1
|
Zhou T, Zhong Y, Zhang Y, Zhou Y. Pyruvate Dehydrogenase Complex in Neonatal Hypoxic-Ischemic Brain Injury. ACS Pharmacol Transl Sci 2024; 7:42-47. [PMID: 38230287 PMCID: PMC10789137 DOI: 10.1021/acsptsci.3c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
The disruption of cerebral energy metabolism in relation to brain damage has been the subject of extensive research. However, the pyruvate dehydrogenase complex (PDHC), which is primarily characterized by poor cerebral energy metabolism following brain trauma, has received relatively little study in comparison to newborn hypoxic-ischemic brain injury. Mitochondrial PDHC, a multienzyme complex that functions as a crucial hub in energy metabolism and acts as a central metabolic node to mediate pyruvate oxidation after glycolysis and fuel the Krebs cycle to meet energy demands, has been reported to be one cause of energy metabolism dysfunction according to recent studies. Here we assess the potential mechanisms of neonatal hypoxic-ischemic brain injury-related brain dysfunction mediated by PDHC and further discuss the neuroprotective effects of therapeutic medicines that target PDHC activation. We also provide a summary of recent research on medicines that target PDHC in neonates with hypoxic-ischemic brain damage. Through an understanding of the mechanisms by which it is modulated and an investigation of the neuroprotective techniques available to activate brain PDHC and improve neonatal hypoxic-ischemic impairment, our review emphasizes the significance of PDHC impairment in neonatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Tao Zhou
- Department
of Pharmaceutical and Medical Equipment, Rongtong Bayi Orthopedic Hospital of China, Chengdu 610031, China
| | - Yuangao Zhong
- Department
of Pharmaceutical Preparation Rongtong Bayi Orthopedic Hospital Of
China, Chengdu 610031, China
| | - Yong Zhang
- Department
of Pharmaceutical Preparation Rongtong Bayi Orthopedic Hospital Of
China, Chengdu 610031, China
| | - Yue Zhou
- Department
of Pharmacy, Xindu District People’s
Hospital of Chengdu, Chengdu 610500, China
| |
Collapse
|
2
|
Khan H, Singh TG, Dahiya RS, Abdel-Daim MM. α-Lipoic Acid, an Organosulfur Biomolecule a Novel Therapeutic Agent for Neurodegenerative Disorders: An Mechanistic Perspective. Neurochem Res 2022; 47:1853-1864. [PMID: 35445914 DOI: 10.1007/s11064-022-03598-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
Lipoic acid (α-LA) (1,2-dithiolane3-pentanoic acid (C8H14O2S2) is also called thioctic acid with an oxidized (disulfide, LA) and a reduced (di-thiol: dihydro-lipoic acid, DHLA) form of LA. α-LA is a potent anti-oxidative agent that has a significant potential to treat neurodegenerative disorders. α-LA is both hydrophilic and hydrophobic in nature. It is widely distributed in plants and animals in cellular membranes and in the cytosol, which is responsible for LA's action in both the cytosol and plasma membrane. A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to understand the Nature and mechanistic interventions of the α-Lipoic acid for central nervous system diseases. Moreover, α-LA readily crosses the blood-brain barrier, which is a significant factor for CNS activities. The mechanisms of α-LA reduction are highly tissue-specific. α-LA produces its neuroprotective effect by inhibiting reactive oxygen species formation and neuronal damage, modulating protein levels, and promoting neurotransmitters and anti-oxidant levels. Hence, the execution of α-LA as a therapeutic ingredient in the therapy of neurodegenerative disorders is promising. Finally, based on evidence, it can be concluded that α-LA can prevent diseases related to the nervous system.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | | | | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522, Ismailia, Egypt
| |
Collapse
|
3
|
Effects of Lipoic Acid on Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5093216. [PMID: 34650663 PMCID: PMC8510805 DOI: 10.1155/2021/5093216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion (I/R) injury often occurred in some pathologies and surgeries. I/R injury not only harmed to physiological functions of corresponding organ and tissue but also induced multiple tissue or organ dysfunctions (even these in distant locations). Although the reperfusion of blood attenuated I/R injury to a certain degree, the risk of secondary damages was difficult to be controlled and it even caused failures of these tissues and organs. Lipoic acid (LA), as an endogenous active substance and a functional agent in food, owns better safety and effects in our body (e.g., enhancing antioxidant activity, improving cognition and dementia, controlling weight, and preventing multiple sclerosis, diabetes complication, and cancer). The literature searching was conducted in PubMed, Embase, Cochrane Library, Web of Science, and SCOPUS from inception to 20 May 2021. It had showed that endogenous LA was exhausted in the process of I/R, which further aggravated I/R injury. Thus, supplements with LA timely (especially pretreatments) may be the prospective way to prevent I/R injury. Recently, studies had demonstrated that LA supplements significantly attenuated I/R injuries of many organs, though clinic investigations were short at present. Hence, it was urgent to summarize these progresses about the effects of LA on different I/R organs as well as the potential mechanisms, which would enlighten further investigations and prepare for clinic applications in the future.
Collapse
|
4
|
Rezaie M, Nasehi M, Vaseghi S, Mohammadi-Mahdiabadi-Hasani MH, Zarrindast MR, Nasiri Khalili MA. The protective effect of alpha lipoic acid (ALA) on social interaction memory, but not passive avoidance in sleep-deprived rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2081-2091. [PMID: 32583046 DOI: 10.1007/s00210-020-01916-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
Sleep is involved in maintaining energy, regulating heat, and recovering tissues. Furthermore, proper cognitive functions need sufficient sleep. Many studies have revealed the impairment effect of sleep deprivation (SD) on cognitive functions including learning and memory. Alpha lipoic acid (ALA) is a potent free radical scavenger, biological antioxidant, and neuroprotective agent. Furthermore, ALA improves learning and memory performance, decreases oxidative stress, and enhances antioxidant biomarkers. In this study, we aimed to investigate the effect of ALA on social interaction and passive avoidance memories in sleep-deprived rats. Total sleep deprivation (TSD) apparatus was used to induce SD (for 24 h). Three-chamber paradigm test and shuttle box apparatus were used to evaluate social interaction and passive avoidance memory, respectively. Rats' locomotor apparatus was used to assess locomotion. ALA was administered intraperitoneally at doses of 17 and 35 mg/kg for 3 consecutive days. The results showed SD impaired both types of memories. ALA at the dose of 35 mg/kg restored social interaction memory in sleep-deprived rats; while, at the dose of 17 mg/kg attenuated impairment effect of SD. Moreover, ALA at the dose of 35 mg/kg impaired passive avoidance memory in sham-SD rats and at both doses did not rescue passive avoidance memory in sleep-deprived rats. In conclusion, ALA showed impairment effect on passive avoidance memory, while improved social interaction memory in sleep-deprived rats.
Collapse
Affiliation(s)
- Maede Rezaie
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, P.O. Box: 13145-784, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Nasiri Khalili
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, P.O. Box: 13145-784, Tehran, Iran.
| |
Collapse
|
5
|
Uppakara K, Jamornwan S, Duan LX, Yue KR, Sunrat C, Dent EW, Wan SB, Saengsawang W. Novel α-Lipoic Acid/3- n-Butylphthalide Conjugate Enhances Protective Effects against Oxidative Stress and 6-OHDA Induced Neuronal Damage. ACS Chem Neurosci 2020; 11:1634-1642. [PMID: 32374999 DOI: 10.1021/acschemneuro.0c00105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases are irreversible conditions that result in progressive degeneration and death of nerve cells. Although the underlying mechanisms may vary, oxidative stress is considered to be one of the major causes of neuronal loss. Importantly, there are still no comprehensive treatments to completely cure these diseases. Therefore, protecting neurons from oxidative damage may be the most effective therapeutic strategy. Here we report a neuroprotective effects of a novel hybrid compound (dlx-23), obtained by conjugating α-lipoic acid (ALA), a natural antioxidant agent, and 3-n-butylphthalide (NBP), a clinical anti-ischemic drug. Dlx-23 protected against neuronal death induced by both H2O2 induced oxidative stress in Cath.-a-differentiated (CAD) cells and 6-OHDA, a toxin model of Parkinson's disease (PD) in SH-SY5Y cells. These activities proved to be more potent than the parent compound (ALA) alone. Dlx-23 scavenged free radicals, increased glutathione levels, and prevented mitochondria damage. In addition, live imaging of primary cortical neurons demonstrated that dlx-23 protected against neuronal growth cone damage induced by H2O2. Taken together these results suggest that dlx-23 has substantial potential to be further developed into a novel neuroprotective agent against oxidative damage and toxin induced neurodegeneration.
Collapse
Affiliation(s)
- Kwanchanok Uppakara
- Toxicology Graduate Program; Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sopana Jamornwan
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Liang-xing Duan
- Qingdao National Laboratory for Marine Science and Technology; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kai-rui Yue
- Qingdao National Laboratory for Marine Science and Technology; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chotchanit Sunrat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Erik W Dent
- Department of Neuroscience, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Sheng-biao Wan
- Qingdao National Laboratory for Marine Science and Technology; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Witchuda Saengsawang
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Shaafi S, Ebrahimpour-Koujan S, Khalili M, Shamshirgaran SM, Hashemilar M, Taheraghdam A, Shakouri SK, Sadeghi Hokmabadi E, Ahmadi Y, Farhoudi M, Rezaeimanesh N, Savadi Osgouei D. Effects of Alpha Lipoic Acid Supplementation on Serum Levels of Oxidative Stress, Inflammatory Markers and Clinical Prognosis among Acute Ischemic Stroke Patients: A Randomized, Double Blind, TNS Trial. Adv Pharm Bull 2020; 10:284-289. [PMID: 32373498 PMCID: PMC7191243 DOI: 10.34172/apb.2020.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/12/2019] [Accepted: 09/30/2019] [Indexed: 11/28/2022] Open
Abstract
Purpose: Stroke is one of the most common conditions causing death. There have been few studies examining the effects of alpha lipoic acid (ALA) on stroke patients. In this regard, the present randomized controlled clinical trial was conducted to examine the effects of ALA supplementation on serum albumin, and inflammatory and oxidative stress markers in stroke patients. Methods: The present paralleled randomized controlled clinical trial involved 42 stroke patients who were over 40 years and under enteral feeding. The participants were randomly assigned into two groups and finally 40 patients completed the study. Patients in alpha lipoic acid group (n=19) took 1200 mg ALA supplement daily along with their meal, and participants in control group (n=21) underwent the routine hospital diet for 3 weeks. Fasting blood samples were obtained and albumin, oxidative stress, and inflammatory indices were assessed at baseline, as well as at the end of the trial. Results: After 3 weeks, treatment of patients with ALA led to a significant decrease in tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) levels (P=0.01) compared to baseline. But serum levels of albumin, total antioxidant capacity (TAC), malondialdehyde (MDA), highsensitivity C-reactive protein (hs-CRP), IL-6 and TNF-α did not change significantly vs. control group (P>0.05). Conclusion: ALA did not significantly change the serum levels of albumin and inflammatory as well as antioxidant capacity indices in stroke patients compared with the control group. More clinical trials with large sample sizes and long duration are needed to clarify the effects of ALA on these patients.
Collapse
Affiliation(s)
- Sheyda Shaafi
- Department of Neurology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Khalili
- Multiple Sclerosis Research Center, Neuroscience institute, Tehran University of Medical Sciences, Tehran, Iran.,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mazyar Hashemilar
- Department of Neurology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Taheraghdam
- Department of Neurology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elyar Sadeghi Hokmabadi
- Department of Neurology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yaeghoub Ahmadi
- Department of Neurology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Department of Neurology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Rezaeimanesh
- Multiple Sclerosis Research Center, Neuroscience institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Daryoush Savadi Osgouei
- Department of Neurology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Hussein OA, Abdel-Hafez AMM, Abd El Kareim A. Rat hippocampal CA3 neuronal injury induced by limb ischemia/reperfusion: A possible restorative effect of alpha lipoic acid. Ultrastruct Pathol 2018; 42:133-154. [PMID: 29466087 DOI: 10.1080/01913123.2018.1427165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Limb ischemia reperfusion (I/R) injury is associated with serious local and systemic effects. Reperfusion may augment tissue injury in excess of that produced by ischemia alone. The hippocampus has been reported to be vulnerable to I/R injury. Alpha lipoic acid (ALA) is an endogenous antioxidant with a powerful antioxidative, anti-inflammatory, and antiapoptotic properties. We studied the probable restorative effect of ALA on limb I/R-induced structural damage of rat hippocampus. Forty adult male albino rats were divided equally into four groups: group I (sham); group II (I/R-1 day) has undergone bilateral femoral arteries occlusion (3 h), then reperfusion for 1 day; group III (I/R-7 days) has undergone reperfusion for seven days; group IV (I/R-ALA) has undergone I/R as group III and received an intraperitoneal injection of ALA (100 mg/kg) for 7 days. I/R groups revealed degenerative changes in the pyramidal neuronal perikarya of CA3 field in the form of dark-stained cytoplasm, dilated RER cisternae, mitochondrial alterations, and dense bodies' accumulation. Their dendrites showed disorganized microtubules. Astrogliosis is featured by an increased number and increased immunoreactivity of astrocytes for glial fibrillary acid protein. Morphometric data revealed significant reduction of light neurons, surface area of neurons, and thickness of the CA3 layer. Most blood capillaries exhibited narrow lumen and irregular basal lamina. ALA ameliorated the neuronal damage. Pyramidal neurons revealed preservation of normal structure. Significant increase in the thickness of pyramidal layer in CA3 field and surface area and number of light neurons was observed but astrogliosis persisted. Limb I/R had a deleterious remote effect on the hippocampus aggravated with longer period of reperfusion. This work may encourage the use of ALA in the critical clinical settings with I/R injury.
Collapse
Affiliation(s)
- Ola A Hussein
- a Histology and Cell biology Department, Faculty of Medicine , Assiut University , Assiut , Egypt
| | - Amel M M Abdel-Hafez
- a Histology and Cell biology Department, Faculty of Medicine , Assiut University , Assiut , Egypt
| | - Ayat Abd El Kareim
- a Histology and Cell biology Department, Faculty of Medicine , Assiut University , Assiut , Egypt
| |
Collapse
|
8
|
Gao X, Chen W, Li J, Shen C, Zhou P, Che X, Li X, Xie R. The protective effect of alpha-lipoic acid against brain ischemia and reperfusion injury via mTOR signaling pathway in rats. Neurosci Lett 2018; 671:108-113. [PMID: 29432779 DOI: 10.1016/j.neulet.2018.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
Alpha-lipoic Acid(ALA), an endogenous short-chain fatty acid, has been found inducing a protective effect against ischemia and reperfusion(I/R) injury. Recently, mTOR signaling pathway has been proved to involve in the mechanism of I/R injury. In our previous study, we determined that ALA could protect cerebral endothelial cells against I/R injury via mTOR signaling pathway. However, whether ALA can protect against brain I/R injury in vivo and its mechanisms is uncertain. In this study, we try to explore if the ALA treatment can protect against brain I/R injury and confirm the relationship between ALA and mTOR signaling pathway. ALA was administrated to the animals after dMCAo and reperfusion model established with or without rapamycin pre-treatment. The results showed the infarct size was obviously reduced after ALA treatment in acute stage, neurological functions were also improved distinctly. The mTOR signaling pathway was remarkably blocked after brain I/R injury while it could be activated through ALA treatment. However, rapamycin, can abolish the protective effects induced by ALA treatment in both acute and long-term phase. In conclusion, we demonstrate the protective effects induced by ALA treatment against the brain I/R injury in rats and mTOR signaling pathway is required for the protective effects of ALA against brain I/R injury. The results might contribute to the potential clinical application of ALA and provide a potential therapeutic target on ischemic stroke.
Collapse
Affiliation(s)
- Xinjie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Chen
- Department of Neurosurgery, Jingan District Center Hospital, Shanghai 200040, China
| | - Jinquan Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chao Shen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ping Zhou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoming Che
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaomu Li
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
9
|
Neuroprotective Effects of Bioactive Compounds and MAPK Pathway Modulation in "Ischemia"-Stressed PC12 Pheochromocytoma Cells. Brain Sci 2018; 8:brainsci8020032. [PMID: 29419806 PMCID: PMC5836051 DOI: 10.3390/brainsci8020032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 02/08/2023] Open
Abstract
This review surveys the efforts taken to investigate in vitro neuroprotective features of synthetic compounds and cell-released growth factors on PC12 clonal cell line temporarily deprived of oxygen and glucose followed by reoxygenation (OGD/R). These cells have been used previously to mimic some of the properties of in vivo brain ischemia-reperfusion-injury (IRI) and have been instrumental in identifying common mechanisms such as calcium overload, redox potential, lipid peroxidation and MAPKs modulation. In addition, they were useful for establishing the role of certain membrane penetrable cocktails of antioxidants as well as potential growth factors which may act in neuroprotection. Pharmacological mechanisms of neuroprotection addressing modulation of the MAPK cascade and increased redox potential by natural products, drugs and growth factors secreted by stem cells, in either undifferentiated or nerve growth factor-differentiated PC12 cells exposed to ischemic conditions are discussed for future prospects in neuroprotection studies.
Collapse
|
10
|
Seifar F, Khalili M, Khaledyan H, Amiri Moghadam S, Izadi A, Azimi A, Shakouri SK. α-Lipoic acid, functional fatty acid, as a novel therapeutic alternative for central nervous system diseases: A review. Nutr Neurosci 2017; 22:306-316. [DOI: 10.1080/1028415x.2017.1386755] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fatemeh Seifar
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Khalili
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Multiple Sclerosis Research Center, Tehran, Iran
| | - Habib Khaledyan
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Amiri Moghadam
- Faculty of Medicine, Department of Community Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Azimeh Izadi
- Faculty of Nutrition and Food Science, Department of Biochemistry and Diet Therapy, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Seied Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Abstract
α-Lipoic acid has been shown to provide cytoprotection in some tissues through antioxidant and antiapoptotic mechanisms. We have enhanced these properties by synthetic modification, resulting in a new chemical entity, CMX-2043, with proven efficacy in an animal model of cardiac ischemia-reperfusion injury. The present studies compare cytoprotective cellular pathways of R-α-lipoic acid and CMX-2043. Biochemical and cellular assays were used to compare antioxidant potency, tyrosine kinase activation, and protein kinase B (Akt) phosphorylation. CMX-2043 was more effective than lipoic acid in antioxidant effect, activation of insulin receptor kinase, soluble tyrosine kinase, and Akt phosphorylation. Activation of insulin-like growth factor 1 receptor was similar for both. CMX-2043 stimulation of Akt phosphorylation was abolished by the phosphatidylinositide 3-kinase inhibitor LY294002. Consistent with Akt activation, CMX-2043 reduced carbachol-induced calcium overload. The S-stereoisomer of CMX-2043 was less active in the biochemical assays than the R-isomer. These results are consistent with cytoprotection through activation of Akt and antioxidant action. CMX-2043 may thus provide a pharmacological approach to cytoprotection consistent with established anti-apoptotic mechanisms.
Collapse
|
12
|
Saleh TM, Saleh MC, Connell BJ, Song YH. A co-drug conjugate of naringenin and lipoic acid mediates neuroprotection in a rat model of oxidative stress. Clin Exp Pharmacol Physiol 2017. [DOI: 10.1111/1440-1681.12799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tarek M Saleh
- Department of Biomedical Science; Ontario Veterinary College; University of Guelph; Guelph Ontario Canada
- Department of Biomedical Science; Atlantic Veterinary College; University of Prince Edward Island; Charlottetown Prince Edward Island Canada
| | - Monique C Saleh
- Department of Biomedical Science; Ontario Veterinary College; University of Guelph; Guelph Ontario Canada
| | - Barry J Connell
- Department of Biomedical Science; Atlantic Veterinary College; University of Prince Edward Island; Charlottetown Prince Edward Island Canada
| | - Yang-Heon Song
- Department of Biomedicinal Chemistry; Mokwon University; Daejeon Korea
| |
Collapse
|
13
|
Ramagiri S, Taliyan R. Remote limb ischemic post conditioning during early reperfusion alleviates cerebral ischemic reperfusion injury via GSK-3β/CREB/ BDNF pathway. Eur J Pharmacol 2017; 803:84-93. [DOI: 10.1016/j.ejphar.2017.03.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 01/07/2023]
|
14
|
Connell BJ, Saleh MC, Rajagopal D, Saleh TM. UPEI-400, a conjugate of lipoic acid and scopoletin, mediates neuroprotection in a rat model of ischemia/reperfusion. Food Chem Toxicol 2017; 100:175-182. [DOI: 10.1016/j.fct.2016.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/29/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
|
15
|
Lahiani A, Hidmi A, Katzhendler J, Yavin E, Lazarovici P. Novel Synthetic PEGylated Conjugate of α-Lipoic Acid and Tempol Reduces Cell Death in a Neuronal PC12 Clonal Line Subjected to Ischemia. ACS Chem Neurosci 2016; 7:1452-1462. [PMID: 27499112 DOI: 10.1021/acschemneuro.6b00211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
α-Lipoic acid (α-LA), a natural thiol antioxidant, and Tempol, a synthetic free radical scavenger, are known to confer neuroprotection following ischemic insults in both in vivo and in vitro models. The aim of this study was to synthesize and characterize a conjugate of α-LA and Tempol linked by polyethylene glycol (PEG) in order to generate a more efficacious neuroprotectant molecule. AD3 (α-Tempol ester-ω-lipo ester PEG) was synthesized, purified, and characterized by flash chromatography and reverse phase high pressure liquid chromatography and by 1H nuclear magnetic resonance, infrared spectroscopy, and mass spectrometry. AD3 conferred neuroprotection in a PC12 pheochromocytoma cell line of dopaminergic origin, exposed to oxygen and glucose deprivation (OGD) insult measured by LDH release. AD3 exhibited EC50 at 10 μM and showed a 2-3-fold higher efficacy compared to the precursor moieties, indicating an intrinsic potent neuroprotective activity. AD3 attenuated by 25% the intracellular redox potential, by 54% lipid peroxidation and prevented phosphorylation of ERK, JNK, and p38 by 57%, 22%, and 21%, respectively. Cumulatively, these findings indicate that AD3 is a novel conjugate that confers neuroprotection by attenuation of MAPK phosphorylation and by modulation of the redox potential of the cells.
Collapse
Affiliation(s)
- Adi Lahiani
- School
of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem,
P.O. Box 12065, Jerusalem 91120, Israel
| | - Adel Hidmi
- School
of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem,
P.O. Box 12065, Jerusalem 91120, Israel
| | - Jehoshua Katzhendler
- School
of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem,
P.O. Box 12065, Jerusalem 91120, Israel
| | - Ephraim Yavin
- Department
of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Philip Lazarovici
- School
of Pharmacy Institute for Drug Research, The Hebrew University of Jerusalem,
P.O. Box 12065, Jerusalem 91120, Israel
| |
Collapse
|
16
|
Yu Y, Zhang X, Li B, Zhang Y, Liu J, Li H, Chen Y, Wang P, Kang R, Wu H, Wang Z. Entropy-based divergent and convergent modular pattern reveals additive and synergistic anticerebral ischemia mechanisms. Exp Biol Med (Maywood) 2016; 241:2063-2074. [PMID: 27480252 DOI: 10.1177/1535370216662361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Module-based network analysis of diverse pharmacological mechanisms is critical to systematically understand combination therapies and disease outcomes. We first constructed drug-target ischemic networks in baicalin, jasminoidin, ursodeoxycholic acid, and their combinations baicalin and jasminoidin as well as jasminoidin and ursodeoxycholic acid groups and identified modules using the entropy-based clustering algorithm. The modules 11, 7, 4, 8 and 3 were identified as baicalin, jasminoidin, ursodeoxycholic acid, baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid-emerged responsive modules, while 12, 8, 15, 17 and 9 were identified as disappeared responsive modules based on variation of topological similarity, respectively. No overlapping differential biological processes were enriched between baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid pure emerged responsive modules, but two were enriched by their co-disappeared responsive modules including nucleotide-excision repair and epithelial structure maintenance. We found an additive effect of baicalin and jasminoidin in a divergent pattern and a synergistic effect of jasminoidin and ursodeoxycholic acid in a convergent pattern on "central hit strategy" of regulating inflammation against cerebral ischemia. The proposed module-based approach may provide us a holistic view to understand multiple pharmacological mechanisms associated with differential phenotypes from the standpoint of modular pharmacology.
Collapse
Affiliation(s)
- Yanan Yu
- 1 Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei, Beijing 100700, China
| | - Xiaoxu Zhang
- 1 Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei, Beijing 100700, China
| | - Bing Li
- 1 Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei, Beijing 100700, China
| | - Yingying Zhang
- 1 Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei, Beijing 100700, China
| | - Jun Liu
- 1 Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei, Beijing 100700, China
| | - Haixia Li
- 2 Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yinying Chen
- 2 Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Pengqian Wang
- 1 Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei, Beijing 100700, China
| | - Ruixia Kang
- 1 Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei, Beijing 100700, China
| | - Hongli Wu
- 1 Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei, Beijing 100700, China
| | - Zhong Wang
- 1 Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei, Beijing 100700, China
| |
Collapse
|
17
|
Thibodeau A, Geng X, Previch LE, Ding Y. Pyruvate dehydrogenase complex in cerebral ischemia-reperfusion injury. Brain Circ 2016; 2:61-66. [PMID: 30276274 PMCID: PMC6126256 DOI: 10.4103/2394-8108.186256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/02/2016] [Accepted: 06/14/2016] [Indexed: 11/11/2022] Open
Abstract
Pyruvate dehydrogenase (PDH) complex is a mitochondrial matrix enzyme that serves a critical role in the conversion of anaerobic to aerobic cerebral energy. The regulatory complexity of PDH, coupled with its significant influence in brain metabolism, underscores its susceptibility to, and significance in, ischemia-reperfusion injury. Here, we evaluate proposed mechanisms of PDH-mediated neurodysfunction in stroke, including oxidative stress, altered regulatory enzymatic control, and loss of PDH activity. We also describe the neuroprotective influence of antioxidants, dichloroacetate, acetyl-L-carnitine, and combined therapy with ethanol and normobaric oxygen, explained in relation to PDH modulation. Our review highlights the significance of PDH impairment in stroke injury through an understanding of the mechanisms by which it is modulated, as well as an exploration of neuroprotective strategies available to limit its impairment.
Collapse
Affiliation(s)
- Alexa Thibodeau
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA.,China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Lauren E Previch
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA.,China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Baguisi A, Casale RA, Kates SA, Lader AS, Stewart K, Beeuwkes R. CMX-2043 Efficacy in a Rat Model of Cardiac Ischemia–Reperfusion Injury. J Cardiovasc Pharmacol Ther 2016; 21:563-569. [DOI: 10.1177/1074248416640118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
Abstract
α-Lipoic acid (LA) has been shown to offer protection against ischemia–reperfusion injury (IRI) in multiple organ systems. N-[(R)-1,2-dithiolane-3-pentanoyl]-L-glutamyl-L-alanine (CMX-2043), a novel analogue of LA, was studied as part of a preclinical development program intended to identify safe and efficacious drug candidates for prevention or reduction in myocardial IRI. This study was designed to evaluate the efficacy of CMX-2043 in an animal model of myocardial IRI and to establish effective dosing conditions. CMX-2043 or placebo was administered at different doses, routes, and times in male Sprague-Dawley rats subjected to 30-minute left coronary artery ligation. Fluorescent microsphere injection defined the area at risk (AR). Animals were euthanized 24 hours after reperfusion, and the hearts were excised, sectioned, and stained with triphenyltetrazolium. Cytoprotective effectiveness was determined by comparing the unstained myocardial infarction zone (MI) to the ischemic AR. The reduction in the MI–AR ratio was used as the primary measure of drug efficacy relative to placebo injections. Treatment with CMX-2043 reduced myocardial IRI as measured by the MI–AR ratio and the incidence of arrhythmia. The compound was effective when administered by injection, both before and during the ischemic injury and at reperfusion. The most efficacious dose was that administered 15 minutes prior to the ischemic event and resulted in a 36% ( P < .001) reduction in MI–AR ratio compared to vehicle control.
Collapse
|
19
|
Ma R, Wang X, Peng P, Xiong J, Dong H, Wang L, Ding Z. α-Lipoic acid inhibits sevoflurane-induced neuronal apoptosis through PI3K/Akt signalling pathway. Cell Biochem Funct 2016; 34:42-7. [PMID: 26781804 DOI: 10.1002/cbf.3163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Rong Ma
- Department of Anesthesiology; The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital); Nanjing 210029 China
| | - Xiang Wang
- Nanjing First Hospital; Nanjing Medical University; Nanjing 210006 China
| | - Peipei Peng
- Department of Anesthesiology; The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital); Nanjing 210029 China
| | - Jingwei Xiong
- Department of Anesthesiology; The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital); Nanjing 210029 China
| | - Hongquan Dong
- Department of Anesthesiology; The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital); Nanjing 210029 China
| | - Lixia Wang
- Department of Anesthesiology; The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital); Nanjing 210029 China
| | - Zhengnian Ding
- Department of Anesthesiology; The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital); Nanjing 210029 China
| |
Collapse
|
20
|
Li YH, He Q, Yu JZ, Liu CY, Feng L, Chai Z, Wang Q, Zhang HZ, Zhang GX, Xiao BG, Ma CG. Lipoic acid protects dopaminergic neurons in LPS-induced Parkinson's disease model. Metab Brain Dis 2015; 30:1217-26. [PMID: 26084861 DOI: 10.1007/s11011-015-9698-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/04/2015] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease of the central nervous system (CNS), characterized by a loss of dopaminergic neurons, which is thought to be caused by both genetic and environmental factors. Recent findings suggest that neuroinflammation may be a pathogenic factor in the onset and progression of sporadic PD. Here we explore the potential therapeutic effect of lipoic acid (LA) on a lipolysaccharide (LPS)-induced inflammatory PD model. Our results for the first time showed that LA administration improved motor dysfunction, protected dopaminergic neurons loss, and decreased α-synuclein accumulation in the substantia nigra (SN) area of brain. Further, LA inhibited the activation of nuclear factor-κB (NF-κB) and expression of pro-inflammatory molecules in M1 microglia. Taken together, these results suggest that LA may exert a profound neuroprotective effect and is thus a promising anti-neuroinflammatory and anti-oxidative agent for halting the progression of PD. Interventions aimed at either blocking microglia-derived inflammatory mediators or modulating the polarization of microglia may be potentially useful therapies that are worth further investigation.
Collapse
Affiliation(s)
- Yan-Hua Li
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wu MH, Huang CC, Chio CC, Tsai KJ, Chang CP, Lin NK, Lin MT. Inhibition of Peripheral TNF-α and Downregulation of Microglial Activation by Alpha-Lipoic Acid and Etanercept Protect Rat Brain Against Ischemic Stroke. Mol Neurobiol 2015; 53:4961-71. [PMID: 26374550 DOI: 10.1007/s12035-015-9418-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/01/2015] [Indexed: 12/25/2022]
Abstract
Ischemic stroke, caused by obstruction of blood flow to the brain, would initiate microglia activation which contributes to neuronal damage. Therefore, inhibition of microglia-mediated neuroinflammation could be a therapeutic strategy for ischemic stroke. This study was aimed to elucidate the anti-inflammatory effects of alpha-lipoic acid and etanercept given either singly or in combination in rats subjected to middle cerebral artery occlusion. Both α-lipoic acid and etanercept markedly reduced cerebral infarct, blood-brain barrier disruption, and neurological motor deficits with the former drug being more effective with the dosage used. Furthermore, when used in combination, the reduction was more substantial. Remarkably, a greater diminution in the serum levels of tumor necrosis factor-alpha as well as the brain levels of microglial activation (e.g., microgliosis, amoeboid microglia, and microglial overexpression of tumor necrosis factor-α) was observed with the combined drug treatment as compared to the drugs given separately. We conclude that inhibition of peripheral tumor necrosis factor-alpha as well as downregulation of brain microglial activation by alpha-lipoic acid or etanercept protect rat brain against ischemic stroke. Moreover, when both drugs were used in combination, the stroke recovery was promoted more extensively.
Collapse
Affiliation(s)
- Ming-Hsiu Wu
- The Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Division of Neurology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, 736, Taiwan
| | - Chao-Ching Huang
- The Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Department of Pediatrics, National Cheng Kung University College of Medicine and Hospital, Tainan, 701, Taiwan
| | - Chung-Ching Chio
- Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Kuen-Jer Tsai
- The Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
| | - Nan-Kai Lin
- Li-Sheng Biotechnology Co., Ltd., Taipei, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan.
| |
Collapse
|
22
|
Lebda MA, Gad SB, Rashed RR. The effect of lipoic acid on acrylamide-induced neuropathy in rats with reference to biochemical, hematological, and behavioral alterations. PHARMACEUTICAL BIOLOGY 2015; 53:1207-1213. [PMID: 25853975 DOI: 10.3109/13880209.2014.970288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Acrylamide (ACR) is a well-known neurotoxicant and carcinogenic agent which poses a greater risk for human and animal health. OBJECTIVE The present study evaluates the beneficial effects of α-lipoic acid (LA) on ACR-induced neuropathy. MATERIALS AND METHODS A total of 40 male rats were divided into four groups: a placebo group; LA-treated group, administered orally 1% (w/w) LA mixed with diet; ACR-treated group, given 0.05% (w/v) ACR dissolved in drinking water; and LA + ACR-treated group, given LA 1% 7 d before and along with ACR 0.05% for 21 d. After 28 d, blood samples were collected, the rats were decapitated, and the tissues were excised for the measurement of brain biomarkers, antioxidant status, and hematological analysis. Also, the gait score of rats was evaluated. RESULTS ACR-exposed rats exhibited abnormal gait deficits with significant (p < 0.05) decline in acetylcholine esterase (AChE) and creatine kinase in serum and brain tissues, respectively. However, the lactate dehydrogenase activity was increased in serum by 123%, although it decreased in brain tissues by -74%. ACR significantly (p < 0.05) increased the malondialdehyde level by 273% with subsequent depletion of glutathione S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR) activities and reduced the glutathione (GSH) level in brain tissue. Interestingly, LA significantly (p < 0.05) improved brain enzymatic biomarkers, attenuated lipid peroxidation (LPO), and increased antioxidant activities compared with the ACR-treated group. DISCUSSION AND CONCLUSION These results suggested that LA may have a role in the management of ACR-induced oxidative stress in brain tissues through its antioxidant activity, attenuation of LPO, and improvement of brain biomarkers.
Collapse
|
23
|
Saleh TM, Connell BJ, Kucukkaya I, Abd-El-Aziz AS. Increasing the Biological Stability Profile of a New Chemical Entity, UPEI-104, and Potential Use as a Neuroprotectant Against Reperfusion-Injury. Brain Sci 2015; 5:130-43. [PMID: 25906324 PMCID: PMC4493460 DOI: 10.3390/brainsci5020130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/01/2015] [Accepted: 04/13/2015] [Indexed: 11/16/2022] Open
Abstract
Previous work in our laboratory demonstrated the utility of synthetic combinations of two naturally occurring, biologically active compounds. In particular, we combined two known anti-oxidant compounds, lipoic acid and apocynin, covalently linked via an ester bond (named UPEI-100). In an animal model of ischemia-reperfusion injury (tMCAO), UPEI-100 was shown to produce equivalent neuroprotection compared to each parent compound, but at a 100-fold lower dose. However, it was determined that UPEI-100 was undetectable in any tissue samples almost immediately following intravenous injection. Therefore, the present investigation was done to determine if biological stability of UPEI-100 could be improved by replacing the ester bond with a more bio cleavage-resistant bond, an ether bond (named UPEI-104). We then compared the stability of UPEI-104 to the original parent compound UPEI-100 in human plasma as well as liver microsomes. Our results demonstrated that both UPEI-100 and UPEI-104 could be detected in human plasma for over 120 min; however, only UPEI-104 was detectable for an average of 7 min following incubation with human liver microsomes. This increased stability did not affect the biological activity of UPEI-104 as measured using our tMCAO model. Our results suggest that combining compounds using an ether bond can improve stability while maintaining biological activity.
Collapse
Affiliation(s)
- Tarek M Saleh
- Department of Biomedical Sciences, Atlantic Veterinary College, Charlottetown, PE C1A 4P3, Canada.
| | - Barry J Connell
- Department of Biomedical Sciences, Atlantic Veterinary College, Charlottetown, PE C1A 4P3, Canada.
| | - Inan Kucukkaya
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Alaa S Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
24
|
Choi KH, Park MS, Kim HS, Kim KT, Kim HS, Kim JT, Kim BC, Kim MK, Park JT, Cho KH. Alpha-lipoic acid treatment is neurorestorative and promotes functional recovery after stroke in rats. Mol Brain 2015; 8:9. [PMID: 25761600 PMCID: PMC4339247 DOI: 10.1186/s13041-015-0101-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/03/2015] [Indexed: 12/12/2022] Open
Abstract
The antioxidant properties of alpha-lipoic acid (aLA) correlate with its ability to promote neuroproliferation. However, there have been no comprehensive studies examining the neurorestorative effects of aLA administration after the onset of ischemia. The middle cerebral artery (MCA) of adult rats was occluded for 2 hours and then reperfused. aLA (20 mg/kg) was administered in 71 animals (aLA group) through the left external jugular vein immediately after reperfusion. An equivalent volume of vehicle was administered to 71 animals (control group). Functional outcome, levels of endogenous neural precursors with neurogenesis, glial cell activation, and brain metabolism were evaluated. Immediate aLA administration after reperfusion resulted in significantly reduced mortality, infarct size, and neurological deficit score (NDS) in the test group compared to the control group. Long-term functional outcomes, measured by the rotarod test, were markedly improved by aLA treatment. There was a significant increase in the number of cells expressing nestin and GFAP in the boundary zone and infarct core regions after aLA treatment. Furthermore, significantly more BrdU/GFAP, BrdU/DCX, and BrdU/NeuN double-labeled cells were observed along the boundary zone of the aLA group on days 7, 14, and 28 days, respectively. And brain metabolism using 18F-FDG microPET imaging was markedly improved in aLA group. The effects of aLA was blocked by insulin receptor inhibitor, HNMPA (AM)3. These results indicate that immediate treatment with aLA after ischemic injury may have significant neurorestorative effects mediated at least partially via insulin receptor activation. Thus, aLA may be useful for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Kang-Ho Choi
- Department of Neurology, Chonnam National University Hwasun Hospital, Hwasun, Korea. .,Department of Neurology, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| | - Man-Seok Park
- Department of Neurology, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| | - Hyung-Seok Kim
- Department of Forensic medicine, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| | - Kyung-Tae Kim
- Department of Anesthesiology and Pain Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea.
| | - Hyeon-Sik Kim
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea.
| | - Joon-Tae Kim
- Department of Neurology, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| | - Byeong-Chae Kim
- Department of Neurology, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| | - Jong-Tae Park
- Department of Forensic medicine, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| | - Ki-Hyun Cho
- Department of Neurology, Chonnam National University Medical School, 8 Hak-dong, Dong-gu, Gwangju, 501-757, Korea.
| |
Collapse
|
25
|
Effects of alpha-lipoic acid on spatial learning and memory, oxidative stress, and central cholinergic system in a rat model of vascular dementia. Neurosci Lett 2015; 587:113-9. [DOI: 10.1016/j.neulet.2014.12.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 12/16/2022]
|
26
|
DENG HOULIANG, ZUO XIALIN, ZHANG JINGJING, LIU XIAOXIA, LIU LI, XU QIAN, WU ZHUOMIN, JI AIMIN. α-lipoic acid protects against cerebral ischemia/reperfusion-induced injury in rats. Mol Med Rep 2015; 11:3659-65. [DOI: 10.3892/mmr.2015.3170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 10/01/2014] [Indexed: 11/05/2022] Open
|
27
|
Dong Y, Wang H, Chen Z. Alpha-Lipoic Acid Attenuates Cerebral Ischemia and Reperfusion Injury via Insulin Receptor and PI3K/Akt-Dependent Inhibition of NADPH Oxidase. Int J Endocrinol 2015; 2015:903186. [PMID: 26294909 PMCID: PMC4532939 DOI: 10.1155/2015/903186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 02/14/2015] [Accepted: 02/17/2015] [Indexed: 01/22/2023] Open
Abstract
Alpha-lipoic acid (ALA) has various pharmacological effects such as antioxidative, anti-inflammatory, and antiapoptotic properties. In the present study, administration of ALA (40 mg/kg, i.p.) for 3 days resulted in a significant decrease in neuronal deficit score and infarct volume and a significant increase in grip time and latency time in Morris water maze at 48 h after middle cerebral artery occlusion and reperfusion (MCAO/R) in rats. ALA also reduced the increased TUNEL-positive cells rate and the enhanced caspase-3 activity induced by MCAO/R. However, the underlying mechanisms remain poorly understood. In this study, we found that ALA could activate insulin receptor and PI3K/Akt signaling pathways, inhibit the expression and activity of NADPH oxidase, and subsequently suppress the generation of superoxide and the augment of oxidative stress indicators including MDA, protein carbonylation, and 8-OHdG. In conclusion, ALA attenuates cerebral ischemia and reperfusion injury via insulin receptor and PI3K/Akt-dependent inhibition of NADPH oxidase.
Collapse
Affiliation(s)
- Yinhua Dong
- Department of Neurology, The Affiliated Fourth Centre Hospital of Tianjin Medical University, Tianjin 300140, China
- *Yinhua Dong:
| | - Hongxin Wang
- Department of Neurology, The Affiliated Fourth Centre Hospital of Tianjin Medical University, Tianjin 300140, China
| | - Zefeng Chen
- Department of Neurology, The Affiliated Fourth Centre Hospital of Tianjin Medical University, Tianjin 300140, China
| |
Collapse
|
28
|
Ozbal S, Cankurt U, Tugyan K, Pekcetin C, Sisman A, Gunduz K, Micili S. The effects of α-lipoic acid on immature rats with traumatic brain injury. Biotech Histochem 2014; 90:206-15. [DOI: 10.3109/10520295.2014.977950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Shen X, Yang Q, Jin P, Li X. Alpha-lipoic acid enhances DMSO-induced cardiomyogenic differentiation of P19 cells. Acta Biochim Biophys Sin (Shanghai) 2014; 46:766-73. [PMID: 25112287 DOI: 10.1093/abbs/gmu057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alpha-lipoic acid (α-LA) is a potent antioxidant that acts as an essential cofactor in mitochondrial dehydrogenase reactions. α-LA has been shown to possess anti-inflammatory and cytoprotective properties, and is used to improve symptoms of diabetic neuropathy. However, the role of α-LA in stem cell differentiation and the underlying molecular mechanisms remain unknown. In the present study, we showed that α-LA significantly promoted dimethyl sulfoxide (DMSO)-induced cardiomyogenic differentiation of mouse embryonic carcinoma P19 cells. α-LA dose dependently increased beating embryonic body (EB) percentages of DMSO-differentiated P19 cells. The expressions of cardiac specific genes TNNT2, Nkx2.5, GATA4, MEF2C, and MLC2V and cardiac isoform of troponin T (cTnT)-positively stained cell population were significantly up-regulated by the addition of α-LA. We also demonstrated that the differentiation time after EB formation was critical for α-LA to take effect. Interestingly, without DMSO treatment, α-LA did not stimulate the cardiomyogenic differentiation of P19 cells. Further investigation indicated that collagen synthesis-enhancing activity, instead of the antioxidative property, plays a significant role in the cardiomyogenic differentiation-promoting function of α-LA. These findings highlight the potential use of α-LA for regenerative therapies in heart diseases.
Collapse
Affiliation(s)
- Xinghua Shen
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Qinghui Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Peng Jin
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xueqi Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| |
Collapse
|
30
|
Tewari A, Mahendru V, Sinha A, Bilotta F. Antioxidants: The new frontier for translational research in cerebroprotection. J Anaesthesiol Clin Pharmacol 2014; 30:160-71. [PMID: 24803750 PMCID: PMC4009632 DOI: 10.4103/0970-9185.130001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is important for the anesthesiologist to understand the etiology of free radical damage and how free-radical scavengers attenuate this, so that this knowledge can be applied to diverse neuro-pathological conditions. This review will concentrate on the role of reactive species of oxygen in the pathophysiology of organ dysfunction, specifically sub arachnoid hemorrhage (SAH), traumatic brain injury (TBI) as well as global central nervous system (CNS) hypoxic, ischemic and reperfusion states. We enumerate potential therapeutic modalities that are been currently investigated and of interest for future trials. Antioxidants are perhaps the next frontier of translational research, especially in neuro-anesthesiology.
Collapse
Affiliation(s)
- Anurag Tewari
- Department of Anesthesiology, Dayanand Medical College, Ludhiana, Punjab, India
| | - Vidhi Mahendru
- Department of Anesthesiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Sinha
- Department of Anesthesiology and Perioperative Medicine, Drexel University College of Medicine, Philadelphia, USA
| | - Federico Bilotta
- Department of Anesthesiology, Critical Care and Pain Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
31
|
Saleh MC, Connell BJ, Rajagopal D, Khan BV, Abd-El-Aziz AS, Kucukkaya I, Saleh TM. Co-administration of resveratrol and lipoic acid, or their synthetic combination, enhances neuroprotection in a rat model of ischemia/reperfusion. PLoS One 2014; 9:e87865. [PMID: 24498217 PMCID: PMC3909267 DOI: 10.1371/journal.pone.0087865] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022] Open
Abstract
The present study demonstrates the benefits of combinatorial antioxidant therapy in the treatment of ischemic stroke. Male Sprague-Dawley rats were anaesthetised and the middle cerebral artery (MCA) was occluded for 30 minutes followed by 5.5 hours of reperfusion. Pretreatment with resveratrol 30 minutes prior to MCA occlusion resulted in a significant, dose-dependent decrease in infarct volume (p<0.05) compared to vehicle-treated animals. Neuroprotection was also observed when resveratrol (2 × 10(-3) mg/kg; iv) was administered within 60 minutes following the return of blood flow (reperfusion). Pretreatment with non-neuroprotective doses of resveratrol (2 × 10(-6) mg/kg) and lipoic acid (LA; 0.005 mg/kg) in combination produced significant neuroprotection as well. This neuroprotection was also observed when resveratrol and LA were administered 15 minutes following the onset of MCA occlusion. Subsequently, we synthetically combined resveratrol and LA in both a 1 ∶ 3 (UPEI-200) and 1 ∶ 1 (UPEI-201) ratio, and screened these new chemical entities in both permanent and transient ischemia models. UPEI-200 was ineffective, while UPEI-201 demonstrated significant, dose-dependent neuroprotection. These results demonstrate that combining subthreshold doses of resveratrol and LA prior to ischemia-reperfusion can provide significant neuroprotection likely resulting from concurrent effects on multiple pathways. The additional protection observed in the novel compound UPEI 201 may present opportunities for addressing ischemia-induced damage in patients presenting with transient ischemic episodes.
Collapse
Affiliation(s)
- Monique C. Saleh
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, P.E.I., Canada
| | - Barry J. Connell
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, P.E.I., Canada
| | | | - Bobby V. Khan
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, P.E.I., Canada
- Carmel BioSciences Inc., Atlanta, Georgia, United States of America
| | - Alaa S. Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island, Charlottetown, P.E.I., Canada
| | - Inan Kucukkaya
- Department of Chemistry, University of Prince Edward Island, Charlottetown, P.E.I., Canada
| | - Tarek M. Saleh
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, P.E.I., Canada
- * E-mail:
| |
Collapse
|
32
|
Connell BJ, Saleh MC, Kucukkaya I, Abd-El-Aziz AS, Khan BV, Saleh TM. UPEI-300, a conjugate of lipoic acid and edaravone, mediates neuroprotection in ischemia/reperfusion. Neurosci Lett 2014; 561:151-5. [PMID: 24394910 DOI: 10.1016/j.neulet.2013.12.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/21/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
Edaravone, an electron spin trapper with radical scavenging activity, has been shown to be effective in reducing infarct volume in humans following ischemic stroke. However, concerns of edaravone-induced renal toxicity have limited its clinical adoption. Previous work has demonstrated that edaravone produced significant neuroprotection when injected prior to a period of ischemia and/or reperfusion. The current investigation was designed to determine if a newly synthesized co-drug consisting of lipoic acid and edaravone, named UPEI-300, could produce neuroprotection in in vitro and/or an in vivo rodent model of stroke. UPEI-300 produced dose-dependent neuroprotection in vitro and was subsequently tested in vivo. Male rats were anaesthetized and the middle cerebral artery was occluded for 30 min followed by 5.5 h of reperfusion (ischemia/reperfusion; I/R). Pre-administration of UPEI-300 dose-dependently decreased infarct volume. Significant neuroprotection was also observed when UPEI-300 (1.0 mg/kg) was injected during the 30 min period of ischemia as well as up to 60 min following the start of reperfusion. These results indicate that a co-drug consisting of edaravone and lipoic acid is a potent neuroprotectant, and clinically, the use of such a novel co-drug following an ischemic stroke might maintain neuroprotection while potentially decreasing edaravone associated renal toxicity.
Collapse
Affiliation(s)
- Barry J Connell
- Dept. of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada C1A 4P3
| | - Monique C Saleh
- Dept. of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada C1A 4P3
| | - Inan Kucukkaya
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PEI, Canada C1A 4P3
| | - Alaa S Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PEI, Canada C1A 4P3
| | - Bobby V Khan
- Dept. of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada C1A 4P3; Carmel BioSciences, 5673 Peachtree Dunwoody Road, Atlanta, GA 30342, USA
| | - Tarek M Saleh
- Dept. of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada C1A 4P3.
| |
Collapse
|
33
|
Kates SA, Casale RA, Baguisi A, Beeuwkes R. Lipoic acid analogs with enhanced pharmacological activity. Bioorg Med Chem 2013; 22:505-12. [PMID: 24316353 DOI: 10.1016/j.bmc.2013.10.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/23/2013] [Accepted: 10/31/2013] [Indexed: 02/07/2023]
Abstract
Lipoic acid (1,2-dithiolane-3-pentanoic acid) is a pharmacophore with unique antioxidant and cytoprotective properties. We synthesized a library based upon the condensation of natural and unnatural amino acids with the carboxylic acid moiety of lipoic acid. SAR studies were conducted using a cardiac ischemia-reperfusion animal model. Cytoprotective efficacy was associated with the R-enantiomer of the dithiolane. Potency of library compounds was dictated by the acidic strength of the adduct. α-N-[(R)-1,2-dithiolane-3-pentanoyl]-L-glutamyl-L-alanine, designated CMX-2043, was chosen for further pharmacologic evaluation.
Collapse
Affiliation(s)
- Steven A Kates
- Ischemix, LLC, 63 Great Road, Maynard, MA 01759, United States.
| | - Ralph A Casale
- Ischemix, LLC, 63 Great Road, Maynard, MA 01759, United States
| | | | | |
Collapse
|
34
|
Li Y, Hou X, Qi Q, Wang L, Luo L, Yang S, Zhang Y, Miao Z, Zhang Y, Wang F, Wang H, Huang W, Wang Z, Shen Y, Wang Y. Scavenging of blood glutamate for enhancing brain-to-blood glutamate efflux. Mol Med Rep 2013; 9:305-10. [PMID: 24220720 DOI: 10.3892/mmr.2013.1793] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 11/07/2013] [Indexed: 11/06/2022] Open
Abstract
The presence of excess glutamate in the brain interstitial fluid characterizes several acute pathological conditions of the brain, including traumatic brain injury and stroke. It has been demonstrated that it is possible to eliminate excess glutamate in the brain by decreasing blood glutamate levels and, accordingly, accelerating the brain-to-blood glutamate efflux. It is feasible to accomplish this process by activating blood resident enzymes in the presence of the respective glutamate cosubstrates. In the present study, several glutamate cosubstrates and cofactors were studied in an attempt to identify the optimal conditions to reduce blood glutamate levels. The administration of a mixture of 1 mM pyruvate and oxaloacetate (Pyr/Oxa) for 1 h decreased blood glutamate levels by ≤50%. The addition of lipoamide to this mixture resulted in a further reduction in blood glutamate levels of >80%. In addition, in vivo experiments showed that lipoamide together with Pyr/Oxa is able to decrease blood glutamate levels to a greater extent than Pyr/Oxa alone, and accordingly, this enhances the glutamate efflux from the brain to the blood. These results may outline a novel neuroprotective strategy with increased effectiveness for the removal of excess brain glutamate in various neurodegenerative conditions.
Collapse
Affiliation(s)
- Yunhong Li
- Department of Neurobiology of Basic Medical College, Center of Scientific Technology, Key Laboratory of Cranial Cerebral Diseases, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Flynn JM, Melov S. SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radic Biol Med 2013; 62:4-12. [PMID: 23727323 PMCID: PMC3811078 DOI: 10.1016/j.freeradbiomed.2013.05.027] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 12/15/2022]
Abstract
The brain is a highly metabolically active tissue that critically relies on oxidative phosphorylation as a means for maintaining energy. One result of this process is the production of potentially damaging radicals such as the superoxide anion (O2(-)). Superoxide has the capacity to damage components of the electron transport chain and other cellular constituents. Eukaryotic systems have evolved defenses against such damaging moieties, the chief member of which is superoxide dismutase (SOD2), an enzyme that efficiently converts superoxide to the less reactive hydrogen peroxide (H2O2), which can freely diffuse across the mitochondrial membrane. Loss of SOD2 activity can result in numerous pathological phenotypes in metabolically active tissues, particularly within the central nervous system. We review SOD2's potential involvement in the progression of neurodegenerative diseases such as stroke and Alzheimer and Parkinson diseases, as well as its potential role in "normal" age-related cognitive decline. We also examine in vivo models of endogenous oxidative damage based upon the loss of SOD2 and associated neurological phenotypes in relation to human neurodegenerative disorders.
Collapse
Affiliation(s)
- James M Flynn
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
36
|
Protective effect of serofendic acid, administered intravenously, on cerebral ischemia-reperfusion injury in rats. Brain Res 2013; 1532:99-105. [DOI: 10.1016/j.brainres.2013.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/26/2013] [Accepted: 08/05/2013] [Indexed: 01/09/2023]
|
37
|
Role of oxidative stress and inducible nitric oxide synthase in morphine-induced tolerance and dependence in mice. Effect of alpha-lipoic acid. Behav Brain Res 2013; 247:17-26. [DOI: 10.1016/j.bbr.2013.02.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 02/07/2023]
|
38
|
Ström JO, Ingberg E, Theodorsson A, Theodorsson E. Method parameters' impact on mortality and variability in rat stroke experiments: a meta-analysis. BMC Neurosci 2013; 14:41. [PMID: 23548160 PMCID: PMC3637133 DOI: 10.1186/1471-2202-14-41] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/22/2013] [Indexed: 12/14/2022] Open
Abstract
Background Even though more than 600 stroke treatments have been shown effective in preclinical studies, clinically proven treatment alternatives for cerebral infarction remain scarce. Amongst the reasons for the discrepancy may be methodological shortcomings, such as high mortality and outcome variability, in the preclinical studies. A common approach in animal stroke experiments is that A) focal cerebral ischemia is inflicted, B) some type of treatment is administered and C) the infarct sizes are assessed. However, within this paradigm, the researcher has to make numerous methodological decisions, including choosing rat strain and type of surgical procedure. Even though a few studies have attempted to address the questions experimentally, a lack of consensus regarding the optimal methodology remains. Methods We therefore meta-analyzed data from 502 control groups described in 346 articles to find out how rat strain, procedure for causing focal cerebral ischemia and the type of filament coating affected mortality and infarct size variability. Results The Wistar strain and intraluminal filament procedure using a silicone coated filament was found optimal in lowering infarct size variability. The direct and endothelin methods rendered lower mortality rate, whereas the embolus method increased it compared to the filament method. Conclusions The current article provides means for researchers to adjust their middle cerebral artery occlusion (MCAo) protocols to minimize infarct size variability and mortality.
Collapse
Affiliation(s)
- Jakob O Ström
- Department of Clinical and Experimental Medicine, Clinical Chemistry, Faculty of Health Sciences, Linköping University, County Council of Östergötland, Linköping, Sweden.
| | | | | | | |
Collapse
|
39
|
Oprea E, Berteanu M, Cintezã D, Manolescu BN. The effect of the ALAnerv nutritional supplement on some oxidative stress markers in postacute stroke patients undergoing rehabilitation. Appl Physiol Nutr Metab 2013; 38:613-20. [PMID: 23724877 DOI: 10.1139/apnm-2012-0436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stroke is a pathologic condition associated with redox imbalance. This pilot study was designed to evaluate the effect of the consumption of the nutritional supplement ALAnerv on some oxidative stress markers in postacute stroke patients undergoing rehabilitation. To achieve this goal, we assigned 28 patients to 2 study groups: (-)ALA and (+)ALA. Patients in both groups participated in the same rehabilitation program and received comparable standard medications; however, patients in the (+)ALA group received ALAnerv for 2 weeks (2 pills per day). We assessed total and nonproteic thiols, protein carbonyls, ceruloplasmin, oxidized low-density lipoprotein (LDL) particles, lipid hydroperoxide concentrations, gamma-glutamyl transpeptidase activity, and total antioxidant capacity. Regression analysis indicated that supplementation with ALAnerv was responsible for the significant decrease in glucose (p = 0.002) and oxidized LDL particles (p < 0.001) during the study period. For both parameters, the variation in the percent of concentration between the 2 groups during the study period reached statistical significance (p = 0.012 and p < 0.001, respectively). Moreover, Barthel Index values at discharge were significantly influenced by ALAnerv treatment. These preliminary results indicate that ALAnerv might be helpful because it rapidly corrects plasma fasting glucose and corrects serum oxidized LDL particle concentrations, suggesting the need for longer treatment with 2 pills or more per day.
Collapse
Affiliation(s)
- Eliza Oprea
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 030018, Bucharest, Romania
| | | | | | | |
Collapse
|
40
|
Astiz M, de Alaniz MJ, Marra CA. The oxidative damage and inflammation caused by pesticides are reverted by lipoic acid in rat brain. Neurochem Int 2012; 61:1231-41. [DOI: 10.1016/j.neuint.2012.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/25/2012] [Accepted: 09/05/2012] [Indexed: 12/22/2022]
|
41
|
Ozbal S, Ergur BU, Erbil G, Tekmen I, Bagrıyanık A, Cavdar Z. The effects of α-lipoic acid against testicular ischemia-reperfusion injury in Rats. ScientificWorldJournal 2012. [PMID: 23193380 PMCID: PMC3488399 DOI: 10.1100/2012/489248] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Testicular torsion is one of the urologic emergencies occurring frequently in neonatal and adolescent period. Testis is sensitive to ischemia-reperfusion injury, and, therefore, ischemia and consecutive reperfusion cause an enhanced formation of reactive oxygen species that result in testicular cell damage and apoptosis. α-lipoic acid is a free radical scavenger and a biological antioxidant. It is widely used in the prevention of oxidative stress and cellular damage. We aimed to investigate the protective effect of α-lipoic acid on testicular damage in rats subjected to testicular ischemia-reperfusion injury. 35 rats were randomly divided into 5 groups: control, sham operated, ischemia, ischemia-reperfusion, and ischemia-reperfusion +lipoic acid groups, 2 h torsion and 2 h detorsion of the testis were performed. Testicular cell damage was examined by H-E staining. TUNEL and active caspase-3 immunostaining were used to detect germ cell apoptosis. GPx , SOD activity, and MDA levels were evaluated. Histological evaluation showed that α-lipoic acid pretreatment reduced testicular cell damage and decreased TUNEL and caspase-3-positive cells. Additionally, α-lipoic acid administration decreased the GPx and SOD activity and increased the MDA levels. The present results suggest that LA is a potentially beneficial agent in protecting testicular I/R in rats.
Collapse
Affiliation(s)
- Seda Ozbal
- Department of Histology and Embryology, School of Medicine, Dokuz Eylül University Inciralti, 35340 İzmir, Turkey.
| | | | | | | | | | | |
Collapse
|
42
|
Lee TH, Park JH, Kim JD, Lee JC, Kim IH, Yim Y, Lee SK, Yan BC, Ahn JH, Lee CH, Yoo KY, Choi JH, Hwang IK, Park JH, Won MH. Protective effects of a novel synthetic α-lipoic acid-decursinol hybrid compound in experimentally induced transient cerebral ischemia. Cell Mol Neurobiol 2012; 32:1209-21. [PMID: 22814803 PMCID: PMC11498609 DOI: 10.1007/s10571-012-9861-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 07/02/2012] [Indexed: 11/29/2022]
Abstract
Alpha-lipoic acid (ALA), a natural antioxidant, is widely used for the treatment of some diseases including diabetes, and decursinol (DA), a constituent of root of Angelica gigas Nakai, has some pharmacological activities including anti-inflammatory function. In this study, we synthesized a novel synthetic alpha-lipoic acid-decursinol (ALA-DA) hybrid compound, and compared neuroprotective effects of ALA, DA or ALA-DA against ischemic damage in the gerbil hippocampal CA1 region induced by 5 min of transient cerebral ischemia. In the 10 and 20 mg/kg ALA-, DA- and 10 mg/kg ALA-DA-pre-treated-ischemia-groups, there were no neuroprotective effects against ischemic damage 4 days after ischemic injury. However, 20 mg/kg ALA-DA pre-treatment protected pyramidal neurons from ischemic damage in the CA1 region. In addition, 20 mg/kg ALA-DA pre-treatment markedly decreased the activation of astrocytes and microglia in the CA1 region 4 days after ischemic injury. On the other hand, post-treatment with the same dosages of them did not show any neuroprotective effect against ischemic damage. In brief, these findings indicate that pre-treatment with ALA-DA, not ALA or DA alone, can protect neurons from ischemic damage in the hippocampus induced by transient cerebral ischemia via the decrease of glial activation.
Collapse
Affiliation(s)
- Tae Hun Lee
- Department of Emergency Medicine, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Yongbae Yim
- Division of Applied Chemistry and Biotechnology, Hanbat National University, Daejeon, 305-719 South korea
| | - Seul Ki Lee
- Division of Applied Chemistry and Biotechnology, Hanbat National University, Daejeon, 305-719 South korea
| | - Bing Chun Yan
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Ji Hyeon Ahn
- Laboratory of Neuroscience, Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Gyeongsan, 712-714 South Korea
| | - Choong Hyun Lee
- Department of Anatomy and Physiology, College of Pharmacy, Dankook University, Cheonan, 330-714 South Korea
| | - Ki-Yeon Yoo
- Department of Oral Anatomy, College of Dentistry and Research Institute of Oral Biology, Gangneung-Wonju National University, Gangneung, 210-702 South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742 South Korea
| | - Jeong Ho Park
- Division of Applied Chemistry and Biotechnology, Hanbat National University, Daejeon, 305-719 South korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| |
Collapse
|
43
|
Xie R, Li X, Ling Y, Shen C, Wu X, Xu W, Gao X. Alpha-lipoic acid pre- and post-treatments provide protection against in vitro ischemia-reperfusion injury in cerebral endothelial cells via Akt/mTOR signaling. Brain Res 2012; 1482:81-90. [DOI: 10.1016/j.brainres.2012.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 01/03/2023]
|
44
|
Othman AI, El-Missiry MA, Koriem KM, El-Sayed AA. Alfa-lipoic acid protects testosterone secretion pathway and sperm quality against 4-tert-octylphenol induced reproductive toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 81:76-83. [PMID: 22560493 DOI: 10.1016/j.ecoenv.2012.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/12/2012] [Accepted: 04/19/2012] [Indexed: 05/31/2023]
Abstract
The protective effect of α-lipoic acid (LA) (50 mg/kg bw) against 4-tert-octylphenol (OP) (50 mg/kg bw) induced reproductive toxicity in male rats was studied. LA was injected 1h prior to OP administration three times a week. OP caused significant increase in oxidative stress in hypothalamus and epididymal sperm, disturbed hormonal levels in serum, decreased sperm quality, increased DNA fragmentation and loss of 35 and 95 kDa proteins in sperm, as well as elevated proliferating index in testis. LA protected against oxidative stress through promoting the levels of glutathione and glutathione-S-transferase in hypothalamus and sperm. In addition, LA prevented the decrease in testosterone, dehydroepiandrosterone sulfate, 3β-hydroxysteroid dehydrogenase, and inhibited the elevations in sex-hormone-binding globulin levels and showed normal sperm quality. LA modulated proliferation of germ cell, protected against DNA fragmentation and maintained membrane protein organization in the sperm. In conclusion, LA normalized oxidative stress and protected testosterone synthesis pathway across hypothalamus-testicular axis and sperm quality indicating its defensive influence against OP-induced oxidative reproductive dysfunction in male rats.
Collapse
Affiliation(s)
- Azza I Othman
- Zoology Department, Faculty of Sciences, Mansoura University, Mansoura, Egypt
| | | | | | | |
Collapse
|
45
|
Connell BJ, Saleh MC, Khan BV, Rajagopal D, Saleh TM. UPEI-100, a conjugate of lipoic acid and apocynin, mediates neuroprotection in a rat model of ischemia/reperfusion. Am J Physiol Regul Integr Comp Physiol 2012; 302:R886-95. [DOI: 10.1152/ajpregu.00644.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous work in our laboratory has provided evidence that preadministration of apocynin and lipoic acid at subthreshold levels for neuroprotection enhanced the neuroprotective capacity when injected in combination. Therefore, the present investigation was designed to determine whether a co-drug consisting of lipoic acid and apocynin functional groups bound by a covalent bond, named UPEI-100, is capable of similar efficacy using a rodent model of stroke. Male rats were anesthetized with Inactin (100 mg/kg iv), and the middle cerebral artery was occluded for 6 h or allowed to reperfuse for 5.5 h following a 30-min occlusion (ischemia/reperfusion, I/R). Preadministration of UPEI-100 dose-dependently decreased infarct volume in the I/R model ( P < 0.05), but not in the middle cerebral artery occlusion model of stroke. Using the optimal dose, we then injected UPEI-100 during the stroke or at several time points during reperfusion, and significant neuroprotection was observed when UPEI-100 was administered up to 90 min following the start of reperfusion ( P < 0.05). A time course for this neuroprotective effect showed that UPEI-100 resulted in a decrease in infarct volume following 2 h of reperfusion compared with vehicle. The time course of this neuroprotective effect was also used to study several mediators along the antioxidant pathway and showed that UPEI-100 increased the level of mitochondrial superoxide dismutase and oxidized glutathione and decreased a marker of lipid peroxidation due to oxidative stress (HNE-His adduct formation). Taken together, the data suggest that UPEI-100 may utilize similar pathways to those observed for the two parent compounds; however, it may also act through a different mechanism of action.
Collapse
Affiliation(s)
- Barry J. Connell
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward, Canada; and
| | - Monique C. Saleh
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward, Canada; and
| | - Bobby V. Khan
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward, Canada; and
- InVasc Therapeutics, Atlanta, Georgia
| | | | - Tarek M. Saleh
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward, Canada; and
| |
Collapse
|
46
|
Peng B, Guo QL, He ZJ, Ye Z, Yuan YJ, Wang N, Zhou J. Remote ischemic postconditioning protects the brain from global cerebral ischemia/reperfusion injury by up-regulating endothelial nitric oxide synthase through the PI3K/Akt pathway. Brain Res 2012; 1445:92-102. [DOI: 10.1016/j.brainres.2012.01.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/03/2012] [Accepted: 01/16/2012] [Indexed: 12/31/2022]
|
47
|
Novel Neurovascular Protective Agents: Effects of INV-155, INV-157, INV-159, and INV-161 versus Lipoic Acid and Captopril in a Rat Stroke Model. Cardiol Res Pract 2012; 2012:319230. [PMID: 22263115 PMCID: PMC3259480 DOI: 10.1155/2012/319230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/19/2011] [Accepted: 10/01/2011] [Indexed: 02/05/2023] Open
Abstract
Background. Lipoic acid (LA), which has significant antioxidant properties, may also function as a potent neuroprotectant. The synthetic compounds INV-155, INV-157, INV-159, and INV-161 are physiochemical combinations of lipoic acid and captopril. We sought to determine if these compounds have neuroprotective potential following middle cerebral artery occlusion (MCAO) in rats. Methods. Male Sprague-Dawley rats were injected intravenously with captopril (1–50 mg/kg) 30 minutes prior to MCAO. Blood pressure, heart rate, baroreceptor reflex sensitivity, and infarct size were measured. In addition, dose response effect on infarct size and cardiovascular parameters was determined using INV-155, INV-157, INV-159, and INV-161 and compared to captopril and LA. Results. Pretreatment with captopril and LA at all doses tested was neuroprotective. The compounds INV-159 (0.5–10 mg/kg) and INV-161 (1–10 mg/kg) produced a significant,dose-dependent decrease in infarct size. In contrast, INV-155 and INV-157 had no effect on infarct size. Conclusions. Combined pretreatment with captopril potentiated the neuroprotective benefit observed following LA alone. Both INV-159 and INV-161 were also neuroprotective. These results suggest that patients taking combinations of captopril and LA, either as combination therapy or in the form of INV-159 or INV-161, may also benefit from significant protection against cerebral infarction.
Collapse
|
48
|
Co-administration of apocynin with lipoic acid enhances neuroprotection in a rat model of ischemia/reperfusion. Neurosci Lett 2012; 507:43-6. [DOI: 10.1016/j.neulet.2011.11.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/31/2011] [Accepted: 11/25/2011] [Indexed: 12/11/2022]
|
49
|
|
50
|
Hu J, Chai Y, Wang Y, Kheir MM, Li H, Yuan Z, Wan H, Xing D, Lei F, Du L. PI3K p55γ promoter activity enhancement is involved in the anti-apoptotic effect of berberine against cerebral ischemia-reperfusion. Eur J Pharmacol 2011; 674:132-42. [PMID: 22119079 DOI: 10.1016/j.ejphar.2011.11.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 01/29/2023]
Abstract
Berberine is a candidate clinical neuroprotective agent against ischemic stroke. In the present study, we examined the influence of the PI3K/Akt pathway in mediating the anti-apoptotic effects of berberine. Oxygen-glucose deprivation and reoxygenation of nerve growth factor-differentiated PC12 cells and primary neurons, and bilateral common carotid artery occlusion in mice were used as in vitro and in vivo ischemia models. We found that the anti-apoptotic effects of berberine against ischemia were indeed mediated by the increased phosphor-activation of Akt (higher p-Akt to total Akt), leading to the intensified phosphorylation of Bad and the decreased cleavage of the pro-apoptotic protease caspase-3. Berberine action is specific for PI3K, rather than the upstream receptor tyrosine kinase. The anti-apoptotic effect is maintained in the presence of tyrosine kinase inhibitor genistein and the epidermal growth factor receptor inhibitor PD153035, but is suppressed by the PI3K inhibitor Ly294002 and the Akt inhibitor Akti-1/2.The unique PI3K regulatory subunit p55γ was upregulated by berberine during ischemia-reperfusion and was not blocked by these inhibitors. We constructed a reporter plasmid to detect PI3K p55γ promoter activity and found that berberine enhanced PI3K p55γ promoter activity during cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Jun Hu
- Protein Science Laboratory of the Ministry of Education, Laboratory of Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|