1
|
Poon MLS, Ko E, Park E, Shin JH. Hypoxic postconditioning modulates neuroprotective glial reactivity in a 3D cortical ischemic-hypoxic injury model. Sci Rep 2024; 14:27032. [PMID: 39506138 PMCID: PMC11541704 DOI: 10.1038/s41598-024-78522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Stroke remains one of the major health challenges due to its high rates of mortality and long-term disability, necessitating the development of effective therapeutic treatment. This study aims to explore the neuroprotective effects of hypoxic postconditioning (HPC) using a cell-based 3D cortical ischemic-hypoxic injury model. Our model employs murine cells to investigate HPC-induced modulation of glial cell reactivity and intercommunication post-oxygen-glucose deprivation-reoxygenation (OGD-R) injury. We found that a single HPC session (1HPC) provided the most significant neuroprotection post-OGD-R compared to multiple intermittent hypoxic treatments, evidenced by improved spheroidal structure, enhanced cell survival and reduced apoptosis, optimal modulation of neuronal phenotypes, dampened ischemic responses, and augmented neurite outgrowth of spheroids. Furthermore, 1HPC suppressed both pro-inflammatory A1 and anti-inflammatory A2 astrocyte phenotypes despite the induction of astrocyte activation while reducing microglial activation with inhibited M1 and M2 reactive states. This was accompanied by a decrease in gene expression of the pro-inflammatory cytokines essential to microglia-astrocyte signaling, collectively suggesting a shift of glial cells away from their traditional reactive states for neuroprotection. This study highlights the potential of 1HPC as a novel therapeutic intervention for ischemic injury via the modulation of neuroprotective glial reactivity. Moreover, the 3D cortical ischemic-hypoxic injury model employed here holds enormous potential serving as a disease model to further elucidate the underlying mechanism of HPC, which can also extend to the applications in brain regeneration, drug development, and the modeling of neural diseases.
Collapse
Affiliation(s)
- Mong Lung Steve Poon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Eunmin Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Eunyoung Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Pang QQ, Zang CX, Li T, Zeng XC, Liu LX, Zhang D, Yao XS, Yu Y. Neuroprotective effect of GJ-4 against cognitive impairments in vascular dementia by improving white matter damage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155877. [PMID: 39032283 DOI: 10.1016/j.phymed.2024.155877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND White matter lesions (WMLs) are increasingly linked to the pathological process of chronic vascular dementia (VaD). An effective crocins fraction extracted from Gardenia Fructus, GJ-4, has been shown to improve cognitive function in several Alzheimer's disease models and VaD models. OBJECTIVES To explore the potential mechanisms of GJ-4 on WMLs in a chronic VaD mouse model. METHODS The chronic VaD mouse model was established, and WMLs were characterized by cerebral blood flow (CBF), behavioral tests, LFB staining, and immunohistochemistry. The anti-oxidative effect of GJ-4 was validated by examining biochemical parameters (SOD, MDA, and GSH) and the Keap1-Nrf2/HO-1 pathway. The impact of GJ-4 on lipid metabolism in WM was further investigated through lipidomic analysis. RESULTS GJ-4 significantly attenuated cognitive impairments and improved the CBF of BCAS (bilateral common carotid artery stenosis)-induced mice. Mechanism research showed that GJ-4 could enhance cognition by promoting the repair of WMLs by inhibiting oxidative stress. Furthermore, GJ-4 treatment significantly reduced chronic cerebral hypoperfusion (CCH)-induced WMLs via improving lipid metabolism disorder in the WM. CONCLUSION This research has provided valuable insights into the significance of WMLs in CCH-induced VaD and underscored the potential of GJ-4 as a therapeutic agent for improving cognitive function by targeting WMLs. These findings suggest that GJ-4 is a promising candidate for the treatment of VaD.
Collapse
Affiliation(s)
- Qian-Qian Pang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; Jinan University, Guangzhou, 510632, People's Republic of China; University of Michigan Life Sciences Institute, Ann Arbor, MI 48109-2216, United States
| | - Cai-Xia Zang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Ting Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xiao-Chun Zeng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; Jinan University, Guangzhou, 510632, People's Republic of China
| | - Ling-Xian Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; Jinan University, Guangzhou, 510632, People's Republic of China
| | - Dan Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Xin-Sheng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Yang Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
3
|
Vornholt E, Liharska LE, Cheng E, Hashemi A, Park YJ, Ziafat K, Wilkins L, Silk H, Linares LM, Thompson RC, Sullivan B, Moya E, Nadkarni GN, Sebra R, Schadt EE, Kopell BH, Charney AW, Beckmann ND. Characterizing cell type specific transcriptional differences between the living and postmortem human brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306590. [PMID: 38746297 PMCID: PMC11092720 DOI: 10.1101/2024.05.01.24306590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Single-nucleus RNA sequencing (snRNA-seq) is often used to define gene expression patterns characteristic of brain cell types as well as to identify cell type specific gene expression signatures of neurological and mental illnesses in postmortem human brains. As methods to obtain brain tissue from living individuals emerge, it is essential to characterize gene expression differences associated with tissue originating from either living or postmortem subjects using snRNA-seq, and to assess whether and how such differences may impact snRNA-seq studies of brain tissue. To address this, human prefrontal cortex single nuclei gene expression was generated and compared between 31 samples from living individuals and 21 postmortem samples. The same cell types were consistently identified in living and postmortem nuclei, though for each cell type, a large proportion of genes were differentially expressed between samples from postmortem and living individuals. Notably, estimation of cell type proportions by cell type deconvolution of pseudo-bulk data was found to be more accurate in samples from living individuals. To allow for future integration of living and postmortem brain gene expression, a model was developed that quantifies from gene expression data the probability a human brain tissue sample was obtained postmortem. These probabilities are established as a means to statistically account for the gene expression differences between samples from living and postmortem individuals. Together, the results presented here provide a deep characterization of both differences between snRNA-seq derived from samples from living and postmortem individuals, as well as qualify and account for their effect on common analyses performed on this type of data.
Collapse
|
4
|
Parmeggiani B, Signori MF, Cecatto C, Frusciante MR, Marcuzzo MB, Souza DG, Ribeiro RT, Seminotti B, Gomes de Souza DO, Ribeiro CAJ, Wajner M, Leipnitz G. Glycine disrupts myelin, glutamatergic neurotransmission, and redox homeostasis in a neonatal model for non ketotic hyperglycinemia. Biochimie 2024; 219:21-32. [PMID: 37541567 DOI: 10.1016/j.biochi.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/26/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Non ketotic hyperglycinemia (NKH) is an inborn error of glycine metabolism caused by mutations in the genes encoding glycine cleavage system proteins. Classic NKH has a neonatal onset, and patients present with severe neurodegeneration. Although glycine accumulation has been implicated in NKH pathophysiology, the exact mechanisms underlying the neurological damage and white matter alterations remain unclear. We investigated the effects of glycine in the brain of neonatal rats and MO3.13 oligodendroglial cells. Glycine decreased myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) in the corpus callosum and striatum of rats on post-natal day (PND) 15. Glycine also reduced neuroglycan 2 (NG2) and N-methyl-d-aspartate receptor subunit 1 (NR1) in the cerebral cortex and striatum on PND15. Moreover, glycine reduced striatal glutamate aspartate transporter 1 (GLAST) content and neuronal nucleus (NeuN), and increased glial fibrillary acidic protein (GFAP) on PND15. Glycine also increased DCFH oxidation and malondialdehyde levels and decreased GSH concentrations in the cerebral cortex and striatum on PND6, but not on PND15. Glycine further reduced viability but did not alter DCFH oxidation and GSH levels in MO3.13 cells after 48- and 72-h incubation. These data indicate that impairment of myelin structure and glutamatergic system and induction of oxidative stress are involved in the neuropathophysiology of NKH.
Collapse
Affiliation(s)
- Belisa Parmeggiani
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Marian Flores Signori
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marina Rocha Frusciante
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Manuela Bianchin Marcuzzo
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Débora Guerini Souza
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Onofre Gomes de Souza
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - César Augusto João Ribeiro
- Natural and Humanities Sciences Center, Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Liu S, Yang D, Dong S, Luo Y, Zhang T, Li S, Bai Y, Li L, Ma Y, Liu J. Effects of acrylamide exposure during pregnancy and lactation on the development of myelin sheath of corpus callosum in offspring rats. Toxicol Res (Camb) 2024; 13:tfae014. [PMID: 38314039 PMCID: PMC10836055 DOI: 10.1093/toxres/tfae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 01/15/2023] [Indexed: 02/06/2024] Open
Abstract
Acrylamide is an alkene known to induce neurotoxicity in humans and experimental animals. However, the effects of acrylamide on the development of myelin sheath are unclear. The present study was to explore the effects of acrylamide exposure during pregnancy and lactation on the development of myelin sheath in offspring rats. Four groups of thirty-two pregnant Sprague-Dawley rats were exposed to 0, 4.5, 9 and 18 mg/kg BW acrylamide by gavage from gestational day 15 to postnatal day 13. The corpus callosum of nine offspring rats per group were dissected in postpartum day 14. Structural changes and lipid contents in myelin sheaths were examined by transmission electron microscopy(TEM) and Luxol Fast Blue staining(LFB). The expression of MBP and PLP was evaluated by immunohistochemistry and Western blotting. TEM showed that the myelin sheaths in the 18 mg/kg group were disordered compared with control group. Luxol Fast Blue staining gradually decreased with increasing acrylamide maternal exposure. The immunohistochemistry and Western Blotting results showed that maternal exposure to acrylamide caused a decreasing trend in MBP and PLP in the corpus callosum of rats at postnatal day 14. Furthermore, these reduced protein levels may be neurodevelopmental toxicity's mechanism in response to maternal exposure to acrylamide.
Collapse
Affiliation(s)
- Shuping Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Dehui Yang
- Lianjiang People’s Hospital, No. 30 Renmin Avenue Middle, Lianjiang City, Zhanjiang City, Guangdong Province, Lianjiang 524400, PR China
| | - Suqiu Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Yuyou Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Tong Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Siyuan Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Yanxian Bai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Lixia Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Yuxin Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| | - Jing Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Guangdong Pharmaceutical University, No. 280, Outer Ring East Road, Guangzhou University City, Panyu District, Guangzhou City, Guangzhou 510006, PR China
| |
Collapse
|
6
|
El-Sayyad SM, El-Ella DMA, Hafez MM, Al-Mokaddem AK, Ali BM, Awny MM, El-Emam SZ. Sesamol defends neuronal damage following cerebral ischemia/reperfusion: a crosstalk of autophagy and Notch1/NLRP3 inflammasome signaling. Inflammopharmacology 2024; 32:629-642. [PMID: 37848698 PMCID: PMC10907497 DOI: 10.1007/s10787-023-01355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
OBJECTIVE Sesamol (SES) is a phenolic compound found in sesame seed oil. Several studies have revealed its anti-inflammatory and antioxidant properties. However, its complete underlying mechanistic perspective about cerebral ischemia/reperfusion (I/R) lesions has not yet been disclosed. Consequently, we aimed to scrutinize its neuroprotective mechanism against cerebral injury during a global cerebral I/R in a rat model, considering its impact on autophagy and Notch1/NLRP3 inflammasome signaling regulation. METHODS To affirm our purpose, adult Wistar rats were allotted into five groups: sham and the other four groups in which transient global cerebral ischemia was induced by bilateral common ligation (2VO) for 1 h, then reperfusion for either 24 h or 5 days: I/R (1/24), I/R (1/5), SES + I/R (1/24), and SES + I/R (1/5). In treated groups, SES (100 mg/kg, p.o., for 21 days) was administered before cerebral I/R induction. The assessment of histopathological changes in brain tissues, immunohistochemistry, biochemical assays, ELISA, and qRT-PCR were utilized to investigate our hypothesis. RESULTS Advantageously, SES halted the structural neuronal damage with lessened demyelination induced by cerebral I/R injury. Restoring oxidant/antioxidant balance was evident by boosting the total antioxidant capacity and waning lipid peroxidation. Furthermore, SES reduced inflammatory and apoptosis markers. Additionally, SES recovered GFAP, Cx43, and autophagy signaling, which in turn switched off the Notch-1/NLRP3 inflammasome trajectory. CONCLUSIONS Our results revealed the neuroprotective effect of SES against cerebral I/R injury through alleviating injurious events and boosting autophagy, consequently abolishing Notch1/NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Shorouk Mohamed El-Sayyad
- Faculty of Pharmacy, Pharmacology and Toxicology Department, October 6 University, Giza, 12585, Egypt
| | - Dina M Abo El-Ella
- Faculty of Pharmacy, Pharmacology and Toxicology Department, October 6 University, Giza, 12585, Egypt
| | - Mohamed M Hafez
- Faculty of Pharmacy, Biochemistry Department, Ahram Canadian University (ACU), Giza, Egypt
| | - Asmaa K Al-Mokaddem
- Faculty of Veterinary Medicine, Department of Pathology, Cairo University, Giza, 12211, Egypt
| | - Bassam Mohamed Ali
- Faculty of Pharmacy, Department of Biochemistry, October 6 University, Giza, 12585, Egypt
| | - Magdy M Awny
- Faculty of Pharmacy, Pharmacology and Toxicology Department, October 6 University, Giza, 12585, Egypt
| | - Soad Z El-Emam
- Faculty of Pharmacy, Pharmacology and Toxicology Department, October 6 University, Giza, 12585, Egypt.
| |
Collapse
|
7
|
Oleson CV, Olsen AC, Shermon S. Spinal cord infarction attributed to SARS-CoV-2, with post-acute sequelae of COVID-19: A case report. World J Clin Cases 2023; 11:8542-8550. [PMID: 38188200 PMCID: PMC10768511 DOI: 10.12998/wjcc.v11.i36.8542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND While stroke and lower extremity venous thromboemboli have been commonly reported following acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spinal cord infarction or ischemia has been extremely rare. Findings of long coronavirus disease (COVID) in this select population have not been studied. CASE SUMMARY We present the case of a 70-year-old female with sudden onset of trunk and lower extremity sensorimotor loss due to spinal cord infarction, attributed to acute infection with SARS-CoV-2. Diagnostic work up confirmed a T3 complete (ASIA impairment Scale A) paraplegia resulting from a thrombotic infarct. Her reported myalgias, neuropathic pain, spasticity, bladder spasms, and urinary tract infections exceeded the frequency and severity of many spinal cord injury (SCI) individuals of similar age and degree of neurologic impairment. In her first year after contracting COVID-19, she underwent 2 separate inpatient rehabilitation courses, but also required acute hospitalization 6 additional times for subsequent infections or uncontrolled pain. Yet other complications of complete non-traumatic SCI (NTSCI), including neurogenic bowel and temperature hypersensitivity, were mild, and pressure injuries were absent. She has now transitioned from the acute to chronic phase of spinal cord injury care, with subsequent development of post-acute sequelae of SARS-CoV-2 infection (PASC). CONCLUSION This individual experienced significant challenges with the combined effects of acute T3 NTSCI and acute COVID-19, with subsequent progression to PASC.
Collapse
Affiliation(s)
- Christina V Oleson
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, MetroHealth Rehabilitation Institute, Cleveland, OH 44109, United States
| | - Andrew C Olsen
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, MetroHealth Rehabilitation Institute, Cleveland, OH 44109, United States
| | - Suzanna Shermon
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, MetroHealth Rehabilitation Institute, Cleveland, OH 44109, United States
| |
Collapse
|
8
|
Pawletko K, Jędrzejowska-Szypułka H, Bogus K, Pascale A, Fahmideh F, Marchesi N, Grajoszek A, Gendosz de Carrillo D, Barski JJ. After Ischemic Stroke, Minocycline Promotes a Protective Response in Neurons via the RNA-Binding Protein HuR, with a Positive Impact on Motor Performance. Int J Mol Sci 2023; 24:ijms24119446. [PMID: 37298395 DOI: 10.3390/ijms24119446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Ischemic stroke is the most common cause of adult disability and one of the leading causes of death worldwide, with a serious socio-economic impact. In the present work, we used a new thromboembolic model, recently developed in our lab, to induce focal cerebral ischemic (FCI) stroke in rats without reperfusion. We analyzed selected proteins implicated in the inflammatory response (such as the RNA-binding protein HuR, TNFα, and HSP70) via immunohistochemistry and western blotting techniques. The main goal of the study was to evaluate the beneficial effects of a single administration of minocycline at a low dose (1 mg/kg intravenously administered 10 min after FCI) on the neurons localized in the penumbra area after an ischemic stroke. Furthermore, given the importance of understanding the crosstalk between molecular parameters and motor functions following FCI, motor tests were also performed, such as the Horizontal Runway Elevated test, CatWalk™ XT, and Grip Strength test. Our results indicate that a single administration of a low dose of minocycline increased the viability of neurons and reduced the neurodegeneration caused by ischemia, resulting in a significant reduction in the infarct volume. At the molecular level, minocycline resulted in a reduction in TNFα content coupled with an increase in the levels of both HSP70 and HuR proteins in the penumbra area. Considering that both HSP70 and TNF-α transcripts are targeted by HuR, the obtained results suggest that, following FCI, this RNA-binding protein promotes a protective response by shifting its binding towards HSP70 instead of TNF-α. Most importantly, motor tests showed that reduced inflammation in the brain damaged area after minocycline treatment directly translated into a better motor performance, which is a fundamental outcome when searching for new therapeutic options for clinical practice.
Collapse
Affiliation(s)
- Katarzyna Pawletko
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Halina Jędrzejowska-Szypułka
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Foroogh Fahmideh
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Aniela Grajoszek
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Daria Gendosz de Carrillo
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Jarosław Jerzy Barski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| |
Collapse
|
9
|
Song Y, Liu S, Jiang X, Ren Q, Deng H, Paudel YN, Wang B, Liu K, Jin M. Benzoresorcinol induces developmental neurotoxicity and injures exploratory, learning and memorizing abilities in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155268. [PMID: 35429566 DOI: 10.1016/j.scitotenv.2022.155268] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Benzophenones (BPs) are a class of UV absorber commonly used in skin care products like sunscreens. With its wide range of application, its environmental and human hazards have received much attention in recent days. Previous studies on the toxicity of BPs mainly focused on its endocrine-disrupting effects, but there are limited studies on its neurodevelopment and neurotoxicity. Herein, using the zebrafish model we studied the neurodevelopmental- and neuro-toxicity of benzophenone 1 (BP1) (0.8, 1.0, 1.2, 1.6, and 2.4 μg/mL). As a result, BP1 led to an increase of embryo mortality, a decrease in hatching rate, and an increase in the rate of developmental abnormalities in a concentration-dependent manner. BP1 also caused developmental defects in the central nervous system (CNS) and dopaminergic (DA) neurons. Accordingly, BP1 injured larval zebrafish general locomotion and response to stimuli in light/dark challenge. In adult zebrafish, BP1 exposure (1, 10, 100, 1000 μg/L) caused inhibition of learning and memory abilities in the T-maze tests, and inhibited exploratory behavior and activity in the novel tank diving tests. Further, transcription levels of genes related to neurotoxicity, neurodevelopment, and anxiety revealed that BP1 may affect the development and function of the myelin sheath, inducing structural and functional defects of CNS, manifested as abnormal behaviors such as anxiety. Hence, the current study revealed the neurodevelopmental toxicity and neurotoxicity of BP1, expanded our knowledge about the toxic effects of BP1 on organisms, posing a possible threat to the environment and human health.
Collapse
Affiliation(s)
- Yang Song
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Siyuan Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China
| | - Xin Jiang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Qingyu Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Hongyu Deng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Baokun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Biological Engineering College, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250056, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 2878, People's Republic of China.
| |
Collapse
|
10
|
Leifsdottir K, Thelin EP, Lassarén P, Siljehav V, Nilsson P, Eksborg S, Herlenius E. Proteomic profiles in cerebrospinal fluid predicted death and disability in term infants with perinatal asphyxia: A pilot study. Acta Paediatr 2022; 111:961-970. [PMID: 35106835 PMCID: PMC9305740 DOI: 10.1111/apa.16277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Aim Perinatal asphyxia, resulting in hypoxic‐ischaemic encephalopathy (HIE), has been associated with high mortality rates and severe lifelong neurodevelopmental disabilities. Our aim was to study the association between the proteomic profile in cerebrospinal fluid (CSF) and the degree of HIE and long‐term outcomes. Methods We prospectively enrolled 18‐term born infants with HIE and 10‐term born controls between 2000 and 2004 from the Karolinska University Hospital. An antibody suspension bead array and FlexMap3D analysis was used to characterise 178 unique brain‐derived and inflammation associated proteins in their CSF. Results Increased CSF concentrations of several brain‐specific proteins were observed in the proteome of HIE patients compared with the controls. An upregulation of neuroinflammatory pathways was also noted and this was confirmed by pathway analysis. Principal component analysis revealed a gradient from favourable to unfavourable HIE grades and outcomes. The proteins that provided strong predictors were structural proteins, including myelin basic protein and alpha‐II spectrin. The functional proteins included energy‐related proteins like neuron‐specific enolase and synaptic regulatory proteins. Increased CSF levels of 51 proteins correlated with adverse outcomes in infants with HIE. Conclusion Brain‐specific proteins and neuroinflammatory mediators in CSF may predict HIE degrees and outcomes after perinatal asphyxia.
Collapse
Affiliation(s)
- Kristin Leifsdottir
- Department of Women´s and Children´s Health Karolinska Institutet Stockholm Sweden
- Astrid Lindgren Children’s Hospital Karolinska University Hospital Stockholm Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
- Department of Neurology Karolinska University Hospital Stockholm Sweden
| | - Philipp Lassarén
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Veronica Siljehav
- Department of Women´s and Children´s Health Karolinska Institutet Stockholm Sweden
- Astrid Lindgren Children’s Hospital Karolinska University Hospital Stockholm Sweden
| | - Peter Nilsson
- Department of Protein Science KTH Royal Institute of Technology SciLifeLab Stockholm Sweden
| | - Staffan Eksborg
- Department of Women´s and Children´s Health Karolinska Institutet Stockholm Sweden
- Astrid Lindgren Children’s Hospital Karolinska University Hospital Stockholm Sweden
| | - Eric Herlenius
- Department of Women´s and Children´s Health Karolinska Institutet Stockholm Sweden
- Astrid Lindgren Children’s Hospital Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
11
|
Zhang Y, Li K, Wang X, Ding Y, Ren Z, Fang J, Sun T, Guo Y, Chen Z, Wen J. CSE-Derived H 2S Inhibits Reactive Astrocytes Proliferation and Promotes Neural Functional Recovery after Cerebral Ischemia/Reperfusion Injury in Mice Via Inhibition of RhoA/ROCK 2 Pathway. ACS Chem Neurosci 2021; 12:2580-2590. [PMID: 34252278 DOI: 10.1021/acschemneuro.0c00674] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The effect of cystathionine-γ-lyase (CSE)-derived hydrogen sulfide (H2S) on the reactive proliferation of astrocytes and neural functional recovery over 30 d after acute cerebral ischemia and reperfusion (I/R) was determined by applying wild-type (WT) and CSE knockout (KO) mice. The changes of glial fibrillary acidic protein (GFAP) expression in hippocampal tissues was tested. Besides, we assessed the changes of mice spatial learning memory ability, neuronal damage, RhoA, Rho kinase 2 (ROCK2), and myelin basic protein (MBP) expressions in hippocampal tissues. The results revealed that cerebral I/R resulted in obvious increase of GFAP expression in hippocampal tissues. Besides, we found the neuronal damage, learning, and memory deficits of mice induced by cerebral I/R as well as revealed the upregulation of RhoA and ROCK2 expressions and reduced MBP expression in hipppcampal tissues of mice following cerebral I/R. Not surprisingly, the GFAP expression and cerebral injury as well as the upregulation of the RhoA/ROCK2 pathway were more remarkable in CSE KO mice, compared with those in WT mice over 30 d following acute cerebral I/R, which could be blocked by NaHS treatment, a donor of exogenous H2S. In addition, the ROCK inhibitor Fasudil also inhibited the reactive proliferation of astrocytes and ameliorated the recovery of neuronal function over 30 d after cerebral I/R. For the purpose of further confirmation of the role of H2S on the astrocytes proliferation following cerebral I/R, the immunofluorescence double staining: bromodeoxyuridine (BrdU) and GFAP was evaluated. There was a marked upregulation of BrdU-labeled cells coexpressed with GFAP in hippocampal tissues at 30 d after acute cerebral I/R; however, the increment of astrocytes proliferation could be ameliorated by both NaHS and Fasudil. These findings indicated that CSE-derived H2S could inhibit the reactive proliferation of astrocytes and promote the recovery of mice neural functional deficits induced by a cerebral I/R injury via inhibition of the RhoA/ROCK2 signal pathway.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Kexin Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xiangyi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yanyu Ding
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhiruo Ren
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jinglong Fang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Tao Sun
- Department of Cardiovascular Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yan Guo
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhiwu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
12
|
Wang R, Zhang S, Yang Z, Zheng Y, Yan F, Tao Z, Fan J, Zhao H, Han Z, Luo Y. Mutant erythropoietin enhances white matter repair via the JAK2/STAT3 and C/EBPβ pathway in middle-aged mice following cerebral ischemia and reperfusion. Exp Neurol 2021; 337:113553. [PMID: 33309747 DOI: 10.1016/j.expneurol.2020.113553] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 12/07/2020] [Indexed: 01/20/2023]
Abstract
Previous studies have indicated that EPO maintains the M2 microglia phenotype that contributes to white matter repair after ischemic stroke in young mice (2 months old). However, the underlying mechanisms that regulate microglial polarization are poorly defined. This study investigated the neuroprotective effects of nonerythropoietic mutant EPO (MEPO) on white matter and the underlying mechanism in middle-aged (9-month-old) male mice following cerebral ischemia. Middle-aged male C57 BL/6 mice were treated with MEPO (5000 IU/kg) or vehicle after middle cerebral artery occlusion (MCAO) and reperfusion. The specific inhibitor AG490 was used to block the JAK2/STAT3 pathway. Neurological function was assessed by beam walking and adhesive removal tests. Immunofluorescence staining and western blotting were used to assess the severity of white matter injury, phenotypic changes in the microglia and the expression of the signaling molecules. MEPO significantly improved neurobehavioral outcomes, alleviated brain tissue loss, and ameliorated white matter injury after MCAO compared with the vehicle group. Moreover, MEPO promoted oligodendrogenesis by shifting microglia toward M2 polarization by promoting JAK2/STAT3 activation and inhibiting the expression of C/EBPβ at 14 days after cerebral ischemia-reperfusion. However, the MEPO's effect on microglial M2 polarization and oligodendrogenesis was largely suppressed by AG490 treatment. Collectively, these data indicate that MEPO treatment improves white matter integrity after cerebral ischemia, which may be partly explained by MEPO facilitating microglia toward the beneficial M2 phenotype to promote oligodendrogenesis via JAK2/STAT3 and the C/EBPβ signaling pathway. This study provides novel insight into MEPO treatment for ischemic stroke.
Collapse
Affiliation(s)
- Rongliang Wang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Sijia Zhang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Feng Yan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhen Tao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Junfen Fan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Haiping Zhao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Ziping Han
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| | - Yumin Luo
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China.
| |
Collapse
|
13
|
Blanke N, Go V, Rosene DL, Bigio IJ. Quantitative birefringence microscopy for imaging the structural integrity of CNS myelin following circumscribed cortical injury in the rhesus monkey. NEUROPHOTONICS 2021; 8:015010. [PMID: 33763502 PMCID: PMC7984970 DOI: 10.1117/1.nph.8.1.015010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Significance: Myelin breakdown is likely a key factor in the loss of cognitive and motor function associated with many neurodegenerative diseases. Aim: New methods for imaging myelin structure are needed to characterize and quantify the degradation of myelin in standard whole-brain sections of nonhuman primates and in human brain. Approach: Quantitative birefringence microscopy (qBRM) is a label-free technique for rapid histopathological assessment of myelin structural breakdown following cortical injury in rhesus monkeys. Results: We validate birefringence microscopy for structural imaging of myelin in rhesus monkey brain sections, and we demonstrate the power of qBRM by characterizing the breakdown of myelin following cortical injury, as a model of stroke, in the motor cortex. Conclusions: Birefringence microscopy is a valuable tool for histopathology of myelin and for quantitative assessment of myelin structure. Compared to conventional methods, this label-free technique is sensitive to subtle changes in myelin structure, is fast, and enables more quantitative assessment, without the variability inherent in labeling procedures such as immunohistochemistry.
Collapse
Affiliation(s)
- Nathan Blanke
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Veronica Go
- Boston University School of Medicine, Department of Anatomy and Neurobiology, Boston, Massachusetts, United States
| | - Douglas L. Rosene
- Boston University School of Medicine, Department of Anatomy and Neurobiology, Boston, Massachusetts, United States
| | - Irving J. Bigio
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
| |
Collapse
|
14
|
Yang L, Dong Y, Wu C, Youngblood H, Li Y, Zong X, Li L, Xu T, Zhang Q. Effects of prenatal photobiomodulation treatment on neonatal hypoxic ischemia in rat offspring. Theranostics 2021; 11:1269-1294. [PMID: 33391534 PMCID: PMC7738878 DOI: 10.7150/thno.49672] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) injury is a severe complication often leading to neonatal death and long-term neurobehavioral deficits in children. Currently, the only treatment option available for neonatal HI injury is therapeutic hypothermia. However, the necessary specialized equipment, possible adverse side effects, and limited effectiveness of this therapy creates an urgent need for the development of new HI treatment methods. Photobiomodulation (PBM) has been shown to be neuroprotective against multiple brain disorders in animal models, as well as limited human studies. However, the effects of PBM treatment on neonatal HI injury remain unclear. Methods: Two-minutes PBM (808 nm continuous wave laser, 8 mW/cm2 on neonatal brain) was applied three times weekly on the abdomen of pregnant rats from gestation day 1 (GD1) to GD21. After neonatal right common carotid artery ligation, cortex- and hippocampus-related behavioral deficits due to HI insult were measured using a battery of behavioral tests. The effects of HI insult and PBM pretreatment on infarct size; synaptic, dendritic, and white matter damage; neuronal degeneration; apoptosis; mitochondrial function; mitochondrial fragmentation; oxidative stress; and gliosis were then assessed. Results: Prenatal PBM treatment significantly improved the survival rate of neonatal rats and decreased infarct size after HI insult. Behavioral tests revealed that prenatal PBM treatment significantly alleviated cortex-related motor deficits and hippocampus-related memory and learning dysfunction. In addition, mitochondrial function and integrity were protected in HI animals treated with PBM. Additional studies revealed that prenatal PBM treatment significantly alleviated HI-induced neuroinflammation, oxidative stress, and myeloid cell/astrocyte activation. Conclusion: Prenatal PBM treatment exerts neuroprotective effects on neonatal HI rats. Underlying mechanisms for this neuroprotection may include preservation of mitochondrial function, reduction of inflammation, and decreased oxidative stress. Our findings support the possible use of PBM treatment in high-risk pregnancies to alleviate or prevent HI-induced brain injury in the perinatal period.
Collapse
Affiliation(s)
- Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Hannah Youngblood
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Xuemei Zong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lei Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Tongda Xu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| |
Collapse
|
15
|
Karakousis VA, Liouliou D, Loula A, Kagianni N, Dietrich EM, Meditskou S, Sioga A, Papamitsou T. Immunohistochemical Femoral Nerve Study Following Bisphosphonates Administration. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:medicina56030140. [PMID: 32204565 PMCID: PMC7142497 DOI: 10.3390/medicina56030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 01/07/2023]
Abstract
Background and objectives: Bisphosphonates represent selective inhibitors of excess osteoblastic bone resorption that characterizes all osteopathies, targeting osteoclasts and their precursors. Their long-term administration in postmenopausal women suffering from osteoporosis has resulted in neural adverse effects. The current study focuses on the research of possible alterations in the femoral nerve, caused by bisphosphonates. We hypothesized that bisphosphonates, taken orally (per os), may produce degenerative changes to the femoral nerve, affecting lower-limb posture and walking neuronal commands. Materials and Methods: In order to support our hypothesis, femoral nerve specimens were extracted from ten female 12-month-old Wistar rats given 0.05 milligrams (mg) per kilogram (kg) of body weight (b.w.) per week alendronate per os for 13 weeks and from ten female 12-month-old Wistar rats given normal saline that were used as a control group. Specimens were studied using immunohistochemistry for selected antibodies NeuN (Neuronal Nuclear Protein), a protein located within mature, postmitotic neural nucleus, and cytosol and Sox10 (Sex-determining Region Y (SRY) - High-Motility Group (HMG) - box 10). The latter marker is fundamental for myelination of peripheral nerves. Obtained slides were examined under a light microscope. Results: Samples extracted from rats given alendronate were more Sox10 positive compared to samples of the control group, where the marker's expression was not so intense. Both groups were equally NeuN positive. Our results are in agreement with previous studies conducted under a transmission electron microscope. Conclusions: The suggested pathophysiological mechanism linked to histological alterations described above is possibly related to toxic drug effects on Schwann and neuronal cells. Our hypothesis enhances the existing scientific evidence of degenerative changes present on femoral nerve following bisphosphonates administration, indicating a possible relationship between alendronate use and neuronal function.
Collapse
Affiliation(s)
| | - Danai Liouliou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Aikaterini Loula
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikoleta Kagianni
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eva-Maria Dietrich
- Department of Oral and Maxillofacial Surgery, University Hospital of Erlangen, 91054 Erlangen, Germany
| | - Soultana Meditskou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonia Sioga
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodora Papamitsou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
16
|
Owen JE, BenediktsdÓttir B, Gislason T, Robinson SR. Neuropathological investigation of cell layer thickness and myelination in the hippocampus of people with obstructive sleep apnea. Sleep 2019; 42:5139668. [PMID: 30346595 DOI: 10.1093/sleep/zsy199] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Obstructive sleep apnea (OSA) is commonly associated with memory impairments. Although MRI studies have found volumetric differences in the hippocampus of people with OSA compared with controls, MRI lacks the spatial resolution to detect changes in the specific regions of the hippocampus that process different types of memory. The present study performed histopathological investigations on autopsy brain tissue from 32 people with OSA (17 females and 15 males) to examine whether the thickness and myelination of the hippocampus and entorhinal cortex (EC) vary as a function of OSA severity. Increasing OSA severity was found to be related to cortical thinning in the molecular layer of the dentate gyrus (r2 = 0.136, p = 0.038), the CA1 (overall, r2 = 0.135, p = 0.039; layer 1, r2 = 0.157, p = 0.025; layer 2, r2 = 0.255, p = 0.003; and layer 3, r2 = 0.185, p = 0.014) and in some layers of the EC (layer 1, r2 = 0.186, p = 0.028; trend in layer 3, r2 = 0.124, p = 0.078). OSA severity was also related to decreased myelin in the deep layers but not the superficial layers of the EC (layer 6, r2 = 0.282, p = 0.006; deep white matter, r2 = 0.390, p = 0.001). Patients known to have used continuous positive airway pressure (CPAP) treatment showed no significant reductions in cortical thickness when compared with controls, suggesting that CPAP had a protective effect. However, CPAP did not protect against myelin loss. The regions of decreased cortical thickness and demyelination are locations of synaptic connections in both the polysynaptic (episodic and spatial) and direct (semantic) memory pathways and may underpin the impairments observed in episodic, semantic, and spatial memory in people with OSA.
Collapse
Affiliation(s)
- Jessica E Owen
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | | | - Thorarinn Gislason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Sleep Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Stephen R Robinson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
17
|
Faheem H, Mansour A, Elkordy A, Rashad S, Shebl M, Madi M, Elwy S, Niizuma K, Tominaga T. Neuroprotective effects of minocycline and progesterone on white matter injury after focal cerebral ischemia. J Clin Neurosci 2019; 64:206-213. [DOI: 10.1016/j.jocn.2019.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/22/2019] [Accepted: 04/12/2019] [Indexed: 11/25/2022]
|
18
|
Wang R, Li J, Duan Y, Tao Z, Zhao H, Luo Y. Effects of Erythropoietin on Gliogenesis during Cerebral Ischemic/Reperfusion Recovery in Adult Mice. Aging Dis 2017; 8:410-419. [PMID: 28840056 PMCID: PMC5524804 DOI: 10.14336/ad.2016.1209] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/09/2016] [Indexed: 12/11/2022] Open
Abstract
Erythropoietin (EPO) promotes oligodendrogenesis and attenuates white matter injury in neonatal rats. However, it is unknown whether this effect extends to adult mice and whether EPO regulate microglia polarization after ischemic stroke. Male adult C57BL/6 mice (25–30g) were subjected to 45 min of middle cerebral artery occlusion (MCAO). EPO (5000 IU/kg) or saline was injected intraperitoneally every other day after reperfusion. Neurological function was evaluated using the rotarod test at 1, 3, 7 and 14 days after MCAO. Brain tissue loss volume was determined by hematoxylin-eosin staining. Immunofluorescence staining and Western blot were also used to assess the severity of white matter injury and phenotypic changes in microglia/macrophages. Bromodeoxyuridine (BrdU) was injected intraperitoneally daily for 1 week to analyze the number of newly proliferating glia cells (oligodendrocytes, microglia, and astrocytes). We found that EPO significantly reduced Brain tissue loss volume, ameliorated white matter injury, and improved neurobehavioral outcomes at 14 days after MCAO (P<0.05). In addition, EPO also increased the number of newly generated oligodendrocytes and attenuated the rapid hypertrophy and hyperplasia of microglia and astrocytes after ischemic stroke (P<0.05). Furthermore, EPO reduced M1 microglia and increased M2 microglia (P<0.05). Taken together, our results suggest that EPO treatment improves white matter integrity after cerebral ischemia, which could be attributed to EPO attenuating gliosis and facilitating the microglial polarization toward the beneficial M2 phenotype to promote oligodendrogenesis.
Collapse
Affiliation(s)
- Rongliang Wang
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,2Beijing Institute for Brain Disorders, Beijing 100053, China.,3Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Jincheng Li
- 4Department of Neurology, Zibo Central Hospital, Zibo 255036, China
| | - Yunxia Duan
- 2Beijing Institute for Brain Disorders, Beijing 100053, China.,3Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Zhen Tao
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,2Beijing Institute for Brain Disorders, Beijing 100053, China.,3Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Haiping Zhao
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,2Beijing Institute for Brain Disorders, Beijing 100053, China.,3Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| | - Yumin Luo
- 1Cerebrovascular Diseases Research Institute and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,2Beijing Institute for Brain Disorders, Beijing 100053, China.,3Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing 100053, China
| |
Collapse
|
19
|
Wang R, Zhao H, Li J, Duan Y, Fan Z, Tao Z, Ju F, Yan F, Luo Y. Erythropoietin attenuates axonal injury after middle cerebral artery occlusion in mice. Neurol Res 2017; 39:545-551. [PMID: 28413924 DOI: 10.1080/01616412.2017.1316904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Erythropoietin (EPO) confers potent neuroprotection against ischemic injury through a variety of mechanisms. However, the protective effect of EPO on axons after cerebral ischemia in adult mice is rarely covered. The purpose of this study was to investigate the potential neuroprotective effects of EPO on axons in mice after cerebral ischemia. METHODS A total of 30 adult male C57 BL/6 mice were treated with EPO (5000 IU/kg) or vehicle after transient middle cerebral artery occlusion (MCAO). The mortality rate of each experimental group was calculated. Neurological function was assessed by Rota-rod test. Frozen sections from each mouse brain at 14 days after reperfusion were used to evaluate the fluorescent intensity of myelin basic protein (MBP) and neurofilament 200 (NF-200). Immunofluorescence staining and Western blotting were used to assess the protein level of β-amyloid precursor protein (β-APP) and glial fibrillary acidic protein (GFAP), a marker of mature astrocytes. The protein levels of the myelin-derived growth inhibitory proteins, neurite growth inhibitor-A (Nogo-A), myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (OMG) were also examined by Western blot after MCAO. RESULTS The survival rate of the vehicle group 14 days after cerebral ischemia-reperfusion was 50%, which increased to 80% after EPO treatment at the start of reperfusion. EPO improved neurobehavioral outcomes at days 3 and 7 after MCAO was compared with the vehicle group (P < 0.05). Furthermore, EPO ameliorated demyelination, demonstrated by upregulation of the MBP/NF-200 ratio. Meanwhile, increased levels of β-APP, GFAP, Nogo-A, and MAG after MCAO were reduced by EPO treatment (P < 0.05). CONCLUSION EPO treatment attenuates axonal injury and improves neurological function after cerebral ischemia in adult mice.
Collapse
Affiliation(s)
- Rongliang Wang
- a Cerebrovascular Diseases Research Institute and Department of Neurology , Xuanwu Hospital of Capital Medical University , Beijing , China.,b Center of Stroke , Beijing Institute for Brain Disorders , Beijing , China.,c Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases , Beijing , China
| | - Haiping Zhao
- a Cerebrovascular Diseases Research Institute and Department of Neurology , Xuanwu Hospital of Capital Medical University , Beijing , China.,b Center of Stroke , Beijing Institute for Brain Disorders , Beijing , China.,c Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases , Beijing , China
| | - Jincheng Li
- d Department of Neurology , Zibo Central Hospital , Zibo , China
| | - Yunxia Duan
- b Center of Stroke , Beijing Institute for Brain Disorders , Beijing , China.,c Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases , Beijing , China
| | - Zhibin Fan
- a Cerebrovascular Diseases Research Institute and Department of Neurology , Xuanwu Hospital of Capital Medical University , Beijing , China.,b Center of Stroke , Beijing Institute for Brain Disorders , Beijing , China.,c Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases , Beijing , China
| | - Zhen Tao
- a Cerebrovascular Diseases Research Institute and Department of Neurology , Xuanwu Hospital of Capital Medical University , Beijing , China.,b Center of Stroke , Beijing Institute for Brain Disorders , Beijing , China.,c Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases , Beijing , China
| | - Fei Ju
- e Internal Medicine Department , Central Hospital of Beijing Prison Administration Bureau , Beijing , China
| | - Feng Yan
- a Cerebrovascular Diseases Research Institute and Department of Neurology , Xuanwu Hospital of Capital Medical University , Beijing , China.,b Center of Stroke , Beijing Institute for Brain Disorders , Beijing , China.,c Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases , Beijing , China
| | - Yumin Luo
- a Cerebrovascular Diseases Research Institute and Department of Neurology , Xuanwu Hospital of Capital Medical University , Beijing , China.,b Center of Stroke , Beijing Institute for Brain Disorders , Beijing , China.,c Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases , Beijing , China
| |
Collapse
|
20
|
Stokes III JA, Mishra MK. Role of Resveratrol (RES) in Regenerative Medicine. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Within the last quarter century, technology has been a major catalyst of the advancement in various fields of scientific knowledge, particularly medical research. This new enlightenment has spurred the exploration of alternative treatment methods to some of society's most problematic diseases. One such innovative treatment is the use of Resveratrol (RES) to treat a number of pathophysiological conditions. RES is a natural polyphenolic compound found in the skin(s) of blueberries, red grapes (a major constituent of red wine), some vegetables, and even peanuts. The compound has a number of potent regenerative properties, which include: anti-aging, anti-inflammatory, and antioxidative. Research has confirmed both in vivo and in vitro RES's beneficial applications to numerous diseases. This chapter centers on its unique healing powers and beneficial applications against myriad debilitating conditions.
Collapse
|
21
|
Transneuronal Degeneration of Thalamic Nuclei following Middle Cerebral Artery Occlusion in Rats. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3819052. [PMID: 27597962 PMCID: PMC4997075 DOI: 10.1155/2016/3819052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/22/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
Objective. Postinfarction transneuronal degeneration refers to secondary neuronal death that occurs within a few days to weeks following the disruption of input or output to synapsed neurons sustaining ischemic insults. The thalamus receives its blood supply from the posterior circulation; however, infarctions of the middle cerebral arterial may cause secondary transneuronal degeneration in the thalamus. In this study, we presented the areas of ischemia and associated transneuronal degeneration following MCAo in a rat model. Materials and Methods. Eighteen 12-week-old male Sprague-Dawley rats were randomly assigned to receive middle cerebral artery occlusion surgery for 1, 7, and 14 days. Cerebral atrophy was assessed by 2,3,5-triphenyltetrazolium hydrochloride staining. Postural reflex and open field tests were performed prior to animal sacrifice to assess the effects of occlusion on behavior. Results. Myelin loss was observed at the lesion site following ischemia. Gliosis was also observed in thalamic regions 14 days following occlusion. Differential degrees of increased vascular endothelial growth factor expression were observed at each stage of infarction. Increases in myelin basic protein levels were also observed in the 14-day group. Conclusion. The present rat model of ischemia provides evidence of transneuronal degeneration within the first 14 days of occlusion. The observed changes in protein expression may be associated with self-repair mechanisms in the damaged brain.
Collapse
|
22
|
Exercise Training Inhibits the Nogo-A/NgR1/Rho-A Signals in the Cortical Peri-infarct Area in Hypertensive Stroke Rats. Am J Phys Med Rehabil 2016; 94:1083-94. [PMID: 26135366 DOI: 10.1097/phm.0000000000000339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to test the hypothesis that exercise training promotes motor recovery after stroke by facilitating axonal remodeling via inhibition of the Nogo-A/NgR1 and Rho-A pathway. DESIGN A distal middle cerebral artery occlusion model was generated in stroke-prone renovascular hypertensive rats. Stroke-prone renovascular hypertensive rats were randomly divided into a control group, an exercise training group, and a sham group. Motor function was measured using the grip strength test. Axon and myelin remodeling markers, growth-associated protein 43, myelin basic protein, Tau, and amyloid precursor protein were detected by immunofluorescence. The expression of Nogo-A, NgR1, and Rho-A was demonstrated by immunofluorescence and Western blotting in the peri-infarction area at 7, 14, 28, and 52 days after distal middle cerebral artery occlusion. RESULTS Grip strength was higher in the exercise training group (P < 0.05). Exercise training increased the expression of growth-associated protein 43, myelin basic protein (at 7, 14, and 28 days), and Tau (at 7 and 14 days), and decreased the expression of axonal damage amyloid precursor protein (at 7 and 14 days), compared with the control group. The protein levels of Nogo-A (at 7 and 14 days), NgR1 (at 7, 14, and 28 days), and Rho-A (at 14 and 28 days) were reduced after exercise training. CONCLUSIONS Exercise training promotes axonal recovery, which is associated with functional improvement after cerebral infarction. Down-regulation of the Nogo-A/NgR1/Rho-A may mediate the axonal remodeling induced by exercise training.
Collapse
|
23
|
Liu Y, Li B, Li Q, Zou L. Neuroglobin up-regulation after ischaemic pre-conditioning in a rat model of middle cerebral artery occlusion. Brain Inj 2015; 29:651-7. [PMID: 25625519 DOI: 10.3109/02699052.2014.1002004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PRIMARY OBJECTIVE Neuroglobin (NGB) is a known neuroprotector and is up-regulated after ischaemia-hypoxia brain damage. However, no studies have investigated NGB levels after ischaemic pre-conditioning and middle cerebral artery occlusion (MCAO). METHODS AND PROCEDURES This study subjected rats to different ischaemic pre-conditioning and MCAO regimens and assayed NGB levels in the hippocampus, cortex and hypothalamus by immunohistochemistry, quantitative polymerase chain reaction (PCR) and western blot. MAIN OUTCOMES AND RESULTS After 30 minutes of ischaemic pre-conditioning, the number of NGB-positive cells and NGB levels in the hippocampus, cortex and hypothalamus were increased with longer reperfusion times, peaked at 24-hours reperfusion and slightly decreased at 48-hours reperfusion. Similarly, the mRNA and protein expression levels of NGB were also up-regulated; they peaked at 24-hours reperfusion and slightly decreased at 48-hours reperfusion. CONCLUSIONS NGB may regulate neuroprotection against ischaemia and hypoxia-mediated brain damage after ischaemic pre-conditioning. The results provide additional evidence supporting the utility of ischaemic pre-conditioning and help elucidate its potential regulatory mechanism.
Collapse
Affiliation(s)
- Yichen Liu
- Department of Pediatrics, Chinese PLA General Hospital Medical School of Chinese PLA , Beijing , PR China and
| | | | | | | |
Collapse
|
24
|
Ferreira EDF, Romanini CV, de Oliveira JN, Previdelli ITS, de Melo SR, de Oliveira RMW, Milani H. Fish oil provides a sustained antiamnesic effect after acute, transient forebrain ischemia but not after chronic cerebral hypoperfusion in middle-aged rats. Behav Brain Res 2014; 265:101-10. [PMID: 24561066 DOI: 10.1016/j.bbr.2014.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 01/04/2023]
Abstract
We reported that fish oil (FO) abolishes retrograde amnesia consistently following transient global cerebral ischemia (TGCI) in young rats, provided it covered the first days prior to and after ischemia. Here, we further evaluated whether FO given post-ischemia in older rats (15-18 months old) is equally effective in facilitating memory recovery. We also tested whether the antiamnesic effect of FO observed after TGCI can be reproduced after chronic cerebral hypoperfusion (CCH). FO (300 mg/kg docosahexaenoic acid [DHA]) was delivered orally 4h after TGCI and continued once per day for 9 days. In the CCH group, FO treatment began soon after the first stage of 4-VO/ICA and continued daily for 43 days. Two weeks after surgery, the animals were tested for retrograde memory performance across 5 weeks. Both TGCI and CCH caused persistent memory impairment and hippocampal and cortical neurodegeneration. TGCI-induced retrograde amnesia was reversed by FO, an effect that was sustained for at least 5 weeks after discontinuing treatment. In contrast, the memory deficit caused by CCH remained unchanged after FO treatment. Both hippocampal and cortical damage was not alleviated by FO. We conclude that the FO-mediated antiamnesic effect following TGCI can be extended to older rats, even when the treatment begins 4h postischemia. Such efficacy was not reproduced after CCH. Therefore, the present results support the notion that FO may have therapeutic utility in treating learning/memory dysfunction after acute/transient cerebral ischemia and suggest that such benefits may not apply when a state of chronic cerebrovascular insufficiency is present.
Collapse
Affiliation(s)
- Emilene Dias Fiuza Ferreira
- Department of Pharmacology and Therapeutic, Health Science Center, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Cássia Valério Romanini
- Department of Pharmacology and Therapeutic, Health Science Center, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Janaina Nicolau de Oliveira
- Department of Pharmacology and Therapeutic, Health Science Center, State University of Maringá, Maringá 87020-900, PR, Brazil
| | | | - Silvana Regina de Melo
- Department of Morphophysiological Sciences, Biological Science Center, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutic, Health Science Center, State University of Maringá, Maringá 87020-900, PR, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutic, Health Science Center, State University of Maringá, Maringá 87020-900, PR, Brazil.
| |
Collapse
|
25
|
Zhao L, Guo Y, Ji X, Zhang M. The neuroprotective effect of picroside II via regulating the expression of myelin basic protein after cerebral ischemia injury in rats. BMC Neurosci 2014; 15:25. [PMID: 24524292 PMCID: PMC3926676 DOI: 10.1186/1471-2202-15-25] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/11/2014] [Indexed: 12/17/2022] Open
Abstract
Background To explore the neuroprotective effect and optimize the therapeutic dose and time window of picroside II by orthogonal test and the expression of myelin basic protein (MBP) in cerebral ischemic injury in rats. Bilateral common carotid artery occlusion (BCCAO) was used to establish forebrain ischemia models. The successful rat models were grouped according to orthogonal experimental design and injected picroside II intraperitoneally at different ischemic time with different doses. Myelin sheath fast green staining(FGS) and transmission electron microscopy (TEM) were used to observe nerve fiber myelin; the expression of MBP was tested qualitatively and quantitatively by immunohistochemical assay (IHC) and Western blot (WB); Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the transcription level of MBP mRNA. Results The protective effect of picroside II was presented by increasing the expression of MBP and decreasing demyelination after cerebral ischemic injury. The best therapeutic time window and dose was (1) ischemia 2.0 h with picroside II 10 mg/kg body weight according to the results of FGS, IHC and WB; (2) ischemia 1.5 h with picroside II 20 mg/kg according to the analysis of RT-PCR. Conclusion Given the principle of the longest time window and the lowest therapeutic dose, the optimized therapeutic dose and time window should be injecting picroside II intraperitoneally with 10-20 mg/kg body weight at ischemia 1.5-2.0 h in cerebral ischemic injury.
Collapse
Affiliation(s)
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
| | | | | |
Collapse
|