1
|
Fischer QS, Kalikulov D, Viana Di Prisco G, Williams CA, Baldwin PR, Friedlander MJ. Synaptic Plasticity in the Injured Brain Depends on the Temporal Pattern of Stimulation. J Neurotrauma 2024; 41:2455-2477. [PMID: 38818799 DOI: 10.1089/neu.2024.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Neurostimulation protocols are increasingly used as therapeutic interventions, including for brain injury. In addition to the direct activation of neurons, these stimulation protocols are also likely to have downstream effects on those neurons' synaptic outputs. It is well known that alterations in the strength of synaptic connections (long-term potentiation, LTP; long-term depression, LTD) are sensitive to the frequency of stimulation used for induction; however, little is known about the contribution of the temporal pattern of stimulation to the downstream synaptic plasticity that may be induced by neurostimulation in the injured brain. We explored interactions of the temporal pattern and frequency of neurostimulation in the normal cerebral cortex and after mild traumatic brain injury (mTBI), to inform therapies to strengthen or weaken neural circuits in injured brains, as well as to better understand the role of these factors in normal brain plasticity. Whole-cell (WC) patch-clamp recordings of evoked postsynaptic potentials in individual neurons, as well as field potential (FP) recordings, were made from layer 2/3 of visual cortex in response to stimulation of layer 4, in acute slices from control (naive), sham operated, and mTBI rats. We compared synaptic plasticity induced by different stimulation protocols, each consisting of a specific frequency (1 Hz, 10 Hz, or 100 Hz), continuity (continuous or discontinuous), and temporal pattern (perfectly regular, slightly irregular, or highly irregular). At the individual neuron level, dramatic differences in plasticity outcome occurred when the highly irregular stimulation protocol was used at 1 Hz or 10 Hz, producing an overall LTD in controls and shams, but a robust overall LTP after mTBI. Consistent with the individual neuron results, the plasticity outcomes for simultaneous FP recordings were similar, indicative of our results generalizing to a larger scale synaptic network than can be sampled by individual WC recordings alone. In addition to the differences in plasticity outcome between control (naive or sham) and injured brains, the dynamics of the changes in synaptic responses that developed during stimulation were predictive of the final plasticity outcome. Our results demonstrate that the temporal pattern of stimulation plays a role in the polarity and magnitude of synaptic plasticity induced in the cerebral cortex while highlighting differences between normal and injured brain responses. Moreover, these results may be useful for optimization of neurostimulation therapies to treat mTBI and other brain disorders, in addition to providing new insights into downstream plasticity signaling mechanisms in the normal brain.
Collapse
Affiliation(s)
- Quentin S Fischer
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Djanenkhodja Kalikulov
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | - Carrie A Williams
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
| | - Philip R Baldwin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Michael J Friedlander
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Faculty of Health Sciences, Virginia Tech, Roanoke, Virginia, USA
| |
Collapse
|
2
|
Cheng C, Lu CF, Hsieh BY, Huang SH, Kao YCJ. Anisotropy component of DTI reveals long-term neuroinflammation following repetitive mild traumatic brain injury in rats. Eur Radiol Exp 2024; 8:82. [PMID: 39046630 PMCID: PMC11269550 DOI: 10.1186/s41747-024-00490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND This study aimed to investigate the long-term effects of repetitive mild traumatic brain injury (rmTBI) with varying inter-injury intervals by measuring diffusion tensor metrics, including mean diffusivity (MD), fractional anisotropy (FA), and diffusion magnitude (L) and pure anisotropy (q). METHODS Eighteen rats were randomly divided into three groups: short-interval rmTBI (n = 6), long-interval rmTBI (n = 6), and sham controls (n = 6). MD, FA, L, and q values were analyzed from longitudinal diffusion tensor imaging at days 50 and 90 after rmTBI. Immunohistochemical staining against neurons, astrocytes, microglia, and myelin was performed. Analysis of variance, Pearson correlation coefficient, and simple linear regression model were used. RESULTS At day 50 post-rmTBI, lower cortical FA and q values were shown in the short-interval group (p ≤ 0.038). In contrast, higher FA and q values were shown for the long-interval group (p ≤ 0.039) in the corpus callosum. In the ipsilesional external capsule and internal capsule, no significant changes were found in FA, while lower L and q values were shown in the short-interval group (p ≤ 0.028) at day 90. The q values in the external capsule and internal capsule were negatively correlated with the number of microglial cells and the total number of astroglial cells (p ≤ 0.035). CONCLUSION Tensor scalar measurements, such as L and q values, are sensitive to exacerbated chronic injury induced by rmTBI with shorter inter-injury intervals and reflect long-term astrogliosis induced by the cumulative injury. RELEVANCE STATEMENT Tensor scalar measurements, including L and q values, are potential DTI metrics for detecting long-term and subtle injury following rmTBI; in particular, q values may be used for quantifying remote white matter (WM) changes following rmTBI. KEY POINTS The alteration of L and q values was demonstrated after chronic repetitive mild traumatic brain injury. Changing q values were observed in the impact site and remote WM. The lower q values in the remote WM were associated with astrogliosis.
Collapse
Affiliation(s)
- Ching Cheng
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bao-Yu Hsieh
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shu-Hui Huang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chieh Jill Kao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Alanezi ST, Almutairi WM, Cronin M, Gobbo O, O'Mara SM, Sheppard D, O'Connor WT, Gilchrist MD, Kleefeld C, Colgan N. Whole-brain traumatic controlled cortical impact to the left frontal lobe: Magnetic resonance image-based texture analysis. J Neuropathol Exp Neurol 2024; 83:94-106. [PMID: 38164986 DOI: 10.1093/jnen/nlad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
This research assesses the capability of texture analysis (TA) derived from high-resolution (HR) T2-weighted magnetic resonance imaging to identify primary sequelae following 1-5 hours of controlled cortical impact mild or severe traumatic brain injury (TBI) to the left frontal cortex (focal impact) and secondary (diffuse) sequelae in the right frontal cortex, bilateral corpus callosum, and hippocampus in rats. The TA technique comprised first-order (histogram-based) and second-order statistics (including gray-level co-occurrence matrix, gray-level run length matrix, and neighborhood gray-level difference matrix). Edema in the left frontal impact region developed within 1 hour and continued throughout the 5-hour assessments. The TA features from HR images confirmed the focal injury. There was no significant difference among radiomics features between the left and right corpus callosum or hippocampus from 1 to 5 hours following a mild or severe impact. The adjacent corpus callosum region and the distal hippocampus region (s), showed no diffuse injury 1-5 hours after mild or severe TBI. These results suggest that combining HR images with TA may enhance detection of early primary and secondary sequelae following TBI.
Collapse
Affiliation(s)
- Saleh T Alanezi
- Physics Department, Faculty of Science, Northern Border University, ArAr, Saudi Arabia
- School of Natural Sciences, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Waleed M Almutairi
- Medical Imaging Department, King Abdullah bin Abdulaziz University Hospital, Riyadh, Saudi Arabia
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Michelle Cronin
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Oliviero Gobbo
- School of Pharmacy and Pharmaceutical Sciences & Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Shane M O'Mara
- Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Declan Sheppard
- Department of Radiology, University Hospital Galway, Galway, Ireland
| | - William T O'Connor
- University of Limerick School of Medicine, Castletroy, Limerick, Ireland
| | - Michael D Gilchrist
- School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Christoph Kleefeld
- School of Natural Sciences, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Niall Colgan
- School of Natural Sciences, College of Science and Engineering, University of Galway, Galway, Ireland
- Department of Engineering, Technological University of the Shannon, Athlone, Ireland
| |
Collapse
|
4
|
Fesharaki-Zadeh A. Navigating the Complexities of Traumatic Encephalopathy Syndrome (TES): Current State and Future Challenges. Biomedicines 2023; 11:3158. [PMID: 38137378 PMCID: PMC10740836 DOI: 10.3390/biomedicines11123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a unique neurodegenerative disease that is associated with repetitive head impacts (RHI) in both civilian and military settings. In 2014, the research criteria for the clinical manifestation of CTE, traumatic encephalopathy syndrome (TES), were proposed to improve the clinical identification and understanding of the complex neuropathological phenomena underlying CTE. This review provides a comprehensive overview of the current understanding of the neuropathological and clinical features of CTE, proposed biomarkers of traumatic brain injury (TBI) in both research and clinical settings, and a range of treatments based on previous preclinical and clinical research studies. Due to the heterogeneity of TBI, there is no universally agreed-upon serum, CSF, or neuroimaging marker for its diagnosis. However, as our understanding of this complex disease continues to evolve, it is likely that there will be more robust, early diagnostic methods and effective clinical treatments. This is especially important given the increasing evidence of a correlation between TBI and neurodegenerative conditions, such as Alzheimer's disease and CTE. As public awareness of these conditions grows, it is imperative to prioritize both basic and clinical research, as well as the implementation of necessary safe and preventative measures.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Jacotte-Simancas A, Molina PE, Gilpin NW. Repeated Mild Traumatic Brain Injury and JZL184 Produce Sex-Specific Increases in Anxiety-Like Behavior and Alcohol Consumption in Wistar Rats. J Neurotrauma 2023; 40:2427-2441. [PMID: 37503666 PMCID: PMC10649186 DOI: 10.1089/neu.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Alcohol use disorder (AUD) is highly comorbid with traumatic brain injury (TBI). Previously, using a lateral fluid percussion model (LFP) (an open-head injury model) to generate a single mild to moderate traumatic brain injury (TBI) we showed that TBI produces escalation in alcohol drinking, that alcohol exposure negatively impacts TBI outcomes, and that the endocannabinoid degradation inhibitor (JZL184) confers significant protection from behavioral and neuropathological outcomes in male rodents. In the present study, we used a weight drop model (a closed-head injury model) to produce repeated mild TBI (rmTBI; three TBIs separated by 24 hours) in male and female rats to examine the sex-specific effects on anxiety-like behavior and alcohol consumption, and whether systemic treatment with JZL184 would reverse TBI effects on those behaviors. In two separate studies, adult male and female Wistar rats were subjected to rmTBI or sham procedure using the weight drop model. Physiological measures of injury severity were collected from all animals. Animals in both studies were allowed to consume alcohol using an intermittent 2-bottle choice procedure (12 pre-TBI sessions and 12 post-TBI sessions). Neurological severity and neurobehavioral scores (NSS and NBS, respectively) were tested 24 hours after the final injury. Anxiety-like behavior was tested at 37-38 days post-injury in Study 1-, and 6-8-days post-injury in Study 2. Our results show that females exhibited reduced respiratory rates relative to males with no significant differences between Sham and rmTBI, no effect of rmTBI or sex on righting reflex, and increased neurological deficits in rmTBI groups in both studies. In Study 1, rmTBI increased alcohol consumption in female but not male rats. Male rats consistently exhibited higher levels of anxiety-like behavior than females. The rmTBI did not affect anxiety-like behavior 37-38 days post-injury. In Study 2, rmTBI once again increased alcohol consumption in female but not male rats, and repeated systemic treatment with JZL184 did not affect alcohol consumption. Also in Study 2, rmTBI increased anxiety-like behavior in males but not females and repeated systemic treatment with JZL184 produced an unexpected increase in anxiety-like behavior 6-8 days post-injury. In summary, rmTBI increased alcohol consumption in female rats, systemic JZL184 treatment did not alter alcohol consumption, and both rmTBI and systemic JZL184 treatment increased anxiety-like behavior 6-8 days post-injury in males but not females, highlighting robust sex differences in rmTBI effects.
Collapse
Affiliation(s)
- Alejandra Jacotte-Simancas
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nicholas W. Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Alcohol and Drug of Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Southeast Louisiana VA Healthcare System, New Orleans, Louisiana, USA
| |
Collapse
|
6
|
Juan SMA, Daglas M, Truong PH, Mawal C, Adlard PA. Alterations in iron content, iron-regulatory proteins and behaviour without tau pathology at one year following repetitive mild traumatic brain injury. Acta Neuropathol Commun 2023; 11:118. [PMID: 37464280 PMCID: PMC10353227 DOI: 10.1186/s40478-023-01603-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI) has increasingly become recognised as a risk factor for the development of neurodegenerative diseases, many of which are characterised by tau pathology, metal dyshomeostasis and behavioural impairments. We aimed to characterise the status of tau and the involvement of iron dyshomeostasis in repetitive controlled cortical impact injury (5 impacts, 48 h apart) in 3-month-old C57Bl6 mice at the chronic (12-month) time point. We performed a battery of behavioural tests, characterised the status of neurodegeneration-associated proteins (tau and tau-regulatory proteins, amyloid precursor protein and iron-regulatory proteins) via western blot; and metal levels using bulk inductively coupled plasma-mass spectrometry (ICP-MS). We report significant changes in various ipsilateral iron-regulatory proteins following five but not a single injury, and significant increases in contralateral iron, zinc and copper levels following five impacts. There was no evidence of tau pathology or changes in tau-regulatory proteins following five impacts, although some changes were observed following a single injury. Five impacts resulted in significant gait deficits, mild anhedonia and mild cognitive deficits at 9-12 months post-injury, effects not seen following a single injury. To the best of our knowledge, we are the first to describe chronic changes in metals and iron-regulatory proteins in a mouse model of r-mTBI, providing a strong indication towards an overall increase in brain iron levels (and other metals) in the chronic phase following r-mTBI. These results bring to question the relevance of tau and highlight the involvement of iron dysregulation in the development and/or progression of neurodegeneration following injury, which may lead to new therapeutic approaches in the future.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Phan H Truong
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Celeste Mawal
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
7
|
Jacotte-Simancas A, Molina P, Gilpin N. JZL184 increases anxiety-like behavior and does not reduce alcohol consumption in female rats after repeated mild traumatic brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542943. [PMID: 37398130 PMCID: PMC10312513 DOI: 10.1101/2023.05.30.542943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Alcohol use disorder (AUD) is highly comorbid with traumatic brain injury (TBI). Previously, using a lateral fluid percussion model (LFP) (an open model of head injury) to generate a single mild to moderate traumatic brain injury (TBI), we showed that TBI produces escalation in alcohol drinking, that alcohol exposure negatively impacts TBI outcomes, and that the endocannabinoid degradation inhibitor (JZL184) confers significant protection from behavioral and neuropathological outcomes in male rodents. In the present study, we used a weight drop model (a closed model of head injury) to produce a repeated mild TBI (rmTBI, 3 TBIs, spaced by 24 hours) to examine the sex-specific effects on alcohol consumption and anxiety-like behavior in rats, and whether systemic treatment with JZL184 would reverse TBI effects on those behaviors in both sexes. In two separate studies, adult male and female Wistar rats were subjected to rmTBI or sham using the weight drop model. Physiological measures of injury severity were collected from all animals. Animals in both studies were allowed to consume alcohol using an intermittent 2-bottle choice procedure (12 pre-TBI sessions and 12 post-TBI sessions). Neurological severity and neurobehavioral scores (NSS and NBS, respectively) were tested 24 hours after the final injury. Anxiety-like behavior was tested at 37-38 days post-injury in Study 1, and 6-8 days post-injury in Study 2. Our results show that females exhibited reduced respiratory rates relative to males with no significant differences between Sham and rmTBI, no effect of rmTBI or sex on righting reflex, and increased neurological deficits in rmTBI groups in both studies. In Study 1, rmTBI increased alcohol consumption in female but not male rats. Male rats consistently exhibited higher levels of anxiety-like behavior than females. rmTBI did not affect anxiety-like behavior 37-38 days post-injury. In Study 2, rmTBI once again increased alcohol consumption in female but not male rats, and repeated systemic treatment with JZL184 did not affect alcohol consumption. Also in Study 2, rmTBI increased anxiety-like behavior in males but not females and repeated systemic treatment with JZL184 produced an unexpected increase in anxiety-like behavior 6-8 days post-injury. In summary, rmTBI increased alcohol consumption in female rats, systemic JZL184 treatment did not alter alcohol consumption, and both rmTBI and sub-chronic systemic JZL184 treatment increased anxiety-like behavior 6-8 days post-injury in males but not females, highlighting robust sex differences in rmTBI effects.
Collapse
Affiliation(s)
- Alejandra Jacotte-Simancas
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA
- Alcohol and Drug of Abuse Center of Excellence, LSUHSC, New Orleans, LA
| | - Patricia Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA
- Alcohol and Drug of Abuse Center of Excellence, LSUHSC, New Orleans, LA
| | - Nicholas Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA
- Alcohol and Drug of Abuse Center of Excellence, LSUHSC, New Orleans, LA
- Southeast Louisiana VA Healthcare System, New Orleans, LA
| |
Collapse
|
8
|
Wilson RJ, Bell MR, Giordano KR, Seyburn S, Kozlowski DA. Repeat subconcussion in the adult rat gives rise to behavioral deficits similar to a single concussion but different depending upon sex. Behav Brain Res 2023; 438:114206. [PMID: 36356721 DOI: 10.1016/j.bbr.2022.114206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Although concussions are a popular focus of neurotrauma research, subconcussions occur with higher frequency but are less well-studied. A subconcussion is an impact to the head that does not result in immediately diagnosable concussion but can result in later neurological consequences. Repeat subconcussions can produce behavioral impairments and neuropathology that is similar to or worse than those seen following a single concussion. The current study modified a previously established closed head injury model of concussion to create a subconcussion model and examines sex differences in behavioral responses to repeated subconcussion in the adult rat. Rats received a single concussion, single or repeat subconcussions, or no impact and behavior was monitored from 2 h through 31 days post-injury. A single concussion or repeat subconcussion resulted in deficits in locomotion, righting reflexes, and recognition memory. The degree of deficit induced by repeat subconcussions were either similar (righting reflexes) or greater/more persistent (locomotor deficits and recognition memory) than that of a concussion. Single subconcussion resulted in acute deficits that were mild and limited to righting reflexes and locomotion. Sex differences were observed in responses to repeat subconcussion: females showed greater deficits in righting reflexes, locomotion, and vestibular function, while males showed greater alterations in anxiety and depressive-like behavior. This study established a model of subconcussive impact where a single subconcussive impact resulted in minimal behavioral deficits but repeat subconcussions resulted in deficits similar to or worse than a single concussion. Our data also suggest sex differences in behavioral responses to both concussive and subconcussive impacts.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| | - Margaret R Bell
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA; Department of Health Sciences, DePaul University, 1110 W. Belden, Chicago, IL, USA.
| | - Katherine R Giordano
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| | - Serena Seyburn
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| | - Dorothy A Kozlowski
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL, USA; Neuroscience Program, DePaul University, 2325 N. Clifton, Chicago, IL, USA.
| |
Collapse
|
9
|
Juan SMA, Daglas M, Gunn AP, Lago L, Adlard PA. Characterization of the spatial distribution of metals and profile of metalloprotein complexes in a mouse model of repetitive mild traumatic brain injury. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6865363. [PMID: 36460052 DOI: 10.1093/mtomcs/mfac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Metal dyshomeostasis is a well-established consequence of neurodegenerative diseases and traumatic brain injury. While the significance of metals continues to be uncovered in many neurological disorders, their implication in repetitive mild traumatic brain injury remains uncharted. To address this gap, we characterized the spatial distribution of metal levels (iron, zinc, and copper) using laser ablation-inductively coupled plasma-mass spectrometry, the profile of metal-binding proteins via size exclusion chromatography-inductively coupled plasma-mass spectrometry and the expression of the major iron storing protein ferritin via western blotting. Using a mouse model of repetitive mild traumatic brain injury, 3-month-old male and female C57Bl6 mice received one or five impacts (48 h apart). At 1 month following 5× TBI (traumatic brain injury), iron and ferritin levels were significantly elevated in the contralateral cortex. There was a trend toward increased iron levels in the entire contralateral hemisphere and a reduction in contralateral cortical iron-binding proteins following 1× TBI. No major changes in zinc levels were seen in both hemispheres following 5× or 1× TBI, although there was a reduction in ipsilateral zinc-binding proteins following 5× TBI and a contralateral increase in zinc-binding proteins following 1× TBI. Copper levels were significantly increased in both hemispheres following 5× TBI, without changes in copper-binding proteins. This study shows for the first time that repetitive mild TBI (r-mTBI) leads to metal dyshomeostasis, highlighting its potential involvement in promoting neurodegeneration, which provides a rationale for examining the benefit of metal-targeting drugs, which have shown promising results in neurodegenerative conditions and single TBI, but have yet to be tested following r-mTBI.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Adam P Gunn
- Neuropathology Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Larissa Lago
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Fronczak KM, Roberts A, Svirsky S, Parry M, Holets E, Henchir J, Dixon CE, Carlson SW. Assessment of behavioral, neuroinflammatory, and histological responses in a model of rat repetitive mild fluid percussion injury at 2 weeks post-injury. Front Neurol 2022; 13:945735. [PMID: 36341117 PMCID: PMC9630846 DOI: 10.3389/fneur.2022.945735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Repetitive mild traumatic brain injury (rmTBI) is a prominent public health concern, with linkage to debilitating chronic sequelae. Developing reliable and well-characterized preclinical models of rmTBI is imperative in the investigation of the underlying pathophysiological mechanisms, as models can have varying parameters, affecting the overall pathology of the resulting injury. The lateral fluid percussion injury (FPI) model is a reliable and frequently used method of TBI replication in rodent subjects, though it is currently relatively underutilized in rmTBI research. In this study, we have performed a novel description of a variation of the lateral repetitive mild FPI (rmFPI) model, showing the graded acute behavioral impairment and histopathology occurring in response to one, two or four mild FPI (1.25 atm) or sham surgeries, implemented 24h apart. Beam walking performance revealed significant motor impairment in injured animals, with dysfunction increasing with additional injury. Based upon behavioral responses and histological observations, we further investigated the subacute pathophysiological outcomes of the dual FPI (dFPI). Immunoreactivity assessments showed that dFPI led to regionally-specific reductions in the post-synaptic protein neurogranin and increased subcortical white matter staining of the presynaptic protein synaptophysin at 2 weeks following dFPI. Immunohistochemical assessments of the microglial marker Iba-1 showed a striking increase in in several brain regions, and assessment of the astrocytic marker GFAP showed significantly increased immunoreactivity in the subcortical white matter and thalamus. With this study, we have provided a novel account of the subacute post injury outcomes occurring in response to a rmFPI utilizing these injury and frequency parameters, and thereby also demonstrating the reliability of the lateral FPI model in rmTBI replication.
Collapse
Affiliation(s)
| | - Andrea Roberts
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah Svirsky
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Madison Parry
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Erik Holets
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jeremy Henchir
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - C. Edward Dixon
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Shaun W. Carlson
- Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Kaya D, Micili SC, Kizmazoglu C, Mucuoglu AO, Buyukcoban S, Ersoy N, Yilmaz O, Isik AT. Allopurinol attenuates repeated traumatic brain injury in old rats: A preliminary report. Exp Neurol 2022; 357:114196. [PMID: 35931122 DOI: 10.1016/j.expneurol.2022.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/13/2022] [Accepted: 07/31/2022] [Indexed: 12/01/2022]
Abstract
Traumatic brain injury (TBI) is an overlooked cause of morbidity, which was shown to accelerate inflammation, oxidative stress, and neuronal cell loss and is associated with spatial learning and memory impairments and some psychiatric disturbances in older adults. However, there is no effective treatment in order to offer a favorable outcome encompassing a good recovery after TBI in older adults. Hence, the present study aimed to investigate the histological and neurobehavioral effects of Allopurinol (ALL) in older rats that received repeated TBI (rTBI). For this purpose, a weight-drop rTBI model was used on old male Wistar rats. Rats received 5 repeated TBI/sham injuries 24 h apart and were treated with saline or Allopurinol 100 mg/kg, i.p. each time. They were randomly assigned to three groups: control group (no injury); rTBI group (received 5 rTBI and treated with saline); rTBI+ALL group (received 5 rTBI and treated with Allopurinol). Then, half of the animals from each group were sacrificed on day 6 and the remaining animals were assessed with Open field, Elevated plus maze and Morris Water Maze test. Basic neurological tasks were evaluated with neurological assessment protocol every other day until after the 19th day from the last injury. Brain sections were processed for neuronal cell count in the hippocampus (CA1), dentate gyrus (DG), and prefrontal cortex (PC). Also, an immunohistochemical assay was performed to determine NeuN, iNOS, and TNFα levels in the brain regions. The number of neurons was markedly reduced in CA1, GD, and PC in rats receiving saline compared to those receiving allopurinol treatment. Immunohistochemical analysis showed marked induction of iNOS and TNFα expression in the brain tissues which were reduced after allopurinol at 6 and 19 days post-injury. Also, ALL-treated rats demonstrated a remarkable induce in NeuN expression, indicating a reduction in rTBI-induced neuronal cell death. In neurobehavioral analyses, time spent in closed arms, in the corner of the open field, swimming latency, and distance were impaired in injured rats; however, all of them were significantly improved by allopurinol therapy. To sum up, this study demonstrated that ALL may mitigate rTBI-induced damage in aged rats, which suggests ALL as a potential therapeutic strategy for the treatment of recurrent TBI.
Collapse
Affiliation(s)
- Derya Kaya
- Dokuz Eylul University Faculty of Medicine, Department of Geriatric Medicine, Unit for Brain Aging and Dementia, Izmir, Turkey; Geriatric Science Association, Izmir, Turkey.
| | - Serap Cilaker Micili
- Dokuz Eylul University Faculty of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Ceren Kizmazoglu
- Dokuz Eylul University Faculty of Medicine, Department of Neurosurgery, Izmir, Turkey
| | - Ali Osman Mucuoglu
- Dokuz Eylul University Faculty of Medicine, Department of Neurosurgery, Izmir, Turkey
| | - Sibel Buyukcoban
- Dokuz Eylul University Faculty of Medicine, Department of Anaesthesiology and Reanimation, İzmir, Turkey
| | - Nevin Ersoy
- Dokuz Eylul University Faculty of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Osman Yilmaz
- Dokuz Eylul University Health Sciences Institute, Department of Laboratory Animal Science, Izmir, Turkey
| | - Ahmet Turan Isik
- Dokuz Eylul University Faculty of Medicine, Department of Geriatric Medicine, Unit for Brain Aging and Dementia, Izmir, Turkey; Geriatric Science Association, Izmir, Turkey
| |
Collapse
|
12
|
Nowinski CJ, Bureau SC, Buckland ME, Curtis MA, Daneshvar DH, Faull RLM, Grinberg LT, Hill-Yardin EL, Murray HC, Pearce AJ, Suter CM, White AJ, Finkel AM, Cantu RC. Applying the Bradford Hill Criteria for Causation to Repetitive Head Impacts and Chronic Traumatic Encephalopathy. Front Neurol 2022; 13:938163. [PMID: 35937061 PMCID: PMC9355594 DOI: 10.3389/fneur.2022.938163] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with a history of repetitive head impacts (RHI). CTE was described in boxers as early as the 1920s and by the 1950s it was widely accepted that hits to the head caused some boxers to become "punch drunk." However, the recent discovery of CTE in American and Australian-rules football, soccer, rugby, ice hockey, and other sports has resulted in renewed debate on whether the relationship between RHI and CTE is causal. Identifying the strength of the evidential relationship between CTE and RHI has implications for public health and medico-legal issues. From a public health perspective, environmentally caused diseases can be mitigated or prevented. Medico-legally, millions of children are exposed to RHI through sports participation; this demographic is too young to legally consent to any potential long-term risks associated with this exposure. To better understand the strength of evidence underlying the possible causal relationship between RHI and CTE, we examined the medical literature through the Bradford Hill criteria for causation. The Bradford Hill criteria, first proposed in 1965 by Sir Austin Bradford Hill, provide a framework to determine if one can justifiably move from an observed association to a verdict of causation. The Bradford Hill criteria include nine viewpoints by which to evaluate human epidemiologic evidence to determine if causation can be deduced: strength, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, and analogy. We explored the question of causation by evaluating studies on CTE as it relates to RHI exposure. Through this lens, we found convincing evidence of a causal relationship between RHI and CTE, as well as an absence of evidence-based alternative explanations. By organizing the CTE literature through this framework, we hope to advance the global conversation on CTE mitigation efforts.
Collapse
Affiliation(s)
- Christopher J. Nowinski
- Concussion Legacy Foundation, Boston, MA, United States,*Correspondence: Christopher J. Nowinski
| | | | - Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Daniel H. Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Richard L. M. Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States,Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil,Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia,Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Helen C. Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Alan J. Pearce
- College of Science, Health, and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Catherine M. Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Adam J. White
- Department of Sport, Health Science, and Social Work, Oxford Brookes University, Oxford, United Kingdom,Concussion Legacy Foundation UK, Cheltenham, United Kingdom
| | - Adam M. Finkel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Robert C. Cantu
- Concussion Legacy Foundation, Boston, MA, United States,Department of Neurology, Boston University School of Medicine, Boston, MA, United States,Department of Neurosurgery, Emerson Hospital, Concord, MA, United States
| |
Collapse
|
13
|
Foecking EM, Segismundo AB, Lotesto KM, Westfall EJ, Bolduan AJ, Peter TK, Wallace DG, Kozlowski DA, Stubbs EB, Marzo SJ, Byram SC. Testosterone treatment restores vestibular function by enhancing neuronal survival in an experimental closed-head repetitive mild traumatic brain injury model. Behav Brain Res 2022; 433:113998. [PMID: 35809692 DOI: 10.1016/j.bbr.2022.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
Repetitive mild traumatic brain injury (rmTBI) results in a myriad of symptoms, including vestibular impairment. The mechanisms underlying vestibular dysfunction in rmTBI patients remain poorly understood. Concomitantly, acute hypogonadism occurs following TBI and can persist chronically in many patients. Using a repetitive mild closed-head animal model of TBI, the role of testosterone on vestibular function was tested. Male Long Evans Hooded rats were randomly divided into sham or rmTBI groups. Significant vestibular deficits were observed both acutely and chronically in the rmTBI groups. Systemic testosterone was administered after the development of chronic vestibular dysfunction. rmTBI animals given testosterone showed improved vestibular function that was sustained for 175 days post-rmTBI. Significant vestibular neuronal cell loss was, however, observed in the rmTBI animals compared to Sham animals at 175 days post-rmTBI and testosterone treatment significantly improved vestibular neuronal survival. Taken together, these data demonstrate a critical restorative role of testosterone in vestibular function following rmTBI. This study has important clinical implications because it identifies testosterone treatment as a viable therapeutic strategy for the long-term recovery of vestibular function following TBI.
Collapse
Affiliation(s)
- Eileen M Foecking
- Loyola University Chicago, Department of Otolaryngology, Burn Shock Trauma Research Institute, Loyola University Chicago, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America; Burn Shock Trauma Research Institute, Loyola University Chicago, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America; Edward Hines Jr. VA Hospital Research Service, Hines, IL 60141, the United States of America.
| | - Arthur B Segismundo
- Loyola University of Chicago, Biomedical Graduate School, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Krista M Lotesto
- Burn Shock Trauma Research Institute, Loyola University Chicago, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Edward J Westfall
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Alyssa J Bolduan
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Tony K Peter
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Douglas G Wallace
- Northern Illinois University, Department of Psychology, 1425 Lincoln Hwy, DeKalb, IL 60115, the United States of America.
| | - Dorothy A Kozlowski
- DePaul University, Department of Biological Sciences and Neuroscience Program, 2325 N., Chicago, IL 60604, the United States of America.
| | - Evan B Stubbs
- Edward Hines Jr. VA Research Service, Hines, IL 60141, the United States of America; Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Sam J Marzo
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Susanna C Byram
- Loyola University Medical Center, Department of Anesthesiology and Perioperative Medicine, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America; Edward Hines Jr. VA Hospital Research Service, Hines, IL 60141, the United States of America.
| |
Collapse
|
14
|
Hoffe B, Mazurkiewicz A, Thomson H, Banton R, Piehler T, Petel OE, Holahan MR. Relating strain fields with microtubule changes in porcine cortical sulci following drop impact. J Biomech 2021; 128:110708. [PMID: 34492445 DOI: 10.1016/j.jbiomech.2021.110708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022]
Abstract
The biomechanical response of brain tissue to strain and the immediate neural outcomes are of fundamental importance in understanding mild traumatic brain injury (mTBI). The sensitivity of neural tissue to dynamic strain events and the resulting strain-induced changes are considered to be a primary factor in injury. Rodent models have been used extensively to investigate impact-induced injury. However, the lissencephalic structure is inconsistent with the human brain, which is gyrencephalic (convoluted structure), and differs considerably in strain field localization effects. Porcine brains have a similar structure to the human brain, containing a similar ratio of white-grey matter and gyrification in the cortex. In this study, coronal brain slabs were extracted from female pig brains within 2hrs of sacrifice. Slabs were implanted with neutral density radiopaque markers, sealed inside an elastomeric encasement, and dropped from 0.9 m onto a steel anvil. Particle tracking revealed elevated tensile strains in the sulcus. One hour after impact, decreased microtubule associated protein 2 (MAP2) was found exclusively within the sulcus with no increase in cell death. These results suggest that elevated tensile strain in the sulcus may result in compromised cytoskeleton, possibly indicating a vulnerability to pathological outcomes under the right circumstances. The results demonstrated that the observed changes were unrelated to shear strain loading of the tissues but were more sensitive to tensile load.
Collapse
Affiliation(s)
- Brendan Hoffe
- Departement of Neuroscience, Carleton University, Ottawa Ontario K1S 5B6, Canada.
| | - Ashley Mazurkiewicz
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa Ontario K1S 5B6, Canada
| | - Hannah Thomson
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa Ontario K1S 5B6, Canada
| | - Rohan Banton
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066, United States
| | - Thuvan Piehler
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066, United States
| | - Oren E Petel
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa Ontario K1S 5B6, Canada
| | - Matthew R Holahan
- Departement of Neuroscience, Carleton University, Ottawa Ontario K1S 5B6, Canada
| |
Collapse
|
15
|
Pierre K, Dyson K, Dagra A, Williams E, Porche K, Lucke-Wold B. Chronic Traumatic Encephalopathy: Update on Current Clinical Diagnosis and Management. Biomedicines 2021; 9:415. [PMID: 33921385 PMCID: PMC8069746 DOI: 10.3390/biomedicines9040415] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic traumatic encephalopathy is a disease afflicting individuals exposed to repetitive neurotrauma. Unfortunately, diagnosis is made by postmortem pathologic analysis, and treatment options are primarily symptomatic. In this clinical update, we review clinical and pathologic diagnostic criteria and recommended symptomatic treatments. We also review animal models and recent discoveries from pre-clinical studies. Furthermore, we highlight the recent advances in diagnosis using diffusor tensor imaging, functional magnetic resonance imaging, positron emission tomography, and the fluid biomarkers t-tau, sTREM2, CCL11, NFL, and GFAP. We also provide an update on emerging pharmaceutical treatments, including immunotherapies and those that target tau acetylation, tau phosphorylation, and inflammation. Lastly, we highlight the current literature gaps and guide future directions to further improve clinical diagnosis and management of patients suffering from this condition.
Collapse
Affiliation(s)
- Kevin Pierre
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Kyle Dyson
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Abeer Dagra
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Eric Williams
- College of Medicine, University of Florida, Gainesville, FL 32611, USA; (K.P.); (K.D.); (A.D.); (E.W.)
| | - Ken Porche
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA;
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA;
| |
Collapse
|
16
|
Eyolfson E, Carr T, Khan A, Wright DK, Mychasiuk R, Lohman AW. Repetitive Mild Traumatic Brain Injuries in Mice during Adolescence Cause Sexually Dimorphic Behavioral Deficits and Neuroinflammatory Dynamics. J Neurotrauma 2020; 37:2718-2732. [DOI: 10.1089/neu.2020.7195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
| | - Thomas Carr
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - Asher Khan
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Alexander W. Lohman
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Keating CE, Cullen DK. Mechanosensation in traumatic brain injury. Neurobiol Dis 2020; 148:105210. [PMID: 33259894 DOI: 10.1016/j.nbd.2020.105210] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is distinct from other neurological disorders because it is induced by a discrete event that applies extreme mechanical forces to the brain. This review describes how the brain senses, integrates, and responds to forces under both normal conditions and during injury. The response to forces is influenced by the unique mechanical properties of brain tissue, which differ by region, cell type, and sub-cellular structure. Elements such as the extracellular matrix, plasma membrane, transmembrane receptors, and cytoskeleton influence its properties. These same components also act as force-sensors, allowing neurons and glia to respond to their physical environment and maintain homeostasis. However, when applied forces become too large, as in TBI, these components may respond in an aberrant manner or structurally fail, resulting in unique pathological sequelae. This so-called "pathological mechanosensation" represents a spectrum of cellular responses, which vary depending on the overall biomechanical parameters of the injury and may be compounded by repetitive injuries. Such aberrant physical responses and/or damage to cells along with the resulting secondary injury cascades can ultimately lead to long-term cellular dysfunction and degeneration, often resulting in persistent deficits. Indeed, pathological mechanosensation not only directly initiates secondary injury cascades, but this post-physical damage environment provides the context in which these cascades unfold. Collectively, these points underscore the need to use experimental models that accurately replicate the biomechanics of TBI in humans. Understanding cellular responses in context with injury biomechanics may uncover therapeutic targets addressing various facets of trauma-specific sequelae.
Collapse
Affiliation(s)
- Carolyn E Keating
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA.
| |
Collapse
|
18
|
Luo ML, Pan L, Wang L, Wang HY, Li S, Long ZY, Zeng L, Liu Y. Transplantation of NSCs Promotes the Recovery of Cognitive Functions by Regulating Neurotransmitters in Rats with Traumatic Brain Injury. Neurochem Res 2019; 44:2765-2775. [PMID: 31701381 DOI: 10.1007/s11064-019-02897-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/11/2019] [Accepted: 10/19/2019] [Indexed: 10/25/2022]
Abstract
Transplantation of neural stem cells (NSCs) may be a potential strategy for traumatic brain injury treatment (TBI) due to their intrinsic advantages, such as cell replacement, secretion of neurotrophins and formation of functional synapses with host. However the underlying effects of transplanted NSCs on host micro-environment still need to be further elucidated. In this manuscript the effects of NSCs on release of neurotransmitter, survival of hippocampal neurons, reactivity of astrocytes and recovery of cognitive function after TBI were observed. The NSCs were isolated from cortex of neonatal Sprague-Dawley rat and then transplanted into injured brain regions caused by free-weight drop. The proliferation of astrocytes around injured sites were examined by GFAP immunofluorescent staining on 3, 7, 14 days after injury. The survival of neurons at CA1 regions of hippocampus toward contused regions was observed by HE staining on 3 and 14 days post-injury. The content of glutamic acid (Glu) and GABA in hippocampal tissues was examined on 1, 3, 7, 14, 28 days after injury by ELISA. On third day post-injury, hippocampal-dependent spatial memory was measured for 5 days without intermittent. NSCs in culture have the ability to proliferate and differentiate into different phenotypes of neural cells. After transplantation of NSCs, the proliferation of astrocytes around injured site was significantly inhibited compared to the injured group. At the same time the survival of neurons in hippocampal CA1 region were much more than those in injured group on 14 days post-injury. Meanwhile, the cognitive functions in NSC transplanted group was remarkably improved compared with injured group (p < 0.05). Furthermore, NSCs transplantation dramatically inhibited the release of Glu and maintained the content of GABA in injured hippocampal tissues on 1, 3, 7, 14, 28 days post-injury, which was of difference in statistics (p < 0.05). NSCs transplantation can effectively alleviate the formation of glial scar, enhance the survival of hippocampal neurons and improve cognitive function defects in rats with TBI. The underlying mechanism may be related to their effects on inhibiting the release of Glu and maintaining the content of GABA, so as to down-regulate excitotoxicity of neurotransmitter and improve the micro-environment in injured sites.
Collapse
Affiliation(s)
- Mei-Ling Luo
- Research Institute of Surgery, Daping Hospital, the Army Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Lu Pan
- Research Institute of Surgery, Daping Hospital, the Army Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Li Wang
- Research Institute of Surgery, Daping Hospital, the Army Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Hai-Yan Wang
- Research Institute of Surgery, Daping Hospital, the Army Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Sen Li
- Research Institute of Surgery, Daping Hospital, the Army Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Zai-Yun Long
- Research Institute of Surgery, Daping Hospital, the Army Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Lin Zeng
- Research Institute of Surgery, Daping Hospital, the Army Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China
| | - Yuan Liu
- Research Institute of Surgery, Daping Hospital, the Army Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400042, China.
| |
Collapse
|
19
|
Putnam LJ, Willes AM, Kalata BE, Disher ND, Brusich DJ. Expansion of a fly TBI model to four levels of injury severity reveals synergistic effects of repetitive injury for moderate injury conditions. Fly (Austin) 2019; 13:1-11. [PMID: 31524048 DOI: 10.1080/19336934.2019.1664363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Several million traumatic brain injury (TBI) events are reported in the United States annually. However, mild TBI events often go unreported, and mild and repetitive mild TBI conditions are challenging to model. Fruit flies (Drosophila melanogaster) have gained traction for the study of TBI. The best-characterized fly TBI model is the high-impact trauma (HIT) method. We replicated the HIT method and confirmed several previous findings at the standard level of injury severity. We then expanded upon the HIT model by characterizing mortality across three reduced levels of injury severity. Importantly, we found reduced mortality with reduced injury severity and synergistic effects on mortality in response to repetitive TBI by our moderate injury conditions. Last, we compared moderate, repetitive TBI to a single severe TBI via assessment of the pattern of mortality and geotaxis performance in the 24 h following TBI. We found the number and severity of injuries could result in different patterns of death, while all TBI conditions led to impaired geotaxis compared to uninjured flies at 0.5 h and 6 h post-TBI. Thus, we have extended a well-characterized model of TBI in flies, and shown the utility of this model for making unique insights into TBI across various severities, injury numbers, and time-points post-injury.
Collapse
Affiliation(s)
- Lauren J Putnam
- Human Biology, College of Science, Engineering, and Technology, University of Wisconsin - Green Bay, Green Bay, WI, USA
| | - Ashley M Willes
- Human Biology, College of Science, Engineering, and Technology, University of Wisconsin - Green Bay, Green Bay, WI, USA
| | - Brooke E Kalata
- Human Biology, College of Science, Engineering, and Technology, University of Wisconsin - Green Bay, Green Bay, WI, USA
| | - Nathaniel D Disher
- Human Biology, College of Science, Engineering, and Technology, University of Wisconsin - Green Bay, Green Bay, WI, USA
| | - Douglas J Brusich
- Human Biology, College of Science, Engineering, and Technology, University of Wisconsin - Green Bay, Green Bay, WI, USA
| |
Collapse
|
20
|
Fehily B, Bartlett CA, Lydiard S, Archer M, Milbourn H, Majimbi M, Hemmi JM, Dunlop SA, Yates NJ, Fitzgerald M. Differential responses to increasing numbers of mild traumatic brain injury in a rodent closed-head injury model. J Neurochem 2019; 149:660-678. [PMID: 30702755 DOI: 10.1111/jnc.14673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/20/2018] [Accepted: 01/14/2019] [Indexed: 01/13/2023]
Abstract
Following mild traumatic brain injury (mTBI), further mild impacts can exacerbate negative outcomes. To compare chronic damage and deficits following increasing numbers of repeated mTBIs, a closed-head weight-drop model of repeated mTBI was used to deliver 1, 2 or 3 mTBIs to adult female rats at 24 h intervals. Outcomes were assessed at 3 months following the first mTBI. No gross motor, sensory or reflex deficits were identified (p > 0.05), consistent with current literature. Cognitive function assessed using a Morris water maze revealed chronic memory deficits following 1 and 2, but not 3 mTBI compared to shams (p ≤ 0.05). Oxidative damage to DNA was assessed immunohistochemically in the dentate hilus of the hippocampus and splenium of the corpus callosum; no changes were observed. IBA1-positive microglia were increased in size in the cortex following 1 mTBI and in the corpus callosum following 2 mTBI compared to shams (p ≤ 0.05); no changes were observed in the dentate hilus. Glial fibrillary acidic protein (GFAP)-positive astrocyte immunoreactivity was assessed in all three brain regions and no chronic changes were observed. Integrity of myelin ultrastructure in the corpus callosum was assessed using transmission electron microscopy. G ratio was decreased following 2 mTBIs compared to shams (p ≤ 0.05) at post hoc level only. The changing patterns of damage and deficits following increasing numbers of mTBI may reflect dynamic responses to small numbers of mTBIs or a conditioning effect such that increasing numbers of mTBIs do not necessarily result in worsening pathology. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14508.
Collapse
Affiliation(s)
- Brooke Fehily
- Experimental and Regenerative Neurosciences, School of Biological Sciences, Crawley, WA, Australia
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, Crawley, WA, Australia
| | - Stephen Lydiard
- Experimental and Regenerative Neurosciences, School of Biological Sciences, Crawley, WA, Australia
| | - Michael Archer
- Experimental and Regenerative Neurosciences, School of Biological Sciences, Crawley, WA, Australia
| | - Hannah Milbourn
- Experimental and Regenerative Neurosciences, School of Biological Sciences, Crawley, WA, Australia
| | - Maimuna Majimbi
- Experimental and Regenerative Neurosciences, School of Biological Sciences, Crawley, WA, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Bentley, WA, Australia
| | - Jan M Hemmi
- Experimental and Regenerative Neurosciences, School of Biological Sciences, Crawley, WA, Australia
| | - Sarah A Dunlop
- Experimental and Regenerative Neurosciences, School of Biological Sciences, Crawley, WA, Australia
| | - Nathanael J Yates
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, Crawley, WA, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Bentley, WA, Australia
- The Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, Nedlands, WA, Australia
| |
Collapse
|
21
|
Daglas M, Adlard PA. The Involvement of Iron in Traumatic Brain Injury and Neurodegenerative Disease. Front Neurosci 2018; 12:981. [PMID: 30618597 PMCID: PMC6306469 DOI: 10.3389/fnins.2018.00981] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) consists of acute and long-term pathophysiological sequelae that ultimately lead to cognitive and motor function deficits, with age being a critical risk factor for poorer prognosis. TBI has been recently linked to the development of neurodegenerative diseases later in life including Alzheimer’s disease, Parkinson’s disease, chronic traumatic encephalopathy, and multiple sclerosis. The accumulation of iron in the brain has been documented in a number of neurodegenerative diseases, and also in normal aging, and can contribute to neurotoxicity through a variety of mechanisms including the production of free radicals leading to oxidative stress, excitotoxicity and by promoting inflammatory reactions. A growing body of evidence similarly supports a deleterious role of iron in the pathogenesis of TBI. Iron deposition in the injured brain can occur via hemorrhage/microhemorrhages (heme-bound iron) or independently as labile iron (non-heme bound), which is considered to be more damaging to the brain. This review focusses on the role of iron in potentiating neurodegeneration in TBI, with insight into the intersection with neurodegenerative conditions. An important implication of this work is the potential for therapeutic approaches that target iron to attenuate the neuropathology/phenotype related to TBI and to also reduce the associated risk of developing neurodegenerative disease.
Collapse
Affiliation(s)
- Maria Daglas
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
22
|
Abstract
Mild traumatic brain injury (mTBI) represents a significant public healthcare concern, accounting for the majority of all head injuries. While symptoms are generally transient, some patients go on to experience long-term cognitive impairments and additional mild impacts can result in exacerbated and persisting negative outcomes. To date, studies using a range of experimental models have reported chronic behavioral deficits in the presence of axonal injury and inflammation following repeated mTBI; assessments of oxidative stress and myelin pathology have thus far been limited. However, some models employed induced acute focal damage more suggestive of moderate–severe brain injury and are therefore not relevant to repeated mTBI. Given that the nature of mechanical loading in TBI is implicated in downstream pathophysiological changes, the mechanisms of damage and chronic consequences of single and repeated closed-head mTBI remain to be fully elucidated. This review covers literature on potential mechanisms of damage following repeated mTBI, integrating known mechanisms of pathology underlying moderate–severe TBIs, with recent studies on adult rodent models relevant to direct impact injuries rather than blast-induced damage. Pathology associated with excitotoxicity and cerebral blood flow-metabolism uncoupling, oxidative stress, cell death, blood-brain barrier dysfunction, astrocyte reactivity, microglial activation, diffuse axonal injury, and dysmyelination is discussed, followed by a summary of functional deficits and preclinical assessments of therapeutic strategies. Comprehensive characterization of the pathology underlying delayed and persisting deficits following repeated mTBI is likely to facilitate further development of therapeutic strategies to limit long-term sequelae.
Collapse
Affiliation(s)
- Brooke Fehily
- 1 Experimental and Regenerative Neurosciences, School of Biological sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Melinda Fitzgerald
- 1 Experimental and Regenerative Neurosciences, School of Biological sciences, The University of Western Australia, Perth, Western Australia, Australia.,2 Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.,3 Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| |
Collapse
|
23
|
Cheng SX, Xu ZW, Yi TL, Sun HT, Yang C, Yu ZQ, Yang XS, Jin XH, Tu Y, Zhang S. iTRAQ-Based Quantitative Proteomics Reveals the New Evidence Base for Traumatic Brain Injury Treated with Targeted Temperature Management. Neurotherapeutics 2018; 15:216-232. [PMID: 29247448 PMCID: PMC5794703 DOI: 10.1007/s13311-017-0591-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the effects of targeted temperature management (TTM) modulation on traumatic brain injury (TBI) and the involved mechanisms using quantitative proteomics technology. SH-SY5Y and HT-22 cells were subjected to moderate stretch injury using the cell injury controller (CIC), followed by incubation at TTM (mild hypothermia, 32°C), or normothermia (37°C). The real-time morphological changes, cell cycle phase distribution, death, and cell viability were evaluated. Moderate TBI was produced by the controlled cortical impactor (CCI), and the effects of TTM on the neurological damage, neurodegeneration, cerebrovascular histopathology, and behavioral outcome were determined in vivo. Results showed that TTM treatment prevented TBI-induced neuronal necrosis in the brain, achieved a substantial reduction in neuronal death both in vitro and in vivo, reduced cortical lesion volume and neuronal loss, attenuated cerebrovascular histopathological damage, brain edema, and improved behavioral outcome. Using an iTRAQ proteomics approach, proteins that were significantly associated with TTM in experimental TBI were identified. Importantly, changes in four candidate molecules (plasminogen [PLG], antithrombin III [AT III], fibrinogen gamma chain [FGG], transthyretin [TTR]) were verified using TBI rat brain tissues and TBI human cerebrospinal fluid (CSF) samples. This study is one of the first to investigate the neuroprotective effects of TTM on the proteome of human and experimental models of TBI, providing an overall landscape of the TBI brain proteome and a scientific foundation for further assessment of candidate molecules associated with TTM for the promotion of reparative strategies post-TBI.
Collapse
Affiliation(s)
- Shi-Xiang Cheng
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China.
| | - Zhong-Wei Xu
- Central Laboratory of Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Tai-Long Yi
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Hong-Tao Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Cheng Yang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Ze-Qi Yu
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Xiao-Sa Yang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Xiao-Han Jin
- Central Laboratory of Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China
| | - Yue Tu
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China.
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force (PAP), Tianjin, China.
| |
Collapse
|
24
|
Gold EM, Vasilevko V, Hasselmann J, Tiefenthaler C, Hoa D, Ranawaka K, Cribbs DH, Cummings BJ. Repeated Mild Closed Head Injuries Induce Long-Term White Matter Pathology and Neuronal Loss That Are Correlated With Behavioral Deficits. ASN Neuro 2018; 10:1759091418781921. [PMID: 29932344 PMCID: PMC6050992 DOI: 10.1177/1759091418781921] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/29/2018] [Accepted: 05/12/2018] [Indexed: 11/16/2022] Open
Abstract
An estimated 5.3 million Americans are living with a disability from a traumatic brain injury (TBI). There is emerging evidence of the detrimental effects from repeated mild TBIs (rmTBIs). rmTBI manifests its own unique set of behavioral and neuropathological changes. A subset of individuals exposed to rmTBI develop permanent behavioral and pathological consequences, defined postmortem as chronic traumatic encephalopathy. We have combined components of two classic rodent models of TBI, the controlled cortical impact model and the weight drop model, to develop a repeated mild closed head injury (rmCHI) that produces long-term deficits in several behaviors that correlate with neuropathological changes. Mice receiving rmCHI performed differently from 1-hit or sham controls on the elevated plus maze; these deficits persist up to 6 months postinjury (MPI). rmCHI mice performed worse than 1-hit and control sham mice at 2 MPI and 6 MPI on the Morris water maze. Mice receiving rmCHI exhibited significant atrophy of the corpus callosum at both 2 MPI and 6 MPI, as assessed by stereological volume analysis. Stereological analysis also revealed significant loss of cortical neurons in comparison with 1-hit and controls. Moreover, both of these pathological changes correlated with behavioral impairments. In human tau transgenic mice, rmCHI induced increases in hyperphosphorylated paired helical filament 1 tau in the hippocampus. This suggests that strategies to restore myelination or reduce neuronal loss may ameliorate the behavioral deficits observed following rmCHI and that rmCHI may model chronic traumatic encephalopathy in human tau mice.
Collapse
Affiliation(s)
- Eric M. Gold
- Department of Anatomy and Neurobiology,
University
of California-Irvine, CA, USA
- Sue and Bill Gross Stem Cell Center,
University
of California-Irvine, CA, USA
| | - Vitaly Vasilevko
- UCI Institute for Memory Impairments and Neurological Disorders,
University
of California-Irvine, CA, USA
| | - Jonathan Hasselmann
- Department of Anatomy and Neurobiology,
University
of California-Irvine, CA, USA
- UCI Institute for Memory Impairments and Neurological Disorders,
University
of California-Irvine, CA, USA
| | - Casey Tiefenthaler
- Department of Anatomy and Neurobiology,
University
of California-Irvine, CA, USA
- Sue and Bill Gross Stem Cell Center,
University
of California-Irvine, CA, USA
| | - Danny Hoa
- Department of Anatomy and Neurobiology,
University
of California-Irvine, CA, USA
- Sue and Bill Gross Stem Cell Center,
University
of California-Irvine, CA, USA
| | - Kasuni Ranawaka
- Department of Anatomy and Neurobiology,
University
of California-Irvine, CA, USA
- Sue and Bill Gross Stem Cell Center,
University
of California-Irvine, CA, USA
| | - David H. Cribbs
- UCI Institute for Memory Impairments and Neurological Disorders,
University
of California-Irvine, CA, USA
| | - Brian J. Cummings
- Department of Anatomy and Neurobiology,
University
of California-Irvine, CA, USA
- Sue and Bill Gross Stem Cell Center,
University
of California-Irvine, CA, USA
- UCI Institute for Memory Impairments and Neurological Disorders,
University
of California-Irvine, CA, USA
- Department of Physical Medicine and Rehabilitation,
University
of California-Irvine, CA, USA
| |
Collapse
|
25
|
Grant DA, Serpa R, Moattari CR, Brown A, Greco T, Prins ML, Teng E. Repeat Mild Traumatic Brain Injury in Adolescent Rats Increases Subsequent β-Amyloid Pathogenesis. J Neurotrauma 2017; 35:94-104. [PMID: 28728464 DOI: 10.1089/neu.2017.5042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Single moderate-to-severe traumatic brain injuries (TBIs) may increase subsequent risk for neurodegenerative disease by facilitating β-amyloid (Aβ) deposition. However, the chronic effects on Aβ pathogenesis of repetitive mild TBIs (rTBI), which are common in adolescents and young adults, remain uncertain. We examined the effects of rTBI sustained during adolescence on subsequent deposition of Aβ pathology in a transgenic APP/PS1 rat model. Transgenic rats received sham or four individual mild TBIs (rTBIs) separated by either 24- or 72-h intervals at post-natal day 35 (before Aβ plaque deposition). Animals were euthanized at 12 months of age and underwent immunohistochemical analyses of Aβ plaque deposition. Significantly greater hippocampal Aβ plaque deposition was observed after rTBI separated by 24 h relative to rTBI separated by 72 h or sham injuries. These increases in hippocampal Aβ plaque load were driven by increases in both plaque number and size. Similar, though less-pronounced, effects were observed in extrahippocampal regions. Increases in Aβ plaque deposition were observed both ipsilaterally and contralaterally to the injury site and in both males and females. rTBIs sustained in adolescence can increase subsequent deposition of Aβ pathology, and these effects are critically dependent on interinjury interval.
Collapse
Affiliation(s)
- Daya A Grant
- 1 Department of Neurosurgery, UCLA , Los Angeles, California.,3 Interdeparmental Program for Neuroscience, UCLA , Los Angeles, California
| | - Rebecka Serpa
- 1 Department of Neurosurgery, UCLA , Los Angeles, California
| | - Cameron R Moattari
- 3 Interdeparmental Program for Neuroscience, UCLA , Los Angeles, California
| | - Ari Brown
- 1 Department of Neurosurgery, UCLA , Los Angeles, California
| | - Tiffany Greco
- 1 Department of Neurosurgery, UCLA , Los Angeles, California
| | - Mayumi L Prins
- 1 Department of Neurosurgery, UCLA , Los Angeles, California
| | - Edmond Teng
- 2 Department of Neurology, David Geffen School of Medicine at UCLA, UCLA , Los Angeles, California.,4 Veterans Affairs Greater Los Angeles Healthcare System , Los Angeles, California
| |
Collapse
|
26
|
McAteer KM, Turner RJ, Corrigan F. Animal models of chronic traumatic encephalopathy. Concussion 2017; 2:CNC32. [PMID: 30202573 PMCID: PMC6093772 DOI: 10.2217/cnc-2016-0031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
Repeated head impacts have been suggested to be associated with the development of the neurodegenerative disorder, chronic traumatic encephalopathy (CTE). CTE is characterized by the accumulation of hyperphosphorylated tau within the brain, with accompanying cognitive and behavioral deficits. How a history of repeated head impacts can lead to the later development of CTE is not yet known, and as such appropriate animal models are required. Over the last decade a number of rodent models of repeated mild traumatic brain injury have been developed that are broadly based on traditional traumatic brain injury models, in controlled cortical impact, fluid percussion and weight drop models, with adaptations to allow for better modeling of the mechanical forces associated with concussion.
Collapse
Affiliation(s)
- Kelly M McAteer
- Discipline of Anatomy & Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Renee J Turner
- Discipline of Anatomy & Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Frances Corrigan
- Discipline of Anatomy & Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
27
|
Mountney A, Boutté AM, Cartagena CM, Flerlage WF, Johnson WD, Rho C, Lu XC, Yarnell A, Marcsisin S, Sousa J, Vuong C, Zottig V, Leung LY, Deng-Bryant Y, Gilsdorf J, Tortella FC, Shear DA. Functional and Molecular Correlates after Single and Repeated Rat Closed-Head Concussion: Indices of Vulnerability after Brain Injury. J Neurotrauma 2017; 34:2768-2789. [PMID: 28326890 DOI: 10.1089/neu.2016.4679] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Closed-head concussive injury is one of the most common causes of traumatic brain injury (TBI). Isolated concussions frequently produce acute neurological impairments, and individuals typically recover spontaneously within a short time frame. In contrast, brain injuries resulting from multiple concussions can result in cumulative damage and elevated risk of developing chronic brain pathologies. Increased attention has focused on identification of diagnostic markers that can prognostically serve as indices of brain health after injury, revealing the temporal profile of vulnerability to a second insult. Such markers may demarcate adequate recovery periods before concussed patients can return to required activities. We developed a noninvasive closed-head impact model that captures the hallmark symptoms of concussion in the absence of gross tissue damage. Animals were subjected to single or repeated concussive impact and examined using a battery of neurological, vestibular, sensorimotor, and molecular metrics. A single concussion induced transient, but marked, acute neurological impairment, gait alterations, neuronal death, and increased glial fibrillary acidic protein (GFAP) expression in brain tissue. As expected, repeated concussions exacerbated sensorimotor dysfunction, prolonged gait abnormalities, induced neuroinflammation, and upregulated GFAP and tau. These animals also exhibited chronic functional neurological impairments with sustained astrogliosis and white matter thinning. Acute changes in molecular signatures correlated with behavioral impairments, whereas increased times to regaining consciousness and balance impairments were associated with higher GFAP and neuroinflammation. Overall, behavioral consequences of either single or repeated concussive impact injuries appeared to resolve more quickly than the underlying molecular, metabolic, and neuropathological abnormalities. This observation, which is supported by similar studies in other mTBI models, underscores the critical need to develop more objective prognostic measures for guiding return-to-play decisions.
Collapse
Affiliation(s)
- Andrea Mountney
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Angela M Boutté
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Casandra M Cartagena
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - William F Flerlage
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Wyane D Johnson
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Chanyang Rho
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Xi-Chu Lu
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Angela Yarnell
- 2 Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Sean Marcsisin
- 3 Division of Experimental Therapeutics, Military Malaria Research, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Jason Sousa
- 3 Division of Experimental Therapeutics, Military Malaria Research, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Chau Vuong
- 3 Division of Experimental Therapeutics, Military Malaria Research, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Victor Zottig
- 3 Division of Experimental Therapeutics, Military Malaria Research, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Lai-Yee Leung
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Ying Deng-Bryant
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Janice Gilsdorf
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Frank C Tortella
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Deborah A Shear
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| |
Collapse
|
28
|
Effgen GB, Morrison B. Electrophysiological and Pathological Characterization of the Period of Heightened Vulnerability to Repetitive Injury in an in Vitro Stretch Model. J Neurotrauma 2017; 34:914-924. [DOI: 10.1089/neu.2016.4477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Gwen B. Effgen
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
29
|
Esquivel AO, Sherman SS, Bir CA, Lemos SE. The Interaction of Intramuscular Ketorolac (Toradol) and Concussion in a Rat Model. Ann Biomed Eng 2017; 45:1581-1588. [DOI: 10.1007/s10439-017-1809-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/04/2017] [Indexed: 12/19/2022]
|
30
|
Huang L, Obenaus A, Hamer M, Zhang JH. Neuroprotective effect of hyperbaric oxygen therapy in a juvenile rat model of repetitive mild traumatic brain injury. Med Gas Res 2016; 6:187-193. [PMID: 28217290 PMCID: PMC5223309 DOI: 10.4103/2045-9912.196900] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repetitive mild traumatic brain injury (rmTBI) is an important medical concern for adolescent athletes that can lead to long-term disabilities. Multiple mild injuries may exacerbate tissue damage resulting in cumulative brain injury and poor functional recovery. In the present study, we investigated the increased brain vulnerability to rmTBI and the effect of hyperbaric oxygen treatment using a juvenile rat model of rmTBI. Two episodes of mild cortical controlled impact (3 days apart) were induced in juvenile rats. Hyperbaric oxygen (HBO) was applied 1 hour/day × 3 days at 2 atmosphere absolute consecutively, starting at 1 day after initial mild traumatic brain injury (mTBI). Neuropathology was assessed by multi-modal magnetic resonance imaging (MRI) and tissue immunohistochemistry. After repetitive mTBI, there were increases in T2-weighted imaging-defined cortical lesions and susceptibility weighted imaging-defined cortical microhemorrhages, correlated with brain tissue gliosis at the site of impact. HBO treatment significantly decreased the MRI-identified abnormalities and tissue histopathology. Our findings suggest that HBO treatment improves the cumulative tissue damage in juvenile brain following rmTBI. Such therapy regimens could be considered in adolescent athletes at the risk of repeated concussions exposures.
Collapse
Affiliation(s)
- Lei Huang
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA; Department of Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, Loma Linda University, Loma Linda, CA, USA; Cell, Molecular and Developmental Biology Program, University of California Riverside, Riverside, CA, USA; Division of Interdisciplinary Studies, School of Behavioral Health, Loma Linda University, Loma Linda, CA, USA
| | - Mary Hamer
- Department of Pediatrics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA; Department of Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
31
|
Yu F, Shukla DK, Armstrong RC, Marion CM, Radomski KL, Selwyn RG, Dardzinski BJ. Repetitive Model of Mild Traumatic Brain Injury Produces Cortical Abnormalities Detectable by Magnetic Resonance Diffusion Imaging, Histopathology, and Behavior. J Neurotrauma 2016; 34:1364-1381. [PMID: 27784203 PMCID: PMC5385606 DOI: 10.1089/neu.2016.4569] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Noninvasive detection of mild traumatic brain injury (mTBI) is important for evaluating acute through chronic effects of head injuries, particularly after repetitive impacts. To better detect abnormalities from mTBI, we performed longitudinal studies (baseline, 3, 6, and 42 days) using magnetic resonance diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) in adult mice after repetitive mTBI (r-mTBI; daily × 5) or sham procedure. This r-mTBI produced righting reflex delay and was first characterized in the corpus callosum to demonstrate low levels of axon damage, astrogliosis, and microglial activation, without microhemorrhages. High-resolution DTI-DKI was then combined with post-imaging pathological validation along with behavioral assessments targeted for the impact regions. In the corpus callosum, only DTI fractional anisotropy at 42 days showed significant change post-injury. Conversely, cortical regions under the impact site (M1–M2, anterior cingulate) had reduced axial diffusivity (AD) at all time points with a corresponding increase in axial kurtosis (Ka) at 6 days. Post-imaging neuropathology showed microglial activation in both the corpus callosum and cortex at 42 days after r-mTBI. Increased cortical microglial activation correlated with decreased cortical AD after r-mTBI (r = −0.853; n = 5). Using Thy1-YFP-16 mice to fluorescently label neuronal cell bodies and processes revealed low levels of axon damage in the cortex after r-mTBI. Finally, r-mTBI produced social deficits consistent with the function of this anterior cingulate region of cortex. Overall, vulnerability of cortical regions is demonstrated after mild repetitive injury, with underlying differences of DTI and DKI, microglial activation, and behavioral deficits.
Collapse
Affiliation(s)
- Fengshan Yu
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Dinesh K Shukla
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,5 Department of Psychiatry, University of Maryland School of Medicine , Baltimore, Maryland
| | - Regina C Armstrong
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,3 Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Christina M Marion
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,3 Program in Neuroscience, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Kryslaine L Radomski
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Reed G Selwyn
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,6 Department of Radiology, University of New Mexico , Albuquerque, New Mexico
| | - Bernard J Dardzinski
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland.,4 Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| |
Collapse
|
32
|
Age and Diet Affect Genetically Separable Secondary Injuries that Cause Acute Mortality Following Traumatic Brain Injury in Drosophila. G3-GENES GENOMES GENETICS 2016; 6:4151-4166. [PMID: 27754853 PMCID: PMC5144983 DOI: 10.1534/g3.116.036194] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Outcomes of traumatic brain injury (TBI) vary because of differences in primary and secondary injuries. Primary injuries occur at the time of a traumatic event, whereas secondary injuries occur later as a result of cellular and molecular events activated in the brain and other tissues by primary injuries. We used a Drosophila melanogaster TBI model to investigate secondary injuries that cause acute mortality. By analyzing mortality percentage within 24 hr of primary injuries, we previously found that age at the time of primary injuries and diet afterward affect the severity of secondary injuries. Here, we show that secondary injuries peaked in activity 1–8 hr after primary injuries. Additionally, we demonstrate that age and diet activated distinct secondary injuries in a genotype-specific manner, and that concurrent activation of age- and diet-regulated secondary injuries synergistically increased mortality. To identify genes involved in secondary injuries that cause mortality, we compared genome-wide mRNA expression profiles of uninjured and injured flies under age and diet conditions that had different mortalities. During the peak period of secondary injuries, innate immune response genes were the predominant class of genes that changed expression. Furthermore, age and diet affected the magnitude of the change in expression of some innate immune response genes, suggesting roles for these genes in inhibiting secondary injuries that cause mortality. Our results indicate that the complexity of TBI outcomes is due in part to distinct, genetically controlled, age- and diet-regulated mechanisms that promote secondary injuries and that involve a subset of innate immune response genes.
Collapse
|
33
|
Gao H, Han Z, Bai R, Huang S, Ge X, Chen F, Lei P. The accumulation of brain injury leads to severe neuropathological and neurobehavioral changes after repetitive mild traumatic brain injury. Brain Res 2016; 1657:1-8. [PMID: 27923640 DOI: 10.1016/j.brainres.2016.11.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/19/2023]
Abstract
Traumatic brain injury (TBI) is a major public health problem with long-term neurobehavioral sequela. The evidences have revealed that TBI is a risk factor for later development of neurodegenerative disease and both the single and repetitive brain injury can lead to the neurodegeneration. But whether the effects of accumulation play an important role in the neurodegenerative disease is still unknown. We utilized the Sprague Dawley (SD) rats to develop the animal models of repetitive mild TBI and single mild TBI in order to detect the neurobehavioral changes. The results of neurobehavioral test revealed that the repetitive mild TBI led to more severe behavioral injuries than the single TBI. There were more activated microglia cells and astrocytes in the repetitive mild TBI group than the single TBI group. In consistent with this, the levels of TNF-α and IL-6 were higher and the expression of IL-10 was lower in the repetitive mild TBI group compared with the single TBI group. The expression of amyloid precursor protein (APP) increased in the repetitive TBI group detected by ELISA and western blot. But the levels of total tau (Tau-5) and P-tau (ser202) seem no different between the two groups in most time point. In conclusion, repetitive mild TBI could lead to more severe neurobehavioral impairments and the effects of accumulation may be associated with the increased inflammation in the brain.
Collapse
Affiliation(s)
- Huabin Gao
- Department of Neurosurgery, Tianjin Neurological Institute General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Zhaoli Han
- Tianjin Institute of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ruojing Bai
- Tianjin Institute of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shan Huang
- Department of Neurosurgery, Tianjin Neurological Institute General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Xintong Ge
- Department of Neurosurgery, Tianjin Neurological Institute General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Fanglian Chen
- Department of Neurosurgery, Tianjin Neurological Institute General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Ping Lei
- Department of Neurosurgery, Tianjin Neurological Institute General Hospital, Tianjin Medical University, Tianjin 300052, China; Tianjin Institute of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
34
|
Jamnia N, Urban JH, Stutzmann GE, Chiren SG, Reisenbigler E, Marr R, Peterson DA, Kozlowski DA. A Clinically Relevant Closed-Head Model of Single and Repeat Concussive Injury in the Adult Rat Using a Controlled Cortical Impact Device. J Neurotrauma 2016; 34:1351-1363. [PMID: 27762651 DOI: 10.1089/neu.2016.4517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Repeat concussions (RC) can result in significant long-term neurological consequences and increased risk for neurodegenerative disease compared with single concussion (SC). Mechanisms underlying this difference are poorly understood and best elucidated using an animal model. To the best of our knowledge, there is no closed-head model in the adult rat using a commercially available device. We developed a novel and clinically relevant closed-head injury (CHI) model of both SC and RC in the adult rat using a controlled cortical impact (CCI) device. Adult rats received either a single or repeat CHI (three injuries, 48 h apart), and acute deficits in sensorimotor and locomotor function (foot fault; open field), memory (novel object), and anxiety (open field; corticosterone [CORT]) were measured. Assessment of cellular pathology was also conducted. Within the first week post-CHI, rats with SC or RC showed similar deficits in motor coordination, decreased locomotion, and higher resting CORT levels. Rats with an SC had memory deficits post-injury day (PID) 3 that recovered to sham levels by PID 7; however, rats with RC continued to show memory deficits. No obvious gross pathology was observed on the cortical surface or in coronal sections. Further examination showed thinning of the cortex and corpus callosum in RC animals compared with shams and increased axonal pathology in the corpus callosum of both SC and RC animals. Our data present a model of CHI that results in clinically relevant markers of concussion and an early differentiation between SC and RC.
Collapse
Affiliation(s)
- Naseem Jamnia
- 1 Department of Biological Sciences, DePaul University , Chicago, Illinois
| | - Janice H Urban
- 2 Department of Physiology & Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Grace E Stutzmann
- 3 Center for Stem Cell & Regenerative Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
- 4 Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Sarah G Chiren
- 3 Center for Stem Cell & Regenerative Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
- 4 Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Emily Reisenbigler
- 3 Center for Stem Cell & Regenerative Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
- 4 Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Robert Marr
- 3 Center for Stem Cell & Regenerative Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
- 4 Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Daniel A Peterson
- 3 Center for Stem Cell & Regenerative Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
- 4 Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | | |
Collapse
|
35
|
Hernandez A, Donovan V, Grinberg YY, Obenaus A, Carson MJ. Differential detection of impact site versus rotational site injury by magnetic resonance imaging and microglial morphology in an unrestrained mild closed head injury model. J Neurochem 2016; 136 Suppl 1:18-28. [PMID: 26806371 PMCID: PMC5047732 DOI: 10.1111/jnc.13402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/31/2023]
Abstract
Seventy‐five percent of all traumatic brain injuries are mild and do not cause readily visible abnormalities on routine medical imaging making it difficult to predict which individuals will develop unwanted clinical sequelae. Microglia are brain‐resident macrophages and early responders to brain insults. Their activation is associated with changes in morphology or expression of phenotypic markers including P2Y12 and major histocompatibility complex class II. Using a murine model of unrestrained mild closed head injury (mCHI), we used microglia as reporters of acute brain injury at sites of impact versus sites experiencing rotational stress 24 h post‐mCHI. Consistent with mild injury, a modest 20% reduction in P2Y12 expression was detected by quantitative real‐time PCR (qPCR) analysis but only in the impacted region of the cortex. Furthermore, neither an influx of blood‐derived immune cells nor changes in microglial expression of CD45, TREM1, TREM2, major histocompatibility complex class II or CD40 were detected. Using magnetic resonance imaging (MRI), small reductions in T2 weighted values were observed but only near the area of impact and without overt tissue damage (blood deposition, edema). Microglial morphology was quantified without cryosectioning artifacts using ScaleA2 clarified brains from CX3CR1‐green fluorescence protein (GFP) mice. The cortex rostral to the mCHI impact site receives greater rotational stress but neither MRI nor molecular markers of microglial activation showed significant changes from shams in this region. However, microglia in this rostral region did display signs of morphologic activation equivalent to that observed in severe CHI. Thus, mCHI‐triggered rotational stress is sufficient to cause injuries undetectable by routine MRI that could result in altered microglial surveillance of brain homeostasis.
Acute changes in microglial morphology reveal brain responses to unrestrained mild traumatic brain injury
In areas subjected to rotational stress distant from impact site In the absence of detectable changes in standard molecular indicators of brain damage, inflammation or microglial activation. That might result in decreased surveillance of brain function and increased susceptibility to subsequent brain insults.
Collapse
Affiliation(s)
- Alfredo Hernandez
- Center for Glial-Neuronal Interactions, University of California Riverside, School of Medicine, Riverside, California, USA.,MarcU Program, University of California Riverside, Riverside, California, USA.,Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, California, USA
| | - Virgina Donovan
- Center for Glial-Neuronal Interactions, University of California Riverside, School of Medicine, Riverside, California, USA.,Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, California, USA.,Cell Molecular and Developmental Biology Program, University of California Riverside, Riverside, California, USA.,Loma Linda University School of Medicine, Loma Linda California, Loma Linda, CA, USA
| | - Yelena Y Grinberg
- Center for Glial-Neuronal Interactions, University of California Riverside, School of Medicine, Riverside, California, USA.,Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, California, USA
| | - Andre Obenaus
- Center for Glial-Neuronal Interactions, University of California Riverside, School of Medicine, Riverside, California, USA.,Cell Molecular and Developmental Biology Program, University of California Riverside, Riverside, California, USA.,Loma Linda University School of Medicine, Loma Linda California, Loma Linda, CA, USA
| | - Monica J Carson
- Center for Glial-Neuronal Interactions, University of California Riverside, School of Medicine, Riverside, California, USA.,Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, California, USA.,Cell Molecular and Developmental Biology Program, University of California Riverside, Riverside, California, USA
| |
Collapse
|
36
|
Mild Concussion, but Not Moderate Traumatic Brain Injury, Is Associated with Long-Term Depression-Like Phenotype in Mice. PLoS One 2016; 11:e0146886. [PMID: 26796696 PMCID: PMC4721654 DOI: 10.1371/journal.pone.0146886] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/24/2015] [Indexed: 12/26/2022] Open
Abstract
Mild traumatic brain injuries can lead to long-lasting cognitive and motor deficits, increasing the risk of future behavioral, neurological, and affective disorders. Our study focused on long-term behavioral deficits after repeated injury in which mice received either a single mild CHI (mCHI), a repeated mild CHI (rmCHI) consisting of one impact to each hemisphere separated by 3 days, or a moderate controlled cortical impact injury (CCI). Shams received only anesthesia. Behavioral tests were administered at 1, 3, 5, 7, and 90 days post-injury (dpi). CCI animals showed significant motor and sensory deficits in the early (1-7 dpi) and long-term (90 dpi) stages of testing. Interestingly, sensory and subtle motor deficits in rmCHI animals were found at 90 dpi. Most importantly, depression-like behaviors and social passiveness were observed in rmCHI animals at 90 dpi. These data suggest that mild concussive injuries lead to motor and sensory deficits and affective disorders that are not observed after moderate TBI.
Collapse
|
37
|
Yu H, Wergedal JE, Rundle CH, Mohan S. Reduced bone mass accrual in mouse model of repetitive mild traumatic brain injury. ACTA ACUST UNITED AC 2015; 51:1427-37. [PMID: 25785491 DOI: 10.1682/jrrd.2014.04.0095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/10/2014] [Indexed: 11/05/2022]
Abstract
Traumatic brain injury (TBI) can affect bone by influencing the production/actions of pituitary hormones and neuropeptides that play significant regulatory roles in bone metabolism. Previously, we demonstrated that experimental TBI exerted a negative effect on the skeleton. Since mild TBI (mTBI) accounts for the majority of TBI cases, this study was undertaken to evaluate TBI effects using a milder impact model in female mice. Repetitive mTBI caused microhemorrhaging, astrocytosis, and increased anti-inflammatory protective actions in the brain of the impacted versus control mice 2 wk after the first impact. Serum levels of growth regulating insulin-like growth factor 1 (IGF-I) were reduced by 28.9%. Bone mass was reduced significantly in total body as well as individual skeletons. Tibial total cortical density was reduced by 7.0%, which led to weaker bones, as shown by a 31.3% decrease in femoral size adjusted peak torque. A 27.5% decrease in tibial trabecular bone volume per total volume was accompanied by a 34.3% (p = 0.07) decrease in bone formation rate (BFR) per total area. Based on our data, we conclude that repetitive mTBI exerted significant negative effects on accrual of both cortical and trabecular bone mass in mice caused by a reduced BFR.
Collapse
|
38
|
Hartman RE, Thorndyke EC. Patterns of Behavioral Deficits in Rodents Following Brain Injury Across Species, Gender, and Experimental Model. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 121:71-5. [PMID: 26463925 DOI: 10.1007/978-3-319-18497-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Behavioral data were collected from several hundred mice and rats using a variety of experimental models of brain injury. The use of consistent protocols allowed compilation of these data, facilitating analyses of animal behaviors across experimental models, species, and gender. Spatial learning and sensorimotor/coordination data are presented, suggesting that, in general, rats performed better than mice both in the water maze and on the rotarod. Compared with females, males performed slightly better in the water maze and slightly worse on the rotarod. However, gender by species interactions accounted for both of these differences. Male rats performed better in the water maze than female rats, male mice, and female mice, which did not differ. Male mice performed worse on the rotarod than female mice, male rats, and female rats, which performed similarly. Furthermore, animals with subcortical injury were impaired in the water maze, but performed better than animals with cortical injuries. However, only animals with cortical injuries were impaired on the rotarod. Additional covariates, such as edema and lesion size, may further clarify these phenotypes. Overall, we provide evidence that abbreviated test batteries can be specifically designed to test deficits, depending on the species, gender, and model.
Collapse
Affiliation(s)
- Richard E Hartman
- Behavioral Neuroscience Laboratory, Department of Psychology, School of Behavioral Health, Loma Linda University, 11130 Anderson St., Loma Linda, CA, 92354, USA.
| | - Earl C Thorndyke
- Behavioral Neuroscience Laboratory, Department of Psychology, School of Behavioral Health, Loma Linda University, 11130 Anderson St., Loma Linda, CA, 92354, USA
| |
Collapse
|
39
|
HOWELL DAVIDR, OSTERNIG LOUISR, CHOU LISHAN. Return to Activity after Concussion Affects Dual-Task Gait Balance Control Recovery. Med Sci Sports Exerc 2015; 47:673-80. [DOI: 10.1249/mss.0000000000000462] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Donovan V, Kim C, Anugerah AK, Coats JS, Oyoyo U, Pardo AC, Obenaus A. Repeated mild traumatic brain injury results in long-term white-matter disruption. J Cereb Blood Flow Metab 2014; 34:715-23. [PMID: 24473478 PMCID: PMC3982100 DOI: 10.1038/jcbfm.2014.6] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 01/17/2023]
Abstract
Mild traumatic brain injury (mTBI) is an increasing public health concern as repetitive injuries can exacerbate existing neuropathology and result in increased neurologic deficits. In contrast to other models of repeated mTBI (rmTBI), our study focused on long-term white-matter abnormalities after bilateral mTBIs induced 7 days apart. A controlled cortical impact (CCI) was used to induce an initial mTBI to the right cortex of Single and rmTBI Sprague Dawley rats, followed by a second injury to the left cortex of rmTBI animals. Shams received only a craniectomy. Ex vivo diffusion tensor imaging (DTI), transmission electron microscopy (TEM), and histology were performed on the anterior corpus callosum at 60 days after injury. The rmTBI animals showed a significant bilateral increase in radial diffusivity (myelin), while only modest changes in axial diffusivity (axonal) were seen between the groups. Further, the rmTBI group showed an increased g-ratio and axon caliber in addition to myelin sheath abnormalities using TEM. Our DTI results indicate ongoing myelin changes, while the TEM data show continuing axonal changes at 60 days after rmTBI. These data suggest that bilateral rmTBI induced 7 days apart leads to progressive alterations in white matter that are not observed after a single mTBI.
Collapse
Affiliation(s)
- Virginia Donovan
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, California, USA
| | - Claudia Kim
- School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Ariana K Anugerah
- School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Jacqueline S Coats
- Department of Pediatrics, Loma Linda University, Loma Linda, California, USA
| | - Udochuwku Oyoyo
- Department of Radiology, Loma Linda University, Loma Linda, California, USA
| | - Andrea C Pardo
- Department of Pediatrics, Loma Linda University, Loma Linda, California, USA
| | - Andre Obenaus
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, California, USA
- Department of Pediatrics, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|