1
|
Juraska JM. Changes in sex differences in neuroanatomical structure and cognitive behavior across the life span. Learn Mem 2022; 29:340-348. [PMID: 36206396 PMCID: PMC9488018 DOI: 10.1101/lm.053499.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
Sex differences occur in the structure and function of the rat cerebral cortex and hippocampus, which can change from the juvenile period through old age. Although the evidence is incomplete, it appears that in at least some portions of the cortex these differences develop due to the rise of ovarian hormones at puberty and are potentially not dependent on the perinatal rise in testosterone, which is essential for sexual differentiation of the hypothalamus and sexual behavior. During aging of female rats, the presence of continued ovarian hormone secretion after cessation of the estrous cycle also influences sex differences in neuroanatomical structure and cognitive behavior, resulting in nullification or reversal of sex differences seen in younger adults. Sex differences can be altered by experience in a stimulating environment during the juvenile/adolescent period, and sex differences in performance even can be affected by the parameters of a task. Thus, broad generalizations about differences such as "spatial ability" are to be avoided. It is clear that to understand how the brain produces behavior, sex and hormones have to be taken into account.
Collapse
Affiliation(s)
- Janice M Juraska
- Department of Psychology, Program in Neuroscience, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA
| |
Collapse
|
2
|
Han G, Choi J, Cha SY, Kim BI, Kho HK, Jang MJ, Kim MA, Maeng S, Hong H. Effects of Radix Polygalae on Cognitive Decline and Depression in Estradiol Depletion Mouse Model of Menopause. Curr Issues Mol Biol 2021; 43:1669-1684. [PMID: 34698102 PMCID: PMC8929121 DOI: 10.3390/cimb43030118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/22/2022] Open
Abstract
Postmenopausal syndrome refers to symptoms caused by the gradual decrease in female hormones after mid-40 years. As a target organ of estrogen, decrease in estrogen causes various changes in brain function such as a decrease in choline acetyltransferase and brain-derived neurotrophic factor; thus, postmenopausal women experience cognitive decline and more depressive symptoms than age-matched men. Radix Polygalae has been used for memory boosting and as a mood stabilizer and its components have shown neuroprotective, antidepressant, and stress relief properties. In a mouse model of estrogen depletion induced by 4-vinylcyclohexene diepoxide, Radix Polygalae was orally administered for 3 weeks. In these animals, cognitive and depression-related behaviors and molecular changes related to these behaviors were measured in the prefrontal cortex and hippocampus. Radix Polygalae improved working memory and contextual memory and despair-related behaviors in 4-vinylcyclohexene diepoxide-treated mice without increasing serum estradiol levels in this model. In relation to these behaviors, choline acetyltransferase and brain-derived neurotrophic factor in the prefrontal cortex and hippocampus and bcl-2-associated athanogene expression increased in the hippocampus. These results implicate the possible benefit of Radix Polygalae in use as a supplement of estrogen to prevent conditions such as postmenopausal depression and cognitive decline.
Collapse
Affiliation(s)
- Gaeul Han
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Junhyuk Choi
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Seung-Yun Cha
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Byung Il Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Hee Kyung Kho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Maeng-Jin Jang
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Mi Ae Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
| | - Sungho Maeng
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea; (G.H.); (J.C.); (S.-Y.C.); (B.I.K.); (H.K.K.); (M.-J.J.); (M.A.K.)
- Department of Gerontology (AgeTech-Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Korea
- Correspondence: (S.M.); (H.H.); Tel.: +82-31-201-2916 (S.M.); +82-2-2049-6274 (H.H.)
| | - Heeok Hong
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
- Correspondence: (S.M.); (H.H.); Tel.: +82-31-201-2916 (S.M.); +82-2-2049-6274 (H.H.)
| |
Collapse
|
3
|
Renczés E, Borbélyová V, Steinhardt M, Höpfner T, Stehle T, Ostatníková D, Celec P. The Role of Estrogen in Anxiety-Like Behavior and Memory of Middle-Aged Female Rats. Front Endocrinol (Lausanne) 2020; 11:570560. [PMID: 33117285 PMCID: PMC7575693 DOI: 10.3389/fendo.2020.570560] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Aging in women is associated with low estrogen, but also with cognitive decline and affective disorders. Whether low estrogen is causally responsible for these behavioral symptoms is not clear. Thus, we aimed to examine the role of estradiol in anxiety-like behavior and memory in rats at middle age. Twelve-month old female rats underwent ovariectomy (OVX) or were treated with 1 mg/kg of letrozole-an aromatase inhibitor. In half of the OVX females, 10 μg/kg of 17β-estradiol was supplemented daily for 4 weeks. Vehicle-treated sham-operated and OVX females served as controls. For behavioral assessment open field, elevated plus maze and novel object recognition tests were performed. Interaction between ovarian condition and additional treatment had the main effect on anxiety-like behavior of rats in the open field test. In comparison to control females, OVX females entered less frequently into the center zone of the open field (p < 0.01) and showed lower novel object discrimination (p = 0.05). However, estradiol-supplemented OVX rats had higher number of center-zone entries (p < 0.01), spent more time in the center zone (p < 0.05), and showed lower thigmotaxis (p < 0.01) when compared to OVX group. None of the hormonal manipulations affected anxiety-like behavior in the elevated plus maze test significantly, but a mild effect of interaction between ovarian condition and treatment was shown (p = 0.05). In conclusion, ovariectomy had slight negative effect on open-field ambulation and short-term recognition memory in middle-aged rats. In addition, a test-specific anxiolytic effect of estradiol supplementation was found. In contrast, letrozole treatment neither affected anxiety-like behavior nor memory.
Collapse
Affiliation(s)
- Emese Renczés
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Manuel Steinhardt
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Tim Höpfner
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Thomas Stehle
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Daniela Ostatníková
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
4
|
Xiao Q, Luo Y, Lv F, He Q, Wu H, Chao F, Qiu X, Zhang L, Gao Y, Huang C, Wang S, Zhou C, Zhang Y, Jiang L, Tang Y. Protective Effects of 17β-Estradiol on Hippocampal Myelinated Fibers in Ovariectomized Middle-aged Rats. Neuroscience 2018; 385:143-153. [PMID: 29908214 DOI: 10.1016/j.neuroscience.2018.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
Abstract
Estrogen replacement therapy (ERT) improves hippocampus-dependent cognition. This study investigated the impact of estrogen on hippocampal volume, CA1 subfield volume and myelinated fibers in the CA1 subfield of middle-aged ovariectomized rats. Ten-month-old bilaterally ovariectomized (OVX) female rats were randomly divided into OVX + E2 and OVX + Veh groups. After four weeks of subcutaneous injection with 17β-estradiol or a placebo, the OVX + E2 rats exhibited significantly short mean escape latency in a spatial learning task than that in the OVX + Veh rats. Using stereological methods, we did not observe significant differences in the volumes of the hippocampus and CA1 subfields between the two groups. However, using stereological methods and electron microscopy techniques, the total length of myelinated fibers and the total volumes of myelinated fibers, myelin sheaths and myelinated axons in the CA1 subfields of OVX + E2 rats were significantly 38.1%, 34.2%, 36.1% and 32.5%, respectively, higher than those in the OVX + Veh rats. After the parameters were calculated according to different diameter ranges, the estrogen replacement-induced remodeling of myelinated fibers in CA1 was mainly manifested in the myelinated fibers with a diameter of <1.0 μm. Therefore, four weeks of continuous E2 replacement improved the spatial learning capabilities of middle-aged ovariectomized rats. The E2 replacement-induced protection of spatial learning abilities might be associated with the beneficial effects of estrogen on myelinated fibers, particularly those with the diameters less than 1.0 μm, in the hippocampal CA1 region of middle-aged ovariectomized rats.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yanmin Luo
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Fulin Lv
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qi He
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hong Wu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Fenglei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuan Qiu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yuan Gao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Geriatrics, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chunxia Huang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Physiology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Sanrong Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chunni Zhou
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yi Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lin Jiang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China; Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
5
|
Flanigan TJ, Anderson JE, Elayan I, Allen AR, Ferguson SA. Effects of Cyclophosphamide and/or Doxorubicin in a Murine Model of Postchemotherapy Cognitive Impairment. Toxicol Sci 2018; 162:462-474. [PMID: 29228376 PMCID: PMC6659022 DOI: 10.1093/toxsci/kfx267] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Postchemotherapy cognitive impairment, or PCCI, is a common complaint, particularly among breast cancer patients. However, the exact nature of PCCI appears complex. To model the human condition, ovariectomized C57BL/6J mice were treated intravenous weekly for 4 weeks with saline, 2 mg/kg doxorubicin (DOX), 50 mg/kg cyclophosphamide (CYP), or DOX + CYP. For the subsequent 10 weeks, mice were assessed on several behavioral tests, including those measuring spatial learning and memory. After sacrifice, hippocampal spine density and morphology in the dentate gyrus, CA1, and CA3 regions were measured. Additionally, hippocampal levels of total glutathione, glutathione disulfide, MnSOD, CuZnSOD, and cytokines were measured. Body weight decreased in all groups during treatment, but recovered post-treatment. Most behaviors were unaffected by drug treatment: Open field activity, motor coordination, grip strength, water maze and Barnes maze performance, buried food test performance, and novel object and object location recognition tests. There were some significant effects of CYP and DOX + CYP treatment during the initial test of home cage behavior, but these did not persist into the second and third test times. Density of stubby spines, but not mushroom or thin spines, in the dentate gyrus was significantly decreased in the DOX, CYP, and DOX + CYP treatment groups. There were no significant effects in the CA1 or CA3 regions. CuZnSOD levels were significantly increased in DOX + CYP-treated mice; other hippocampal antioxidant levels were unaffected. Most cytokines showed no treatment-related effects, but IL-1β, IL-6, and IL-12 were slightly reduced in mice treated with DOX + CYP. Although the animal model, route of exposure, and DOX and CYP doses used here were reflective of human exposure, there were only sporadic effects due to chemotherapeutic treatment.
Collapse
Affiliation(s)
- Timothy J Flanigan
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079
| | - Julie E Anderson
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Ikram Elayan
- Division of Psychiatry Products, Center for Drug Evaluation and Research/FDA, Silver Spring, Maryland 20993
| | - Antiño R Allen
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079
| |
Collapse
|
6
|
Toufexis D, King SB, Michopoulos V. Socially Housed Female Macaques: a Translational Model for the Interaction of Chronic Stress and Estrogen in Aging. Curr Psychiatry Rep 2017; 19:78. [PMID: 28905316 DOI: 10.1007/s11920-017-0833-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW Estrogen's role in cognitive aging remains unclear. Despite evidence implicating stress in pathological aging, the interaction of stress with estrogen on cognition in older women has received little attention, and few animal models exist with which to examine this interaction. RECENT FINDINGS We present evidence that aging socially subordinate female macaques that experience chronic psychosocial stress constitute a suitable model to investigate this. First, we review studies showing that estrogen modulates cognition in animal models, as well as studies demonstrating that estrogen's action on certain types of cognition is impaired by stress. Next, we discuss data showing that middle-aged socially subordinate female macaques exhibit distinct stress-induced phenotypes, and review our investigations indicating that estrogen modulates behavior and physiology differently in subordinate female monkeys. We conclude that socially housed female macaques represent a translational animal model for investigating the interplay of chronic stress and estrogen on cognitive aging in women.
Collapse
Affiliation(s)
- Donna Toufexis
- Department of Psychological Science, The University of Vermont, Burlington, VT, USA.,Division of Development and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - S Bradley King
- Department of Psychological Science, The University of Vermont, Burlington, VT, USA
| | - Vasiliki Michopoulos
- Division of Development and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA. .,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
7
|
Hiroi R, Weyrich G, Koebele SV, Mennenga SE, Talboom JS, Hewitt LT, Lavery CN, Mendoza P, Jordan A, Bimonte-Nelson HA. Benefits of Hormone Therapy Estrogens Depend on Estrogen Type: 17β-Estradiol and Conjugated Equine Estrogens Have Differential Effects on Cognitive, Anxiety-Like, and Depressive-Like Behaviors and Increase Tryptophan Hydroxylase-2 mRNA Levels in Dorsal Raphe Nucleus Subregions. Front Neurosci 2016; 10:517. [PMID: 28008302 PMCID: PMC5143618 DOI: 10.3389/fnins.2016.00517] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/26/2016] [Indexed: 11/23/2022] Open
Abstract
Decreased serotonin (5-HT) function is associated with numerous cognitive and affective disorders. Women are more vulnerable to these disorders and have a lower rate of 5-HT synthesis than men. Serotonergic neurons in the dorsal raphe nucleus (DRN) are a major source of 5-HT in the forebrain and play a critical role in regulation of stress-related disorders. In particular, polymorphisms of tryptophan hydroxylase-2 (TpH2, the brain-specific, rate-limiting enzyme for 5-HT biosynthesis) are implicated in cognitive and affective disorders. Administration of 17β-estradiol (E2), the most potent naturally circulating estrogen in women and rats, can have beneficial effects on cognitive, anxiety-like, and depressive-like behaviors. Moreover, E2 increases TpH2 mRNA in specific subregions of the DRN. Although conjugated equine estrogens (CEE) are a commonly prescribed estrogen component of hormone therapy in menopausal women, there is a marked gap in knowledge regarding how CEE affects these behaviors and the brain 5-HT system. Therefore, we compared the effects of CEE and E2 treatments on behavior and TpH2 mRNA. Female Sprague-Dawley rats were ovariectomized, administered either vehicle, CEE, or E2 and tested on a battery of cognitive, anxiety-like, and depressive-like behaviors. The brains of these animals were subsequently analyzed for TpH2 mRNA. Both CEE and E2 exerted beneficial behavioral effects, although efficacy depended on the distinct behavior and for cognition, on the task difficulty. Compared to CEE, E2 generally had more robust anxiolytic and antidepressant effects. E2 increased TpH2 mRNA in the caudal and mid DRN, corroborating previous findings. However, CEE increased TpH2 mRNA in the caudal and rostral, but not the mid, DRN, suggesting that distinct estrogens can have subregion-specific effects on TpH2 gene expression. We also found differential correlations between the level of TpH2 mRNA in specific DRN subregions and behavior, depending on the type of behavior. These distinct associations imply that cognition, anxiety-like, and depressive-like behaviors are modulated by unique serotonergic neurocircuitry, opening the possibility of novel avenues of targeted treatment for different types of cognitive and affective disorders.
Collapse
Affiliation(s)
- Ryoko Hiroi
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Giulia Weyrich
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Stephanie V Koebele
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Sarah E Mennenga
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Joshua S Talboom
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Lauren T Hewitt
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Courtney N Lavery
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Perla Mendoza
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Ambra Jordan
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| |
Collapse
|
8
|
Osmanovic-Barilar J, Salkovic-Petrisi M. Evaluating the Role of Hormone Therapy in Postmenopausal Women with Alzheimer’s Disease. Drugs Aging 2016; 33:787-808. [DOI: 10.1007/s40266-016-0407-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Luo Y, Xiao Q, Chao F, He Q, Lv F, Zhang L, Gao Y, Qiu X, Huang C, Li Y, Wang S, Jiang R, Gu H, Tang Y. 17β-estradiol replacement therapy protects myelin sheaths in the white matter of middle-aged female ovariectomized rats: a stereological study. Neurobiol Aging 2016; 47:139-148. [PMID: 27592282 DOI: 10.1016/j.neurobiolaging.2016.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 12/28/2022]
Abstract
Many studies have shown that estrogen replacement therapy (ERT) can improve cognitive function and affect the structure of the brain, including the white matter, in postmenopausal women. However, it is unclear whether ERT plays an important role in white matter remodeling in postmenopausal women. In the present study, middle-aged (9-12-month-old) female Sprague-Dawley rats were bilaterally ovariectomized (OVX) and randomly allocated to the vehicle treatment (OVX+Veh) group or the 17β-estradiol replacement (OVX+E) group. After 1 month of treatment, spatial learning and memory capacities were assessed using the Morris water maze task. Then, stereological methods were used to quantitatively evaluate white matter volume and myelinated fiber parameters of the white matter in the 2 groups of rats. The results revealed that the mean escape latency of the OVX+E rats in the Morris water maze task was significantly shorter than that of the OVX+Veh rats. The volume density of the myelinated fibers and the volume density and total volume of the myelin sheaths were significantly greater in the OVX+E rats than in the OVX+Veh rats. However, there were no significant differences in white matter volume or in the total length or volume of myelinated fibers in white matter between the 2 groups of rats. Our results showed that 1 month of ERT had significant beneficial effects on spatial learning capacity and on the myelin sheaths and myelinated fibers in the white matter of middle-aged OVX rats.
Collapse
Affiliation(s)
- Yanmin Luo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, PR China
| | - Qian Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, PR China
| | - Fenglei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, PR China
| | - Qi He
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, PR China
| | - Fulin Lv
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, PR China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, PR China
| | - Yuan Gao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, PR China
| | - Xuan Qiu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, PR China
| | - Chunxia Huang
- Department of Physiology, Chongqing Medical University, Chongqing, PR China
| | - Yongde Li
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, PR China
| | - Sanrong Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, PR China
| | - Rong Jiang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, PR China
| | - Hengwei Gu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, PR China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
10
|
HU ZHIYING, YANG YANG, GAO KEQIANG, RUDD JOHNA, FANG MARONG. Ovarian hormones ameliorate memory impairment, cholinergic deficit, neuronal apoptosis and astrogliosis in a rat model of Alzheimer's disease. Exp Ther Med 2016; 11:89-97. [PMID: 26889223 PMCID: PMC4726845 DOI: 10.3892/etm.2015.2868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/24/2015] [Indexed: 01/10/2023] Open
Abstract
Ovarian hormones, including progesterone (P4) and 17 β-estradiol (E2), have been shown to affect memory functions; however, the underlying mechanism whereby ovarian hormone replacement therapy may decrease the risk of Alzheimer's disease (AD) is currently unclear. The present study aimed to investigate the effects of P4 and E2 on spatial and learning memory in an ovariectomized rat model of AD. β-amyloid (Aβ) or saline were stereotaxically injected into the hippocampus of the rats and, after 1 day, ovariectomy or sham operations were performed. Subsequently, the rats were treated with P4 alone, E2 alone, or a combination of P4 and E2. Treatment with E2 and/or P4 was shown to improve the learning and memory functions of the rats, as demonstrated by the Morris water maze test. In addition, treatment with E2 and P4 was associated with increased expression levels of choline acetyltransferase and 5-hydroxytryptamine receptor 2A (5-HT2A), and decreased expression levels of the glial fibrillary acidic protein in the hippocampus of the rats. Furthermore, E2 and P4 treatment significantly attenuated neuronal cell apoptosis, as demonstrated by terminal deoxynucleotidyl transferase dUTP nick end labeling assays; thus suggesting that the ovarian hormones were able to protect against Aβ-induced neuronal cell toxicity. The results of the present study suggested that the neuroprotective effects of P4 and E2 were associated with amelioration of the cholinergic deficit, suppression of apoptotic signals and astrogliosis, and upregulation of 5-HT2A expression levels. Therefore, hormone replacement therapy may be considered an effective strategy for the treatment of patients with cognitive disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- ZHIYING HU
- Department of Obstetrics and Gynecology, Hangzhou Red Cross Hospital, Hangzhou, Zheijiang, P.R. China
| | - YANG YANG
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - KEQIANG GAO
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - JOHN A. RUDD
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| | - MARONG FANG
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
11
|
Frick KM, Kim J, Tuscher JJ, Fortress AM. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learn Mem 2015; 22:472-93. [PMID: 26286657 PMCID: PMC4561402 DOI: 10.1101/lm.037267.114] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 01/24/2023]
Abstract
Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17β-estradiol (E2), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes the effects of E2 on hippocampal spinogenesis, neurogenesis, physiology, and memory, with particular attention paid to the effects of E2 in male rodents. The estrogen receptors, cell-signaling pathways, and epigenetic processes necessary for E2 to enhance memory in female rodents are also discussed in detail. Finally, practical considerations for working with female rodents are described for those investigators thinking of adding females to their experimental designs.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
12
|
Koebele SV, Bimonte-Nelson HA. Trajectories and phenotypes with estrogen exposures across the lifespan: What does Goldilocks have to do with it? Horm Behav 2015; 74:86-104. [PMID: 26122297 PMCID: PMC4829405 DOI: 10.1016/j.yhbeh.2015.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/14/2015] [Accepted: 06/04/2015] [Indexed: 01/04/2023]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Estrogens impact the organization and activation of the mammalian brain in both sexes, with sex-specific critical windows. Throughout the female lifespan estrogens activate brain substrates previously organized by estrogens, and estrogens can induce non-transient brain and behavior changes into adulthood. Therefore, from early life through the transition to reproductive senescence and beyond, estrogens are potent modulators of the brain and behavior. Organizational, reorganizational, and activational hormone events likely impact the trajectory of brain profiles during aging. A "brain profile," or quantitative brain measurement for research purposes, is typically a snapshot in time, but in life a brain profile is anything but static--it is in flux, variable, and dynamic. Akin to this, the only thing continuous and consistent about hormone exposures across a female's lifespan is that they are noncontinuous and inconsistent, building and rebuilding on past exposures to create a present brain and behavioral landscape. Thus, hormone variation is especially rich in females, and is likely the destiny for maximal responsiveness in the female brain. The magnitude and direction of estrogenic effects on the brain and its functions depend on a myriad of factors; a "Goldilocks" phenomenon exists for estrogens, whereby if the timing, dose, and regimen for an individual are just right, markedly efficacious effects present. Data indicate that exogenously-administered estrogens can bestow beneficial cognitive effects in some circumstances, especially when initiated in a window of opportunity such as the menopause transition. Could it be that the age-related reduction in efficacy of estrogens reflects the closure of a late-in-life critical window occurring around the menopause transition? Information from classic and contemporary works studying organizational/activational estrogen actions, in combination with acknowledging the tendency for maximal responsiveness to cyclicity, will elucidate ways to extend sensitivity and efficacy into post-menopause.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, Phoenix, AZ 85006, USA.
| |
Collapse
|
13
|
Barha CK, Lieblich SE, Chow C, Galea LAM. Multiparity-induced enhancement of hippocampal neurogenesis and spatial memory depends on ovarian hormone status in middle age. Neurobiol Aging 2015; 36:2391-405. [PMID: 25998101 DOI: 10.1016/j.neurobiolaging.2015.04.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 12/13/2022]
Abstract
Menopause is associated with cognitive decline, and previous parity can increase or delay the trajectory of cognitive aging. Furthermore, parity enables the hippocampus to respond to estrogens in middle age. The present study investigated how previous parity and estrogens influence cognition, neurogenesis, and neuronal activation in response to memory retrieval in the hippocampus of middle-aged females. Multiparous and nulliparous rats were ovariectomized (OVX) or received sham surgery and were treated with vehicle, 17β-estradiol, 17α-estradiol, or estrone. Rats were trained on the spatial working and reference memory versions of the Morris water maze. Multiparous rats had a significantly greater density of immature neurons in the hippocampus, enhanced acquisition of working memory, but poorer reference memory compared with nulliparous rats. Furthermore, OVX increased, while treatment with estrogens reduced, the density of immature neurons, regardless of parity. OVX improved reference memory only in nulliparous rats. Thus, motherhood has long-lasting effects on the neuroplasticity and function of the hippocampus. These findings have wide-ranging implications for the treatment of age-associated decline in women.
Collapse
Affiliation(s)
- Cindy K Barha
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie E Lieblich
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carmen Chow
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa A M Galea
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada; Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
14
|
Barros LA, Tufik S, Andersen ML. The role of progesterone in memory: an overview of three decades. Neurosci Biobehav Rev 2014; 49:193-204. [PMID: 25434881 DOI: 10.1016/j.neubiorev.2014.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 12/24/2022]
Abstract
Memory comprises acquisition, consolidation and retrieval of information. Many substances can influence these different phases. It is well demonstrated that sex hormones, mainly estrogen, impact cognitive function. More recently, progesterone has also been documented as playing an important role in cognition, since it influences brain regions involved in memory. Currently, many women are under hormone treatment, which contain progesterone to decrease the risk of development of endometrial cancer. This affords the opportunity to study the real effects of this hormonal replacement on cognition. There are many contradictory results regarding the role of progesterone in memory. Therefore, the aim of this review was to synthesize these studies using the new perspective of the influence of hormone replacement on cognition in women.
Collapse
Affiliation(s)
- L A Barros
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 925, Vila Clementino, São Paulo, SP, Brazil
| | - S Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 925, Vila Clementino, São Paulo, SP, Brazil
| | - M L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 925, Vila Clementino, São Paulo, SP, Brazil.
| |
Collapse
|
15
|
Neese SL, Pisani SL, Doerge DR, Helferich WG, Sepehr E, Chittiboyina AG, Rotte SCK, Smillie TJ, Khan IA, Korol DL, Schantz SL. The effects of dietary treatment with S-equol on learning and memory processes in middle-aged ovariectomized rats. Neurotoxicol Teratol 2014; 41:80-8. [PMID: 24368316 PMCID: PMC3943933 DOI: 10.1016/j.ntt.2013.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/22/2013] [Accepted: 12/17/2013] [Indexed: 01/18/2023]
Abstract
The use of over-the-counter botanical estrogens containing isolated soy isoflavones, including genistein and daidzein, has become a popular alternative to traditional hormone therapies. Menopausal women use these products as an aide in healthy aging, including for the maintenance of cognitive function. The safety and efficacy of many of these commercial preparations remain unknown. Previous research in our lab found that treatment of ovariectomized (OVX) female Long-Evans rats with genistein impaired working memory in an operant delayed spatial alternation (DSA) task and response learning in a plus-maze, but enhanced place learning assessed in the plus-maze. The present study further examined the effects of isolated isoflavones on working memory and place learning by treating middle-aged (12-13 month old) OVX female Long-Evans rats with S-equol, the exclusive enantiomer produced by metabolism of daidzein in the mammalian gut. S-equol binds selectively to ERβ with an affinity similar to that of genistein but has low transcriptional potency. For DSA testing, S-equol at 1.94, 0.97 mg, or 0mg (sucrose control) was orally administered to animals daily, 30 min before behavioral testing, and again both 4 and 8 hours after the first treatment. Rats were tested on the DSA task following the first, morning dose. For place learning, rats received 0.97 mg S-equol every 4 hours during the light portion of the cycle beginning 48 hours prior to behavioral testing (total exposure 8.7 mg S-equol). S-equol treatment was largely without effect on the DSA and place learning tasks. This is the first study to test the behavioral effects of isolated S-equol in OVX rodents, and shows that, unlike genistein or estradiol, repeated daily treatment with this isoflavone metabolite does not alter learning and memory processes in middle-aged OVX rats.
Collapse
Affiliation(s)
- Steven L Neese
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001S. Lincoln Avenue, Urbana, IL 61802, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA; Department of Psychology and Neuroscience, Baldwin Wallace University, 275 Eastland Road, Berea, OH 44017, USA.
| | - Samantha L Pisani
- Neuroscience Program, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA.
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079-9502, USA.
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905S Goodwin Avenue, Urbana, IL 61801, USA.
| | - Estatira Sepehr
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079-9502, USA.
| | - Amar G Chittiboyina
- National Center for Natural Product Research, University of Mississippi, 3011 Thad Cochran Research Center, University, MS 38677, USA.
| | - Sateesh Chandra Kumar Rotte
- National Center for Natural Product Research, University of Mississippi, 3011 Thad Cochran Research Center, University, MS 38677, USA.
| | - Troy J Smillie
- National Center for Natural Product Research, University of Mississippi, 3011 Thad Cochran Research Center, University, MS 38677, USA.
| | - Ikhlas A Khan
- National Center for Natural Product Research, University of Mississippi, 3011 Thad Cochran Research Center, University, MS 38677, USA.
| | - Donna L Korol
- Neuroscience Program, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA; Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA.
| | - Susan L Schantz
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001S. Lincoln Avenue, Urbana, IL 61802, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
16
|
Estrogen-dependent changes in estrogen receptor-β mRNA expression in middle-aged female rat brain. Brain Res 2013; 1543:49-57. [PMID: 24239930 DOI: 10.1016/j.brainres.2013.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 01/21/2023]
Abstract
During aging, estrogen production and circulating levels of estrogen are markedly decreased in females. Although several differences exist in the process of reproductive aging between women and female rats, the results of many studies suggest that the female rat, especially the middle-aged or aged ovariectomized female, is an important animal model of hormone loss in women. In target tissues including the brain, the actions of estrogen are mediated mainly via the alpha and beta subtypes of the estrogen receptor (ER-α and ER-β). Estrogen treatment is known to change the expression of ER-α mRNA and protein in specific regions of the brain in middle-aged female rodents. In contrast, we do not know if estrogen regulates the expression of ER-β in the brain at this stage of life. In the present study, we performed in situ hybridization on brain sections of ovariectomized and estrogen-treated middle-aged female rats to reveal the effects of estrogen on the expression of ER-β throughout the brain. Our results showed that estrogen treatment decreased the number of ER-β mRNA-positive cells in the mitral cell and external plexiform layers of the olfactory bulb, central amygdaloid nucleus, medial geniculate nucleus, posterior hypothalamic nucleus, suprachiasmatic nucleus, and reticular part of the substantia nigra. As compared to the results of previous studies of young females, our data revealed that the regions in which expression of ER-β mRNA expression is affected by estrogen differ in middle age. These results suggest that the effects of estrogen on ER-β expression change with age.
Collapse
|
17
|
Tang H, Hua F, Wang J, Sayeed I, Wang X, Chen Z, Yousuf S, Atif F, Stein DG. Progesterone and vitamin D: Improvement after traumatic brain injury in middle-aged rats. Horm Behav 2013; 64:527-38. [PMID: 23896206 PMCID: PMC3833454 DOI: 10.1016/j.yhbeh.2013.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 11/23/2022]
Abstract
Progesterone (PROG) and vitamin D hormone (VDH) have both shown promise in treating traumatic brain injury (TBI). Both modulate apoptosis, inflammation, oxidative stress, and excitotoxicity. We investigated whether 21 days of VDH deficiency would alter cognitive behavior after TBI and whether combined PROG and VDH would improve behavioral and morphological outcomes more than either hormone alone in VDH-deficient middle-aged rats given bilateral contusions of the medial frontal cortex. PROG (16 mg/kg) and VDH (5 μg/kg) were injected intraperitoneally 1 h post-injury. Eight additional doses of PROG were injected subcutaneously over 7 days post-injury. VDH deficiency itself did not significantly reduce baseline behavioral functions or aggravate impaired cognitive outcomes. Combination therapy showed moderate improvement in preserving spatial and reference memory but was not significantly better than PROG monotherapy. However, combination therapy significantly reduced neuronal loss and the proliferation of reactive astrocytes, and showed better efficacy compared to VDH or PROG alone in preventing MAP-2 degradation. VDH+PROG combination therapy may attenuate some of the potential long-term, subtle, pathophysiological consequences of brain injury in older subjects.
Collapse
Affiliation(s)
- Huiling Tang
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Fang Hua
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jun Wang
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xiaojing Wang
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Zhengjia Chen
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Seema Yousuf
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Fahim Atif
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Donald G. Stein
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
- Address for correspondence: Donald G. Stein, Ph.D., Emory University, 1365 B Clifton Rd NE, Suite 5100, Atlanta GA 30322 USA, 404 712 2540 voice, 404 727 2388 fax,
| |
Collapse
|