, and Mathematics, University of Montevallo, Montevallo, AL 35115
| | - Bryce P Johnston
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Physical Medicine Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Patrizia De Sarno
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Andrew Tang
- Department of Physical Medicine Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Igor Gembitsky
- Department of Physical Medicine Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, 13244
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, AL, 35294
| | - Chander Raman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294
| | - Tara M DeSilva
- Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Physical Medicine Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, 35294.,Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294
| |
Collapse
|
9
|
Abnormalities in white matter microstructure associated with chronic ketamine use. Neuropsychopharmacology 2014; 39:329-38. [PMID: 23929545 PMCID: PMC3870785 DOI: 10.1038/npp.2013.195] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/18/2013] [Accepted: 07/05/2013] [Indexed: 11/08/2022]
Abstract
Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist that has been found to induce schizophrenia-type symptoms in humans and is a potent and fast-acting antidepressant. It is also a relatively widespread drug of abuse, particularly in China and the UK. Acute administration has been well characterized, but the effect of extended periods of ketamine use-on brain structure in humans-remains poorly understood. We measured indices of white matter microstructural integrity and connectivity in the brain of 16 ketamine users and 16 poly-drug-using controls, and we used probabilistic tractography to quantify changes in corticosubcortical connectivity associated with ketamine use. We found a reduction in the axial diffusivity profile of white matter in a right hemisphere network of white matter regions in ketamine users compared with controls. Within the ketamine-user group, we found a significant positive association between the connectivity profile between the caudate nucleus and the lateral prefrontal cortex and dissociative experiences. These findings suggest that chronic ketamine use may be associated with widespread disruption of white matter integrity, and white matter pathways between subcortical and prefrontal cortical areas may in part predict individual differences in dissociative experiences due to ketamine use.
Collapse
|
10
|
Johnstone JT, Morton PD, Jayakumar AR, Johnstone AL, Gao H, Bracchi-Ricard V, Pearse DD, Norenberg MD, Bethea JR. Inhibition of NADPH oxidase activation in oligodendrocytes reduces cytotoxicity following trauma. PLoS One 2013; 8:e80975. [PMID: 24260524 PMCID: PMC3834306 DOI: 10.1371/journal.pone.0080975] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/08/2013] [Indexed: 11/18/2022] Open
Abstract
Spinal cord injury is a debilitating neurological disorder that initiates a cascade of cellular events that result in a period of secondary damage that can last for months after the initial trauma. The ensuing outcome of these prolonged cellular perturbations is the induction of neuronal and glial cell death through excitotoxic mechanisms and subsequent free radical production. We have previously shown that astrocytes can directly induce oligodendrocyte death following trauma, but the mechanisms regulating this process within the oligodendrocyte remain unclear. Here we provide evidence demonstrating that astrocytes directly regulate oligodendrocyte death after trauma by inducing activation of NADPH oxidase within oligodendrocytes. Spinal cord injury resulted in a significant increase in oxidative damage which correlated with elevated expression of the gp91 phox subunit of the NADPH oxidase enzyme. Immunohistochemical analysis confirmed the presence of gp91 phox in oligodendrocytes in vitro and at 1 week following spinal cord injury. Exposure of oligodendrocytes to media from injured astrocytes resulted in an increase in oligodendrocyte NADPH oxidase activity. Inhibition of NADPH oxidase activation was sufficient to attenuate oligodendrocyte death in vitro and at 1 week following spinal cord injury, suggesting that excitotoxicity of oligodendrocytes after trauma is dependent on the intrinsic activation of the NADPH oxidase enzyme. Acute administration of the NADPH oxidase inhibitor apocynin and the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate channel blocker 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione significantly improved locomotor behavior and preserved descending axon fibers following spinal cord injury. These studies lead to a better understanding of oligodendrocyte death after trauma and identify potential therapeutic targets in disorders involving demyelination and oligodendrocyte death.
Collapse
Affiliation(s)
- Joshua T. Johnstone
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, United States of America
| | - Paul D. Morton
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, United States of America
| | - Arumugam R. Jayakumar
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Andrea L. Johnstone
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, United States of America
| | - Han Gao
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, United States of America
| | - Valerie Bracchi-Ricard
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, United States of America
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, United States of America
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Michael D. Norenberg
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida, United States of America
- South Florida Foundation for Research & Education Inc, Veterans Affairs Medical Center, Miami, Florida, United States of America
| | - John R. Bethea
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, United States of America
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
11
|
Tu TW, Kim JH, Yin FQ, Jakeman LB, Song SK. The impact of myelination on axon sparing and locomotor function recovery in spinal cord injury assessed using diffusion tensor imaging. NMR IN BIOMEDICINE 2013; 26:1484-1495. [PMID: 23775778 PMCID: PMC3800477 DOI: 10.1002/nbm.2981] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/24/2013] [Accepted: 05/10/2013] [Indexed: 05/31/2023]
Abstract
The dysmyelinated axons of shiverer mice exhibit impaired conduction characteristics, similar to early postnatal axons before myelination, whereas the patterns of neuronal activity and connectivity are relatively comparable with those of wild-type myelinated axons. This unique dysmyelination pattern is exploited in the present study to determine the role of compact myelin in the loss and recovery of function following traumatic spinal cord injury (SCI). We applied in vivo diffusion tensor imaging (DTI) and post-mortem immunohistochemistry analysis to examine changes in myelin and axonal integrity, and evaluated these changes in concert with the analysis of locomotor function from 1 to 4 weeks following a mid-thoracic contusion injury in homozygous shiverer and heterozygous littermate mice. The DTI biomarkers, axial and radial diffusivities, are noninvasive indicators of axon and myelin integrity in response to SCI of both myelinated and dysmyelinated spinal cord. We show that myelin is critical for normal hind limb function in open field locomotion. However, when the functional outcome is limited during chronic SCI, the extent of recovery is associated with residual axonal integrity and independent of the extent of intact myelin at the lesion epicenter.
Collapse
Affiliation(s)
- Tsang-Wei Tu
- Radiology and Imaging Sciences, Clinical Center, National Institute of Health, MD, USA
| | - Joong H. Kim
- Department of Radiology, Washington University in St. Louis, MO, USA
| | - Feng Qin Yin
- Department of Physiology & Cell Biology and Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, OH, USA
| | - Lyn B. Jakeman
- Department of Physiology & Cell Biology and Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, OH, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University in St. Louis, MO, USA
| |
Collapse
|
12
|
Savigni DL, O'Hare Doig RL, Szymanski CR, Bartlett CA, Lozić I, Smith NM, Fitzgerald M. Three Ca2+ channel inhibitors in combination limit chronic secondary degeneration following neurotrauma. Neuropharmacology 2013; 75:380-90. [PMID: 23958451 DOI: 10.1016/j.neuropharm.2013.07.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 01/29/2023]
Abstract
Following neurotrauma, cells beyond the initial trauma site undergo secondary degeneration, with excess Ca2+ a likely trigger for loss of neurons, compact myelin and function. Treatment using inhibitors of specific Ca2+ channels has shown promise in preclinical studies, but clinical trials have been disappointing and combinatorial approaches are needed. We assessed efficacy of multiple combinations of three Ca2+ channel inhibitors at reducing secondary degeneration following partial optic nerve transection in rat. We used lomerizine to inhibit voltage gated Ca2+ channels; oxidised adenosine-triphosphate (oxATP) to inhibit purinergic P2X7 receptors and/or 2-[7-(1H-imidazol-1-yl)-6-nitro-2,3-dioxo-1,2,3,4-tetrahydro quinoxalin-1-yl]acetic acid (INQ) to inhibit Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Only the three Ca2+ channel inhibitors delivered in combination significantly preserved visual function, as assessed using the optokinetic nystagmus visual reflex, at 3 months after injury. Preservation of retinal ganglion cells was partial and is unlikely to have accounted for differential effects on function. A range of the Ca2+ channel inhibitor combinations prevented swelling of optic nerve vulnerable to secondary degeneration. Each of the treatments involving lomerizine significantly increased the proportion of axons with normal compact myelin. Nevertheless, limiting decompaction of myelin was not sufficient for preservation of function in our model. Multiple combinations of Ca2+ channel inhibitors reduced formation of atypical node/paranode complexes; outcomes were not associated with preservation of visual function. However, prevention of lengthening of the paranodal gap that was only achieved by treatment with the three Ca2+ channel inhibitors in combination was an important additional effect that likely contributed to the associated preservation of the optokinetic reflex using this combinatorial treatment strategy.
Collapse
Affiliation(s)
- Donna L Savigni
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA 6009, Australia; School of Animal Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ryan L O'Hare Doig
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA 6009, Australia; School of Animal Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | - Charis R Szymanski
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA 6009, Australia; School of Animal Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA 6009, Australia; School of Animal Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ivan Lozić
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA 6009, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Nicole M Smith
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA 6009, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA 6009, Australia; School of Animal Biology, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
13
|
Wootla B, Watzlawik JO, Denic A, Rodriguez M. The road to remyelination in demyelinating diseases: current status and prospects for clinical treatment. Expert Rev Clin Immunol 2013; 9:535-49. [PMID: 23730884 DOI: 10.1586/eci.13.37] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Within CNS disorders, demyelinating diseases are among the most devastating and cost intensive due to long-term disabilities affecting relatively young patients. Multiple sclerosis, a chronic inflammatory demyelinating disease in which the persistent inhibitory microenvironment of the resident oligodendrocyte precursor cells abrogates regeneration of myelin sheaths, is the most prominent disease in the spectrum of demyelinating diseases. The essential goal is to stimulate creation of new myelin sheaths on the demyelinated axons, leading to restoration of saltatory conduction and resolving functional deficits. The past few decades witnessed significant efforts to understand the cellular interactions at the lesion site with studies suggesting efficient remyelination as a prerequisite for functional repair. Despite its proven efficacy in experimental models, immunosuppression has not had profound clinical consequences in multiple sclerosis, which argued for a paradigm shift in the design of therapeutics aiming to achieve remyelination. For example, targeting oligodendrocytes themselves may drive remyelination in the CNS. This group and others have demonstrated that natural autoreactive antibodies directed at oligodendrocyte progenitors participate in remyelination. Accordingly, the authors developed a recombinant autoreactive natural human IgM antibody with therapeutic potential for remyelination.
Collapse
Affiliation(s)
- Bharath Wootla
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
14
|
Shafiee M, Khosropour AR, Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V, Khavasi HR. Synthesis of trans-1,3-diaryl-2-(5-methylisoxazol-3-yl)-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazines via bismuth(III)-catalyzed one-pot pseudo-four component reaction. Mol Divers 2012; 16:727-35. [PMID: 23090419 DOI: 10.1007/s11030-012-9408-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 10/08/2012] [Indexed: 01/01/2023]
Abstract
An expeditious, straightforward and efficient synthesis of diversely naphtho[1,2-e][1,3]oxazines via one-pot condensation reaction of β- naphthol, 3-amino-5-methylisoxazole and arylaldehydes catalyzed by bismuth(III) trifluoromethanesulfonate is described. The reaction preferentially afforded 1,3-trans oxazines.
Collapse
Affiliation(s)
- Mehdi Shafiee
- Catalysis Division, Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | | | | | | | | | | | | |
Collapse
|
15
|
Uchida N, Chen K, Dohse M, Hansen KD, Dean J, Buser JR, Riddle A, Beardsley DJ, Wan Y, Gong X, Nguyen T, Cummings BJ, Anderson AJ, Tamaki SJ, Tsukamoto A, Weissman IL, Matsumoto SG, Sherman LS, Kroenke CD, Back SA. Human neural stem cells induce functional myelination in mice with severe dysmyelination. Sci Transl Med 2012; 4:155ra136. [PMID: 23052293 PMCID: PMC3864816 DOI: 10.1126/scitranslmed.3004371] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Shiverer-immunodeficient (Shi-id) mice demonstrate defective myelination in the central nervous system (CNS) and significant ataxia by 2 to 3 weeks of life. Expanded, banked human neural stem cells (HuCNS-SCs) were transplanted into three sites in the brains of neonatal or juvenile Shi-id mice, which were asymptomatic or showed advanced hypomyelination, respectively. In both groups of mice, HuCNS-SCs engrafted and underwent preferential differentiation into oligodendrocytes. These oligodendrocytes generated compact myelin with normalized nodal organization, ultrastructure, and axon conduction velocities. Myelination was equivalent in neonatal and juvenile mice by quantitative histopathology and high-field ex vivo magnetic resonance imaging, which, through fractional anisotropy, revealed CNS myelination 5 to 7 weeks after HuCNS-SC transplantation. Transplanted HuCNS-SCs generated functional myelin in the CNS, even in animals with severe symptomatic hypomyelination, suggesting that this strategy may be useful for treating dysmyelinating diseases.
Collapse
Affiliation(s)
| | - Kevin Chen
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239–3098, USA
| | | | - Kelly D. Hansen
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239–3098, USA
| | - Justin Dean
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239–3098, USA
| | - Joshua R. Buser
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239–3098, USA
| | - Art Riddle
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239–3098, USA
| | - Douglas J. Beardsley
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239–3098, USA
| | - Ying Wan
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239–3098, USA
| | - Xi Gong
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239–3098, USA
| | - Thuan Nguyen
- Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR 97239–3098, USA
| | - Brian J. Cummings
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697–1705, USA
| | - Aileen J. Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697–1705, USA
| | | | | | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University Medical Center, Stanford, CA 94305, USA
| | - Steven G. Matsumoto
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Larry S. Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Christopher D. Kroenke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239–3098, USA
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239–3098, USA
| | - Stephen A. Back
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239–3098, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239–3098, USA
| |
Collapse
|
16
|
Molecular pathology, classification, and diagnosis of sporadic human prion disease variants. Folia Neuropathol 2012; 4:AN20110031. [PMID: 22356284 PMCID: PMC3284768 DOI: 10.1042/an20110031] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Glutamate excitotoxicity is a major pathogenic process implicated in many neurodegenerative conditions, including AD (Alzheimer's disease) and following traumatic brain injury. Occurring predominantly from over-stimulation of ionotropic glutamate receptors located along dendrites, excitotoxic axonal degeneration may also occur in white matter tracts. Recent identification of axonal glutamate receptor subunits within axonal nanocomplexes raises the possibility of direct excitotoxic effects on axons. Individual neuronal responses to excitotoxicity are highly dependent on the complement of glutamate receptors expressed by the cell, and the localization of the functional receptors. To enable isolation of distal axons and targeted excitotoxicity, murine cortical neuron cultures were prepared in compartmented microfluidic devices, such that distal axons were isolated from neuronal cell bodies. Within the compartmented culture system, cortical neurons developed to relative maturity at 11 DIV (days in vitro) as demonstrated by the formation of dendritic spines and clustering of the presynaptic protein synaptophysin. The isolated distal axons retained growth cone structures in the absence of synaptic targets, and expressed glutamate receptor subunits. Glutamate treatment (100 μM) to the cell body chamber resulted in widespread degeneration within this chamber and degeneration of distal axons in the other chamber. Glutamate application to the distal axon chamber triggered a lesser degree of axonal degeneration without degenerative changes in the untreated somal chamber. These data indicate that in addition to current mechanisms of indirect axonal excitotoxicity, the distal axon may be a primary target for excitotoxicity in neurodegenerative conditions.
Collapse
|
17
|
Shafiee M, Khosropour AR, Mohammadpoor-Baltork I, Moghadam M, Tangestaninejad S, Mirkhani V. An efficient, expeditious, and diastereoselective one-pot pseudo-five-component reaction for the synthesis of new bis-Betti bases under catalyst-free conditions. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Stirling DP, Stys PK. Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation. Trends Mol Med 2010; 16:160-70. [PMID: 20207196 PMCID: PMC2976657 DOI: 10.1016/j.molmed.2010.02.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 12/14/2022]
Abstract
Axonal degeneration causes morbidity in many neurological conditions including stroke, neurotrauma and multiple sclerosis. The limited ability of central nervous system (CNS) neurons to regenerate, combined with the observation that axonal damage causes clinical disability, has spurred efforts to investigate the mechanisms of axonal degeneration. Ca influx from outside the axon is a key mediator of injury. More recently, substantial pools of intra-axonal Ca sequestered in the 'axoplasmic reticulum' have been reported. These Ca stores are under the control of multimolecular 'nanocomplexes' located along the internodes under the myelin. The overactivation of these complexes during disease can lead to a lethal release of Ca from intra-axonal stores. Rich receptor pharmacology offers tantalizing therapeutic options targeting these nanocomplexes in the many diseases where axonal degeneration is prominent.
Collapse
Affiliation(s)
- David P Stirling
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|