1
|
O'Connor AM, Hagenauer MH, Thew Forrester LC, Maras PM, Arakawa K, Hebda-Bauer EK, Khalil H, Richardson ER, Rob FI, Sannah Y, Watson SJ, Akil H. Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype. Neurobiol Stress 2024; 31:100651. [PMID: 38933284 PMCID: PMC11201356 DOI: 10.1016/j.ynstr.2024.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.
Collapse
Affiliation(s)
| | - Megan Hastings Hagenauer
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Liam Cannon Thew Forrester
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Pamela M. Maras
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Keiko Arakawa
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Elaine K. Hebda-Bauer
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Huzefa Khalil
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Evelyn R. Richardson
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Farizah I. Rob
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Yusra Sannah
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Stanley J. Watson
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Huda Akil
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| |
Collapse
|
2
|
Flerlage WJ, Simmons SC, Thomas EH, Gouty S, Tsuda MC, Wu TJ, Armstrong RC, Cox BM, Nugent FS. Effects of Repetitive Mild Traumatic Brain Injury on Corticotropin-Releasing Factor Modulation of Lateral Habenula Excitability and Motivated Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589760. [PMID: 38798343 PMCID: PMC11118357 DOI: 10.1101/2024.04.16.589760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mild traumatic brain injury (mTBI) is a significant health burden due to mTBI-related chronic debilitating cognitive and psychiatric morbidities. Recent evidence from our laboratory suggests a possible dysregulation within reward/motivational circuit function at the level of a subcortical structure, the lateral habenula (LHb), where we demonstrated a causal role for hyperactive LHb in mTBI-induced motivational deficits in self-care grooming behavior in young adult male mice when exposed to mTBI injury during late adolescence (at ~8 weeks old). Here we extended this observation by further characterizing neurobehavioral effects of this repetitive closed head injury model of mTBI in both young adult male and female mice on LHb excitability, corticotropin releasing factor (CRF) modulation of LHb activity, and behavioral responses of motivation to self-care behavior, and approach versus avoidance behavior in the presence of a social- or threat-related stimulus. We show that mTBI increases LHb spontaneous tonic activity in female mice similar to what we previously observed in male mice as well as promoting LHb neuronal hyperexcitability and hyperpolarization-induced LHb bursting in both male and female mice. Interestingly, mTBI only increases LHb intrinsic excitability in male mice coincident with higher levels of the hyperpolarization-activated cation currents (HCN/Ih) and reduces levels of the M-type potassium currents while potentiating M-currents without altering intrinsic excitability in LHb neurons of female mice. Since persistent dysregulation of brain CRF systems is suggested to contribute to chronic psychiatric morbidities and that LHb neurons are highly responsive to CRF, we then tested whether LHb CRF subsystem becomes engaged following mTBI. We found that in vitro inhibition of CRF receptor type 1 (CRFR1) within the LHb normalizes mTBI-induced enhancement of LHb tonic activity and hyperexcitability in both sexes, suggesting that an augmented intra-LHb CRF-CRFR1-mediated signaling contributes to the overall LHb hyperactivity following mTBI. Behaviorally, mTBI diminishes motivation for self-care grooming in female mice as in male mice. mTBI also alters defensive behaviors in the looming shadow task by shifting the innate defensive behaviors towards more passive action-locking rather than escape behaviors in response to an aerial threat in both male and female mice as well as prolonging the latency to escape responses in female mice. While, this model of mTBI reduces social preference in male mice, it induces higher social novelty seeking during the novel social encounters in both male and female mice. Overall, our study provides further translational validity for the use of this preclinical model of mTBI for investigation of mTBI-related reward circuit dysfunction and mood/motivation-related behavioral deficits in both sexes while uncovering a few sexually dimorphic neurobehavioral effects of this model that may differentially affect young males and females when exposed to this type of mTBI injury during late adolescence.
Collapse
Affiliation(s)
- William J. Flerlage
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| | - Sarah C. Simmons
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| | - Emily H. Thomas
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| | - Shawn Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| | - Mumeko C. Tsuda
- Preclinical Behavior and Modeling Core, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - T. John Wu
- Uniformed Services University of the Health Sciences, Department of Gynecologic Surgery and Obstetrics, Bethesda, MD 20814
| | - Regina C. Armstrong
- Uniformed Services University of the Health Sciences, Department of Anatomy, Physiology and Genetics, Bethesda, Maryland 20814, USA
| | - Brian M. Cox
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| | - Fereshteh S. Nugent
- Uniformed Services University of the Health Sciences, Department of Pharmacology and Molecular Therapeutics, Bethesda, Maryland 20814, USA
| |
Collapse
|
3
|
O'Connor AM, Hagenauer MH, Forrester LCT, Maras PM, Arakawa K, Hebda-Bauer EK, Khalil H, Richardson ER, Rob FI, Sannah Y, Watson SJ, Akil H. Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560702. [PMID: 38645129 PMCID: PMC11030238 DOI: 10.1101/2023.10.03.560702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Huda Akil
- Univ. of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Melis MR, Sanna F, Argiolas A. Dopamine, Erectile Function and Male Sexual Behavior from the Past to the Present: A Review. Brain Sci 2022; 12:brainsci12070826. [PMID: 35884633 PMCID: PMC9312911 DOI: 10.3390/brainsci12070826] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Early and recent studies show that dopamine through its neuronal systems and receptor subtypes plays different roles in the control of male sexual behavior. These studies show that (i) the mesolimbic/mesocortical dopaminergic system plays a key role in the preparatory phase of sexual behavior, e.g., in sexual arousal, motivation and reward, whereas the nigrostriatal system controls the sensory-motor coordination necessary for copulation, (ii) the incertohypothalamic system is involved in the consummatory aspects of sexual behavior (penile erection and copulation), but evidence for its role in sexual motivation is also available, (iii) the pro-sexual effects of dopamine occur in concert with neural systems interconnecting the hypothalamus and preoptic area with the spinal cord, ventral tegmental area and other limbic brain areas and (iv) D2 and D4 receptors play a major role in the pro-sexual effects of dopamine. Despite some controversy, increases or decreases, respectively, of brain dopamine activity induced by drugs or that occur physiologically, usually improves or worsens, respectively, sexual activity. These findings suggest that an altered central dopaminergic tone plays a role in mental pathologies characterized by aberrant sexual behavior, and that pro-erectile D4 receptor agonists may be considered a new strategy for the treatment of erectile dysfunction in men.
Collapse
|
5
|
Glover ME, Unroe KA, Moughnyeh MM, McCoy C, Kerman IA, Clinton SM. Structural and metabolic activity differences in serotonergic cell groups in a rat model of individual differences of emotionality and stress reactivity. Neurosci Lett 2022; 784:136752. [PMID: 35753615 DOI: 10.1016/j.neulet.2022.136752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
Abstract
Serotonin regulates a diverse set of functions, including emotional behavior, cognition, sociability, appetite, and sleep. Serotonin is also a key trophic factor that shapes neurodevelopmental processes. Genetic and environmental factors that drive individual differences in the serotonergic system have the capacity to impact brain structure and behavior, and likely contribute to pathophysiological processes involved in neuropsychiatric disorders. Using adult rats selectively bred for low novelty exploration (Low Responders, LR), we previously demonstrated pronounced increases in the levels of their anxiety- and depression- relevant behaviors as compared to the selectively bred High Novelty Responder (HR) rats. These behavioral differences were accompanied by alterations in the expression of genes that regulate serotonin synthesis in the brainstem, and its signaling in the forebrain. The present study extends these observations with a focus on the organization and the metabolism of brainstem serotonin cell groups that provide serotonergic innervation of the hippocampus and other limbic regions of male HR/LR rats. Using design-based stereology, we found the median raphe (MnR) in adult male LR rats contains increased number of serotonergic neurons as compared to the HRs. This is preceded by an increase in the metabolic activity of the caudal dorsal raphe (DRC) and the intrafascicular DR (DRI) during early postnatal development. These findings suggest that structural and functional differences in the raphe-limbic projections shape behavioral inhibition throughout the lifespan.
Collapse
Affiliation(s)
| | - Keaton A Unroe
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | | | - Chelsea McCoy
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Ilan A Kerman
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA; Behavioral Health Service Line, Veterans Affairs Pittsburgh Health System, Pittsburgh, PA 15240, USA
| | | |
Collapse
|
6
|
Clinton SM, Unroe KA, Shupe EA, McCoy CR, Glover ME. Resilience to Stress: Lessons from Rodents about Nature versus Nurture. Neuroscientist 2022; 28:283-298. [PMID: 33567987 PMCID: PMC11092422 DOI: 10.1177/1073858421989357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Individual differences in human temperament influence how we respond to stress and can confer vulnerability (or resilience) to emotional disorders. For example, high levels of behavioral inhibition in children predict increased risk of mood and anxiety disorders in later life. The biological underpinnings of temperament are unknown, although improved understanding can offer insight into the pathogenesis of emotional disorders. Our laboratory has used a rat model of temperamental differences to study neurodevelopmental factors that lead to a highly inhibited, stress vulnerable phenotype. Selective breeding for high versus low behavioral response to novelty created two rat strains that exhibit dramatic behavior differences over multiple domains relevant to emotional disorders. Low novelty responder (bLR) rats exhibit high levels of behavioral inhibition, passive stress coping, anhedonia, decreased sociability and vulnerability to chronic stress compared to high novelty responders (bHRs). On the other hand, bHRs exhibit high levels of behavioral dis-inhibition, active coping, and aggression. This review article summarizes our work with the bHR/bLR model showing the developmental emergence of the bHR/bLR phenotypes, the role the environment plays in shaping it, and the involvement of epigenetic processes such as DNA methylation that mediate differences in emotionality and stress reactivity.
Collapse
Affiliation(s)
- Sarah M. Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Keaton A. Unroe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Elizabeth A. Shupe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Chelsea R. McCoy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Matthew E. Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
7
|
Baudat M, de Kort AR, van den Hove DLA, Joosten EA. Early-life exposure to selective serotonin reuptake inhibitors: Long-term effects on pain and affective comorbidities. Eur J Neurosci 2021; 55:295-317. [PMID: 34841582 PMCID: PMC9299880 DOI: 10.1111/ejn.15544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
A growing body of evidence indicates that early‐life exposure to selective serotonin reuptake inhibitor has long‐term consequences on the offspring's pain in addition to affective disorders like anxiety disorder and major depression. Serotonin, besides its role in regulating pain and emotions, promotes neuronal network formation. The prefrontal cortex and the amygdala are two key brain regions involved in the modulation of pain and its affective comorbidities. Thus, the aim of this review is to understand how early‐life selective serotonin reuptake inhibitor exposure alters the developing prefrontal cortex and amygdala and thereby underlies the long‐term changes in pain and its affective comorbidities in later life. While there is still limited data on the effects of early‐life selective serotonin reuptake inhibitor exposure on pain, there is a substantial body of evidence on its affective comorbidities. From this perspective paper, four conclusions emerged. First, early‐life selective serotonin reuptake inhibitor exposure results in long‐term nociceptive effects, which needs to be consistently studied to clarify. Second, it results in enhanced depressive‐like behaviour and diminished exploratory behaviour in adult rodents. Third, early‐life selective serotonin reuptake inhibitor exposure alters serotonergic levels, transcription factors expression, and brain‐derived neurotrophic factor levels, resulting in hyperconnectivity within the amygdala and the prefrontal cortex. Finally, it affects antinociceptive inputs of the prefrontal cortex and the amygdala in the spinal cord. We conclude that early‐life selective serotonin reuptake inhibitor exposure affects the maturation of prefrontal cortex and amygdala circuits and thereby enhances their antinociceptive inputs in the spinal cord.
Collapse
Affiliation(s)
- Mathilde Baudat
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Anne R de Kort
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Elbert A Joosten
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
8
|
Duclot F, Kabbaj M. Epigenetics of Aggression. Curr Top Behav Neurosci 2021; 54:283-310. [PMID: 34595741 DOI: 10.1007/7854_2021_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aggression is a complex behavioral trait modulated by both genetic and environmental influences on gene expression. By controlling gene expression in a reversible yet potentially lasting manner in response to environmental stimulation, epigenetic mechanisms represent prime candidates in explaining both individual differences in aggression and the development of elevated aggressive behaviors following life adversity. In this manuscript, we review the evidence for an epigenetic basis in the development and expression of aggression in both humans and related preclinical animal models. In particular, we discuss reports linking DNA methylation, histone post-translational modifications, as well as non-coding RNA, to the regulation of a variety of genes implicated in the neurobiology of aggression including neuropeptides, the serotoninergic and dopaminergic systems, and stress response related systems. While clinical reports do reveal interesting patterns of DNA methylation underlying individual differences and experience-induced aggressive behaviors, they do, in general, face the challenge of linking peripheral observations to central nervous system regulations. Preclinical studies, on the other hand, provide detailed mechanistic insights into the epigenetic reprogramming of gene expression following life adversities. Although the functional link to aggression remains unclear in most, these studies together do highlight the involvement of epigenetic events driven by DNA methylation, histone modifications, and non-coding RNA in the neuroadaptations underlying the development and expression of aggression.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
9
|
Aydin C, Frohmader K, Emery M, Blandino P, Akil H. Chronic stress in adolescence differentially affects cocaine vulnerability in adulthood in a selectively bred rat model of individual differences: role of accumbal dopamine signaling. Stress 2021; 24:251-260. [PMID: 32748678 PMCID: PMC7858685 DOI: 10.1080/10253890.2020.1790520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Stress during adolescence has profound effects on the onset and severity of substance use later in life. However, not everyone with adverse experiences during this period will go on to develop a substance use disorder in adulthood, and the factors that alter susceptibility to substance use remain unknown. Here, we investigated individual differences in response to stress and drugs of abuse using our selectively bred high-responder (bHR) and low-responder (bLR) rats. These animals model extremes of temperamental tendencies and differ dramatically in both stress responsiveness and addiction-related traits. The present study investigated how environmental interventions in the form of a chronic variable stress (CVS) regimen in early adolescence interact with the bHR/bLR phenotype to alter behavioral sensitization to cocaine in adulthood. We also determined whether accumbal dopamine signaling is involved in the interaction of stress history and cocaine by assessing the mRNA levels of dopamine D1 (D1R) and D2 (D2R) receptors. Our results showed that CVS history alone had enduring and phenotype-specific effects on accumbal dopamine signaling. Importantly, adolescent stress had opposing effects in the two lines- decreasing the locomotor response to cocaine challenge in bHRs but increasing this measure in bLRs. Moreover, these opposing effects on cocaine sensitivity following adolescent CVS were accompanied by parallel effects in the accumbal dopamine system, with prior stress and cocaine exposure interacting to decrease D2R mRNA in bHRs but increase it in bLRs. Overall, these findings indicate that environmental challenges encountered in adolescence interact with genetic background to alter vulnerability to cocaine later in life.Lay SummaryStress experienced during adolescence affects the onset and severity of drug dependence later in life. However, not everyone with adverse experiences during this period will go on to develop SUD in adulthood. Using a rat model of innate differences in emotional reactivity, this study shows that the interplay between individual temperament and previous experience of adolescent stress/trauma determines whether an individual will be vulnerable or resilient to develop SUDs later in life. In addition, the present study shows that the dopamine D2 receptor in the brain's reward center, nucleus accumbens, may be implicated in this interplay.
Collapse
Affiliation(s)
- Cigdem Aydin
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Karla Frohmader
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Michael Emery
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Peter Blandino
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
10
|
LeClair KB, Russo SJ. Using social rank as the lens to focus on the neural circuitry driving stress coping styles. Curr Opin Neurobiol 2021; 68:167-180. [PMID: 33930622 DOI: 10.1016/j.conb.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/02/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Social hierarchy position in humans is negatively correlated with stress-related psychiatric disease risk. Animal models have largely corroborated human studies, showing that social rank can impact stress susceptibility and is considered to be a major risk factor in the development of psychiatric illness. Differences in stress coping style is one of several factors that mediate this relationship between social rank and stress susceptibility. Coping styles encompass correlated groupings of behaviors associated with differential physiological stress responses. Here, we discuss recent insights from animal models that highlight several neural circuits that can contribute to social rank-associated differences in coping style.
Collapse
Affiliation(s)
- Katherine B LeClair
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
11
|
Clinton SM, Shupe EA, Glover ME, Unroe KA, McCoy CR, Cohen JL, Kerman IA. Modeling heritability of temperamental differences, stress reactivity, and risk for anxiety and depression: Relevance to research domain criteria (RDoC). Eur J Neurosci 2021; 55:2076-2107. [PMID: 33629390 PMCID: PMC8382785 DOI: 10.1111/ejn.15158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 01/04/2023]
Abstract
Animal models provide important tools to study biological and environmental factors that shape brain function and behavior. These models can be effectively leveraged by drawing on concepts from the National Institute of Mental Health Research Domain Criteria (RDoC) Initiative, which aims to delineate molecular pathways and neural circuits that underpin behavioral anomalies that transcend psychiatric conditions. To study factors that contribute to individual differences in emotionality and stress reactivity, our laboratory utilized Sprague-Dawley rats that were selectively bred for differences in novelty exploration. Selective breeding for low versus high locomotor response to novelty produced rat lines that differ in behavioral domains relevant to anxiety and depression, particularly the RDoC Negative Valence domains, including acute threat, potential threat, and loss. Bred Low Novelty Responder (LR) rats, relative to their High Responder (HR) counterparts, display high levels of behavioral inhibition, conditioned and unconditioned fear, avoidance, passive stress coping, anhedonia, and psychomotor retardation. The HR/LR traits are heritable, emerge in the first weeks of life, and appear to be driven by alterations in the developing amygdala and hippocampus. Epigenomic and transcriptomic profiling in the developing and adult HR/LR brain suggest that DNA methylation and microRNAs, as well as differences in monoaminergic transmission (dopamine and serotonin in particular), contribute to their distinct behavioral phenotypes. This work exemplifies ways that animal models such as the HR/LR rats can be effectively used to study neural and molecular factors driving emotional behavior, which may pave the way toward improved understanding the neurobiological mechanisms involved in emotional disorders.
Collapse
Affiliation(s)
- Sarah M Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth A Shupe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matthew E Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Keaton A Unroe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chelsea R McCoy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Joshua L Cohen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Ilan A Kerman
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Behavioral Health Service Line, Veterans Affairs Pittsburgh Health System, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Spencer-Segal JL, Singer BH, Laborc K, Somayaji K, Watson SJ, Standiford TJ, Akil H. Sepsis survivor mice exhibit a behavioral endocrine syndrome with ventral hippocampal dysfunction. Psychoneuroendocrinology 2020; 117:104679. [PMID: 32353815 PMCID: PMC7845932 DOI: 10.1016/j.psyneuen.2020.104679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/27/2022]
Abstract
Severe acute stressors are known to trigger mood disorders in humans. Sepsis represents one such stressor, and survivors often suffer long term from psychiatric morbidity. We hypothesized that sepsis leads to lasting changes in neural circuits involved in stress integration, altering affective behavior and the stress response. To investigate this hypothesis, sepsis was induced in male C57Bl/6 mice using cecal ligation and puncture (CLP), and control mice underwent sham surgery. Mice recovered from acute illness within 2 weeks, after which they exhibited increased avoidance behavior and behavioral despair compared with sham, with behavioral changes observed more than 5 weeks after recovery. Sepsis survivors also showed evidence of enhanced hypothalamic-pituitary-adrenal (HPA) axis activity, with increased corticosterone after a novel stressor and increased adrenal weight. In the brain, sepsis survivor mice showed decreased stress-induced cfos mRNA and increased glucocorticoid receptor immunoreactivity specifically in the ventral hippocampus, a brain region known to coordinate emotional behavior and HPA axis activity. We conclude that murine sepsis survivors exhibit a behavioral neuroendocrine syndrome of negative affective behavior and HPA axis hyperactivity, which could be explained by ventral hippocampal dysfunction. These findings could contribute to our understanding of the human post-intensive care syndrome.
Collapse
Affiliation(s)
- Joanna L. Spencer-Segal
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin H. Singer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Klaudia Laborc
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Khyati Somayaji
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Stanley J. Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Theodore J. Standiford
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
13
|
Colaizzi JM, Flagel SB, Joyner MA, Gearhardt AN, Stewart JL, Paulus MP. Mapping sign-tracking and goal-tracking onto human behaviors. Neurosci Biobehav Rev 2020; 111:84-94. [PMID: 31972203 PMCID: PMC8087151 DOI: 10.1016/j.neubiorev.2020.01.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/17/2022]
Abstract
As evidenced through classic Pavlovian learning mechanisms, environmental cues can become incentivized and influence behavior. These stimulus-outcome associations are relevant in everyday life but may be particularly important for the development of impulse control disorders including addiction. Rodent studies have elucidated specific learning profiles termed 'sign-tracking' and 'goal-tracking' which map onto individual differences in impulsivity and other behaviors associated with impulse control disorders' etiology, course, and relapse. Whereas goal-trackers are biased toward the outcome, sign-trackers fixate on features that are associated with but not necessary for achieving an outcome; a pattern of behavior that often leads to escalation of reward-seeking that can be maladaptive. The vast majority of the sign- and goal-tracking research has been conducted using rodent models and very few have bridged this concept into the domain of human behavior. In this review, we discuss the attributes of sign- and goal-tracking profiles, how these are manifested neurobiologically, and how these distinct learning styles could be an important tool for clinical interventions in human addiction.
Collapse
Affiliation(s)
- Janna M Colaizzi
- Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK, USA.
| | - Shelly B Flagel
- University of Michigan Molecular and Behavioral Neuroscience Institute, 205 Zina Pitcher Pl, Ann Arbor, MI, 48109, USA
| | - Michelle A Joyner
- University of Michigan, Department of Psychology, 530 Church St, Ann Arbor, MI, 48109, USA
| | - Ashley N Gearhardt
- University of Michigan, Department of Psychology, 530 Church St, Ann Arbor, MI, 48109, USA
| | | | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK, USA
| |
Collapse
|
14
|
Moriya S, Yamashita A, Masukawa D, Kambe Y, Sakaguchi J, Setoyama H, Yamanaka A, Kuwaki T. Involvement of supralemniscal nucleus (B9) 5-HT neuronal system in nociceptive processing: a fiber photometry study. Mol Brain 2020; 13:14. [PMID: 32005128 PMCID: PMC6993514 DOI: 10.1186/s13041-020-0553-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/19/2020] [Indexed: 12/15/2022] Open
Abstract
Nociception is important perception that has harmful influence on daily life of humans. As to main pain management system, some descending pathways are called descending antinociceptive systems (DAS). As main pathways of DAS, it is well known that dorsal raphe (B6/B7) - rostral ventromedial medulla (B3) - spinal dorsal horn includes serotonergic system. However, possible role of supralemniscal (B9) serotonin (5-HT) cell group in pain management is still open question. In this study, we measured activities of B9 5-HT neuronal cell bodies and B9 5-HT neuron-derived axons located in the locus coeruleus (LC) and ventral tegmental area (VTA), which are also main players of pain management, using fiber photometry system. We introduced the G-CaMP6 in B9 5-HT neurons using transgenic mice carrying a tetracycline-controlled transactivator transgene (tTA) under the control of a tryptophan hydroxylase-2 (TPH2) promoter and site-specific injection of adeno associated virus (AAV-TetO(3G)-G-CaMP6). After confirmation of specific expression of G-CaMP6 in the target population, G-CaMP6 fluorescence intensity in B9 group and LC/VTA groups was measured in awake mice exposed to acute tail pinch and heat stimuli. G-CaMP6 fluorescence intensity rapidly increased by both stimuli in all groups, but not significantly reacted by nonnociceptive control stimuli. The present results clearly indicate that acute nociceptive stimuli cause a rapid increase in the activities of B9-LC/B9-VTA 5-HTergic pathways, suggesting that B9 5-HT neurons play important roles in nociceptive processing.
Collapse
Affiliation(s)
- Shunpei Moriya
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, 890-8544 Japan
| | - Akira Yamashita
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, 890-8544 Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004 Japan
| | - Yuki Kambe
- Department of Pharmacology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, 890-8544 Japan
| | - Junichi Sakaguchi
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, 890-8544 Japan
| | - Honami Setoyama
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, 890-8544 Japan
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601 Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, 890-8544 Japan
| |
Collapse
|
15
|
McCoy CR, Sabbagh MN, Huaman JP, Pickrell AM, Clinton SM. Oxidative metabolism alterations in the emotional brain of anxiety-prone rats. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109706. [PMID: 31330216 PMCID: PMC6708503 DOI: 10.1016/j.pnpbp.2019.109706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/31/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
Mood disorders such as anxiety and depression are heterogeneous disorders with many sufferers unresponsive to current pharmacological treatments. Individual differences in temperament represent one factor that may underlie symptom heterogeneity, so understanding its biological underpinnings can help pave the way to personalized therapies and improved patient outcomes. The present study uses a rodent model of temperamental differences to examine whether individual differences in emotional behavior phenotypes correspond to altered limbic brain cellular metabolism, an indicator of neuronal activity. The model uses two selectively bred rat lines - high novelty responder rats (HRs) that show highly exploratory behavior in a novel environment, active coping style and resilience to chronic mild stress compared to low novelty responder rats (LRs), which are inhibited in novel environments, display passive coping style, and are susceptible to chronic stress. Utilizing transcriptome data from a prior study in adult HR/LR rats, we first show that a preponderance of genes differing in the HR vs. LR hippocampus and amygdala are involved in cellular metabolism. This led us to then ask if oxygen consumption was altered in isolated mitochondria of the hippocampus and amygdala of HR/LR rats; here we found increased oxygen consumption reserve capacity in LR amygdala. Our last experiment examined activity of cytochrome c oxidase (COX), an enzyme responsible for ATP production and correlate of metabolic activity, in several brain regions of HR/LR rats. We found that LRs displayed higher COX activity in the dentate gyrus, prefrontal cortex, and dorsal raphe compared to HRs, with no significant HR/LR difference in nuclei of the amygdala. Correlational analyses of COX activity across brain regions suggested divergent connectivity between the prefrontal cortex, amygdala, hippocampus, and dorsal raphe of HR vs. LR rats. Together these studies point to altered cellular metabolism in the limbic brain of LR/HR animals, which may reflect altered neural circuitry that drives their divergent behavioral profiles.
Collapse
Affiliation(s)
| | | | | | | | - Sarah M. Clinton
- Corresponding author at: Integrated Life Sciences Building (ILSB), 1981 Kraft Drive, Blacksburg, VA, , Phone: (540) 231-5946
| |
Collapse
|
16
|
Demin KA, Lakstygal AM, Alekseeva PA, Sysoev M, de Abreu MS, Alpyshov ET, Serikuly N, Wang D, Wang M, Tang Z, Yan D, Strekalova TV, Volgin AD, Amstislavskaya TG, Wang J, Song C, Kalueff AV. The role of intraspecies variation in fish neurobehavioral and neuropharmacological phenotypes in aquatic models. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:44-55. [PMID: 30822702 DOI: 10.1016/j.aquatox.2019.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Intraspecies variation is common in both clinical and animal research of various brain disorders. Relatively well-studied in mammals, intraspecies variation in aquatic fish models and its role in their behavioral and pharmacological responses remain poorly understood. Like humans and mammals, fishes show high variance of behavioral and drug-evoked responses, modulated both genetically and environmentally. The zebrafish (Danio rerio) has emerged as a particularly useful model organism tool to access neurobehavioral and drug-evoked responses. Here, we discuss recent findings and the role of the intraspecies variance in neurobehavioral, pharmacological and toxicological studies utilizing zebrafish and other fish models. We also critically evaluate common sources of intraspecies variation and outline potential strategies to improve data reproducibility and translatability.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Polina A Alekseeva
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Maxim Sysoev
- Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil
| | | | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongMei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - MengYao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZhiChong Tang
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongNi Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Tatyana V Strekalova
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | | | - JiaJia Wang
- Research Institute of Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Ural Federal University, Ekaterinburg, Russia; ZENEREI Research Center, Slidell, LA, USA; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
| |
Collapse
|
17
|
Widman AJ, Cohen JL, McCoy CR, Unroe KA, Glover ME, Khan AU, Bredemann T, McMahon LL, Clinton SM. Rats bred for high anxiety exhibit distinct fear-related coping behavior, hippocampal physiology, and synaptic plasticity-related gene expression. Hippocampus 2019; 29:939-956. [PMID: 30994250 DOI: 10.1002/hipo.23092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 12/29/2022]
Abstract
The hippocampus is essential for learning and memory but also regulates emotional behavior. We previously identified the hippocampus as a major brain region that differs in rats bred for emotionality differences. Rats bred for low novelty response (LRs) exhibit high levels of anxiety- and depression-like behavior compared to high novelty responder (HR) rats. Manipulating the hippocampus of high-anxiety LR rats improves their behavior, although no work to date has examined possible HR/LR differences in hippocampal synaptic physiology. Thus, the current study examined hippocampal slice electrophysiology, dendritic spine density, and transcriptome profiling in HR/LR hippocampus, and compared performance on three hippocampus-dependent tasks: The Morris water maze, contextual fear conditioning, and active avoidance. Our physiology experiments revealed increased long-term potentiation (LTP) at CA3-CA1 synapses in HR versus LR hippocampus, and Golgi analysis found an increased number of dendritic spines in basal layer of CA1 pyramidal cells in HR versus LR rats. Transcriptome data revealed glutamate neurotransmission as the top functional pathway differing in the HR/LR hippocampus. Our behavioral experiments showed that HR/LR rats exhibit similar learning and memory capability in the Morris water maze, although the groups differed in fear-related tasks. LR rats displayed greater freezing behavior in the fear-conditioning task, and HR/LR rats adopted distinct behavioral strategies in the active avoidance task. In the active avoidance task, HRs avoided footshock stress by pressing a lever when presented with a warning cue; LR rats, on the other hand, waited until footshocks began before pressing the lever to stop them. Taken together, these findings concur with prior observations of HR rats generally exhibiting active stress coping behavior while LRs exhibit reactive coping. Overall, our current findings coupled with previous work suggest that HR/LR differences in stress reactivity and stress coping may derive, at least in part, from differences in the developing and adult hippocampus.
Collapse
Affiliation(s)
- Allie J Widman
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Joshua L Cohen
- Medical Scientist Training Program (MSTP), University of Alabama, Birmingham, Alabama
| | - Chelsea R McCoy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Keaton A Unroe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia
| | - Matthew E Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Anas U Khan
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Teruko Bredemann
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Lori L McMahon
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Sarah M Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
18
|
Modelling Differential Vulnerability to Substance Use Disorder in Rodents: Neurobiological Mechanisms. Handb Exp Pharmacol 2019; 258:203-230. [PMID: 31707470 DOI: 10.1007/164_2019_300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite the prevalence of drug use within society, only a subset of individuals actively taking addictive drugs lose control over their intake and develop compulsive drug-seeking and intake that typifies substance use disorder (SUD). Although research in this field continues to be an important and dynamic discipline, the specific neuroadaptations that drive compulsive behaviour in humans addicted to drugs and the neurobiological mechanisms that underlie an individual's innate susceptibility to SUD remain surprisingly poorly understood. Nonetheless, it is clear from research within the clinical domain that some behavioural traits are recurrently co-expressed in individuals with SUD, thereby inviting the hypothesis that certain behavioural endophenotypes may be predictive, or at least act in some way, to modify an individual's probability for developing this disorder. The analysis of such endophenotypes and their catalytic relationship to the expression of addiction-related behaviours has been greatly augmented by experimental approaches in rodents that attempt to capture diagnostically relevant aspects of this progressive brain disorder. This work has evolved from an early focus on aberrant drug reinforcement mechanisms to a now much richer account of the putatively impaired cognitive control processes that ultimately determine individual trajectories to compulsive drug-related behaviours. In this chapter we discuss the utility of experimental approaches in rodents designed to elucidate the neurobiological and genetic underpinnings of so-called risk traits and how these innate vulnerabilities collectively contribute to the pathogenesis of SUD.
Collapse
|
19
|
Rats selectively bred for showing divergent behavioral traits in response to stress or novelty or spontaneous yawning with a divergent frequency show similar changes in sexual behavior: the role of dopamine. Rev Neurosci 2018; 30:427-454. [DOI: 10.1515/revneuro-2018-0058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
Abstract
Sexual behavior plays a fundamental role for reproduction in mammals and other animal species. It is characterized by an anticipatory and a consummatory phase, and several copulatory parameters have been identified in each phase, mainly in rats. Sexual behavior varies significantly across rats even when they are of the same strain and reared under identical conditions. This review shows that rats of the same strain selectively bred for showing a divergent behavioral trait when exposed to stress or novelty (i.e. Roman high and low avoidance rats, bred for their different avoidance response to the shuttle box, and high and low novelty exploration responders rats, bred for their different exploratory response to a novel environment) or a spontaneous behavior with divergent frequency (i.e. low and high yawning frequency rats, bred for their divergent yawning frequency) show similar differences in sexual behavior, mainly in copulatory pattern, but also in sexual motivation. As shown by behavioral pharmacology and intracerebral microdialysis experiments carried out mainly in Roman rats, these sexual differences may be due to a more robust dopaminergic tone present in the mesocorticolimbic dopaminergic system of one of the two sub-lines (e.g. high avoidance, high novelty exploration, and low yawning rat sub-lines). Thus, differences in genotype and/or in prenatal/postnatal environment lead not only to individual differences in temperament and environmental/emotional reactivity but also in sexual behavior. Because of the highly conserved mechanisms controlling reproduction in mammals, this may occur not only in rats but also in humans.
Collapse
|
20
|
Zubkov EA, Zorkina YA, Orshanskaya EV, Khlebnikova NN, Krupina NA, Chekhonin VP. Changes in Gene Expression Profiles in Adult Rat Brain Structures after Neonatal Action of Dipeptidyl Peptidase-IV Inhibitors. Neuropsychobiology 2018; 76:89-99. [PMID: 29860255 DOI: 10.1159/000488367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Previous studies have shown the development of emotional and motivational disorders, such as anxiety-depression-like disorders with increased aggression in adolescent and adult Wistar rats, occurs after neonatal exposure to the dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5) inhibitors diprotin A and sitagliptin (postnatal days 5-18). METHODS In this study, using real-time PCR, we evaluated changes in the gene expression of serine protease DPP-IV and prolyl endopeptidase (PREP, EC 3.4.21.26; dpp4 and prep genes), monoamine oxidase А (maoA) and B (maoB), and serotonin transporter (SERT; sert) in the brain structures from 3-month-old rats after postnatal action of DPP-IV inhibitors diprotin A and sitagliptin. RESULTS Dpp4, sert, and maoB gene expression increased and maoA gene expression changed with a tendency to increase in the striatum of rats with neonatal sitagliptin action. The increase of maoA gene expression was also shown in the amygdala. An increase in prep gene expression was found in the striatum of rats with the neonatal action of diprotin A, and a decrease in maoB gene expression was observed in the amygdala. We detected a significant downward trend in sert gene expression in the frontal cortex and amygdala, as well as a tendency to increase in maoA gene expression in the hypothalamus. DISCUSSION These findings suggest that changes in the expression of the abovementioned genes are associated with the development of anxiety and depression, with increased aggression caused by the neonatal action of diprotin A and sitagliptin.
Collapse
Affiliation(s)
- Eugene A Zubkov
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psyсhiatry and Narcology, Moscow, Russian Federation
| | - Yana A Zorkina
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psyсhiatry and Narcology, Moscow, Russian Federation
| | - Elena V Orshanskaya
- The Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | | | - Natalia A Krupina
- The Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psyсhiatry and Narcology, Moscow, Russian Federation
| |
Collapse
|
21
|
Peeters D, Rietdijk J, Gerrits D, Rijpkema M, de Boer SF, Verkes RJ, Homberg JR. Searching for neural and behavioral parameters that predict anti-aggressive effects of chronic SSRI treatment in rats. Neuropharmacology 2018; 143:339-348. [PMID: 30217738 DOI: 10.1016/j.neuropharm.2018.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/06/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023]
Abstract
RATIONALE Only a subset of impulsive aggressive patients benefits from selective serotonin reuptake inhibitor (SSRI) treatment, confirming contradictory results about the association between serotonin (5-hydroxytryptamine, 5-HT) and aggression. This shows the need to define behavioral characteristics within this subgroup to move towards individualized pharmacological treatment of impulsive aggression. METHODS Here we submitted an outbred strain of Long Evans rats to a crossover design treatment regimen with the SSRI citalopram, to test its anti-aggressive effect. Behavioral characteristics were baseline aggression, anxiety parameters as measured in the elevated plus maze and open field and cue responsivity as indicated by sign vs. goal tracking behavior. 5-HT1A receptor densities as measured by ex vivo [18F]MPPF binding were determined in the dorsal raphe nucleus, dentate gyrus, orbitofrontal cortex, infralimbic cortex and prelimbic cortex, because of the receptors' involvement in the therapeutic delay of SSRIs and aggression. RESULTS We found statistically significant increased variance in aggressive behavior after citalopram treatment. However, none of the selected parameters predicted the citalopram treatment effect. CONCLUSION Since aggression after citalopram treatment decreased in a subgroup of animals and increased in the other, future research should focus on other possible predictors to support treatment strategies in aggressive patients.
Collapse
Affiliation(s)
- Deborah Peeters
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Jonne Rietdijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Danny Gerrits
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sietse F de Boer
- Department of Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Robbert-Jan Verkes
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
22
|
Walker SE, Papilloud A, Huzard D, Sandi C. The link between aberrant hypothalamic–pituitary–adrenal axis activity during development and the emergence of aggression—Animal studies. Neurosci Biobehav Rev 2018; 91:138-152. [DOI: 10.1016/j.neubiorev.2016.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
|
23
|
Prater KE, Aurbach EL, Larcinese HK, Smith TN, Turner CA, Blandino P, Watson SJ, Maren S, Akil H. Selectively Bred Rats Provide a Unique Model of Vulnerability to PTSD-Like Behavior and Respond Differentially to FGF2 Augmentation Early in Life. Neuropsychopharmacology 2017; 42:1706-1714. [PMID: 28205604 PMCID: PMC5518903 DOI: 10.1038/npp.2017.37] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 11/10/2022]
Abstract
Individuals respond differently to traumatic experiences, including their propensity to develop posttraumatic stress disorder (PTSD). Understanding individual differences in PTSD vulnerability will allow the development of improved prevention and treatment options. Here we characterized fear conditioning and extinction in rats selectively bred for differences in their locomotor response to a novel environment. Selectively bred high-responder (bHR) and low-responder (bLR) male rats are known to differ in their emotional reactivity on a range of measures of spontaneous anxiety- and depressive-like behaviors. We demonstrate that bHRs have facilitated extinction learning and retention compared with outbred Sprague Dawley rats, whereas bLRs show reduced extinction learning and retention. This indicates that bLRs are more vulnerable to PTSD-like behavior. Fibroblast growth factor 2 (FGF2) has previously been implicated in the development of these behavioral phenotypes and facilitates extinction learning in outbred animals, therefore we examined the effects of early-life FGF2 on bHR and bLR behavior. FGF2 administered on the day after birth facilitated extinction learning and retention in bHRs, but not in bLRs or control rats, during adulthood. This indicates that, under the current fear conditioning paradigm, early-life FGF2 has protective effects only in resilient animals. This stands in contrast to FGF2's ability to protect vulnerable animals in milder tests of anxiety. These results provide a unique animal model of individual differences in PTSD-like behavior, allowing the study of genetic, developmental, and environmental factors in its expression.
Collapse
Affiliation(s)
- Katherine E Prater
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA,Molecular and Behavioral Neuroscience Institute, University of Michigan, 2008 MBNI Building, 205 Zina Pitcher Place, Ann Arbor, MI 48109-5720, USA, Tel: 734 764 6999, Fax: 734 647 4130, E-mail:
| | - Elyse L Aurbach
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Hanna K Larcinese
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Taylor N Smith
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Cortney A Turner
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Peter Blandino
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Stanley J Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Stephen Maren
- Department of Psychology, Texas A&M University, College Station TX, USA
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Hartline JT, Smith AN, Kabelik D. Serotonergic activation during courtship and aggression in the brown anole, Anolis sagrei. PeerJ 2017; 5:e3331. [PMID: 28533977 PMCID: PMC5436558 DOI: 10.7717/peerj.3331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/19/2017] [Indexed: 11/20/2022] Open
Abstract
The role of serotonin (5-hydroxytryptamine, 5-HT) in social behavior regulation is not fully understood. While 5-HT release in nuclei of the social behavior network has generally been associated with inhibition of aggressive behavior across multiple classes of vertebrates, less is known about its effects on sexual, especially non-copulatory courtship display behaviors. Furthermore, most research has examined effects at 5-HT release sites, while studies examining the behavioral relevance of source cell populations have generated contradictory findings. This study utilized immunohistochemistry to examine the colocalization of 5-HT with Fos, an immediate early gene product and marker of neural activity, in the raphe and superior reticular nuclei of male brown anoles (Anolis sagrei) exposed to either aggression, courtship, or control social interactions. Supporting previous research, copulation was associated with a decrease in 5-HT activity, while a novel link between 5-HT activity and latency to non-copulatory courtship was also found. Within the aggression group, intensity and frequency of behavior were both associated with decreased 5-HT activity. An effect of social context was also seen, with anoles exposed to either courtship or aggression encounters showing decreased 5-HT activity in certain raphe and superior reticular nuclei populations compared to controls. Interestingly, context effects and behavioral effects were seen at separate brain nuclei, suggesting the presence of separate systems with distinct functional roles.
Collapse
Affiliation(s)
- Jacob T Hartline
- Department of Biology, Rhodes College, Memphis, TN, United States of America.,Program in Neuroscience, Rhodes College, Memphis, TN, United States of America
| | - Alexandra N Smith
- Department of Biology, Rhodes College, Memphis, TN, United States of America.,Program in Neuroscience, Rhodes College, Memphis, TN, United States of America
| | - David Kabelik
- Department of Biology, Rhodes College, Memphis, TN, United States of America.,Program in Neuroscience, Rhodes College, Memphis, TN, United States of America
| |
Collapse
|
25
|
de Boer SF, Buwalda B, Koolhaas JM. Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility. Neurosci Biobehav Rev 2017; 74:401-422. [DOI: 10.1016/j.neubiorev.2016.07.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/23/2023]
|
26
|
Cohen JL, Ata AE, Jackson NL, Rahn EJ, Ramaker RC, Cooper S, Kerman IA, Clinton SM. Differential stress induced c-Fos expression and identification of region-specific miRNA-mRNA networks in the dorsal raphe and amygdala of high-responder/low-responder rats. Behav Brain Res 2017; 319:110-123. [PMID: 27865919 PMCID: PMC5183530 DOI: 10.1016/j.bbr.2016.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/19/2016] [Accepted: 11/08/2016] [Indexed: 01/03/2023]
Abstract
Chronic stress triggers a variety of physical and mental health problems, and how individuals cope with stress influences risk for emotional disorders. To investigate molecular mechanisms underlying distinct stress coping styles, we utilized rats that were selectively-bred for differences in emotionality and stress reactivity. We show that high novelty responding (HR) rats readily bury a shock probe in the defensive burying test, a measure of proactive stress coping behavior, while low novelty responding (LR) rats exhibit enhanced immobility, a measure of reactive coping. Shock exposure in the defensive burying test elicited greater activation of HR rats' caudal dorsal raphe serotonergic cells compared to LRs, but lead to more pronounced activation throughout LRs' amygdala (lateral, basolateral, central, and basomedial nuclei) compared to HRs. RNA-sequencing revealed 271 mRNA transcripts and 33 microRNA species that were differentially expressed in HR/LR raphe and amygdala. We mapped potential microRNA-mRNA networks by correlating and clustering mRNA and microRNA expression and identified networks that differed in either the HR/LR dorsal raphe or amygdala. A dorsal raphe network linked three microRNAs which were down-regulated in LRs (miR-206-3p, miR-3559-5p, and miR-378a-3p) to repression of genes related to microglia and immune response (Cd74, Cyth4, Nckap1l, and Rac2), the genes themselves were up-regulated in LR dorsal raphe. In the amygdala, another network linked miR-124-5p, miR-146a-5p, miR-3068-3p, miR-380-5p, miR-539-3p, and miR-7a-1-3p with repression of chromatin remodeling-related genes (Cenpk, Cenpq, Itgb3bp, and Mis18a). Overall this work highlights potential drivers of gene-networks and downstream molecular pathways within the raphe and amygdala that contribute to individual differences in stress coping styles and stress vulnerabilities.
Collapse
Affiliation(s)
- Joshua L Cohen
- Medical Scientist Training Program, University of Alabama-Birmingham, USA
| | - Anooshah E Ata
- University of Alabama-Birmingham School of Medicine, USA
| | - Nateka L Jackson
- Department of Neurobiology, University of Alabama-Birmingham, USA
| | - Elizabeth J Rahn
- Department of Neurobiology, University of Alabama-Birmingham, USA
| | - Ryne C Ramaker
- Medical Scientist Training Program, University of Alabama-Birmingham, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sara Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Ilan A Kerman
- School of Neuroscience, Virginia Tech University, USA; Department of Psychiatry & Behavioral Medicine, Carilion Clinic, Virginia Tech Carilion School of Medicine, USA
| | | |
Collapse
|
27
|
McCoy CR, Jackson NL, Day J, Clinton SM. Genetic predisposition to high anxiety- and depression-like behavior coincides with diminished DNA methylation in the adult rat amygdala. Behav Brain Res 2016; 320:165-178. [PMID: 27965039 DOI: 10.1016/j.bbr.2016.12.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/22/2016] [Accepted: 12/07/2016] [Indexed: 12/17/2022]
Abstract
Understanding biological mechanisms that shape vulnerability to emotional dysfunction is critical for elucidating the neurobiology of psychiatric illnesses like anxiety and depression. To elucidate molecular and epigenetic alterations in the brain that contribute to individual differences in emotionality, our laboratory utilized a rodent model of temperamental differences. Rats bred for low response to novelty (Low Responders, LRs) are inhibited in novel situations and display high anxiety, helplessness, and diminished sociability compared to High Novelty Responder (HR) rats. Our current transcriptome profiling experiment identified widespread gene expression differences in the amygdala of adult HR/LR rats; we hypothesize that HR/LR gene expression and downstream behavioral differences stem from distinct epigenetic (specifically DNA methylation) patterning in the HR/LR brain. Although we found similar levels of DNA methyltransferase proteins in the adult HR/LR amygdala, next-generation sequencing analysis of the methylome revealed 793 differentially methylated genomic sites between the groups. Most of the differentially methylated sites were hypermethylated in HR versus LR, so we next tested the hypothesis that enhancing DNA methylation in LRs would improve their anxiety/depression-like phenotype. We found that increasing DNA methylation in LRs (via increased dietary methyl donor content) improved their anxiety-like behavior and decreased their typically high levels of Forced Swim Test (FST) immobility; however, dietary methyl donor depletion exacerbated LRs' high FST immobility. These data are generally consistent with findings in depressed patients showing that treatment with DNA methylation-promoting agents improves depressive symptoms, and highlight epigenetic mechanisms that may contribute to individual differences in risk for emotional dysfunction.
Collapse
Affiliation(s)
- Chelsea R McCoy
- School of Neuroscience, Virginia Tech University, Blacksburg, VA 24060, USA
| | - Nateka L Jackson
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham AL, USA
| | - Jeremy Day
- Department of Neurobiology, University of Alabama at Birmingham AL, USA
| | - Sarah M Clinton
- School of Neuroscience, Virginia Tech University, Blacksburg, VA 24060, USA.
| |
Collapse
|
28
|
Morozova A, Zubkov E, Strekalova T, Kekelidze Z, Storozeva Z, Schroeter CA, Bazhenova N, Lesch KP, Cline BH, Chekhonin V. Ultrasound of alternating frequencies and variable emotional impact evokes depressive syndrome in mice and rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 68:52-63. [PMID: 27036099 DOI: 10.1016/j.pnpbp.2016.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 01/06/2023]
Abstract
Emotional stress is primarily triggered by the cognitive processing of negative input; it is regarded as a serious pathogenetic factor of depression that is challenging to model in animals. While available stress paradigms achieve considerable face and construct validity in modelling depressive disorders, broader use of naturalistic stressors instead of the more prevalent models with artificial challenges inducing physical discomfort or pain may substantially contribute to the development of novel antidepressants. Here, we investigated whether a 3-week exposure of Wistar rats and Balb/c mice to unpredictably alternating frequencies of ultrasound between the ranges of 20-25 and 25-45kHz, which are known to correspond with an emotionally negative and with a neutral emotional state, respectively, for small rodents in nature, can induce behavioural and molecular depressive-like changes. Both rats and mice displayed decreased sucrose preference, elevated "despair" behaviour in a swim test, reduced locomotion and social exploration. Rats showed an increased expression of SERT and 5-HT2A receptor, a decreased expression of 5-HT1A receptor in the prefrontal cortex and hippocampus, diminished BDNF on gene and protein levels in the hippocampus. Fluoxetine, administered to rats at the dose of 10mg/kg, largely precluded behavioural depressive-like changes. Thus, the here applied paradigm of emotional stress is generating an experimental depressive state in rodents, which is not related to any physical stressors or pain. In essence, this ultrasound stress model, besides enhancing animal welfare, is likely to provide improved validity in the modelling of clinical depression and may help advance translational research and drug discovery for this disorder.
Collapse
Affiliation(s)
- Anna Morozova
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Eugene Zubkov
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Zurab Kekelidze
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Zinaida Storozeva
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | | | - Nataliia Bazhenova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Brandon H Cline
- INSERM U1119, FMTS, Université de Strasbourg, Faculté de Médecine, Strasbourg, France.
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia.
| |
Collapse
|
29
|
Rana S, Pugh PC, Katz E, Stringfellow SA, Lin CP, Wyss JM, Stauss HM, White CR, Clinton SM, Kerman IA. Independent effects of early-life experience and trait aggression on cardiovascular function. Am J Physiol Regul Integr Comp Physiol 2016; 311:R272-86. [PMID: 27280432 DOI: 10.1152/ajpregu.00505.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
Abstract
Early-life experience (ELE) can significantly affect life-long health and disease, including cardiovascular function. Specific dimensions of emotionality also modify risk of disease, and aggressive traits along with social inhibition have been established as independent vulnerability factors for the progression of cardiovascular disease. Yet, the biological mechanisms mediating these associations remain poorly understood. The present study utilized the inherently stress-susceptible and socially inhibited Wistar-Kyoto rats to determine the potential influences of ELE and trait aggression (TA) on cardiovascular parameters throughout the lifespan. Pups were exposed to maternal separation (MS), consisting of daily 3-h separations of the entire litter from postnatal day (P)1 to P14. The rats were weaned at P21, and as adults were instrumented for chronic radiotelemetry recordings of blood pressure and heart rate (HR). Adult aggressive behavior was assessed using the resident-intruder test, which demonstrated that TA was independent of MS exposure. MS-exposed animals (irrespective of TA) had significantly lower resting HR accompanied by increases in HR variability. No effects of MS on resting blood pressure were detected. In contrast, TA correlated with increased resting mean, systolic, and diastolic arterial pressures but had no effect on HR. TA rats (relative to nonaggressive animals) also manifested increased wall-to-lumen ratio in the thoracic aorta, increased sensitivity to phenylephrine-induced vascular contractility, and increased norepinephrine content in the heart. Together these data suggest that ELE and TA are independent factors that impact baseline cardiovascular function.
Collapse
Affiliation(s)
- Samir Rana
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama; Cell, Molecular, and Developmental Biology, Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Phyllis C Pugh
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Erin Katz
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sara A Stringfellow
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chee Paul Lin
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - J Michael Wyss
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Harald M Stauss
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - C Roger White
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sarah M Clinton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama; School of Neuroscience, Virginia Tech, Blacksburg, Virginia; and
| | - Ilan A Kerman
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama; School of Neuroscience, Virginia Tech, Blacksburg, Virginia; and Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| |
Collapse
|
30
|
Couch Y, Trofimov A, Markova N, Nikolenko V, Steinbusch HW, Chekhonin V, Schroeter C, Lesch KP, Anthony DC, Strekalova T. Low-dose lipopolysaccharide (LPS) inhibits aggressive and augments depressive behaviours in a chronic mild stress model in mice. J Neuroinflammation 2016; 13:108. [PMID: 27184538 PMCID: PMC4867526 DOI: 10.1186/s12974-016-0572-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/06/2016] [Indexed: 12/19/2022] Open
Abstract
Background Aggression, hyperactivity, impulsivity, helplessness and anhedonia are all signs of depressive-like disorders in humans and are often reported to be present in animal models of depression induced by stress or by inflammatory challenges. However, chronic mild stress (CMS) and clinically silent inflammation, during the recovery period after an infection, for example, are often coincident, but comparison of the behavioural and molecular changes that underpin CMS vs a mild inflammatory challenge and impact of the combined challenge is largely unexplored. Here, we examined whether stress-induced behavioural and molecular responses are analogous to lipopolysaccharide (LPS)-induced behavioural and molecular effects and whether their combination is adaptive or maladaptive. Methods Changes in measures of hedonic sensitivity, helplessness, aggression, impulsivity and CNS and systemic cytokine and 5-HT-system-related gene expression were investigated in C57BL/6J male mice exposed to chronic stress alone, low-dose LPS alone or a combination of LPS and stress. Results When combined with a low dose of LPS, chronic stress resulted in an enhanced depressive-like phenotype but significantly reduced manifestations of aggression and hyperactivity. At the molecular level, LPS was a strong inducer of TNFα, IL-1β and region-specific 5-HT2A mRNA expression in the brain. There was also increased serum corticosterone as well as increased TNFα expression in the liver. Stress did not induce comparable levels of cytokine expression to an LPS challenge, but the combination of stress with LPS reduced the stress-induced changes in 5-HT genes and the LPS-induced elevated IL-1β levels. Conclusions It is evident that when administered independently, both stress and LPS challenges induced distinct molecular and behavioural changes. However, at a time when LPS alone does not induce any overt behavioural changes per se, the combination with stress exacerbates depressive and inhibits aggressive behaviours. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0572-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yvonne Couch
- Department of Pharmacology, Oxford University, Mansfield Road, OX1 3QT, Oxford, UK
| | - Alexander Trofimov
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany.,Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229, ER, Maastricht, Netherlands.,Institute of Physiologically Active Compounds, Moscow Region, Russia
| | - Natalyia Markova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229, ER, Maastricht, Netherlands.,Institute of Physiologically Active Compounds, Moscow Region, Russia
| | | | - Harry W Steinbusch
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229, ER, Maastricht, Netherlands
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - Careen Schroeter
- Department of Preventive Medicine, Maastricht Medical Centre Annadal, Maastricht, Netherlands
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany.,Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229, ER, Maastricht, Netherlands
| | - Daniel C Anthony
- Department of Pharmacology, Oxford University, Mansfield Road, OX1 3QT, Oxford, UK.
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229, ER, Maastricht, Netherlands.
| |
Collapse
|
31
|
Genetic background and epigenetic modifications in the core of the nucleus accumbens predict addiction-like behavior in a rat model. Proc Natl Acad Sci U S A 2016; 113:E2861-70. [PMID: 27114539 DOI: 10.1073/pnas.1520491113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study provides a demonstration in the rat of a clear genetic difference in the propensity for addiction-related behaviors following prolonged cocaine self-administration. It relies on the use of selectively bred high-responder (bHR) and low-responder (bLR) rat lines that differ in several characteristics associated with "temperament," including novelty-induced locomotion and impulsivity. We show that bHR rats exhibit behaviors reminiscent of human addiction, including persistent cocaine-seeking and increased reinstatement of cocaine seeking. To uncover potential underlying mechanisms of this differential vulnerability, we focused on the core of the nucleus accumbens and examined expression and epigenetic regulation of two transcripts previously implicated in bHR/bLR differences: fibroblast growth factor (FGF2) and the dopamine D2 receptor (D2). Relative to bHRs, bLRs had lower FGF2 mRNA levels and increased association of a repressive mark on histones (H3K9me3) at the FGF2 promoter. These differences were apparent under basal conditions and persisted even following prolonged cocaine self-administration. In contrast, bHRs had lower D2 mRNA under basal conditions, with greater association of H3K9me3 at the D2 promoter and these differences were no longer apparent following prolonged cocaine self-administration. Correlational analyses indicate that the association of H3K9me3 at D2 may be a critical substrate underlying the propensity to relapse. These findings suggest that low D2 mRNA levels in the nucleus accumbens core, likely mediated via epigenetic modifications, may render individuals more susceptible to cocaine addiction. In contrast, low FGF2 levels, which appear immutable even following prolonged cocaine exposure, may serve as a protective factor.
Collapse
|
32
|
The neurobiology of offensive aggression: Revealing a modular view. Physiol Behav 2015; 146:111-27. [DOI: 10.1016/j.physbeh.2015.04.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 02/03/2023]
|
33
|
Cohen JL, Glover ME, Pugh PC, Fant AD, Simmons RK, Akil H, Kerman IA, Clinton SM. Maternal Style Selectively Shapes Amygdalar Development and Social Behavior in Rats Genetically Prone to High Anxiety. Dev Neurosci 2015; 37:203-14. [PMID: 25791846 DOI: 10.1159/000374108] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/09/2015] [Indexed: 12/24/2022] Open
Abstract
The early-life environment critically influences neurodevelopment and later psychological health. To elucidate neural and environmental elements that shape emotional behavior, we developed a rat model of individual differences in temperament and environmental reactivity. We selectively bred rats for high versus low behavioral response to novelty and found that high-reactive (bred high-responder, bHR) rats displayed greater risk-taking, impulsivity and aggression relative to low-reactive (bred low-responder, bLR) rats, which showed high levels of anxiety/depression-like behavior and certain stress vulnerability. The bHR/bLR traits are heritable, but prior work revealed bHR/bLR maternal style differences, with bLR dams showing more maternal attention than bHRs. The present study implemented a cross-fostering paradigm to examine the contribution of maternal behavior to the brain development and emotional behavior of bLR offspring. bLR offspring were reared by biological bLR mothers or fostered to a bLR or bHR mother and then evaluated to determine the effects on the following: (1) developmental gene expression in the hippocampus and amygdala and (2) adult anxiety/depression-like behavior. Genome-wide expression profiling showed that cross-fostering bLR rats to bHR mothers shifted developmental gene expression in the amygdala (but not hippocampus), reduced adult anxiety and enhanced social interaction. Our findings illustrate how an early-life manipulation such as cross-fostering changes the brain's developmental trajectory and ultimately impacts adult behavior. Moreover, while earlier studies highlighted hippocampal differences contributing to the bHR/bLR phenotypes, our results point to a role of the amygdala as well. Future work will pursue genetic and cellular mechanisms within the amygdala that contribute to bHR/bLR behavior either at baseline or following environmental manipulations. © 2015 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Joshua L Cohen
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Ala., USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
The novelty-seeking phenotype modulates the long-lasting effects of adolescent MDMA exposure. Physiol Behav 2015; 141:190-8. [PMID: 25619952 DOI: 10.1016/j.physbeh.2015.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 12/18/2022]
Abstract
Exposure to drugs such as ethanol or cocaine during adolescence induces alterations in the central nervous system that are modulated by the novelty-seeking trait. Our aim was to evaluate the influence of this trait on the long-term effects of MDMA administration during adolescence on spontaneous behavior and conditioned rewarding effects in adulthood. Adolescent mice were classified as high or low novelty seekers (HNS or LNS) according to the hole-board test and received either MDMA (0, 10 or 20mg/kg PND 33-42) or saline. Three weeks later, having entered adulthood (PND>68), one set of mice performed the elevated plus maze and social interaction tests, while another set performed the conditioning place preference (CPP) test induced by cocaine-(1mg/kg) or MDMA-(1mg/kg). Only HNS mice treated with MDMA during adolescence acquired CPP in adulthood with a non-effective dose of cocaine or MDMA. Although it did not produce changes in motor activity, exposure to MDMA during adolescence was associated with more aggressive behaviors (threat and attack) and increased social contacts in HNS mice, while an anxiolytic effect was noted in LNS mice pre-treated with the highest dose of MDMA (20mg/kg). Administration of MDMA (10 or 20mg/kg) induced a decrease in DA levels in the striatum in LNS mice only and lower striatal serotonin levels in mice treated with the highest MDMA dose. Our findings show that adolescent MDMA exposure results in higher sensitivity to the conditioned reinforcing properties of MDMA and cocaine in adult HNS mice, which suggests that the relationship between exposure to MDMA in adolescence and a higher probability of substance is a feature of high novelty seekers only.
Collapse
|
35
|
Glover ME, Pugh PC, Jackson NL, Cohen JL, Fant AD, Akil H, Clinton SM. Early-life exposure to the SSRI paroxetine exacerbates depression-like behavior in anxiety/depression-prone rats. Neuroscience 2014; 284:775-797. [PMID: 25451292 DOI: 10.1016/j.neuroscience.2014.10.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/26/2022]
Abstract
Selective serotonin reuptake inhibitor (SSRI) antidepressants are the mainstay treatment for the 10-20% of pregnant and postpartum women who suffer major depression, but the effects of SSRIs on their children's developing brain and later emotional health are poorly understood. SSRI use during pregnancy can elicit antidepressant withdrawal in newborns and increase toddlers' anxiety and social avoidance. In rodents, perinatal SSRI exposure increases adult depression- and anxiety-like behavior, although certain individuals are more vulnerable to these effects than others. Our study establishes a rodent model of individual differences in susceptibility to perinatal SSRI exposure, utilizing selectively bred Low Responder (bLR) and High Responder (bHR) rats that were previously bred for high versus low behavioral response to novelty. Pregnant bHR/bLR females were chronically treated with the SSRI paroxetine (10 mg/kg/day p.o.) to examine its effects on offspring's emotional behavior and gene expression in the developing brain. Paroxetine treatment had minimal effect on bHR/bLR dams' pregnancy outcomes or maternal behavior. We found that bLR offspring, naturally prone to an inhibited/anxious temperament, were susceptible to behavioral abnormalities associated with perinatal SSRI exposure (which exacerbated their Forced Swim Test immobility), while high risk-taking bHR offspring were resistant. Microarray studies revealed robust perinatal SSRI-induced gene expression changes in the developing bLR hippocampus and amygdala (postnatal days 7-21), including transcripts involved in neurogenesis, synaptic vesicle components, and energy metabolism. These results highlight the bLR/bHR model as a useful tool to explore the neurobiology of individual differences in susceptibility to perinatal SSRI exposure.
Collapse
Affiliation(s)
- M E Glover
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, USA
| | - P C Pugh
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, USA
| | - N L Jackson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, USA
| | - J L Cohen
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, USA
| | - A D Fant
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - H Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, USA
| | - S M Clinton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, USA.
| |
Collapse
|
36
|
Tzanoulinou S, Riccio O, de Boer MW, Sandi C. Peripubertal stress-induced behavioral changes are associated with altered expression of genes involved in excitation and inhibition in the amygdala. Transl Psychiatry 2014; 4:e410. [PMID: 25004390 PMCID: PMC4119221 DOI: 10.1038/tp.2014.54] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/30/2014] [Accepted: 05/21/2014] [Indexed: 02/07/2023] Open
Abstract
Early-life stress is a critical risk factor for developing psychopathological alterations later in life. This early adverse environment has been modeled in rats by exposure to stress during the peripubertal period-that is, corresponding to childhood and puberty-and has been shown to lead to increased emotionality, decreased sociability and pathological aggression. The amygdala, particularly its central nucleus (CeA), is hyperactivated in this model, consistent with evidence implicating this nucleus in the regulation of social and aggressive behaviors. Here, we investigated potential changes in the gene expression of molecular markers of excitatory and inhibitory neurotransmission in the CeA. We found that peripubertal stress led to an increase in the expression of mRNA encoding NR1 (the obligatory subunit of the N-methyl D-aspartate (NMDA) receptor) but to a reduction in the level of mRNA encoding glutamic acid decarboxylase 67 (GAD67), an enzyme that is critically involved in the activity-dependent synthesis of GABA, and to an increase in the vesicular glutamate transporter 1 (VGLUT1)/vesicular GABA transporter (VGAT) ratio in the CeA. These molecular alterations were present in addition to increased novelty reactivity, sociability deficits and increased aggression. Our results also showed that the full extent of the peripubertal protocol was required for the observed behavioral and neurobiological effects because exposure during only the childhood/prepubertal period (Juvenile Stress) or the male pubertal period (Puberty Stress) was insufficient to elicit the same effects. These findings highlight peripuberty as a period in which stress can lead to long-term programming of the genes involved in excitatory and inhibitory neurotransmission in the CeA.
Collapse
Affiliation(s)
- S Tzanoulinou
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - O Riccio
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - M W de Boer
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - C Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Station 15—ABB 115, Lausanne CH-1015, Switzerland. E-mail:
| |
Collapse
|
37
|
Freund N, MacGillivilray HT, Thompson BS, Lukkes JL, Stanis JJ, Brenhouse HC, Andersen SL. Sex-dependent changes in ADHD-like behaviors in juvenile rats following cortical dopamine depletion. Behav Brain Res 2014; 270:357-63. [PMID: 24861711 DOI: 10.1016/j.bbr.2014.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/04/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023]
Abstract
Reduced cortical dopamine levels have been observed in individuals with attention deficit hyperactivity disorder (ADHD). Global dopamine depletions by 6-hydroxydopamine (6-OHDA; with noradrenergic protection) in neonatal rats produces locomotor hyperactivity, with less known about how cortical depletion modulates risky behaviors. Here, we determined the effect of a medial prefrontal cortex (PFC) 6-OHDA depletions (30-60%) or sham microinjection at postnatal day 11 on behavior in male and female juvenile rats. Separate groups were studied for delay discounting (impulsive choice), novelty-preference, and preferences for cues and environments associated with cocaine (10, 20, and 40 mg/kg), their extinction, and reinstatement with place conditioning. Because PFC D1 receptors play a role in these behaviors, confocal microscopy was used to measure D1-immunoreactive projections to the nucleus accumbens core. Both 6-OHDA males and females increased delay discounting relative to sham controls, although only 6-OHDA females increased novelty preferences. Preferences for cocaine-associated environments, their extinction, and reinstatement with a priming dose of cocaine were reduced in 6-OHDA subjects overall. However, impulsive choice at 5s positively correlated with preferences for cocaine-associated environments in 6-OHDA subjects, but not sham controls. As possible compensation for low dopamine levels, D1-immunoreactivity on traced neurons increased in 6-OHDA females; dopamine levels did not remain low in adolescent 6-OHDA males and D1 did not change. We believe that these modest depletions restricted to the PFC demonstrate the role of dopamine, and not norepinephrine, in understanding these behaviors in other animal models where cortical dopamine is reduced during development.
Collapse
Affiliation(s)
- Nadja Freund
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, 115 Mill Street, Mail Stop 333, Belmont, MA 02478, USA.
| | - Heather T MacGillivilray
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, 115 Mill Street, Mail Stop 333, Belmont, MA 02478, USA
| | - Britta S Thompson
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, 115 Mill Street, Mail Stop 333, Belmont, MA 02478, USA.
| | - Jodi L Lukkes
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, 115 Mill Street, Mail Stop 333, Belmont, MA 02478, USA.
| | - Jessica J Stanis
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, 115 Mill Street, Mail Stop 333, Belmont, MA 02478, USA.
| | - Heather C Brenhouse
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, 115 Mill Street, Mail Stop 333, Belmont, MA 02478, USA.
| | - Susan L Andersen
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, 115 Mill Street, Mail Stop 333, Belmont, MA 02478, USA.
| |
Collapse
|
38
|
Montagud-Romero S, Daza-Losada M, Vidal-Infer A, Maldonado C, Aguilar MA, Miñarro J, Rodríguez-Arias M. The novelty-seeking phenotype modulates the long-lasting effects of intermittent ethanol administration during adolescence. PLoS One 2014; 9:e92576. [PMID: 24658541 PMCID: PMC3962422 DOI: 10.1371/journal.pone.0092576] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/24/2014] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to investigate if a novelty-seeking phenotype mediates the long-lasting consequences of intermittent EtOH intoxication during adolescence. The hole board test was employed to classify adolescent mice as High- or Low-Novelty Seekers. Subsequently, animals were administered ethanol (1.25 or 2.5 g/kg) on two consecutive days at 48-h intervals over a 14-day period. Anxiety levels--measured using the elevated plus maze- spontaneous motor activity and social interaction test were studied 3 weeks later. A different set of mice underwent the same procedure, but received only the 2.5 g/kg dose of ethanol. Three weeks later, in order to induce CPP, the same animals were administered 1 or 6 mg/kg of cocaine or 1 or 2.5 mg/kg MDMA. The results revealed a decrease in aggressive behaviors and an anxiolytic profile in HNS mice and longer latency to explore the novel object by LNS mice. Ethanol exposure enhanced the reinforcing effects of cocaine and MDMA in both groups when CPP was induced with a sub-threshold dose of the drugs. The extinguished cocaine-induced CPP (1 and 6 mg/kg) was reinstated after a priming dose in HNS animals only. Our results confirm that intermittent EtOH administration during adolescence induces long-lasting effects that are manifested in adult life, and that there is an association between these effects and the novelty-seeking phenotype.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Manuel Daza-Losada
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Antonio Vidal-Infer
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Concepción Maldonado
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - María A. Aguilar
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Jose Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
| | - Marta Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
39
|
Flagel SB, Waselus M, Clinton SM, Watson SJ, Akil H. Antecedents and consequences of drug abuse in rats selectively bred for high and low response to novelty. Neuropharmacology 2014; 76 Pt B:425-36. [PMID: 23639434 PMCID: PMC3766490 DOI: 10.1016/j.neuropharm.2013.04.033] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/09/2013] [Accepted: 04/16/2013] [Indexed: 12/22/2022]
Abstract
Human genetic and epidemiological studies provide evidence that only a subset of individuals who experiment with potentially addictive drugs become addicts. What renders some individuals susceptible to addiction remains to be determined, but most would agree that there is no single trait underlying the disorder. However, there is evidence in humans that addiction liability has a genetic component, and that certain personality characteristics related to temperament (e.g. the sensation-seeking trait) are associated with individual differences in addiction liability. Consequently, we have used a selective breeding strategy based on locomotor response to a novel environment to generate two lines of rats with distinct behavioral characteristics. We have found that the resulting phenotypes differ on a number of neurobehavioral dimensions relevant to addiction. Relative to bred low-responder (bLR) rats, bred high-responder (bHR) rats exhibit increased exploratory behavior, are more impulsive, more aggressive, seek stimuli associated with rewards, and show a greater tendency to relapse. We therefore utilize this unique animal model to parse the genetic, neural and environmental factors that contribute to addiction liability. Our work shows that the glucocorticoid receptor (GR), dopaminergic molecules, and members of the fibroblast growth factor family are among the neurotransmitters and neuromodulators that play a role in both the initial susceptibility to addiction as well as the altered neural responses that follow chronic drug exposure. Moreover, our findings suggest that the hippocampus plays a major role in mediating vulnerability to addiction. It is hoped that this work will emphasize the importance of personalized treatment strategies and identify novel therapeutic targets for humans suffering from addictive disorders. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Shelly B Flagel
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Neuroscience Program, University of Michigan, Ann Arbor, MI, USA; Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | |
Collapse
|
40
|
Abstract
Violence is a significant public health problem worldwide. Neurobiological research on violence and aggression attempts to elucidate the cellular and molecular pathways that increase the propensity toward this behavior. Research over the past 40 years has implicated several brain regions and neurotransmitters in aggression, mainly using rodent models. Perhaps the strongest association is the link between serotonin and aggression, which has compelling interactions with the nitric oxide system. Recently, new insights into these relationships have been added as modern techniques allow more sophisticated analyses. This chapter will discuss current developments implicating serotonin and nitric oxide in aggressive behavior. Recently developed high-resolution methods for examining the neurobiological basis of aggression will be considered, with emphasis on future directions for the field.
Collapse
Affiliation(s)
- Tracy A Bedrosian
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 636 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, OH, 43210, USA,
| | | |
Collapse
|
41
|
Clinton SM, Watson SJ, Akil H. High novelty-seeking rats are resilient to negative physiological effects of the early life stress. Stress 2014; 17:97-107. [PMID: 24090131 PMCID: PMC4141530 DOI: 10.3109/10253890.2013.850670] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Exposure to early life stress dramatically impacts adult behavior, physiology, and neuroendocrine function. Using rats bred for novelty-seeking differences and known to display divergent anxiety, depression, and stress vulnerability, we examined the interaction between early life adversity and genetic predisposition for high- versus low-emotional reactivity. Thus, bred Low Novelty Responder (bLR) rats, which naturally exhibit high anxiety- and depression-like behavior, and bred High Novelty Responder (bHR) rats, which show low anxiety/depression together with elevated aggression, impulsivity, and addictive behavior, were subjected to daily 3 h maternal separation (MS) stress postnatal days 1-14. We hypothesized that MS stress would differentially impact adult bHR/bLR behavior, physiology (stress-induced defecation), and neuroendocrine reactivity. While MS stress did not impact bHR and bLR anxiety-like behavior in the open field test and elevated plus maze, it exacerbated bLRs' already high physiological response to stress - stress-induced defecation. In both tests, MS bLR adult offspring showed exaggerated stress-induced defecation compared to bLR controls while bHR offspring were unaffected. MS also selectively impacted bLRs' (but not bHRs') neuroendocrine stress reactivity, producing an exaggerated corticosterone acute stress response in MS bLR versus control bLR rats. These findings highlight how genetic predisposition shapes individuals' response to early life stress. Future work will explore neural mechanisms underlying the distinct behavioral and neuroendocrine consequences of MS in bHR/bLR animals.
Collapse
Affiliation(s)
- Sarah M. Clinton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham
- Corresponding author at: 1720 7 Avenue South SC 745, Birmingham, AL 35233, , phone: 205-975-0312
| | - Stanley J. Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan
| |
Collapse
|
42
|
Tran S, Gerlai R. Individual differences in activity levels in zebrafish (Danio rerio). Behav Brain Res 2013; 257:224-9. [PMID: 24084583 DOI: 10.1016/j.bbr.2013.09.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 12/17/2022]
Abstract
Individual differences and variation in behavioral responses have been identified in many animal species. These differences may be the result of genetic or environmental factors or the interaction between them. Analysis of individual differences in behavior may be important for many reasons. The zebrafish is a powerful model organism that is rapidly gaining popularity in behavioral brain research. However, individual differences have rarely been explored in zebrafish although significant variation in their performance has been reported. In the current study we identified individual differences in activity levels of zebrafish using a genetically heterogeneous population. Groups of zebrafish classified as high, medium, or low activity performers demonstrated consistent activity levels over a period of 7 days, and also in a subsequent open field task, suggesting stable individual differences as opposed to stochastic variation among subjects. We also uncovered a sex dependent relationship between behavioral measures. Female zebrafish in the high activity group preferred the top portion of the tank, whereas low activity females preferred the lower portion but males did not show such a relationship. The relationship between these two behaviors in females implies the potential existence of a behavioral syndrome persisting between contexts. Furthermore, females demonstrated a higher level of consistency in their behavior as compared to males, and the behavioral differences were found to be independent of both body size and weight of the tested subjects. The identification of individual differences in activity levels in zebrafish will allow the investigation of underlying genetic and/or environmental underpinnings.
Collapse
Affiliation(s)
- Steven Tran
- Department of Cell and Systems Biology, University of Toronto at Mississauga, Canada
| | | |
Collapse
|
43
|
Waselus M, Flagel SB, Jedynak JP, Akil H, Robinson TE, Watson SJ. Long-term effects of cocaine experience on neuroplasticity in the nucleus accumbens core of addiction-prone rats. Neuroscience 2013; 248:571-84. [PMID: 23811073 PMCID: PMC3859827 DOI: 10.1016/j.neuroscience.2013.06.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 01/17/2023]
Abstract
Repeated exposure to drugs of abuse is associated with structural plasticity in brain reward pathways. Rats selectively bred for locomotor response to novelty differ on a number of neurobehavioral dimensions relevant to addiction. This unique genetic animal model was used here to examine both pre-existing differences and long-term consequences of repeated cocaine treatment on structural plasticity. Selectively bred high-responder (bHR) and low-responder (bLR) rats received repeated saline or cocaine injections for 9 consecutive days. Escalating doses of cocaine (7.5, 15 and 30 mg/kg) were administered on the first (day 1) and last (day 9) days of treatment and a single injection of the intermediate dose (15 mg/kg) was given on days 2-8. Motor activity in response to escalating doses of cocaine was compared on the first and last days of treatment to assess the acute and sensitized response to the drug. Following prolonged cocaine abstinence (28 days), spine density was examined on terminal dendrites of medium spiny neurons in the nucleus accumbens core. Relative to bLRs, bHRs exhibited increased psychomotor activation in response to both the acute and repeated effects of cocaine. There were no differences in spine density between bHR and bLR rats under basal conditions or following repeated saline treatment. However, spine density differed markedly between these two lines following prolonged cocaine abstinence. All spine types were decreased in cocaine-treated bHRs, while only mushroom spines were decreased in bLRs that received cocaine. Changes in spine density occurred specifically near the branch point of terminal dendrites. These findings indicate that structural plasticity associated with prolonged cocaine abstinence varies markedly in two selected strains of rats that vary on numerous traits relevant to addiction. Thus, genetic factors that contribute to individual variation in the behavioral response to cocaine also influence cocaine-induced structural plasticity.
Collapse
Affiliation(s)
- M Waselus
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | - S B Flagel
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Neuroscience Program, University of Michigan, Ann Arbor, MI, USA; Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - J P Jedynak
- Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| | - H Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| | - T E Robinson
- Neuroscience Program, University of Michigan, Ann Arbor, MI, USA; Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - S J Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
44
|
Duke AA, Bègue L, Bell R, Eisenlohr-Moul T. Revisiting the serotonin-aggression relation in humans: a meta-analysis. Psychol Bull 2013; 139:1148-72. [PMID: 23379963 PMCID: PMC3718863 DOI: 10.1037/a0031544] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The inverse relation between serotonin and human aggression is often portrayed as "reliable," "strong," and "well established" despite decades of conflicting reports and widely recognized methodological limitations. In this systematic review and meta-analysis, we evaluate the evidence for and against the serotonin deficiency hypothesis of human aggression across 4 methods of assessing serotonin: (a) cerebrospinal fluid levels of 5-hydroxyindoleacetic acid (CSF 5-HIAA), (b) acute tryptophan depletion, (c) pharmacological challenge, and (d) endocrine challenge. Results across 175 independent samples and over 6,500 total participants were heterogeneous, but, in aggregate, revealed a small, inverse correlation between serotonin functioning and aggression, anger, and hostility (r = -.12). Pharmacological challenge studies had the largest mean weighted effect size (r = -.21), and CSF 5-HIAA studies had the smallest (r = -.06). Potential methodological and demographic moderators largely failed to account for variability in study outcomes. Notable exceptions included year of publication (effect sizes tended to diminish with time) and self- versus other-reported aggression (other-reported aggression was positively correlated to serotonin functioning). We discuss 4 possible explanations for the pattern of findings: unreliable measures, ambient correlational noise, an unidentified higher order interaction, and a selective serotonergic effect. Finally, we provide 4 recommendations for bringing much needed clarity to this important area of research: acknowledge contradictory findings and avoid selective reporting practices; focus on improving the reliability and validity of serotonin and aggression measures; test for interactions involving personality and/or environmental moderators; and revise the serotonin deficiency hypothesis to account for serotonin's functional complexity.
Collapse
|
45
|
Yen YC, Anderzhanova E, Bunck M, Schuller J, Landgraf R, Wotjak CT. Co-segregation of hyperactivity, active coping styles, and cognitive dysfunction in mice selectively bred for low levels of anxiety. Front Behav Neurosci 2013; 7:103. [PMID: 23966915 PMCID: PMC3744008 DOI: 10.3389/fnbeh.2013.00103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/26/2013] [Indexed: 11/13/2022] Open
Abstract
We established mouse models of extremes in trait anxiety, which are based on selective breeding for low vs. normal vs. high open-arm exploration on the elevated plus-maze. Genetically selected low anxiety-related behavior (LAB) coincided with hyperactivity in the home cage. Given the fact that several psychiatric disorders such as schizophrenia, mania, and attention deficit hyperactivity disorder (ADHD) share hyperactivity symptom, we systematically examined LAB mice with respect to unique and overlapping endophenotypes of the three diseases. To this end Venn diagrams were used as an instrument for discrimination of possible models. We arranged the endophenotypes in Venn diagrams and translated them into different behavioral tests. LAB mice showed elevated levels of locomotion in the open field (OF) test with deficits in habituation, compared to mice bred for normal (NAB) and high anxiety-related behavior (HAB). Cross-breeding of hypoactive HAB and hyperactive LAB mice resulted in offspring showing a low level of locomotion comparable to HAB mice, indicating that the HAB alleles are dominant over LAB alleles in determining the level of locomotion. In a holeboard test, LAB mice spent less time in hole exploration, as shown in patients with schizophrenia and ADHD; however, LAB mice displayed no impairments in social interaction and prepulse inhibition (PPI), implying a unlikelihood of LAB as an animal model of schizophrenia. Although LAB mice displayed hyperarousal, active coping styles, and cognitive deficits, symptoms shared by mania and ADHD, they failed to reveal the classic manic endophenotypes, such as increased hedonia and object interaction. The neuroleptic haloperidol reduced locomotor activity in all mouse lines. The mood stabilizer lithium and the psychostimulant amphetamine, in contrast, selectively reduced hyperactivity in LAB mice. Based on the behavioral and pharmacological profiles, LAB mice are suggested as a novel rodent model of ADHD-like symptoms.
Collapse
Affiliation(s)
- Yi-Chun Yen
- Department of Neuronal Plasticity, Max Planck Institute of Psychiatry Munich, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Cummings JA, Clinton SM, Perry AN, Akil H, Becker JB. Male rats that differ in novelty exploration demonstrate distinct patterns of sexual behavior. Behav Neurosci 2013; 127:47-58. [PMID: 23398441 DOI: 10.1037/a0031528] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High- versus low-novelty exploration predicts a variety of behavioral differences. For example, rats selectively bred for high-novelty exploration (bred-high responders, bHR) exhibit exaggerated aggression, impulsivity, and proclivity to addictive behaviors compared with low-novelty reactive rats (bred-low responders, bLRs), which are characterized by a high anxiety/depressive-like phenotype. Since bHR/bLR rats exhibit differences in dopaminergic circuitry and differential response to rewarding stimuli (i.e., psychostimulants, food), the present study examined whether they also differ in another key hedonic behavior-sex. Thus, adult bHR/bLR males were given five 30-min opportunities to engage in sexual activity with a receptive female. Sexual behavior and motivation were examined and compared between the groups. The bHR/bLR phenotype affected both sexual motivation and behavior, with bLR males demonstrating reduced motivation for sex compared with bHR males (i.e., fewer animals copulated, longer latency to engage in sex). The bHR males required more intromissions at a faster pace per ejaculation than did bLR males. Thus, neurobiological differences that affect motivation for drugs of abuse, aggression, and impulsivity in rats also affect sexual motivation and performance.
Collapse
Affiliation(s)
- Jennifer A Cummings
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
47
|
Perez-Sepulveda JA, Flagel SB, Garcia-Fuster MJ, Slusky RJ, Aldridge JW, Watson S, Akil H. Differential impact of a complex environment on positive affect in an animal model of individual differences in emotionality. Neuroscience 2013; 248:436-47. [PMID: 23806722 DOI: 10.1016/j.neuroscience.2013.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 01/16/2023]
Abstract
Anhedonia, or the inability to experience positive feelings is a hallmark of depression. However, few animal models have relied on decreased positive affect as an index of susceptibility to depression. Rats emit frequency-modulated ultrasonic vocalizations (USVs), designated as "positive" calls in the 50-kHz range. USVs have been associated with pharmacological activation of motivational reward circuits. Here we utilized selectively-bred rats differing in "emotionality" to ask whether there are associated differences in USVs. Rats bred based on locomotor response to novelty and classified as bred High Responders (bHRs) or bred Low Responders (bLRs) exhibit inborn differences in response to environmental cues, stress responsiveness, and depression-like behavior. These animals also exhibit differences in anxiety-like behavior, which are reversed by exposure to environmental complexity (EC). Finally, these animals exhibit unique profiles of responsiveness to rewarding stimuli accompanied with distinct patterns of dopamine regulation. We investigated whether acute and chronic environmental manipulations impacted USVs in bHRs and bLRs. We found that, relative to bLRs, bHRs emitted significantly more 50-kHz USVs. However, if a bLR is accompanied by another bLR, there is a significant increase in 50-kHZ USVs emitted by this phenotype. bHRs emitted increases in 50-kHZ UVSs upon first exposure to EC, whereas bLRs showed a similar increase only after repeated exposure. bLRs' increase in positive affect after chronic EC was coupled with significant positive correlations between corticosterone levels and c-fos mRNA in the accumbens. Conversely, a decline in the rate of positive calls in bHRs after chronic EC was associated with a negative correlation between corticosterone and accumbens c-fos mRNA. These studies demonstrate that inborn differences in emotionality interact with the environment to influence positive affect and underscore the potential interaction between glucocorticoids and the mesolimbic reward circuitry in modulating 50-kHz calls.
Collapse
Affiliation(s)
- J A Perez-Sepulveda
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23219-1534, United States.
| | - S B Flagel
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, United States; Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States
| | - M J Garcia-Fuster
- University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Mallorca, Spain
| | - R J Slusky
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - J W Aldridge
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States
| | - S Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - H Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
48
|
Miczek KA, de Boer SF, Haller J. Excessive aggression as model of violence: a critical evaluation of current preclinical methods. Psychopharmacology (Berl) 2013; 226:445-58. [PMID: 23430160 PMCID: PMC3595336 DOI: 10.1007/s00213-013-3008-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
RATIONALE Preclinical experimental models of pathological aggressive behavior are a sorely understudied and difficult research area. OBJECTIVES How valid, reliable, productive, and informative are the most frequently used animal models of excessive aggressive behavior? METHODS The rationale, key methodological features, supporting data, and arguments as well as their disadvantages and limitations of the most frequently used animal models for excessive aggressive behavior are summarized and their validity and reliability are evaluated. RESULTS Excessive aggressive behavior is validly and reliably seen in (1) a proportion of feral-derived rats and selectively bred mice; (2) rats with compromised adrenal function resulting in a hypoglucocorticoid state; (3) a significant minority of mice, rats, and monkeys after consumption of a moderate dose of alcohol; and (4) resident animals of various species after social instigation. Limitations of these procedures include restrictive animal research regulations, the requirement of expertise in surgical, pharmacological, and behavioral techniques, and the behaviorally impoverished mouse strains that are used in molecular genetics research. Promising recent initiatives for novel experimental models include aggressive behaviors that are evoked by optogenetic stimulation and induced by the manipulation of early social experiences such as isolation rearing or social stress. CONCLUSIONS One of the most significant challenges for animal models of excessive, potentially abnormal aggressive behavior is the characterization of distinctive neurobiological mechanisms that differ from those governing species-typical aggressive behavior. Identifying novel targets for effective intervention requires increased understanding of the distinctive molecular, cellular, and circuit mechanisms for each type of abnormal aggressive behavior.
Collapse
Affiliation(s)
- Klaus A Miczek
- Department of Psychology, Tufts University, Bacon Hall, 530 Boston Ave, Medford, MA 02155, USA.
| | | | | |
Collapse
|
49
|
The role of the serotonergic system at the interface of aggression and suicide. Neuroscience 2013; 236:160-85. [PMID: 23333677 DOI: 10.1016/j.neuroscience.2013.01.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/01/2013] [Accepted: 01/05/2013] [Indexed: 02/07/2023]
Abstract
Alterations in serotonin (5-HT) neurochemistry have been implicated in the aetiology of all major neuropsychiatric disorders, ranging from schizophrenia to mood and anxiety-spectrum disorders. This review will focus on the multifaceted implications of 5-HT-ergic dysfunctions in the pathophysiology of aggressive and suicidal behaviours. After a brief overview of the anatomical distribution of the 5-HT-ergic system in the key brain areas that govern aggression and suicidal behaviours, the implication of 5-HT markers (5-HT receptors, transporter as well as synthetic and metabolic enzymes) in these conditions is discussed. In this regard, particular emphasis is placed on the integration of pharmacological and genetic evidence from animal studies with the findings of human experimental and genetic association studies. Traditional views postulated an inverse relationship between 5-HT and aggression and suicidal behaviours; however, ample evidence has shown that this perspective may be overly simplistic, and that such pathological manifestations may reflect alterations in 5-HT homoeostasis due to the interaction of genetic, environmental and gender-related factors, particularly during early critical developmental stages. The development of animal models that may capture the complexity of such interactions promises to afford a powerful tool to elucidate the pathophysiology of impulsive aggression and suicidability, and identify new effective therapies for these conditions.
Collapse
|
50
|
Stress-induced differences in the limbic system Fos expression are more pronounced in rats differing in responsiveness to novelty than social position. Brain Res Bull 2012; 89:31-40. [DOI: 10.1016/j.brainresbull.2012.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/11/2012] [Accepted: 06/26/2012] [Indexed: 11/21/2022]
|