1
|
DePaula-Silva AB, Bell LA, Wallis GJ, Wilcox KS. Inflammation Unleashed in Viral-Induced Epileptogenesis. Epilepsy Curr 2021; 21:433-440. [PMID: 34924851 PMCID: PMC8652320 DOI: 10.1177/15357597211040939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Viral infection of the central nervous system increasingly places people at risk of developing life-threatening and treatment-resistant acute and chronic seizures (epilepsy). The emergence of new human viruses due to ongoing social, political, and ecological changes places people at risk more than ever before. The development of new preventative or curative strategies is critical to address this burden. However, our understanding of the complex relationship between viruses and the brain has been hindered by the lack of animal models that survive the initial infection and are amenable for long-term mechanistic, behavioral, and pharmacological studies in the process of viral-induced epileptogenesis. In this review, we focus on the Theiler’s murine encephalomyelitis virus (TMEV) mouse model of viral infection–induced epilepsy. The TMEV model has a number of important advantages to address the quintessential processes underlying the development of epilepsy following a viral infection, as well as fuel new therapeutic development. In this review, we highlight the contributions of the TMEV model to our current understanding of the relationship between viral infection, inflammation, and seizures.
Collapse
Affiliation(s)
| | - Laura A. Bell
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Glenna J. Wallis
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Karen S. Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
- Karen S. Wilcox, PhD, Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Sanabria-Castro A, Flores-Díaz M, Alape-Girón A. Biological models in multiple sclerosis. J Neurosci Res 2019; 98:491-508. [PMID: 31571267 DOI: 10.1002/jnr.24528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Considering the etiology of multiple sclerosis (MS) is still unknown, experimental models resembling specific aspects of this immune-mediated demyelinating human disease have been developed to increase the understanding of processes related to pathogenesis, disease evolution, evaluation of therapeutic interventions, and demyelination and remyelination mechanisms. Based on the nature of the investigation, biological models may include in vitro, in vivo, and ex vivo assessments. Even though these approaches have disclosed valuable information, every disease animal model has limitations and can only replicate specific features of MS. In vitro and ex vivo models generally do not reflect what occurs in the organism, and in vivo animal models are more likely used; nevertheless, they are able to reproduce only certain stages of the disease. In vivo MS disease animal models in mammals include: experimental autoimmune encephalomyelitis, viral encephalomyelitis, and induced demyelination. This review examines and describes the most common biological disease animal models for the study of MS, their specific characteristics and limitations.
Collapse
Affiliation(s)
- Alfredo Sanabria-Castro
- Research Unit, San Juan de Dios Hospital CCSS, San José, Costa Rica.,School of Pharmacy, University of Costa Rica, San José, Costa Rica
| | | | | |
Collapse
|
3
|
Pringproa K, Srivorakul S, Tantilertcharoen R, Thanawongnuwech R. Restricted Infection and Cytokine Expression in Primary Murine Astrocytes Induced by the H5N1 Influenza Virus. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Production of antibody against elephant endotheliotropic herpesvirus (EEHV) unveils tissue tropisms and routes of viral transmission in EEHV-infected Asian elephants. Sci Rep 2018; 8:4675. [PMID: 29549315 PMCID: PMC5856810 DOI: 10.1038/s41598-018-22968-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/05/2018] [Indexed: 01/06/2023] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) is one of the most devastating viral infectious diseases in elephants worldwide. To date, it remains unclear how elephants get infected by the virus, where the virus persists, and what mechanisms drive the pathogenesis of the disease. The present study was aimed to develop an antibody against glycoprotein B (gB) of EEHV, investigate the EEHV tissue tropisms, and provide the possible routes of EEHV transmission in Asian elephants. Samples from elephant organs that had died from EEHV1A and EEHV4 infections, peripheral blood mononuclear cells (PBMC) from EEHV4- and non-EEHV-infected calves were used in this study. The results of western immunoblotting indicated that the antibody can be used for detection of gB antigens in both EEHV1A- and EEHV4-infected samples. Immunohistochemical detection indicated that the EEHV gB antigens were distributed mainly in the epithelial cells of the salivary glands, stomach and intestines. Immunofluorescence test of PBMC for EEHV gB in the EEHV4-infected calf indicated that the virus was observed predominantly in the mononuclear phagocytic cells. The findings in the present study unveil tissue tropisms in the EEHV1A- and EEHV4-infected calves and point out that saliva and intestinal content are likely sources for virus transmission in EEHV-infected Asian elephants.
Collapse
|
5
|
Heinrich F, Lehmbecker A, Raddatz BB, Kegler K, Tipold A, Stein VM, Kalkuhl A, Deschl U, Baumgärtner W, Ulrich R, Spitzbarth I. Morphologic, phenotypic, and transcriptomic characterization of classically and alternatively activated canine blood-derived macrophages in vitro. PLoS One 2017; 12:e0183572. [PMID: 28817687 PMCID: PMC5560737 DOI: 10.1371/journal.pone.0183572] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022] Open
Abstract
Macrophages are a heterogeneous cell population playing a pivotal role in tissue homeostasis and inflammation, and their phenotype strongly depends on the micromilieu. Despite its increasing importance as a translational animal model for human diseases, there is a considerable gap of knowledge with respect to macrophage polarization in dogs. The present study comprehensively investigated the morphologic, phenotypic, and transcriptomic characteristics of unstimulated (M0), M1- (GM-CSF, LPS, IFNγ-stimulated) and M2- (M-CSF, IL-4-stimulated)-polarized canine blood-derived macrophages in vitro. Scanning electron microscopy revealed distinct morphologies of polarized macrophages with formation of multinucleated cells in M2-macrophages, while immunofluorescence employing literature-based prototype-antibodies against CD16, CD32, iNOS, MHC class II (M1-markers), CD163, CD206, and arginase-1 (M2-markers) demonstrated that only CD206 was able to discriminate M2-macrophages from both other phenotypes, highlighting this molecule as a promising marker for canine M2-macrophages. Global microarray analysis revealed profound changes in the transcriptome of polarized canine macrophages. Functional analysis pointed out that M1-polarization was associated with biological processes such as "respiratory burst", whereas M2-polarization was associated with processes such as "mitosis". Literature-based marker gene selection revealed only minor overlaps in the gene sets of the dog compared to prototype markers of murine and human macrophages. Biomarker selection using supervised clustering suggested latexin (LXN) and membrane-spanning 4-domains, subfamily A, member 2 (MS4A2) to be the most powerful predicting biomarkers for canine M1- and M2-macrophages, respectively. Immunofluorescence for both markers demonstrated expression of both proteins by macrophages in vitro but failed to reveal differences between canine M1 and M2-macrophages. The present study provides a solid basis for future studies upon the role of macrophage polarization in spontaneous diseases of the dog, a species that has emerging importance for translational research.
Collapse
Affiliation(s)
- Franziska Heinrich
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Bünteweg 17, Hannover, Germany
- Center for Systems Neuroscience, Bünteweg 2, Hannover, Germany
| | - Annika Lehmbecker
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Bünteweg 17, Hannover, Germany
- Center for Systems Neuroscience, Bünteweg 2, Hannover, Germany
| | - Barbara B. Raddatz
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Bünteweg 17, Hannover, Germany
- Center for Systems Neuroscience, Bünteweg 2, Hannover, Germany
| | - Kristel Kegler
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Bünteweg 17, Hannover, Germany
- Center for Systems Neuroscience, Bünteweg 2, Hannover, Germany
| | - Andrea Tipold
- Center for Systems Neuroscience, Bünteweg 2, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover Foundation, Bünteweg 2, Hannover, Germany
| | - Veronika M. Stein
- Center for Systems Neuroscience, Bünteweg 2, Hannover, Germany
- Department of Clinical Veterinary Sciences, Vetsuisse Faculty, University of Bern, Laenggassstrasse 128, Bern, Switzerland
| | - Arno Kalkuhl
- Boehringer Ingelheim Pharma GmbH & Co.KG, Department of Non-clinical Drug Safety, Birkendorfer Str. 65, Biberach, Germany
| | - Ulrich Deschl
- Boehringer Ingelheim Pharma GmbH & Co.KG, Department of Non-clinical Drug Safety, Birkendorfer Str. 65, Biberach, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Bünteweg 17, Hannover, Germany
- Center for Systems Neuroscience, Bünteweg 2, Hannover, Germany
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Bünteweg 17, Hannover, Germany
- Friedrich-Loeffler-Institute, Department of Experimental Animal Facilities and Biorisk Management, Südufer 10, Greifswald, Germany
| | - Ingo Spitzbarth
- Department of Pathology, University of Veterinary Medicine Hannover Foundation, Bünteweg 17, Hannover, Germany
- Center for Systems Neuroscience, Bünteweg 2, Hannover, Germany
| |
Collapse
|
6
|
Wu NH, Yang W, Beineke A, Dijkman R, Matrosovich M, Baumgärtner W, Thiel V, Valentin-Weigand P, Meng F, Herrler G. The differentiated airway epithelium infected by influenza viruses maintains the barrier function despite a dramatic loss of ciliated cells. Sci Rep 2016; 6:39668. [PMID: 28004801 PMCID: PMC5177954 DOI: 10.1038/srep39668] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/22/2016] [Indexed: 11/08/2022] Open
Abstract
Virus-host interactions in the respiratory epithelium during long term influenza virus infection are not well characterized. Therefore, we developed an air-liquid interface culture system for differentiated porcine respiratory epithelial cells to study the effect of virus-induced cellular damage. In our well-differentiated cells, α2,6-linked sialic acid is predominantly expressed on the apical surface and the basal cells mainly express α2,3-linked sialic acid. During the whole infection period, release of infectious virus was maintained at a high titre for more than seven days. The infected epithelial cells were subject to apoptosis resulting in the loss of ciliated cells together with a thinner thickness. Nevertheless, the airway epithelium maintained trans-epithelial electrical resistance and retained its barrier function. The loss of ciliated cells was compensated by the cells which contained the KRT5 basal cell marker but were not yet differentiated into ciliated cells. These specialized cells showed an increase of α2,3-linked sialic acid on the apical surface. In sum, our results help to explain the localized infection of the airway epithelium by influenza viruses. The impairment of mucociliary clearance in the epithelial cells provides an explanation why prior viral infection renders the host more susceptible to secondary co-infection by another pathogen.
Collapse
Affiliation(s)
- Nai-Huei Wu
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wei Yang
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Beineke
- Institute of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ronald Dijkman
- Federal Department of Home Affairs, Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Switzerland
| | | | - Wolfgang Baumgärtner
- Institute of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Volker Thiel
- Federal Department of Home Affairs, Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Fandan Meng
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
7
|
Persistent Morbillivirus Infection Leads to Altered Cortactin Distribution in Histiocytic Sarcoma Cells with Decreased Cellular Migration Capacity. PLoS One 2016; 11:e0167517. [PMID: 27911942 PMCID: PMC5135102 DOI: 10.1371/journal.pone.0167517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/15/2016] [Indexed: 12/04/2022] Open
Abstract
Histiocytic sarcomas represent rare but fatal neoplasms in humans. Based on the absence of a commercially available human histiocytic sarcoma cell line the frequently affected dog displays a suitable translational model. Canine distemper virus, closely related to measles virus, is a highly promising candidate for oncolytic virotherapy. Therapeutic failures in patients are mostly associated with tumour invasion and metastasis often induced by misdirected cytoskeletal protein activities. Thus, the impact of persistent canine distemper virus infection on the cytoskeletal protein cortactin, which is frequently overexpressed in human cancers with poor prognosis, was investigated in vitro in a canine histiocytic sarcoma cell line (DH82). Though phagocytic activity, proliferation and apoptotic rate were unaltered, a significantly reduced migration activity compared to controls (6 hours and 1 day after seeding) accompanied by a decreased number of cortactin mRNA transcripts (1 day) was detected. Furthermore, persistently canine distemper virus infected DH82 cells showed a predominant diffuse intracytoplasmic cortactin distribution at 6 hours and 1 day compared to controls with a prominent membranous expression pattern (p ≤ 0.05). Summarized, persistent canine distemper virus infection induces reduced tumour cell migration associated with an altered intracellular cortactin distribution, indicating cytoskeletal changes as one of the major pathways of virus-associated inhibition of tumour spread.
Collapse
|
8
|
Benner B, Martorell AJ, Mahadevan P, Najm FJ, Tesar PJ, Freundt EC. Depletion of Olig2 in oligodendrocyte progenitor cells infected by Theiler's murine encephalomyelitis virus. J Neurovirol 2015; 22:336-48. [PMID: 26631080 DOI: 10.1007/s13365-015-0402-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 01/03/2023]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infects the central nervous system of mice and causes a demyelinating disease that is a model for multiple sclerosis. During the chronic phase of the disease, TMEV persists in oligodendrocytes and macrophages. Lack of remyelination has been attributed to insufficient proliferation and differentiation of oligodendrocyte progenitor cells (OPCs), but the molecular mechanisms remain unknown. Here, we employed pluripotent stem cell technologies to generate pure populations of mouse OPCs to study the temporal and molecular effects of TMEV infection. Global transcriptome analysis of RNA sequencing data revealed that TMEV infection of OPCs caused significant up-regulation of 1926 genes, whereas 1853 genes were significantly down-regulated compared to uninfected cells. Pathway analysis revealed that TMEV disrupted many genes required for OPC growth and maturation. Down-regulation of Olig2, a transcription factor necessary for OPC proliferation, was confirmed by real-time PCR, immunofluorescence microscopy, and western blot analysis. Depletion of Olig2 was not found to be specific to viral strain and did not require expression of the leader (L) protein, which is a multifunctional protein important for persistence, modulation of gene expression, and cell death. These data suggest that direct infection of OPCs by TMEV may inhibit remyelination during the chronic phase of TMEV-induced demyelinating disease.
Collapse
Affiliation(s)
- Bayleigh Benner
- Department of Biology, The University of Tampa, Tampa, FL, USA
| | | | | | - Fadi J Najm
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Eric C Freundt
- Department of Biology, The University of Tampa, Tampa, FL, USA.
| |
Collapse
|
9
|
Pringproa K, Rungsiwiwut R, Tantilertcharoen R, Praphet R, Pruksananonda K, Baumgärtner W, Thanawongnuwech R. Tropism and Induction of Cytokines in Human Embryonic-Stem Cells-Derived Neural Progenitors upon Inoculation with Highly- Pathogenic Avian H5N1 Influenza Virus. PLoS One 2015; 10:e0135850. [PMID: 26274828 PMCID: PMC4537284 DOI: 10.1371/journal.pone.0135850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022] Open
Abstract
Central nervous system (CNS) dysfunction caused by neurovirulent influenza viruses is a dreaded complication of infection, and may play a role in some neurodegenerative conditions, such as Parkinson-like diseases and encephalitis lethargica. Although CNS infection by highly pathogenic H5N1 virus has been demonstrated, it is unknown whether H5N1 infects neural progenitor cells, nor whether such infection plays a role in the neuroinflammation and neurodegeneration. To pursue this question, we infected human neural progenitor cells (hNPCs) differentiated from human embryonic stem cells in vitro with H5N1 virus, and studied the resulting cytopathology, cytokine expression, and genes involved in the differentiation. Human embryonic stem cells (BG01) were maintained and differentiated into the neural progenitors, and then infected by H5N1 virus (A/Chicken/Thailand/CUK2/04) at a multiplicity of infection of 1. At 6, 24, 48, and 72 hours post-infection (hpi), cytopathic effects were observed. Then cells were characterized by immunofluorescence and electron microscopy, supernatants quantified for virus titers, and sampled cells studied for candidate genes.The hNPCs were susceptible to H5N1 virus infection as determined by morphological observation and immunofluorescence. The infection was characterized by a significant up-regulation of TNF-α gene expression, while expressions of IFN-α2, IFN-β1, IFN-γ and IL-6 remained unchanged compared to mock-infected controls. Moreover, H5N1 infection did not appear to alter expression of neuronal and astrocytic markers of hNPCs, such as β-III tubulin and GFAP, respectively. The results indicate that hNPCs support H5N1 virus infection and may play a role in the neuroinflammation during acute viral encephalitis.
Collapse
Affiliation(s)
- Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| | - Ruttachuk Rungsiwiwut
- Human Embryonic Stem Cell Research Center, Reproductive Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Rachod Tantilertcharoen
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Reunkeaw Praphet
- Institute Product Quality and Standardization, Maejo University, Chiang Mai, Thailand
| | - Kamthorn Pruksananonda
- Human Embryonic Stem Cell Research Center, Reproductive Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Roongroje Thanawongnuwech
- Department of Pathology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Sun Y, Lehmbecker A, Kalkuhl A, Deschl U, Sun W, Rohn K, Tzvetanova ID, Nave KA, Baumgärtner W, Ulrich R. STAT3 represents a molecular switch possibly inducing astroglial instead of oligodendroglial differentiation of oligodendroglial progenitor cells in Theiler's murine encephalomyelitis. Neuropathol Appl Neurobiol 2015; 41:347-70. [DOI: 10.1111/nan.12133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/02/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Yanyong Sun
- Department of Pathology; University of Veterinary Medicine Hannover; Hannover Germany
- Centre for Systems Neuroscience Hannover; Hannover Germany
| | - Annika Lehmbecker
- Department of Pathology; University of Veterinary Medicine Hannover; Hannover Germany
- Centre for Systems Neuroscience Hannover; Hannover Germany
| | - Arno Kalkuhl
- Department of Non-Clinical Drug Safety; Boehringer Ingelheim Pharma; Biberach (Riß) Germany
| | - Ulrich Deschl
- Department of Non-Clinical Drug Safety; Boehringer Ingelheim Pharma; Biberach (Riß) Germany
| | - Wenhui Sun
- Department of Pathology; University of Veterinary Medicine Hannover; Hannover Germany
- Centre for Systems Neuroscience Hannover; Hannover Germany
| | - Karl Rohn
- Department of Biometry, Epidemiology and Information Processing; University of Veterinary Medicine Hannover; Hannover Germany
| | - Iva D. Tzvetanova
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Göttingen Germany
| | - Wolfgang Baumgärtner
- Department of Pathology; University of Veterinary Medicine Hannover; Hannover Germany
- Centre for Systems Neuroscience Hannover; Hannover Germany
| | - Reiner Ulrich
- Department of Pathology; University of Veterinary Medicine Hannover; Hannover Germany
- Centre for Systems Neuroscience Hannover; Hannover Germany
| |
Collapse
|
11
|
Passage-dependent morphological and phenotypical changes of a canine histiocytic sarcoma cell line (DH82 cells). Vet Immunol Immunopathol 2014; 163:86-92. [PMID: 25534080 DOI: 10.1016/j.vetimm.2014.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/23/2014] [Accepted: 11/06/2014] [Indexed: 12/25/2022]
Abstract
DH82 cells represent a permanent macrophage cell line isolated from a dog with histiocytic sarcoma (HS) and are commonly used in various fields of research upon infection and cancer, respectively. Despite its frequent use, data on cell surface antigen expression of this cell line are fragmentary and in part inconsistent. We therefore aimed at a detailed morphological and antigenic characterization of DH82 cells with respect to passage-dependent differences. Cellular morphology of early (≤ 13) and late (≥ 66) passages of DH82 cells was evaluated via scanning electron microscopy. Moreover, cells were labelled with 10 monoclonal antibodies directed against CD11c, CD14, CD18, CD44, CD45, CD80, CD86, MHC-I, MHC-II, and ICAM-1 for flow cytometric analysis. Early passage cells were characterized by round cell bodies with abundant small cytoplasmic projections whereas later passages exhibited a spindle-shaped morphology with large processes. The percentage of CD11c-, CD14-, CD18-, CD45-, and CD80 positive cells significantly decreased in late passages whereas the expression of CD44, CD86, MHC-I, MHC-II and ICAM-1 remained unchanged. DH82 cells represent a remarkably heterogeneous cell line with divergent antigenic and morphologic properties. The present findings have important implications for future studies, which should consider distinct characteristics with regard to the used passage.
Collapse
|
12
|
Kreutzer M, Seehusen F, Kreutzer R, Pringproa K, Kummerfeld M, Claus P, Deschl U, Kalkul A, Beineke A, Baumgärtner W, Ulrich R. Axonopathy is associated with complex axonal transport defects in a model of multiple sclerosis. Brain Pathol 2012; 22:454-71. [PMID: 21988534 PMCID: PMC8092950 DOI: 10.1111/j.1750-3639.2011.00541.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 09/08/2011] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease characterized by myelin and axonal pathology. In a viral model of MS, we tested whether axonopathy initiation and development are based on an impaired transport of neurofilaments. Spinal cords of Theiler's murine encephalomyelitis virus (TMEV)-infected and mock-infected mice and TMEV infected neuroblastoma N1E-115 cells were analyzed by microarray analysis, light microscopy and electron and laser confocal microscopy. In vivo axonal accumulation of non-phosphorylated neurofilaments after TMEV infection revealed a temporal development caused by the impairments of the axonal traffic consisting of the downregulation of kinesin family member 5A, dynein cytoplasmic heavy chain 1, tau-1 and β-tubulin III expression. In addition, alterations of the protein metabolism were also noticed. In vitro, the TMEV-infected N1E-115 cells developed tandem-repeated swellings similar to in vivo alterations. Furthermore, the hypothesis of an underlying axonal self-destruction program involving nicotinamide adenine dinucleotide depletion was supported by molecular findings. The obtained data indicate that neurofilament accumulation in TME is mainly the result of dysregulation of their axonal transport machinery and impairment of neurofilament phosphorylation and protein metabolism. The present findings allow a more precise understanding of the complex interactions responsible for initiation and development of axonopathies in inflammatory degenerative diseases.
Collapse
Affiliation(s)
- Mihaela Kreutzer
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Frauke Seehusen
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Robert Kreutzer
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Kidsadagorn Pringproa
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Maren Kummerfeld
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Peter Claus
- Center for Systems Neuroscience, Hannover, Germany
- Department of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Ulrich Deschl
- Boehringer Ingelheim Pharma GmbH&Co KG, Department of Non‐Clinical Drug Safety, Biberach (Riß), Germany
| | - Arno Kalkul
- Boehringer Ingelheim Pharma GmbH&Co KG, Department of Non‐Clinical Drug Safety, Biberach (Riß), Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
13
|
Wohlsein P, Deschl U, Baumgärtner W. Nonlesions, unusual cell types, and postmortem artifacts in the central nervous system of domestic animals. Vet Pathol 2012; 50:122-43. [PMID: 22692622 DOI: 10.1177/0300985812450719] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the central nervous system (CNS) of domestic animals, numerous specialized normal structures, unusual cell types, findings of uncertain or no significance, artifacts, and various postmortem alterations can be observed. They may cause confusion for inexperienced pathologists and those not specialized in neuropathology, leading to misinterpretations and wrong diagnoses. Alternatively, changes may mask underlying neuropathological processes. "Specialized structures" comprising the hippocampus and the circumventricular organs, including the vascular organ of the lamina terminalis, subfornical organ, subcommissural organ, pineal gland, median eminence/neurohypophyseal complex, choroid plexus, and area postrema, are displayed. Unusual cell types, including cerebellar external germinal cells, CNS progenitor cells, and Kolmer cells, are presented. In addition, some newly recognized cell types as of yet incompletely understood significance and functionality, such as synantocytes and aldynoglia, are introduced and described. Unusual reactive astrocytes in cats, central chromatolysis, neuronal vacuolation, spheroids, spongiosis, satellitosis, melanosis, neuromelanin, lipofuscin, polyglucosan bodies, and psammoma bodies may represent incidental findings of uncertain or no significance and should not be confused with significant microscopic changes. Auto- and heterolysis as well as handling and histotechnological processing may cause postmortem morphological changes of the CNS, including vacuolization, cerebellar conglutination, dark neurons, Buscaino bodies, freezing, and shrinkage artifacts, all of which have to be differentiated from genuine lesions. Postmortem invasion of micro-organisms should not be confused with intravital infections. Awareness of these different changes and their recognition are a prerequisite for identifying genuine lesions and may help to formulate a professional morphological and etiological diagnosis.
Collapse
Affiliation(s)
- P Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany.
| | | | | |
Collapse
|
14
|
Hansmann F, Pringproa K, Ulrich R, Sun Y, Herder V, Kreutzer M, Baumgärtner W, Wewetzer K. Highly malignant behavior of a murine oligodendrocyte precursor cell line following transplantation into the demyelinated and nondemyelinated central nervous system. Cell Transplant 2012; 21:1161-75. [PMID: 22420305 DOI: 10.3727/096368911x627444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Understanding the basic mechanisms that control CNS remyelination is of direct clinical relevance. Suitable model systems include the analysis of naturally occurring and genetically generated mouse mutants and the transplantation of oligodendrocyte precursor cells (OPCs) following experimental demyelination. However, aforementioned studies were exclusively carried out in rats and little is known about the in vivo behavior of transplanted murine OPCs. Therefore in the present study, we (i) established a model of ethidium bromide-induced demyelination of the caudal cerebellar peduncle (CCP) in the adult mouse and (ii) studied the distribution and marker expression of the murine OPC line BO-1 expressing the enhanced green fluorescent protein (eGFP) 10 and 17 days after stereotaxic implantation. Injection of ethidium bromide (0.025%) in the CCP resulted in a severe loss of myelin, marked astrogliosis, and mild to moderate axonal alterations. Transplanted cells formed an invasive and liquorogenic metastasizing tumor, classified as murine giant cell glioblastoma. Transplanted BO-1 cells displayed substantially reduced CNPase expression as compared to their in vitro phenotype, low levels of MBP and GFAP, prominent upregulation of NG2, PDGFRα, nuclear p53, and an unaltered expression of signal transducer and activator of transcription (STAT)-3. Summarized environmental signaling in the brain stem was not sufficient to trigger oligodendrocytic differentiation of BO-1 cells and seemed to block CNPase expression. Moreover, the lack of the remyelinating capacity was associated with tumor formation indicating that BO-1 cells may serve as a versatile experimental model to study tumorigenesis of glial tumors.
Collapse
Affiliation(s)
- Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kipp M, van der Star B, Vogel DYS, Puentes F, van der Valk P, Baker D, Amor S. Experimental in vivo and in vitro models of multiple sclerosis: EAE and beyond. Mult Scler Relat Disord 2011; 1:15-28. [PMID: 25876447 DOI: 10.1016/j.msard.2011.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/05/2011] [Indexed: 12/16/2022]
Abstract
Although the primary cause of multiple sclerosis (MS) is unknown, the widely accepted view is that aberrant (auto)immune responses possibly arising following infection(s) are responsible for the destructive inflammatory demyelination and neurodegeneration in the central nervous system (CNS). This notion, and the limited access of human brain tissue early in the course of MS, has led to the development of autoimmune, viral and toxin-induced demyelination animal models as well as the development of human CNS cell and organotypic brain slice cultures in an attempt to understand events in MS. The autoimmune models, collectively known as experimental autoimmune encephalomyelitis (EAE), and viral models have shaped ideas of how environmental factors may trigger inflammation, demyelination and neurodegeneration in the CNS. Understandably, these models have also heavily influenced the development of therapies targeting the inflammatory aspect of MS. Demyelination and remyelination in the absence of overt inflammation are better studied in toxin-induced demyelination models using cuprizone and lysolecithin. The paradigm shift of MS as an autoimmune disease of myelin to a neurodegenerative disease has required more appropriate models reflecting the axonal and neuronal damage. Thus, secondary progressive EAE and spastic models have been crucial to develop neuroprotective approaches. In this review the current in vivo and in vitro experimental models to examine pathological mechanisms involved in inflammation, demyelination and neuronal degeneration, as well as remyelination and repair in MS are discussed. Since this knowledge is the basis for the development of new therapeutic approaches for MS, we particularly address whether the currently available models truly reflect the human disease, and discuss perspectives to further optimise and develop more suitable experimental models to study MS.
Collapse
Affiliation(s)
- Markus Kipp
- Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands; Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Baukje van der Star
- Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Daphne Y S Vogel
- Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands; Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Fabìola Puentes
- Neuroimmunology Unit, Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - Paul van der Valk
- Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | - David Baker
- Neuroimmunology Unit, Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - Sandra Amor
- Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands; Neuroimmunology Unit, Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK.
| |
Collapse
|