1
|
Nie X, Cheng R, Hao P, Guo Y, Chen G, Ji L, Jia L. MicroRNA-128-3p Affects Neuronal Apoptosis and Neurobehavior in Cerebral Palsy Rats by Targeting E3 Ubiquitin-Linking Enzyme Smurf2 and Regulating YY1 Expression. Mol Neurobiol 2025; 62:2277-2291. [PMID: 39102109 DOI: 10.1007/s12035-024-04362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/09/2024] [Indexed: 08/06/2024]
Abstract
This study was dedicated to investigating the effects of microRNA-128-3p (miR-128-3p) on neuronal apoptosis and neurobehavior in cerebral palsy (CP) rats via the Smurf2/YY1 axis.In vivo modeling of hypoxic-ischemic (HI) CP was established in neonatal rats. Neurobehavioral tests (geotaxis reflex, cliff avoidance reaction, and grip test) were measured after HI induction. The HI-induced neurological injury was evaluated by HE staining, Nissl staining, TUNEL staining, immunohistochemical staining, and RT-qPCR. The expression of miR-128-3p, Smurf2, and YY1 was determined by RT-qPCR and western blot techniques. Moreover, primary cortical neurons were used to establish the oxygen and glucose deprivation (OGD) model in vitro, cell viability was detected by CCK-8 assay, neuronal apoptosis was assessed by flow cytometry and western blot, and the underlying mechanism between miR-128-3p, Smurf2 and YY1 was verified by bioinformatics analysis, dual luciferase reporter assay, RIP, Co-IP, ubiquitination assay, western blot, and RT-qPCR.In vivo, miR-128-3p and YY1 expression was elevated, and Smurf2 expression was decreased in brain tissues of hypoxic-ischemic CP rats. Downregulation of miR-128-3p or overexpression of Smurf2 improved neurobehavioral performance, reduced neuronal apoptosis, and elevated Nestin and NGF expression in hypoxic-ischemic CP rats, and downregulation of Smurf2 reversed the effects of downregulation of miR-128-3p on neurobehavioral performance, neuronal apoptosis, and Nestin and NGF expression in hypoxic-ischemic CP rats, while overexpression of YY1 reversed the effects of Smurf2 on neurobehavioral performance, neuronal apoptosis, and Nestin and NGF expression in hypoxic-ischemic CP rats. In vitro, downregulation of miR-128-3p effectively promoted the neuronal survival, reduced the apoptosis rate, and decreased caspase3 protein expression after OGD, and overexpression of YY1 reversed the ameliorative effect of downregulation of miR-128-3p on OGD-induced neuronal injury. miR-128-3p targeted to suppress Smurf2 to lower YY1 ubiquitination degradation and decrease its expression.Inhibition of miR-128-3p improves neuronal apoptosis and neurobehavioral changes in hypoxic-ischemic CP rats by promoting Smurf2 to promote YY1 ubiquitination degradation and reduce YY1 expression.
Collapse
Affiliation(s)
- Xiaoqi Nie
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Rui Cheng
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Pengfei Hao
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
- Shanxi Medical University, Taiyuan, 030607, Shanxi, China
| | - Yuhong Guo
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Gang Chen
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Lei Ji
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China
| | - Lu Jia
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29, Shuangta East Street, Yingze District, Taiyuan, 030012, Shanxi, China.
| |
Collapse
|
2
|
Santos da Silva Calado CM, Manhães-de-Castro R, Souza VDS, Cavalcanti Bezerra Gouveia HJ, da Conceição Pereira S, da Silva MM, Albuquerque GLD, Lima BMP, Lira AVSMD, Toscano AE. Early-life malnutrition role in memory, emotional behavior and motor impairments in early brain lesions with potential for neurodevelopmental disorders: a systematic review with meta-analysis. Nutr Neurosci 2025; 28:171-193. [PMID: 38963807 DOI: 10.1080/1028415x.2024.2361572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
OBJECTIVES The present study aims to evaluate the impact of early exposure to brain injury and malnutrition on episodic memory and behavior. METHODS For this, a systematic review was carried out in the Medline/Pubmed, Web of Science, Scopus, and LILACS databases with no year or language restrictions. RESULTS Initially, 1759 studies were detected. After screening, 53 studies remained to be read in full. The meta-analysis demonstrated that exposure to double insults worsens episodic recognition memory but does not affect spatial memory. Early exposure to low-protein diets has been demonstrated to aggravate locomotor and masticatory sequelae. Furthermore, it reduces the weight of the soleus muscle and the muscle fibers of the masseter and digastric muscles. Early exposure to high-fat diets promotes an increase in oxidative stress and inflammation in the brain, increasing anxiety- and depression-like behavior and reducing locomotion. DISCUSSION Epigenetic modifications were noted in the hippocampus, hypothalamus, and prefrontal cortex depending on the type of dietetic exposure in early life. These findings demonstrate the impact of the double insult on regions involved in cognitive and behavioral processes. Additional studies are essential to understand the real impact of the double insults in the critical period.
Collapse
Affiliation(s)
- Caio Matheus Santos da Silva Calado
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Raul Manhães-de-Castro
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Vanessa da Silva Souza
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Henrique José Cavalcanti Bezerra Gouveia
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Sabrina da Conceição Pereira
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Márcia Maria da Silva
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Glayciele Leandro de Albuquerque
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | - Bruno Monteiro Paiva Lima
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
| | | | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife-Pernambuco, Brazil
- Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Vitória de Santo Antão-Pernambuco, Brazil
| |
Collapse
|
3
|
Castro ET, Ribeiro RT, Carvalho AVS, Machado DN, Zemniaçak ÂB, Palavro R, de Azevedo Cunha S, Tavares TQ, de Souza DOG, Netto CA, Leipnitz G, Amaral AU, Wajner M. Impairment of neuromotor development and cognition associated with histopathological and neurochemical abnormalities in the cerebral cortex and striatum of glutaryl-CoA dehydrogenase deficient mice. Neurochem Int 2024; 181:105898. [PMID: 39522695 DOI: 10.1016/j.neuint.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Patients with glutaric acidemia type I (GA I) manifest motor and intellectual disabilities whose pathogenesis has been so far poorly explored. Therefore, we evaluated neuromotor and cognitive abilities, as well as histopathological and immunohistochemical features in the cerebral cortex and striatum of glutaryl-CoA dehydrogenase (GCDH) deficient knockout mice (Gcdh-/-), a well-recognized model of GA I. The effects of a single intracerebroventricular glutaric acid (GA) injection in one-day-old pups on the same neurobehavioral and histopathological/immunohistochemical endpoints were also investigated. Seven-day-old Gcdh-/- mice presented altered gait, whereas those receiving a GA neonatal administration manifested other sensorimotor deficits, including an abnormal response to negative geotaxis, cliff aversion and righting reflex, and muscle tone impairment. Compared to the WT mice, adult Gcdh-/- mice exhibited motor impairment, evidenced by poor performance in the Rota-rod test. Furthermore, neonatal GA administration provoked long-standing short- and long-term memory impairment in adult Gcdh-/- mice. Regarding the histopathological features, a significant increase in vacuoles and neurodegenerative cells was observed in both the cerebral cortex and striatum of 15- and 60-day-old Gcdh-/- mice and was more pronounced in mice injected with GA. Neuronal loss (decrease of NeuN staining) was also significantly increased in the cerebral cortex and striatum of Gcdh-/- mice, particularly in those neonatally injected with GA. In contrast, immunohistochemistry of MBP, astrocytic proteins GFAP and S100B, and the microglial marker Iba1 was not changed in 60-day-old Gcdh-/- mice, suggesting no myelination disturbance, reactive astrogliosis, and microglia activation, respectively. These data highlight the neurotoxicity of GA and the importance of early treatment aiming to decrease GA accumulation at early stages of development to prevent brain damage and learning/memory disabilities in GA I patients.
Collapse
Affiliation(s)
- Ediandra Tissot Castro
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Rafael Teixeira Ribeiro
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | | | - Diorlon Nunes Machado
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Ângela Beatris Zemniaçak
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Rafael Palavro
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Sâmela de Azevedo Cunha
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Tailine Quevedo Tavares
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | | | - Carlos Alexandre Netto
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil; Departamento de Medicina Interna, Faculdade de Medicina, UFRGS, Porto Alegre, Brazil
| | - Guilhian Leipnitz
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil
| | - Alexandre Umpierrez Amaral
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil; PPG Atenção Integral à Saúde (UNICRUZ/URI-Erechim/UNIJUÍ), URI, Erechim, Brazil
| | - Moacir Wajner
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, ICBS, UFRGS, Porto Alegre, Brazil; Departamento de Medicina Interna, Faculdade de Medicina, UFRGS, Porto Alegre, Brazil; Serviço de Genética Médica, HCPA, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Machado DN, Durán-Carabali LE, Odorcyk FK, Carvalho AVS, Martini APR, Schlemmer LM, de Mattos MDM, Bernd GP, Dalmaz C, Netto CA. Bumetanide Attenuates Cognitive Deficits and Brain Damage in Rats Subjected to Hypoxia-Ischemia at Two Time Points of the Early Postnatal Period. Neurotox Res 2023; 41:526-545. [PMID: 37378827 DOI: 10.1007/s12640-023-00654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Neonatal hypoxia-ischemia (HI) is one of the main causes of tissue damage, cell death, and imbalance between neuronal excitation and inhibition and synaptic loss in newborns. GABA, the major inhibitory neurotransmitter of the central nervous system (CNS) in adults, is excitatory at the onset of neurodevelopment and its action depends on the chloride (Cl-) cotransporters NKCC1 (imports Cl-) and KCC2 (exports Cl-) expression. Under basal conditions, the NKCC1/KCC2 ratio decreases over neurodevelopment. Thus, changes in this ratio caused by HI may be related to neurological disorders. The present study evaluated the effects of bumetanide (NKCC cotransporters inhibitor) on HI impairments in two neurodevelopmental periods. Male Wistar rat pups, 3 (PND3) and 11 (PND11) days old, were submitted to the Rice-Vannucci model. Animals were divided into 3 groups: SHAM, HI-SAL, and HI-BUM, considering each age. Bumetanide was administered intraperitoneally at 1, 24, 48, and 72 h after HI. NKCC1, KCC2, PSD-95, and synaptophysin proteins were analyzed after the last injection by western blot. Negative geotaxis, righting reflex, open field, object recognition test, and Morris water maze task were performed to assess neurological reflexes, locomotion, and memory function. Tissue atrophy and cell death were evaluated by histology. Bumetanide prevented neurodevelopmental delay, hyperactivity, and declarative and spatial memory deficits. Furthermore, bumetanide reversed HI-induced brain tissue damage, reduced neuronal death and controlled GABAergic tone, maintained the NKCC1/KCC2 ratio, and synaptogenesis close to normality. Thereby, bumetanide appears to play an important therapeutic role in the CNS, protecting the animals against HI damage and improving functional performance.
Collapse
Affiliation(s)
- Diorlon Nunes Machado
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil.
| | - Luz Elena Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Kawa Odorcyk
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andrey Vinicios Soares Carvalho
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Ana Paula Rodrigues Martini
- Graduate Program in Biological Sciences: Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Livia Machado Schlemmer
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Marcel de Medeiros de Mattos
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Gabriel Pereira Bernd
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Carla Dalmaz
- Departament of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Departament of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Departament of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
5
|
de Almeida W, Deniz BF, Souza Dos Santos A, Faustino AM, Ramires Junior OV, Schmitz F, Varela APM, Teixeira TF, Sesterheim P, Marques da Silva F, Roehe PM, Wyse AT, Pereira LO. Zika Virus affects neurobehavioral development, and causes oxidative stress associated to blood-brain barrier disruption in a rat model of congenital infection. Brain Behav Immun 2023; 112:29-41. [PMID: 37146656 DOI: 10.1016/j.bbi.2023.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/16/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus associated with several neurodevelopmental outcomes after in utero infection. Here, we studied a congenital ZIKV infection model with immunocompetent Wistar rats, able to predict disabilities and that could pave the way for proposing new effective therapies. We identified neurodevelopmental milestones disabilities in congenital ZIKV animals. Also, on 22nd postnatal day (PND), blood-brain barrier (BBB) proteins disturbances were detected in the hippocampus with immunocontent reduction of β_Catenin, Occludin and Conexin-43. Besides, oxidative stress imbalance on hippocampus and cortex were identified, without neuronal reduction in these structures. In conclusion, even without pups' microcephaly-like phenotype, congenital ZIKV infection resulted in neurobehavioral dysfunction associated with BBB and oxidative stress disturbances in young rats. Therefore, our findings highlighted the multiple impact of the congenital ZIKV infection on the neurodevelopment, which reinforces the continuity of studies to understand the spectrum of this impairment and to provide support to future treatment development for patients affected by congenital ZIKV.
Collapse
Affiliation(s)
- Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Ferrary Deniz
- Departamento de Fisiologia e Farmacologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Martins Faustino
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Osmar Vieira Ramires Junior
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Schmitz
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Paula Muterle Varela
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Thais Fumaco Teixeira
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Ciências da Saúde: Cardiologia, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, RS, Brazil; Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Marques da Silva
- Programa de Pós-Graduação em Ciências da Saúde: Cardiologia, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, RS, Brazil
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Ts Wyse
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Silva de Carvalho T, Singh V, Mohamud Yusuf A, Wang J, Schultz Moreira AR, Sanchez-Mendoza EH, Sardari M, Nascentes Melo LM, Doeppner TR, Kehrmann J, Scholtysik R, Hitpass L, Gunzer M, Hermann DM. Post-ischemic protein restriction induces sustained neuroprotection, neurological recovery, brain remodeling, and gut microbiota rebalancing. Brain Behav Immun 2022; 100:134-144. [PMID: 34848338 DOI: 10.1016/j.bbi.2021.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Moderate dietary protein restriction confers neuroprotection when applied before ischemic stroke. How a moderately protein-reduced diet influences stroke recovery when administered after stroke, is a clinically relevant question. This question has not yet been investigated. METHODS Male C57BL6/J mice were exposed to transient intraluminal middle cerebral artery occlusion. Immediately after the stroke, mice were randomized to two normocaloric diets: a moderately protein-reduced diet containing 8% protein (PRD) or normal diet containing 20% protein (ND). Post-stroke neurological deficits were evaluated by a comprehensive test battery. Antioxidant and neuroinflammatory responses in the brain and liver were evaluated by Western blot and RTqPCR. Stroke-induced brain injury, microvascular integrity, glial responses, and neuroplasticity were assessed by immunohistochemistry. Fecal microbiota analysis was performed using 16S ribosomal RNA amplicon sequencing. RESULTS We show that PRD reduces brain infarct volume after three days and enhances neurological and, specifically, motor-coordination recovery over six weeks in stroke mice. The recovery-promoting effects of PRD were associated with increased antioxidant responses and reduced neuroinflammation. Histochemical studies revealed that PRD increased long-term neuronal survival, increased peri-infarct microvascular density, reduced microglia/macrophage accumulation, increased contralesional pyramidal tract plasticity, and reduced brain atrophy. Fecal microbiota analysis showed reduced bacterial richness and diversity in ischemic mice on ND starting at 7 dpi. PRD restored bacterial richness and diversity at these time points. CONCLUSION Moderate dietary protein restriction initiated post-ischemic stroke induces neurological recovery, brain remodeling, and neuroplasticity in mice by mechanisms involving antiinflammation and, in the post-acute phase, commensal gut microbiota rebalancing.
Collapse
Affiliation(s)
- Tayana Silva de Carvalho
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Jing Wang
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Adriana R Schultz Moreira
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Eduardo H Sanchez-Mendoza
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | - Maryam Sardari
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany; Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Luiza M Nascentes Melo
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany
| | | | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, Essen, Germany
| | - Rene Scholtysik
- Institute of Cell Biology, University Hospital Essen, Essen, Germany
| | - Ludger Hitpass
- Institute of Cell Biology, University Hospital Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany; Leibniz-Institut für Analytische Wissenschaften ISAS e.V, Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany; Center for Translational and Behavioral Neurosciences, University Hospital Essen, Essen, Germany.
| |
Collapse
|
7
|
Ovcjak A, Xiao A, Kim JS, Xu B, Szeto V, Turlova E, Abussaud A, Chen NH, Miller SP, Sun HS, Feng ZP. Ryanodine receptor inhibitor dantrolene reduces hypoxic-ischemic brain injury in neonatal mice. Exp Neurol 2022; 351:113985. [DOI: 10.1016/j.expneurol.2022.113985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/04/2022]
|
8
|
Sanches EF, Carvalho AS, van de Looij Y, Toulotte A, Wyse AT, Netto CA, Sizonenko SV. Experimental cerebral palsy causes microstructural brain damage in areas associated to motor deficits but no spatial memory impairments in the developing rat. Brain Res 2021; 1761:147389. [PMID: 33639200 DOI: 10.1016/j.brainres.2021.147389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Cerebral palsy (CP) is the major cause of motor and cognitive impairments during childhood. CP can result from direct or indirect structural injury to the developing brain. In this study, we aimed to describe brain damage and behavioural alterations during early adult life in a CP model using the combination of maternal inflammation, perinatal anoxia and postnatal sensorimotor restriction. METHODS Pregnant Wistar rats were injected intraperitoneally with 200 µg/kg LPS at embryonic days E18 and E19. Between 3 and 6 h after birth (postnatal day 0 - PND0), pups of both sexes were exposed to anoxia for 20 min. From postnatal day 2 to 21, hindlimbs of animals were immobilized for 16 h daily during their active phase. From PND40, locomotor and cognitive tests were performed using Rota-Rod, Ladder Walking and Morris water Maze. Ex-vivo MRI Diffusion Tensor Imaging (DTI) and Neurite Orientation Dispersion and Density Imaging (NODDI) were used to assess macro and microstructural damage and brain volume alterations induced by the model. Myelination and expression of neuronal, astroglial and microglial markers, as well as apoptotic cell death were evaluated by immunofluorescence. RESULTS CP animals showed decreased body weight, deficits in gross (rota-rod) and fine (ladder walking) motor tasks compared to Controls. No cognitive impairments were observed. Ex-vivo MRI showed decreased brain volumes and impaired microstructure in the cingulate gyrus and sensory cortex in CP brains. Histological analysis showed increased cell death, astrocytic reactivity and decreased thickness of the corpus callosum and altered myelination in CP animals. Hindlimb primary motor cortex analysis showed increased apoptosis in CP animals. Despite the increase in NeuN and GFAP, no differences between groups were observed as well as no co-localization with the apoptotic marker. However, an increase in Iba-1+ microglia with co-localization to cleaved caspase 3 was observed. CONCLUSION Our results suggest that experimental CP induces long-term brain microstructural alterations in myelinated structures, cell death in the hindlimb primary motor cortex and locomotor impairments. Such new evidence of brain damage could help to better understand CP pathophysiological mechanisms and guide further research for neuroprotective and neurorehabilitative strategies for CP patients.
Collapse
Affiliation(s)
- E F Sanches
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - A S Carvalho
- Post-graduation Program of Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil
| | - Y van de Looij
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging - Animal Imaging and Technology (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - A Toulotte
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - A T Wyse
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - C A Netto
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - S V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
PIEŠOVÁ M, KOPRDOVÁ R, UJHÁZY E, KRŠKOVÁ L, OLEXOVÁ L, MOROVÁ M, SENKO T, MACH M. Impact of Prenatal Hypoxia on the Development and Behavior of the Rat Offspring. Physiol Res 2020. [DOI: 10.33549/physiolres.934614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The healthy development of the fetus depends on the exact course of pregnancy and delivery. Therefore, prenatal hypoxia remains between the greatest threats to the developing fetus. Our study aimed to assess the impact of prenatal hypoxia on postnatal development and behavior of the rats, whose mothers were exposed to hypoxia (10.5 % O2) during a critical period of brain development on GD20 for 12 h. This prenatal insult resulted in a delay of sensorimotor development of hypoxic pups compared to the control group. Hypoxic pups also had lowered postnatal weight which in males persisted up to adulthood. In adulthood, hypoxic males showed anxiety-like behavior in the OF, higher sucrose preference, and lower levels of grimace scale (reflecting the degree of negative emotions) in the immobilization chamber compared to the control group. Moreover, hypoxic animals showed hyperactivity in EPM and LD tests, and hypoxic females had reduced sociability compared to the control group. In conclusion, our results indicate a possible relationship between prenatal hypoxia and changes in sociability, activity, and impaired emotion regulation in ADHD, ASD, or anxiety disorders. The fact that changes in observed parameters are manifested mostly in males confirms that male sex is more sensitive to prenatal insults.
Collapse
Affiliation(s)
- M PIEŠOVÁ
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - R KOPRDOVÁ
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - E UJHÁZY
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - L KRŠKOVÁ
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - L OLEXOVÁ
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - M MOROVÁ
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - T SENKO
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - M MACH
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
10
|
Bradford A, Hernandez M, Kearney E, Theriault L, Lim YP, Stonestreet BS, Threlkeld SW. Effects of Juvenile or Adolescent Working Memory Experience and Inter-Alpha Inhibitor Protein Treatment after Neonatal Hypoxia-Ischemia. Brain Sci 2020; 10:E999. [PMID: 33348631 PMCID: PMC7765798 DOI: 10.3390/brainsci10120999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Hypoxic-Ischemic (HI) brain injury in the neonate contributes to life-long cognitive impairment. Early diagnosis and therapeutic interventions are critical but limited. We previously reported in a rat model of HI two interventional approaches that improve cognitive and sensory function: administration of Inter-alpha Inhibitor Proteins (IAIPs) and early experience in an eight-arm radial water maze (RWM) task. Here, we expanded these studies to examine the combined effects of IAIPs and multiple weeks of RWM assessment beginning with juvenile or adolescent rats to evaluate optimal age windows for behavioral interventions. Subjects were divided into treatment groups; HI with vehicle, sham surgery with vehicle, and HI with IAIPs, and received either juvenile (P31 initiation) or adolescent (P52 initiation) RWM testing, followed by adult retesting. Error rates on the RWM decreased across weeks for all conditions. Whereas, HI injury impaired global performance as compared to shams. IAIP-treated HI subjects tested as juveniles made fewer errors as compared to their untreated HI counterparts. The juvenile group made significantly fewer errors on moderate demand trials and showed improved retention as compared to the adolescent group during the first week of adult retesting. Together, results support and extend our previous findings that combining behavioral and anti-inflammatory interventions in the presence of HI improves subsequent learning performance. Results further indicate sensitive periods for behavioral interventions to improve cognitive outcomes. Specifically, early life cognitive experience can improve long-term learning performance even in the presence of HI injury. Results from this study provide insight into typical brain development and the impact of developmentally targeted therapeutics and task-specific experience on subsequent cognitive processing.
Collapse
Affiliation(s)
- Aaron Bradford
- Neuroscience Program, School of Health Sciences, Regis College, 235 Wellesley Street, Weston, MA 02493, USA; (A.B.); (M.H.); (E.K.); (L.T.)
| | - Miranda Hernandez
- Neuroscience Program, School of Health Sciences, Regis College, 235 Wellesley Street, Weston, MA 02493, USA; (A.B.); (M.H.); (E.K.); (L.T.)
| | - Elaine Kearney
- Neuroscience Program, School of Health Sciences, Regis College, 235 Wellesley Street, Weston, MA 02493, USA; (A.B.); (M.H.); (E.K.); (L.T.)
| | - Luke Theriault
- Neuroscience Program, School of Health Sciences, Regis College, 235 Wellesley Street, Weston, MA 02493, USA; (A.B.); (M.H.); (E.K.); (L.T.)
| | - Yow-Pin Lim
- ProThera Biologics, Inc., 349 Eddy Street, Providence, RI 02903, USA;
- Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Barbara S. Stonestreet
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA;
| | - Steven W. Threlkeld
- Neuroscience Program, School of Health Sciences, Regis College, 235 Wellesley Street, Weston, MA 02493, USA; (A.B.); (M.H.); (E.K.); (L.T.)
| |
Collapse
|
11
|
Durán-Carabali LE, Sanches EF, Odorcyk FK, Nicola F, Mestriner RG, Reichert L, Aristimunha D, Pagnussat AS, Netto CA. Tissue Injury and Astrocytic Reaction, But Not Cognitive Deficits, Are Dependent on Hypoxia Duration in Very Immature Rats Undergoing Neonatal Hypoxia-Ischemia. Neurochem Res 2019; 44:2631-2642. [PMID: 31564017 DOI: 10.1007/s11064-019-02884-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
Preterm birth and hypoxia-ischemia (HI) are major causes of neonatal death and neurological disabilities in newborns. The widely used preclinical HI model combines carotid occlusion with hypoxia exposure; however, the relationship between different hypoxia exposure periods with brain tissue loss, astrocyte reactivity and behavioral impairments following HI is lacking. Present study evaluated HI-induced behavioral and morphological consequences in rats exposed to different periods of hypoxia at postnatal day 3. Wistar rats of both sexes were assigned into four groups: control group, HI-120 min, HI-180 min and HI-210 min. Neurodevelopmental reflexes, exploratory abilities and cognitive function were assessed. At adulthood, tissue damage and reactive astrogliosis were measured. Animals exposed to HI-180 and HI-210 min had delayed neurodevelopmental reflexes compared to control group. Histological assessment showed tissue loss that was restricted to the ipsilateral hemisphere in lower periods of hypoxia exposure (120 and 180 min) but affected both hemispheres when 210 min was used. Reactive astrogliosis was increased only after 210 min of hypoxia. Interestingly, cognitive deficits were induced regardless the duration of hypoxia and there were correlations between behavioral parameters and cortex, hippocampus and corpus callosum volumes. These results show the duration of hypoxia has a close relationship with astrocytic response and tissue damage progression. Furthermore, the long-lasting cognitive memory deficit and its association with brain structures beyond the hippocampus suggests that complex anatomical changes should be involved in functional alterations taking place as hypoxia duration is increased, even when the cognitive impairment limit is achieved.
Collapse
Affiliation(s)
- L E Durán-Carabali
- Post-graduation Program of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil.
| | - E F Sanches
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - F K Odorcyk
- Post-graduation Program of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - F Nicola
- Post-graduation Program of Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - R G Mestriner
- Neurorehabilitation and Neural Repair Research Group, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - L Reichert
- Neurorehabilitation and Neural Repair Research Group, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - D Aristimunha
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - A S Pagnussat
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - C A Netto
- Post-graduation Program of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil.,Post-graduation Program of Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Cormack BE, Harding JE, Miller SP, Bloomfield FH. The Influence of Early Nutrition on Brain Growth and Neurodevelopment in Extremely Preterm Babies: A Narrative Review. Nutrients 2019; 11:E2029. [PMID: 31480225 PMCID: PMC6770288 DOI: 10.3390/nu11092029] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/29/2022] Open
Abstract
Extremely preterm babies are at increased risk of less than optimal neurodevelopment compared with their term-born counterparts. Optimising nutrition is a promising avenue to mitigate the adverse neurodevelopmental consequences of preterm birth. In this narrative review, we summarize current knowledge on how nutrition, and in particular, protein intake, affects neurodevelopment in extremely preterm babies. Observational studies consistently report that higher intravenous and enteral protein intakes are associated with improved growth and possibly neurodevelopment, but differences in methodologies and combinations of intravenous and enteral nutrition strategies make it difficult to determine the effects of each intervention. Unfortunately, there are few randomized controlled trials of nutrition in this population conducted to determine neurodevelopmental outcomes. Substantial variation in reporting of trials, both of nutritional intakes and of outcomes, limits conclusions from meta-analyses. Future studies to determine the effects of nutritional intakes in extremely preterm babies need to be adequately powered to assess neurodevelopmental outcomes separately in boys and girls, and designed to address the many potential confounders which may have clouded research findings to date. The development of minimal reporting sets and core outcome sets for nutrition research will aid future meta-analyses.
Collapse
Affiliation(s)
- Barbara E Cormack
- Starship Child Health, Auckland City Hospital, Auckland 1023, New Zealand
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Jane E Harding
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Steven P Miller
- Department of Paediatrics, Hospital for Sick Children, Toronto, ON M5G, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON M5S, Canada
| | - Frank H Bloomfield
- Starship Child Health, Auckland City Hospital, Auckland 1023, New Zealand.
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
13
|
Moderate Protein Restriction Protects Against Focal Cerebral Ischemia in Mice by Mechanisms Involving Anti-inflammatory and Anti-oxidant Responses. Mol Neurobiol 2019; 56:8477-8488. [PMID: 31257559 PMCID: PMC6835038 DOI: 10.1007/s12035-019-01679-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/10/2019] [Indexed: 12/02/2022]
Abstract
Food composition influences stroke risk, but its effects on ischemic injury and neurological deficits are poorly examined. While severe reduction of protein content was found to aggravate neurological impairment and brain injury as a consequence of combined energy-protein malnutrition, moderate protein restriction not resulting in energy deprivation was recently suggested to protect against perinatal hypoxia-ischemia. Male C57BL6/j mice were exposed to moderate protein restriction by providing a normocaloric diet containing 8% protein (control: 20% protein) for 7, 14, or 30 days. Intraluminal middle cerebral artery occlusion was then induced. Mice were sacrificed 24 h later. Irrespective of the duration of food modification (that is, 7–30 days), protein restriction reduced neurological impairment of ischemic mice revealed by a global and focal deficit score. Prolonged protein restriction over 30 days also reduced infarct volume, brain edema, and blood-brain barrier permeability and increased the survival of NeuN+ neurons in the core of the stroke (i.e., striatum). Neuroprotection by prolonged protein restriction went along with reduced brain infiltration of CD45+ leukocytes and reduced expression of inducible NO synthase and interleukin-1β. As potential mechanisms, increased levels of the NAD-dependent deacetylase sirtuin-1 and anti-oxidant glutathione peroxidase-3 were noted in ischemic brain tissue. Irrespective of the protein restriction duration, a shift from pro-oxidant oxidative stress markers (NADPH oxidase-4) to anti-oxidant markers (superoxide dismutase-1/2, glutathione peroxidase-3 and catalase) was found in the liver. Moderate protein restriction protects against ischemia in the adult brain. Accordingly, dietary modifications may be efficacious strategies promoting stroke outcome.
Collapse
|
14
|
Yang XL, Wang X, Shao L, Jiang GT, Min JW, Mei XY, He XH, Liu WH, Huang WX, Peng BW. TRPV1 mediates astrocyte activation and interleukin-1β release induced by hypoxic ischemia (HI). J Neuroinflammation 2019; 16:114. [PMID: 31142341 PMCID: PMC6540554 DOI: 10.1186/s12974-019-1487-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a serious birth complication with high incidence in both advanced and developing countries. Children surviving from HIE often have severe long-term sequela including cerebral palsy, epilepsy, and cognitive disabilities. The severity of HIE in infants is tightly associated with increased IL-1β expression and astrocyte activation which was regulated by transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel in the TRP family. METHODS Neonatal hypoxic ischemia (HI) and oxygen-glucose deprivation (OGD) were used to simulate HIE in vivo and in vitro. Primarily cultured astrocytes were used for investigating the expression of glial fibrillary acidic protein (GFAP), IL-1β, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and activation of the nucleotide-binding, oligomerization domain (NOD)-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome by using Western blot, q-PCR, and immunofluorescence. Brain atrophy, infarct size, and neurobehavioral disorders were evaluated by Nissl staining, 2,3,5-triphenyltetrazolium chloride monohydrate (TTC) staining and neurobehavioral tests (geotaxis reflex, cliff aversion reaction, and grip test) individually. RESULTS Astrocytes were overactivated after neonatal HI and OGD challenge. The number of activated astrocytes, the expression level of IL-1β, brain atrophy, and shrinking infarct size were all downregulated in TRPV1 KO mice. TRPV1 deficiency in astrocytes attenuated the expression of GFAP and IL-1β by reducing phosphorylation of JAK2 and STAT3. Meanwhile, IL-1β release was significantly reduced in TRPV1 deficiency astrocytes by inhibiting activation of NLRP3 inflammasome. Additionally, neonatal HI-induced neurobehavioral disorders were significantly improved in the TRPV1 KO mice. CONCLUSIONS TRPV1 promotes activation of astrocytes and release of astrocyte-derived IL-1β mainly via JAK2-STAT3 signaling and activation of the NLRP3 inflammasome. Our findings provide mechanistic insights into TRPV1-mediated brain damage and neurobehavioral disorders caused by neonatal HI and potentially identify astrocytic TRPV1 as a novel therapeutic target for treating HIE in the subacute stages (24 h).
Collapse
Affiliation(s)
- Xing-Liang Yang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Xin Wang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Lin Shao
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Guang-Tong Jiang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Jia-Wei Min
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Xi-Yu Mei
- No.1 Middle School affiliated to Central China Normal University, Wuhan, China
| | - Xiao-Hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wan-Hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Xian Huang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China. .,Department of Pathology, Renmin Hospital of Wuhan University, Jiefang Rd238#, Wuhan, 430071, Hubei, China.
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.
| |
Collapse
|
15
|
Durán-Carabali L, Arcego D, Sanches E, Odorcyk F, Marques M, Tosta A, Reichert L, Carvalho A, Dalmaz C, Netto C. Preventive and therapeutic effects of environmental enrichment in Wistar rats submitted to neonatal hypoxia-ischemia. Behav Brain Res 2019; 359:485-497. [DOI: 10.1016/j.bbr.2018.11.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/14/2018] [Accepted: 11/24/2018] [Indexed: 12/27/2022]
|
16
|
Deniz BF, Confortim HD, Deckmann I, Miguel PM, Bronauth L, de Oliveira BC, Vieira MC, Dos Santos TM, Bertó CG, Hartwig J, Wyse ÂTDS, Pereira LO. Gestational folic acid supplementation does not affects the maternal behavior and the early development of rats submitted to neonatal hypoxia-ischemia but the high supplementation impairs the dam's memory and the Na +, K + - ATPase activity in the pup's hippocampus. Int J Dev Neurosci 2018; 71:181-192. [PMID: 30315904 DOI: 10.1016/j.ijdevneu.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023] Open
Abstract
Folic acid (FA) is a B-complex vitamin important to the development of the fetus, being supplemented during pregnancy. Our recent findings showed that gestation supplementation (normal and excess doses) prevented the cognitive deficits and BDNF imbalance in adult rats that were submitted to neonatal hypoxia-ischemia (HI). To better understand this protective effect, the present study aimed to evaluate whether FA supplementation could be related to (1) maternal behavior, memory and Na+, K+ - ATPase activity in the hippocampus of the dams; (2) on somatic growth, early neurobehavioral development and Na+, K+ - ATPase activity in the hippocampus of the offspring; and (3) the effects of this supplementation in pups submitted to neonatal HI. Pregnant Wistar rats were divided into three groups, according to the diet they received during gestation: standard diet (SD), supplemented with 2 mg/kg of FA (FA2 - normal dose) and supplemented with 20 mg/kg of FA (FA20 -excessive dose). At the 7th PND pups were submitted to the Levine-Vannucci model of HI. During weaning the maternal behavior, the somatic growth and the neurobehavior development of pups were assessed. After weaning, the memory of the dams (by the Ox-maze task) and the Na+, K+ - ATPase activity in the hippocampus of both dams and offspring were evaluated. Considering the dams (1), both doses of FA did not alter the maternal behavior or the Na+, K+ - ATPase activity in the hippocampus, but a memory deficit was observed in the high FA-supplemented mothers. Considering the offspring (2), both FA doses did not affect the somatic growth or the neurobehavior development, but the FA20 pups had a decreased Na+, K+ - ATPase activity in the hippocampus. The FA supplementation did not change the parameters evaluated in the HI rats (3) and did not prevent the decreased Na+, K+ - ATPase activity in the hippocampus of the HI pups. These results indicate that normal FA supplementation dose does not influence the maternal behavior and memory and does not impact on the offspring early development in rats. Further studies are needed to confirm the effects of the high FA supplementation dose in the dams' memory and in the Na+, K+ - ATPase activity in the hippocampus of the offspring.
Collapse
Affiliation(s)
- Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Iohanna Deckmann
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Bruna Chaves de Oliveira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Carolina Gessinger Bertó
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Josiane Hartwig
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Ângela Terezinha de Souza Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Sanches EF, Valentim L, de Almeida Sassi F, Bernardi L, Arteni N, Weis SN, Odorcyk FK, Pranke P, Netto CA. Intracardiac Injection of Dental Pulp Stem Cells After Neonatal Hypoxia-Ischemia Prevents Cognitive Deficits in Rats. Neurochem Res 2018; 43:2268-2276. [PMID: 30255215 DOI: 10.1007/s11064-018-2647-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is associated to cognitive and motor impairments and until the moment there is no proven treatment. The underlying neuroprotective mechanisms of stem cells are partially understood and include decrease in excitotoxicity, apoptosis and inflammation suppression. This study was conducted in order to test the effects of intracardiac transplantation of human dental pulp stem cells (hDPSCs) for treating HI damage. Seven-day-old Wistar rats were divided into four groups: sham-saline, sham-hDPSCs, HI-saline, and HI-hDPSCs. Motor and cognitive tasks were performed from postnatal day 30. HI-induced cognitive deficits in the novel-object recognition test and in spatial reference memory impairment which were prevented by hDPSCs. No motor impairments were observed in HI animals. Immunofluorescence analysis showed human-positive nuclei in hDPSC-treated animals closely associated with anti-GFAP staining in the lesion scar tissue, suggesting that these cells were able to migrate to the injury site and could be providing support to CNS cells. Our study evidence novel evidence that hDPSC can contribute to the recovery following hypoxia-ischemia and highlight the need of further investigation in order to better understand the exact mechanisms underlying its neuroprotective effects.
Collapse
Affiliation(s)
- Eduardo Farias Sanches
- Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil.
| | - Lauren Valentim
- Haematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| | - Felipe de Almeida Sassi
- Haematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| | - Lisiane Bernardi
- Haematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nice Arteni
- Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| | - Simone Nardin Weis
- Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| | - Felipe Kawa Odorcyk
- Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| | - Patricia Pranke
- Haematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Stem Cell Research Institute, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| |
Collapse
|
18
|
Netto CA, Sanches EF, Odorcyk F, Duran-Carabali LE, Sizonenko SV. Pregnancy as a valuable period for preventing hypoxia-ischemia brain damage. Int J Dev Neurosci 2018; 70:12-24. [PMID: 29920306 DOI: 10.1016/j.ijdevneu.2018.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022] Open
Abstract
Neonatal brain Hypoxia-Ischemia (HI) is one of the major causes of infant mortality and lifelong neurological disabilities. The knowledge about the physiopathological mechanisms involved in HI lesion have increased in recent years, however these findings have not been translated into clinical practice. Current therapeutic approaches remain limited; hypothermia, used only in term or near-term infants, is the golden standard. Epidemiological evidence shows a link between adverse prenatal conditions and increased risk for diseases, health problems, and psychological outcomes later in life, what makes pregnancy a relevant period for preventing future brain injury. Here, we review experimental literature regarding preventive interventions used during pregnancy, i.e., previous to the HI injury, encompassing pharmacological, nutritional and/or behavioral strategies. Literature review used PubMed database. A total of forty one studies reported protective properties of maternal treatments preventing perinatal hypoxia-ischemia injury in rodents. Pharmacological agents and dietary supplementation showed mainly anti-excitotoxicity, anti-oxidant or anti-apoptotic properties. Interestingly, maternal preconditioning, physical exercise and environmental enrichment seem to engage the same referred mechanisms in order to protect neonatal brain against injury. This construct must be challenged by further studies to clearly define the main mechanisms responsible for neuroprotection to be explored in experimental context, as well as to test their potential in clinical settings.
Collapse
Affiliation(s)
- C A Netto
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.
| | - E F Sanches
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - F Odorcyk
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - L E Duran-Carabali
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - S V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Min JW, Kong WL, Han S, Bsoul N, Liu WH, He XH, Sanchez RM, Peng BW. Vitexin protects against hypoxic-ischemic injury via inhibiting Ca2+/Calmodulin-dependent protein kinase II and apoptosis signaling in the neonatal mouse brain. Oncotarget 2018; 8:25513-25524. [PMID: 28424420 PMCID: PMC5421947 DOI: 10.18632/oncotarget.16065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/07/2017] [Indexed: 01/09/2023] Open
Abstract
Neonatal hypoxic-ischemic is a major cause of death and disability in neonates. In this study, we suggest for the first time that pretreatment with vitexin may suppress a pro-apoptotic signaling pathway in hypoxic-ischemic neuronal injury in neonates by inhibition of the phosphorylation of Ca2+/Calmodulin-dependent protein kinase II. Here we found that vitexin pretreatment reduced brain infarct volume in a dose-dependent manner. In addition, vitexin decreased the number of TUNEL-positive cells and brain atrophy. Furthermore, vitexin improved neurobehavioral outcomes. Vitexin also reduced oxygen glucose deprivation-induced neuronal injury and calcium entry. Vitexin pretreatment increased the Bcl-2/Bax protein ratio and decreased phosphorylation of Ca2+/Calmodulin-dependent protein kinase II and NF-κB, cleaved caspase-3 protein expression 24 hours after injury. Our data indicate that pretreatment with vitexin protects against neonatal hypoxic-ischemic brain injury and thus has potential as a treatment for hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Jia-Wei Min
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorders, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wei-Lin Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorders, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Song Han
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorders, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Nageeb Bsoul
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorders, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wan-Hong Liu
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorders, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiao-Hua He
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorders, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Russell M Sanchez
- Department of Surgery, College of Medicine, Texas A&M Health Science Center, Temple, TX, USA
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorders, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
20
|
Odorcyk F, Nicola F, Duran‐Carabali L, Figueiró F, Kolling J, Vizuete A, Konrath E, Gonçalves C, Wyse A, Netto C. Galantamine administration reduces reactive astrogliosis and upregulates the anti‐oxidant enzyme catalase in rats submitted to neonatal hypoxia ischemia. Int J Dev Neurosci 2017; 62:15-24. [DOI: 10.1016/j.ijdevneu.2017.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/04/2017] [Accepted: 07/27/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
- F.K. Odorcyk
- Post‐graduation Program of NeurosciencesInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulBrazil
| | - F. Nicola
- Post‐graduation Program of NeurosciencesInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulBrazil
| | - L.E. Duran‐Carabali
- Post‐graduation Program of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulBrazil
| | - F. Figueiró
- Department of BiochemistryInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - J. Kolling
- Department of BiochemistryInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - A. Vizuete
- Department of BiochemistryInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - E.L. Konrath
- Department of Pharmaceutical SciencesUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - C.A. Gonçalves
- Department of BiochemistryInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - A.T.S. Wyse
- Department of BiochemistryInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - C.A. Netto
- Department of BiochemistryInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| |
Collapse
|
21
|
Isac S, Panaitescu AM, Spataru A, Iesanu M, Totan A, Udriste A, Cucu N, Peltecu G, Zagrean L, Zagrean AM. Trans-resveratrol enriched maternal diet protects the immature hippocampus from perinatal asphyxia in rats. Neurosci Lett 2017; 653:308-313. [PMID: 28595952 DOI: 10.1016/j.neulet.2017.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/10/2017] [Accepted: 06/04/2017] [Indexed: 01/20/2023]
Abstract
Trans-resveratrol (tRESV), a polyphenol with antioxidant properties, is common in many food sources, hence easily accessible for study as a maternal dietary supplement in perinatal asphyxia (PA). Hypoxic-ischemic encephalopathy secondary to PA affects especially vulnerable brain areas such as hippocampus and is a leading cause of neonatal morbidity. The purpose of this study is to identify new epigenetic mechanisms of brain inflammation and injury related to PA and to explore the benefit of tRESV enriched maternal diet. The hippocampal interleukin 1 beta (IL-1b), tumour necrosis factor alpha (TNFα) and S-100B protein, at 24-48h after 90min of asphyxia were assessed in postnatal day 6 rats whose mothers received either standard or tRESV enriched diet. The expression of non-coding microRNAs miR124, miR132, miR134, miR146 and miR15a as epigenetic markers of hippocampus response to PA was determined 24h post-asphyxia. Our results indicate that neural response to PA could be epigenetically controlled and that tRESV reduces asphyxia-related neuroinflammation and neural injury. Moreover, tRESV could increase, through epigenetic mechanisms, the tolerance to asphyxia, with possible impact on the neuronal maturation. Our data support the neuroprotective quality of tRESV when used as a supplement in the maternal diet on the offspring's outcome in PA.
Collapse
Affiliation(s)
- Sebastian Isac
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Anca Maria Panaitescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; Filantropia Clinical Hospital, 011171 Bucharest, Romania
| | - Ana Spataru
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mara Iesanu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Totan
- Division of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Amalia Udriste
- Association for Epigenetics and Metabolomics, Bucharest, Romania; Research Center for Studies of Food Quality and Agricultural Products, Bucharest, Romania
| | - Natalia Cucu
- Association for Epigenetics and Metabolomics, Bucharest, Romania
| | | | - Leon Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
22
|
Durán-Carabali LE, Arcego DM, Odorcyk FK, Reichert L, Cordeiro JL, Sanches EF, Freitas LD, Dalmaz C, Pagnussat A, Netto CA. Prenatal and Early Postnatal Environmental Enrichment Reduce Acute Cell Death and Prevent Neurodevelopment and Memory Impairments in Rats Submitted to Neonatal Hypoxia Ischemia. Mol Neurobiol 2017; 55:3627-3641. [DOI: 10.1007/s12035-017-0604-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
|
23
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
24
|
Lacerda DC, Ferraz-Pereira KN, Visco DB, Pontes PB, Chaves WF, Guzman-Quevedo O, Manhães-de-Castro R, Toscano AE. Perinatal undernutrition associated to experimental model of cerebral palsy increases adverse effects on chewing in young rats. Physiol Behav 2017; 173:69-78. [DOI: 10.1016/j.physbeh.2017.01.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 11/30/2022]
|
25
|
Barks JD, Liu Y, Shangguan Y, Djuric Z, Ren J, Silverstein FS. Maternal high-fat diet influences outcomes after neonatal hypoxic-ischemic brain injury in rodents. J Cereb Blood Flow Metab 2017; 37:307-318. [PMID: 26738750 PMCID: PMC5363747 DOI: 10.1177/0271678x15624934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022]
Abstract
The typical US diet has >30% calories from fat; yet, typical laboratory diets contain 17% calories from fat. This disparity could confound the clinical relevance of findings in cerebral ischemia models. We compared outcomes after neonatal brain injury in offspring of rat dams fed standard low-fat chow (17% fat calories) or a higher fat diet (34% fat calories) from day 7 of pregnancy. On postnatal day 7, hypoxic-ischemic injury was induced by right carotid ligation, followed by 60, 75 or 90 min 8% oxygen exposure. Sensorimotor function, brain damage, and serum and brain fatty acid content were compared 1 to 4 weeks later. All lesioned animals developed left forepaw placing deficits; scores were worse in the high-fat groups (p < 0.0001, ANOVA). Similarly, reductions in left forepaw grip strength were more pronounced in the high-fat groups. Severity of right hemisphere damage increased with hypoxia-ischemia duration but did not differ between diet groups. Serum and brain docosahexaenoic acid fatty acid fractions were lower in high-fat progeny (p < 0.05, ANOVA). We speculate that the high-fat diet disrupted docosahexaenoic acid-dependent recovery mechanisms. These findings have significant implications both for refinement of neonatal brain injury models and for understanding the impact of maternal diet on neonatal neuroplasticity.
Collapse
Affiliation(s)
- John D Barks
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Yiqing Liu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Yu Shangguan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Zora Djuric
- Department of Family Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jianwei Ren
- Department of Family Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Faye S Silverstein
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Dixon BJ, Chen D, Zhang Y, Flores J, Malaguit J, Nowrangi D, Zhang JH, Tang J. Intranasal Administration of Interferon Beta Attenuates Neuronal Apoptosis via the JAK1/STAT3/BCL-2 Pathway in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. ASN Neuro 2016; 8:1759091416670492. [PMID: 27683877 PMCID: PMC5043595 DOI: 10.1177/1759091416670492] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/25/2016] [Accepted: 08/22/2016] [Indexed: 12/17/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is an injury that often leads to detrimental neurological deficits. Currently, there are no established therapies for HIE and it is critical to develop treatments that provide protection after HIE. The objective of this study was to investigate the ability of interferon beta (IFNβ) to provide neuroprotection and reduce apoptosis after HIE. Postnatal Day 10 rat pups were subjected to unilateral carotid artery ligation followed by 2.5 hr of exposure to hypoxia (8% O2). Intranasal administration of human recombinant IFNβ occurred 2 hr after HIE and infarct volume, body weight, neurobehavioral tests, histology, immunohistochemistry, brain water content, blood-brain barrier permeability, enzyme-linked immunosorbent assay, and Western blot were all used to evaluate various parameters. The results showed that both IFNβ and the Type 1 interferon receptor expression decreases after HIE. Intranasal administration of human recombinant IFNβ was able to be detected in the central nervous system and was able to reduce brain infarction volumes and improve neurological behavior tests 24 hr after HIE. Western blot analysis also revealed that human recombinant IFNβ treatment stimulated Stat3 and Bcl-2 expression leading to a decrease in cleaved caspase-3 expression after HIE. Positive Fluoro-Jade C staining also demonstrated that IFNβ treatment was able to decrease neuronal apoptosis. Furthermore, the beneficial effects of IFNβ treatment were reversed when a Stat3 inhibitor was applied. Also an intraperitoneal administration of human recombinant IFNβ into the systemic compartment was unable to confer the same protective effects as intranasal IFNβ treatment.
Collapse
Affiliation(s)
- Brandon J Dixon
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - Di Chen
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - Yang Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - Jerry Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - Jay Malaguit
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - Derek Nowrangi
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA Department of Neurosurgery, Loma Linda University School of Medicine, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, CA, USA
| |
Collapse
|
27
|
Silva KOGD, Pereira SDC, Portovedo M, Milanski M, Galindo LCM, Guzmán‐Quevedo O, Manhães‐de‐Castro R, Toscano AE. Effects of maternal low‐protein diet on parameters of locomotor activity in a rat model of cerebral palsy. Int J Dev Neurosci 2016; 52:38-45. [DOI: 10.1016/j.ijdevneu.2016.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 01/07/2023] Open
Affiliation(s)
| | | | - Mariana Portovedo
- Faculty of Applied SciencesUniversity of Campinas13084‐970CampinasBrazil
| | - Marciane Milanski
- Faculty of Applied SciencesUniversity of Campinas13084‐970CampinasBrazil
| | | | | | | | - Ana Elisa Toscano
- Department of Nursing, CAVFederal University of Pernambuco55608‐680Vitória de Santo AntãoBrazil
| |
Collapse
|
28
|
Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia. Neurosci Lett 2016; 617:101-7. [PMID: 26872850 DOI: 10.1016/j.neulet.2016.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 12/13/2022]
Abstract
Our previous results demonstrated improved cognition in adolescent rats housed in environmental enrichment (EE) that underwent neonatal hypoxia-ischemia (HI). The aim of this study was to investigate the effects of early EE on neurobehavioral development and brain damage in rats submitted to neonatal HI. Wistar rats were submitted to the HI procedure on the 7th postnatal day (PND) and housed in an enriched environment (8th-20th PND). The maturation of physical characteristics and the neurological reflexes were evaluated and the volume of striatum, corpus callosum and neocortex was measured. Data analysis demonstrated a clear effect of EE on neurobehavioral development; also, daily performance was improved in enriched rats on righting, negative geotaxis and cliff aversion reflex. HI caused a transient motor deficit on gait latency. Brain atrophy was found in HI animals and this damage was partially prevented by the EE. In conclusion, early EE stimulated neurobehavioral development in neonate rats and also protects the neocortex and the corpus callosum from atrophy following HI. These findings reinforce the potential of EE as a strategy for rehabilitation following neonatal HI and provide scientific support to the use of this therapeutic strategy in the treatment of neonatal brain injuries in humans.
Collapse
|
29
|
Milewski K, Hilgier W, Fręśko I, Polowy R, Podsiadłowska A, Zołocińska E, Grymanowska AW, Filipkowski RK, Albrecht J, Zielińska M. Carnosine Reduces Oxidative Stress and Reverses Attenuation of Righting and Postural Reflexes in Rats with Thioacetamide-Induced Liver Failure. Neurochem Res 2016; 41:376-84. [PMID: 26801175 PMCID: PMC4773466 DOI: 10.1007/s11064-015-1821-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/25/2022]
Abstract
Cerebral oxidative stress (OS) contributes to the pathogenesis of hepatic encephalopathy (HE). Existing evidence suggests that systemic administration of l-histidine (His) attenuates OS in brain of HE animal models, but the underlying mechanism is complex and not sufficiently understood. Here we tested the hypothesis that dipeptide carnosine (β-alanyl-l-histidine, Car) may be neuroprotective in thioacetamide (TAA)-induced liver failure in rats and that, being His metabolite, may mediate the well documented anti-OS activity of His. Amino acids [His or Car (100 mg/kg)] were administrated 2 h before TAA (i.p., 300 mg/kg 3× in 24 h intervals) injection into Sprague–Dawley rats. The animals were thus tested for: (i) brain prefrontal cortex and blood contents of Car and His, (ii) amount of reactive oxygen species (ROS), total antioxidant capacity (TAC), GSSG/GSH ratio and thioredoxin reductase (TRx) activity, and (iii) behavioral changes (several models were used, i.e. tests for reflexes, open field, grip test, Rotarod). Brain level of Car was reduced in TAA rats, and His administration significantly elevated Car levels in control and TAA rats. Car partly attenuated TAA-induced ROS production and reduced GSH/GSSG ratio, whereas the increase of TRx activity in TAA brain was not significantly modulated by Car. Further, Car improved TAA-affected behavioral functions in rats, as was shown by the tests of righting and postural reflexes. Collectively, the results support the hypothesis that (i) Car may be added to the list of neuroprotective compounds of therapeutic potential on HE and that (ii) Car mediates at least a portion of the OS-attenuating activity of His in the setting of TAA-induced liver failure.
Collapse
Affiliation(s)
- Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Wojciech Hilgier
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Inez Fręśko
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Anna Podsiadłowska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Ewa Zołocińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Aneta W Grymanowska
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Robert K Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 Str, 02-106, Warsaw, Poland.
| |
Collapse
|
30
|
Xu B, Xiao AJ, Chen W, Turlova E, Liu R, Barszczyk A, Sun CLF, Liu L, Tymianski M, Feng ZP, Sun HS. Neuroprotective Effects of a PSD-95 Inhibitor in Neonatal Hypoxic-Ischemic Brain Injury. Mol Neurobiol 2015; 53:5962-5970. [PMID: 26520452 DOI: 10.1007/s12035-015-9488-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/13/2015] [Indexed: 11/29/2022]
Abstract
The postsynaptic density-95 inhibitor NA-1 uncouples NMDA glutamate receptors from downstream neurotoxic signaling pathways without affecting normal glutamate receptor function. NA-1 attenuates NMDA receptor-mediated neuronal cell death after stroke in multiple models and species. However, its efficacy in providing neuroprotection in models of neonatal hypoxic-ischemic brain injury has not yet been tested. In this study, a modified version of the Rice-Vannucci method for the induction of neonatal hypoxic-ischemic brain injury was performed on postnatal day 7 mouse pups. Animals received a single dose of NA-1 intraperitoneally either before or after right common carotid artery occlusion. All experiments were performed in a blinded manner. Infarct volumes were measured 1 and 7 days after the injury, while behavioral tests were conducted 1, 3, and 7 days after injury. Administration of NA-1 before right common carotid artery occlusion or immediately after ischemia significantly reduced infarct volume and improved neurobehavioral outcomes 1, 3, and 7 days post-injury. The neuroprotection and improvement in neurobehavioral outcomes conferred by NA-1 in this mouse neonatal hypoxic-ischemic injury model imply that NA-1 will be effective in reducing neonatal stroke damage and thus could potentially serve as a therapeutic drug for prevention or treatment of neonatal stroke.
Collapse
Affiliation(s)
- Baofeng Xu
- Department of Surgery, Faculty of Medicine, University of Toronto, 1132 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.,Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | - Ai-Jiao Xiao
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | - Wenliang Chen
- Department of Surgery, Faculty of Medicine, University of Toronto, 1132 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.,Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.,Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada, M5S 1A8
| | - Ekaterina Turlova
- Department of Surgery, Faculty of Medicine, University of Toronto, 1132 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.,Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | - Rui Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | - Andrew Barszczyk
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | - Christopher L F Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | - Ling Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8
| | - Michael Tymianski
- Department of Surgery, Faculty of Medicine, University of Toronto, 1132 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.,Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada, M5S 1A8
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.
| | - Hong-Shuo Sun
- Department of Surgery, Faculty of Medicine, University of Toronto, 1132 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8. .,Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8. .,Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada, M5S 1A8. .,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada, M5S 1A8.
| |
Collapse
|
31
|
Sexual dimorphism and brain lateralization impact behavioral and histological outcomes following hypoxia-ischemia in P3 and P7 rats. Neuroscience 2015; 290:581-93. [PMID: 25620049 DOI: 10.1016/j.neuroscience.2014.12.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/11/2014] [Accepted: 12/21/2014] [Indexed: 01/12/2023]
Abstract
Neonatal cerebral hypoxia-ischemia (HI) is a major cause of neurological disorders and the most common cause of death and permanent disability worldwide, affecting 1-2/1000 live term births and up to 60% of preterm births. The Levine-Rice is the main experimental HI model; however, critical variables such as the age of animals, sex and hemisphere damaged still receive little attention in experimental design. We here investigated the influence of sex and hemisphere injured on the functional outcomes and tissue damage following early (hypoxia-ischemia performed at postnatal day 3 (HIP3)) and late (hypoxia-ischemia performed at postnatalday 7 (HIP7)) HI injury in rats. Male and female 3- (P3) or 7-day-old (P7) Wistar rats had their right or left common carotid artery occluded and exposed to 8% O2 for 1.5h. Sham animals had their carotids exposed but not occluded nor submitted to the hypoxic atmosphere. Behavioral impairments were assessed in the open field arena, in the Morris water maze and in the inhibitory avoidance task; volumetric extent of tissue damage was assessed using cresyl violet staining at adult age, after completing behavioral assessment. The overall results demonstrate that: (1) HI performed at the two distinct ages cause different behavioral impairments and histological damage in adult rats (2) behavioral deficits following neonatal HIP3 and HIP7 are task-specific and dependent on sex and hemisphere injured (3) HIP7 animals presented the expected motor and cognitive deficits (4) HIP3 animals displayed discrete but significant cognitive impairments in the left hemisphere-injured females (5) HI brain injury and its consequences are determined by animal's sex and the damaged hemisphere, markedly in HIP3-injured animals.
Collapse
|
32
|
Marine compound xyloketal B reduces neonatal hypoxic-ischemic brain injury. Mar Drugs 2014; 13:29-47. [PMID: 25546517 PMCID: PMC4306923 DOI: 10.3390/md13010029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/11/2014] [Indexed: 12/21/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy causes neurodegeneration and brain injury, leading to sensorimotor dysfunction. Xyloketal B is a novel marine compound isolated from a mangrove fungus Xylaria species (no. 2508) with unique antioxidant effects. In this study, we investigated the effects and mechanism of xyloketal B on oxygen-glucose deprivation-induced neuronal cell death in mouse primary cortical culture and on hypoxic-ischemic brain injury in neonatal mice in vivo. We found that xyloketal B reduced anoxia-induced neuronal cell death in vitro, as well as infarct volume in neonatal hypoxic-ischemic brain injury model in vivo. Furthermore, xyloketal B improved functional behavioral recovery of the animals following hypoxic-ischemic insult. In addition, xyloketal B significantly decreased calcium entry, reduced the number of TUNEL-positive cells, reduced the levels of cleaved caspase-3 and Bax proteins, and increased the level of Bcl-2 protein after the hypoxic-ischemic injury. Our findings indicate that xyloketal B is effective in models of hypoxia-ischemia and thus has potential as a treatment for hypoxic-ischemic brain injury.
Collapse
|
33
|
Sun HS, Xu B, Chen W, Xiao A, Turlova E, Alibraham A, Barszczyk A, Bae CYJ, Quan Y, Liu B, Pei L, Sun CLF, Deurloo M, Feng ZP. Neuronal K(ATP) channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic-ischemic brain injury. Exp Neurol 2014; 263:161-71. [PMID: 25448006 DOI: 10.1016/j.expneurol.2014.10.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/23/2014] [Accepted: 10/10/2014] [Indexed: 12/16/2022]
Abstract
Neonatal hypoxic-ischemic brain injury and its related illness hypoxic-ischemic encephalopathy (HIE) are major causes of nervous system damage and neurological morbidity in children. Hypoxic preconditioning (HPC) is known to be neuroprotective in cerebral ischemic brain injury. K(ATP) channels are involved in ischemic preconditioning in the heart; however the involvement of neuronal K(ATP) channels in HPC in the brain has not been fully investigated. In this study, we investigated the role of HPC in hypoxia-ischemia (HI)-induced brain injury in postnatal seven-day-old (P7) CD1 mouse pups. Specifically, TTC (2,3,5-triphenyltetrazolium chloride) staining was used to assess the infarct volume, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling) to detect apoptotic cells, Western blots to evaluate protein level, and patch-clamp recordings to measure K(ATP) channel current activities. Behavioral tests were performed to assess the functional recovery after hypoxic-ischemic insults. We found that hypoxic preconditioning reduced infarct volume, decreased the number of TUNEL-positive cells, and improved neurobehavioral functional recovery in neonatal mice following hypoxic-ischemic insults. Pre-treatment with a K(ATP) channel blocker, tolbutamide, inhibited hypoxic preconditioning-induced neuroprotection and augmented neurodegeneration following hypoxic-ischemic injury. Pre-treatment with a K(ATP) channel opener, diazoxide, reduced infarct volume and mimicked hypoxic preconditioning-induced neuroprotection. Hypoxic preconditioning induced upregulation of the protein level of the Kir6.2 isoform and enhanced current activities of K(ATP) channels. Hypoxic preconditioning restored the HI-reduced PKC and pAkt levels, and reduced caspase-3 level, while tolbutamide inhibited the effects of hypoxic preconditioning. We conclude that K(ATP) channels are involved in hypoxic preconditioning-induced neuroprotection in neonatal hypoxic-ischemic brain injury. K(ATP) channel openers may therefore have therapeutic effects in neonatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Hong-Shuo Sun
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Baofeng Xu
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wenliang Chen
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Aijiao Xiao
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ekaterina Turlova
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ammar Alibraham
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Andrew Barszczyk
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christine Y J Bae
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yi Quan
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Baosong Liu
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lin Pei
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher L F Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| | - Marielle Deurloo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
34
|
Fetal stress and programming of hypoxic/ischemic-sensitive phenotype in the neonatal brain: mechanisms and possible interventions. Prog Neurobiol 2012; 98:145-65. [PMID: 22627492 DOI: 10.1016/j.pneurobio.2012.05.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 12/12/2022]
Abstract
Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxic-ischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other brain disorders.
Collapse
|