1
|
Gimenez-Aparisi G, Guijarro-Estelles E, Chornet-Lurbe A, Cerveró-Albert D, Hao D, Li G, Ye-Lin Y. Abnormal dynamic features of cortical microstates for detecting early-stage Parkinson's disease by resting-state electroencephalography: Systematic analysis of the influence of eye condition. Heliyon 2025; 11:e41500. [PMID: 39850414 PMCID: PMC11755055 DOI: 10.1016/j.heliyon.2024.e41500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
Resting state electroencephalography (EEG) has proved useful in studying electrophysiological changes in neurodegenerative diseases. In many neuropathologies, microstate analysis of the eyes-closed (EC) scalp EEG is a robust and highly reproducible technique for assessing topological changes with high temporal resolution. However, scalp EEG microstate maps tend to underestimate the non-occipital or non-alpha-band networks, which can also be used to detect neuropathological changes. Recent evidence has shown that the source-space microstates can characterize distinct functional connectivity patterns but its clinical ability to detect neuropathological changes has not been demonstrated so far. It should also be remembered that the eye condition may play an important role in neural activity dynamics. The aim of this study was to systematically characterize the dynamic neuropathological features of sensor-space and source-space EEG microstates in PD patients with no cognitive impairment in both EC and EO conditions with the aim of identifying potential biomarkers that could be used as a complementary clinical screening method for early PD detection. We found that the dynamic features of the source-space microstates were more sensitive in detecting PD than the sensor-space microstates, while EO was able to detect neuropathological changes in PD patients better than EC. In EO, PD disease exhibited significantly higher occurrence and coverage in visual-network related source-space microstates and abnormally high duration in sensorimotor network-related microstates. Our results suggest that the source-space microstate analysis of resting-state EEG could provide robust biomarkers to detect early-stage PD, which would allow the development of patient-oriented strategies to prevent the disease and improve the patients' quality of life.
Collapse
Affiliation(s)
- G. Gimenez-Aparisi
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022, València, Spain
| | - E. Guijarro-Estelles
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022, València, Spain
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, China
| | - A. Chornet-Lurbe
- Servicio de Neurofisiología Clínica. Hospital Lluís Alcanyís, departamento de salud Xàtiva-Ontinyent, Xàtiva, 46800, València, Spain
| | - D. Cerveró-Albert
- Servicio de Neurofisiología Clínica. Hospital Lluís Alcanyís, departamento de salud Xàtiva-Ontinyent, Xàtiva, 46800, València, Spain
| | - Dongmei Hao
- College of Chemistry and Life Science, Beijing University of Technology, 100124, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, 100124, Beijing, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, China
| | - Guangfei Li
- College of Chemistry and Life Science, Beijing University of Technology, 100124, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, 100124, Beijing, China
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, China
| | - Y. Ye-Lin
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022, València, Spain
- BJUT-UPV Joint Research Laboratory in Biomedical Engineering, China
| |
Collapse
|
2
|
Churchill L, Chen YC, Lewis SJG, Matar E. Understanding REM Sleep Behavior Disorder through Functional MRI: A Systematic Review. Mov Disord 2024; 39:1679-1696. [PMID: 38934216 DOI: 10.1002/mds.29898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroimaging studies in rapid eye movement sleep behavior disorder (RBD) can inform fundamental questions about the pathogenesis of Parkinson's disease (PD). Across modalities, functional magnetic resonance imaging (fMRI) may be better suited to identify changes between neural networks in the earliest stages of Lewy body diseases when structural changes may be subtle or absent. This review synthesizes the findings from all fMRI studies of RBD to gain further insight into the pathophysiology and progression of Lewy body diseases. A total of 32 studies were identified using a systematic review conducted according to PRISMA guidelines between January 2000 to February 2024 for original fMRI studies in patients with either isolated RBD (iRBD) or RBD secondary to PD. Common functional alterations were detectable in iRBD patients compared with healthy controls across brainstem nuclei, basal ganglia, frontal and occipital lobes, and whole brain network measures. Patients with established PD and RBD demonstrated decreased functional connectivity across the whole brain and brainstem nuclei, but increased functional connectivity in the cerebellum and frontal lobe compared with those PD patients without RBD. Finally, longitudinal changes in resting state functional connectivity were found to track with disease progression. Currently, fMRI studies in RBD have demonstrated early signatures of neurodegeneration across both motor and non-motor pathways. Although more work is needed, such findings have the potential to inform our understanding of disease, help to distinguish between prodromal PD and prodromal dementia with Lewy bodies, and support the development of fMRI-based outcome measures of phenoconversion and progression in future disease modifying trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lachlan Churchill
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yu-Chi Chen
- Brain Dynamic Centre, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Simon J G Lewis
- Macquarie Medical School and Macquarie University Centre for Parkinson's Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Geng L, Cao W, Zuo J, Yan H, Wan J, Sun Y, Wang N. Functional activity, functional connectivity and complex network biomarkers of progressive hyposmia Parkinson's disease with no cognitive impairment: evidences from resting-state fMRI study. Front Aging Neurosci 2024; 16:1455020. [PMID: 39385833 PMCID: PMC11461260 DOI: 10.3389/fnagi.2024.1455020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Background Olfactory dysfunction stands as one of the most prevalent non-motor symptoms in the initial stage of Parkinson's disease (PD). Nevertheless, the intricate mechanisms underlying olfactory deficits in Parkinson's disease still remain elusive. Methods This study collected rs-fMRI data from 30 PD patients [15 with severe hyposmia (PD-SH) and 15 with no/mild hyposmia (PD-N/MH)] and 15 healthy controls (HC). To investigate functional segregation, the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) were utilized. Functional connectivity (FC) analysis was performed to explore the functional integration across diverse brain regions. Additionally, the graph theory-based network analysis was employed to assess functional networks in PD patients. Furthermore, Pearson correlation analysis was conducted to delve deeper into the relationship between the severity of olfactory dysfunction and various functional metrics. Results We discovered pronounced variations in ALFF, ReHo, FC, and topological brain network attributes across the three groups, with several of these disparities exhibiting a correlation with olfactory scores. Conclusion Using fMRI, our study analyzed brain function in PD-SH, PD-N/MH, and HC groups, revealing impaired segregation and integration in PD-SH and PD-N/MH. We hypothesize that changes in temporal, frontal, occipital, and cerebellar activities, along with aberrant cerebellum-insula connectivity and node degree and betweenness disparities, may be linked to olfactory dysfunction in PD patients.
Collapse
Affiliation(s)
- Lei Geng
- Department of Medical Imaging, The Second People’s Hospital of Lianyungang, Lianyungang, China
- The Oncology Hospital of Lianyungang, Lianyungang, China
- Lianyungang Clinical College of Jiangsu University, Lianyungang, China
| | - Wenfei Cao
- Department of Neurology, Heze Municipal Hospital, Heze, China
| | - Juan Zuo
- Department of Ultrasound, The Fourth People’s Hospital of Lianyungang, Lianyungang, China
| | - Hongjie Yan
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Jinxin Wan
- Department of Medical Imaging, The Second People’s Hospital of Lianyungang, Lianyungang, China
- The Oncology Hospital of Lianyungang, Lianyungang, China
- Lianyungang Clinical College of Jiangsu University, Lianyungang, China
| | - Yi Sun
- Department of Medical Imaging, The Second People’s Hospital of Lianyungang, Lianyungang, China
- The Oncology Hospital of Lianyungang, Lianyungang, China
| | - Nizhuan Wang
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Li K, Tian Y, Chen H, Ma X, Li S, Li C, Wu S, Liu F, Du Y, Su W. Temporal Dynamic Alterations of Regional Homogeneity in Parkinson's Disease: A Resting-State fMRI Study. Biomolecules 2023; 13:888. [PMID: 37371468 DOI: 10.3390/biom13060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/03/2023] [Accepted: 05/13/2023] [Indexed: 06/29/2023] Open
Abstract
Brain activity is time varying and dynamic, even in the resting state. However, little attention has been paid to the dynamic alterations in regional brain activity in Parkinson's disease (PD). We aimed to test for differences in dynamic regional homogeneity (dReHo) between PD patients and healthy controls (HCs) and to further investigate the pathophysiological meaning of this altered dReHo in PD. We included 57 PD patients and 31 HCs with rs-fMRI scans and neuropsychological examinations. Then, ReHo and dReHo were calculated for all subjects. We compared ReHo and dReHo between PD patients and HCs and then analyzed the associations between altered dReHo variability and clinical/neuropsychological measurements. Support vector machines (SVMs) were also used to assist in differentiating PD patients from HCs using the classification values of dReHo. The results showed that PD patients had increased ReHo in the bilateral medial temporal lobe and decreased ReHo in the right posterior cerebellar lobe, right precentral gyrus, and supplementary motor area, compared with controls. The coefficient of variation (CV) of dReHo was considerably higher in the precuneus in PD patients compared with HCs, and the CV of dReHo in the precuneus was found to be highly associated with HAMD, HAMA, and NMSQ scores. Multiple linear regression analysis controlling for demographic, clinical, and neuropsychiatric variables confirmed the association between altered dReHo and HAMD. Using the leave-one-out cross validation procedure, 98% (p < 0.001) of individuals were properly identified using the SVM classifier. These results provide new evidence for the aberrant resting-state brain activity in the precuneus of PD patients and its role in neuropsychiatric symptoms in PD.
Collapse
Affiliation(s)
- Kai Li
- Department of Neurology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Yuan Tian
- Department of Neurology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
- Graduate School, Peking Union Medical College, Dongcheng, Beijing 100730, China
| | - Haibo Chen
- Department of Neurology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Xinxin Ma
- Department of Neurology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Shuhua Li
- Department of Neurology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Chunmei Li
- Department of Radiology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Shaohui Wu
- Department of Neurology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
- Graduate School, Peking Union Medical College, Dongcheng, Beijing 100730, China
| | - Fengzhi Liu
- Department of Neurology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
- Graduate School, Peking Union Medical College, Dongcheng, Beijing 100730, China
| | - Yu Du
- Department of Neurology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
- Graduate School, Peking Union Medical College, Dongcheng, Beijing 100730, China
| | - Wen Su
- Department of Neurology, National Center of Gerontology, Institute of Geriatric Medicine, Beijing Hospital, Chinese Academy of Medical Sciences, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
- Graduate School, Peking Union Medical College, Dongcheng, Beijing 100730, China
| |
Collapse
|
5
|
Yang B, Wang X, Mo J, Li Z, Hu W, Zhang C, Zhao B, Gao D, Zhang X, Zou L, Zhao X, Guo Z, Zhang J, Zhang K. The altered spontaneous neural activity in patients with Parkinson's disease and its predictive value for the motor improvement of deep brain stimulation. Neuroimage Clin 2023; 38:103430. [PMID: 37182459 PMCID: PMC10197096 DOI: 10.1016/j.nicl.2023.103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND This study aims to investigate the altered spontaneous neural activity in patients with Parkinson's disease (PD) revealed by amplitudes of low-frequency fluctuations (ALFF) of resting-state fMRI, and the feasibility of using ALFF as neuroimaging predictors for motor improvement after bilateral subthalamic nucleus (STN) deep brain stimulation (DBS). METHODS Fourty-four patients and 44 healthy controls were included in this study. First, the ALFF of patients with PD was compared with that of controls; then significant clusters were correlated with motor improvement after DBS (unified Parkinson's disease rating scale (UPDRS-III)) and other clinical variables. Second, regression and classification of the machine learning models were conducted to predict motor improvement after DBS. Receiver operating characteristic (ROC) analysis was used to evaluate the performance of the classification model. RESULTS Compared with healthy controls, patients with PD showed increased ALFF in the bilateral motor area and decreased ALFF in the bilateral temporal cortex and cerebellum. The Hoehn-Yahr stages correlated with ALFF within the bilateral cerebellum (p = 0.021), and UPDRS-III improvement correlated with ALFF in the left (p < 0.001) and right (p = 0.005) motor areas. The regression model showed a significant correlation between the predicted and observed UPDRS-III changes (R = 0.65, p < 0.001). The ROC analysis revealed an area under the curve (AUC) of 0.94 which differentiated moderate and superior DBS responders. CONCLUSION The results revealed altered ALFF patterns in patients with PD and their correlations with clinical variables. Both binary and continuous ALFF can potentially serve as predictive biomarkers for DBS response.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zilin Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongmei Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Liangying Zou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xuemin Zhao
- Department of Neurophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhihao Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Xie JJ, Li XY, Dong Y, Chen C, Qu BY, Wang S, Xu H, Roe AW, Lai HY, Wu ZY. Local and Global Abnormalities in Pre-symptomatic Huntington's Disease Revealed by 7T Resting-state Functional MRI. Neurosci Bull 2023; 39:94-98. [PMID: 36036300 PMCID: PMC9849632 DOI: 10.1007/s12264-022-00943-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/09/2022] [Indexed: 01/22/2023] Open
Affiliation(s)
- Juan-Juan Xie
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xiao-Yan Li
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yi Dong
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Cong Chen
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Bo-Yi Qu
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Interdisciplinary Institute of Neuroscience and Technology, and College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of the Ministry of Education, Zhejiang University, Hangzhou, 310029, China
| | - Shuang Wang
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Han Xu
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, and College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of the Ministry of Education, Zhejiang University, Hangzhou, 310029, China.
| | - Hsin-Yi Lai
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Interdisciplinary Institute of Neuroscience and Technology, and College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of the Ministry of Education, Zhejiang University, Hangzhou, 310029, China.
| | - Zhi-Ying Wu
- Department of Neurology and Department of Medical Genetics in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Jiang X, Pan Y, Zhu S, Wang Y, Gu R, Jiang Y, Shen B, Zhu J, Xu S, Yan J, Dong J, Zhang W, Xiao C, Zhang L. Alterations of Regional Homogeneity in Parkinson's Disease with Rapid Eye Movement Sleep Behavior Disorder. Neuropsychiatr Dis Treat 2022; 18:2967-2978. [PMID: 36570022 PMCID: PMC9785149 DOI: 10.2147/ndt.s384752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Objective Patients with rapid eye movement (REM) sleep behavior disorder (RBD) in Parkinson's disease (PD-RBD) tend to have poor cognitive performance and faster cognitive deterioration, and the potential mechanism is still ambiguous. Therefore, this study aimed to detect the alterations in local brain function in PD-RBD. Methods Fifty patients, including 23 patients with PD-RBD and 27 patients with PD without RBD (PD-nRBD), and 26 healthy controls were enrolled. All subjects were subjected to one-night polysomnography and underwent resting-state functional magnetic resonance imaging (rs-fMRI). The fMRI images of the three groups were analyzed by regional homogeneity (ReHo) to observe the local neural activity. Correlations between altered ReHo values and chin electromyographic (EMG) density scores and cognitive scores in the PD subgroups were assessed. Results Compared with the patients with PD-nRBD, the patients with PD-RBD had higher ReHo values in the frontal cortex (the right superior frontal gyrus, the right middle frontal gyrus and the left medial superior frontal gyrus), the right caudate nucleus and the right anterior cingulate gyrus, and compared with the HCs, the patients with PD-RBD had lower ReHo values in the bilateral cuneus, the bilateral precuneus, the left inferior temporal gyrus and the left inferior occipital gyrus. For the patients with PD-RBD, the phasic chin EMG density scores were positively correlated with the ReHo values in the left medial superior frontal gyrus, and the tonic chin EMG density scores were positively correlated with the ReHo values in the right anterior cingulate gyrus. Conclusion This study indicates that increased ReHo in the frontal cortex, the caudate nucleus and the anterior cingulate gyrus may be linked with the abnormal motor behaviors during REM sleep and that decreased ReHo in the posterior regions may be related to the visuospatial-executive function in patients with PD-RBD.
Collapse
Affiliation(s)
- Xu Jiang
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yang Pan
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Sha Zhu
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yaxi Wang
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ruxin Gu
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yinyin Jiang
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Bo Shen
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jun Zhu
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shulan Xu
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jun Yan
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jingde Dong
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wenbin Zhang
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chaoyong Xiao
- Department of Radiology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Li Zhang
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
8
|
Zhang X, Li R, Xia Y, Zhao H, Cai L, Sha J, Xiao Q, Xiang J, Zhang C, Xu K. Topological patterns of motor networks in Parkinson’s disease with different sides of onset: A resting-state-informed structural connectome study. Front Aging Neurosci 2022; 14:1041744. [DOI: 10.3389/fnagi.2022.1041744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) has a characteristically unilateral pattern of symptoms at onset and in the early stages; this lateralization is considered a diagnostically important diagnosis feature. We aimed to compare the graph-theoretical properties of whole-brain networks generated by using resting-state functional MRI (rs-fMRI), diffusion tensor imaging (DTI), and the resting-state-informed structural connectome (rsSC) in patients with left-onset PD (LPD), right-onset PD (RPD), and healthy controls (HCs). We recruited 26 patients with PD (13 with LPD and 13 with RPD) as well as 13 age- and sex-matched HCs. Rs-fMRI and DTI were performed in all subjects. Graph-theoretical analysis was used to calculate the local and global efficiency of a whole-brain network generated by rs-fMRI, DTI, and rsSC. Two-sample t-tests and Pearson correlation analysis were conducted. Significantly decreased global and local efficiency were revealed specifically in LPD patients compared with HCs when the rsSC network was used; no significant intergroup difference was found by using rs-fMRI or DTI alone. For rsSC network analysis, multiple network metrics were found to be abnormal in LPD. The degree centrality of the left precuneus was significantly correlated with the Unified Parkinson’s Disease Rating Scale (UPDRS) score and disease duration (p = 0.030, r = 0.599; p = 0.037, r = 0.582). The topological properties of motor-related brain networks can differentiate LPD and RPD. Nodal metrics may serve as important structural features for PD diagnosis and monitoring of disease progression. Collectively, these findings may provide neurobiological insights into the lateralization of PD onset.
Collapse
|
9
|
Gu L, Shu H, Xu H, Wang Y. Functional brain changes in Parkinson’s disease: a whole brain ALE study. Neurol Sci 2022; 43:5909-5916. [DOI: 10.1007/s10072-022-06272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/03/2022] [Indexed: 11/27/2022]
|
10
|
Yang B, Wang X, Mo J, Li Z, Gao D, Bai Y, Zou L, Zhang X, Zhao X, Wang Y, Liu C, Zhao B, Guo Z, Zhang C, Hu W, Zhang J, Zhang K. The amplitude of low-frequency fluctuation predicts levodopa treatment response in patients with Parkinson's disease. Parkinsonism Relat Disord 2021; 92:26-32. [PMID: 34666272 DOI: 10.1016/j.parkreldis.2021.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Levodopa has become the main therapy for motor symptoms of Parkinson's disease (PD). This study aimed to test whether the amplitude of low-frequency fluctuation (ALFF) computed by fMRI could predict individual patient's response to levodopa treatment. METHODS We included 40 patients. Treatment efficacy was defined based on motor symptoms improvement from the state of medication off to medication on, as assessed by the Unified Parkinson's Disease Rating Scale score III. Two machine learning models were constructed to test the prediction ability of ALFF. First, the ensemble method was implemented to predict individual treatment responses. Second, the categorical boosting (CatBoost) classification was used to predict individual levodopa responses in patients classified as moderate and superior responders, according to the 50% threshold of improvement. The age, disease duration and treatment dose were controlled as covariates. RESULTS No significant difference in clinical data were observed between moderate and superior responders. Using the ensemble method, the regression model showed a significant correlation between the predicted and the observed motor symptoms improvement (r = 0.61, p < 0.01, mean absolute error = 0.11 ± 0.02), measured as a continuous variable. The use of the Catboost algorithm revealed that ALFF was able to differentiate between moderate and superior responders (area under the curve = 0.90). The mainly contributed regions for both models included the bilateral primary motor cortex, the occipital cortex, the cerebellum, and the basal ganglia. CONCLUSION Both continuous and binary ALFF values have the potential to serve as promising predictive markers of dopaminergic therapy response in patients with PD.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zilin Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongmei Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liangying Zou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xuemin Zhao
- Department of Neurophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhihao Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
11
|
Li J, Liao H, Wang T, Zi Y, Zhang L, Wang M, Mao Z, Song C, Zhou F, Shen Q, Cai S, Tan C. Alterations of Regional Homogeneity in the Mild and Moderate Stages of Parkinson's Disease. Front Aging Neurosci 2021; 13:676899. [PMID: 34366823 PMCID: PMC8336937 DOI: 10.3389/fnagi.2021.676899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
Objectives: This study aimed to investigate alterations in regional homogeneity (ReHo) in early Parkinson's disease (PD) at different Hoehn and Yahr (HY) stages and to demonstrate the relationships between altered brain regions and clinical scale scores. Methods: We recruited 75 PD patients, including 43 with mild PD (PD-mild; HY stage: 1.0-1.5) and 32 with moderate PD (PD-moderate; HY stage: 2.0-2.5). We also recruited 37 age- and sex-matched healthy subjects as healthy controls (HC). All subjects underwent neuropsychological assessments and a 3.0 Tesla magnetic resonance scanning. Regional homogeneity of blood oxygen level-dependent (BOLD) signals was used to characterize regional cerebral function. Correlative relationships between mean ReHo values and clinical data were then explored. Results: Compared to the HC group, the PD-mild group exhibited increased ReHo values in the right cerebellum, while the PD-moderate group exhibited increased ReHo values in the bilateral cerebellum, and decreased ReHo values in the right superior temporal gyrus, the right Rolandic operculum, the right postcentral gyrus, and the right precentral gyrus. Reho value of right Pre/Postcentral was negatively correlated with HY stage. Compared to the PD-moderate group, the PD-mild group showed reduced ReHo values in the right superior orbital gyrus and the right rectus, in which the ReHo value was negatively correlated with cognition. Conclusion: The right superior orbital gyrus and right rectus may serve as a differential indicator for mild and moderate PD. Subjects with moderate PD had a greater scope for ReHo alterations in the cortex and compensation in the cerebellum than those with mild PD. PD at HY stages of 2.0-2.5 may already be classified as Braak stages 5 and 6 in terms of pathology. Our study revealed the different patterns of brain function in a resting state in PD at different HY stages and may help to elucidate the neural function and early diagnosis of patients with PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Su W, Li K, Li CM, Ma XX, Zhao H, Chen M, Li SH, Wang R, Lou BH, Chen HB, Yan CZ. Motor Symptom Lateralization Influences Cortico-Striatal Functional Connectivity in Parkinson's Disease. Front Neurol 2021; 12:619631. [PMID: 34054684 PMCID: PMC8160303 DOI: 10.3389/fneur.2021.619631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/08/2021] [Indexed: 12/05/2022] Open
Abstract
Objective: The striatum is unevenly impaired bilaterally in Parkinson's disease (PD). Because the striatum plays a key role in cortico-striatal circuits, we assume that lateralization affects cortico-striatal functional connectivity in PD. The present study sought to evaluate the effect of lateralization on various cortico-striatal circuits through resting-state functional magnetic resonance imaging (fMRI). Methods: Thirty left-onset Parkinson's disease (LPD) patients, 27 right-onset Parkinson's disease (RPD) patients, and 32 normal controls with satisfactory data were recruited. Their demographic, clinical, and neuropsychological information was collected. Resting-state fMRI was performed, and functional connectivity changes of seven subdivisions of the striatum were explored in the two PD groups. In addition, the associations between altered functional connectivity and various clinical and neuropsychological characteristics were analyzed by Pearson's or Spearman's correlation. Results: Directly comparing the LPD and RPD patients demonstrated that the LPD patients had lower FC between the left dorsal rostral putamen and the left orbitofrontal cortex than the RPD patients. In addition, the LPD patients showed aberrant functional connectivity involving several striatal subdivisions in the right hemisphere. The right dorsal caudate, ventral rostral putamen, and superior ventral striatum had decreased functional connectivity with the cerebellum and parietal and occipital lobes relative to the normal control group. The comparison between RPD patients and the controls did not obtain significant difference in functional connectivity. The functional connectivity between the left dorsal rostral putamen and the left orbitofrontal cortex was associated with contralateral motor symptom severity in PD patients. Conclusions: Our findings provide new insights into the distinct characteristics of cortico-striatal circuits in LPD and RPD patients. Lateralization of motor symptoms is associated with lateralized striatal functional connectivity.
Collapse
Affiliation(s)
- Wen Su
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Disease, Qilu Hospital of Shandong University, Jinan, China
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Li
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chun-Mei Li
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Xin-Xin Ma
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhao
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Shu-Hua Li
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Wang
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Bao-Hui Lou
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Radiology, National Center of Gerontology, Beijing Hospital, Beijing, China
| | - Hai-Bo Chen
- Department of Neurology, National Center of Gerontology, Beijing Hospital, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chuan-Zhu Yan
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Disease, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
13
|
Hu H, Chen J, Huang H, Zhou C, Zhang S, Liu X, Wang L, Chen P, Nie K, Chen L, Wang S, Huang B, Huang R. Common and specific altered amplitude of low-frequency fluctuations in Parkinson's disease patients with and without freezing of gait in different frequency bands. Brain Imaging Behav 2021; 14:857-868. [PMID: 30666566 DOI: 10.1007/s11682-018-0031-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Freezing of gait (FOG), a disabling symptom of Parkinson's disease (PD), severely affects PD patients' life quality. Previous studies found neuropathologies in functional connectivity related to FOG, but few studies detected abnormal regional activities related to FOG in PD patients. In the present study, we analyzed the amplitude of low-frequency fluctuations (ALFF) to detect brain regions showing abnormal activity in PD patients with FOG (PD-with-FOG) and without FOG (PD-without-FOG). As different frequencies of neural oscillations in brain may reflect distinct brain functional and physiological properties, we conducted this study in three frequency bands, slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), and classical frequency band (0.01-0.08 Hz). We acquired rs-fMRI data from 18 PD-with-FOG patients, 18 PD-without-FOG patients, and 17 healthy controls, then calculated voxel-wise ALFF across the whole brain and compared ALFF among the three groups in each frequency band. We found: (1) in slow-5, both PD-with-FOG and PD-without-FOG patients showed lower ALFF in the bilateral putamen compared to healthy controls, (2) in slow-4, PD-with-FOG patients showed higher ALFF in left inferior temporal gyrus (ITG) and lower ALFF in right middle frontal gyrus (MFG) compared to either PD-without-FOG patients or healthy controls, (3) in classical frequency band, PD-with-FOG patients also showed higher ALFF in ITG compared to either PD-without-FOG patients or healthy controls. Furthermore, we found that ALFF in MFG and ITG in slow-4 provided the highest classification accuracy (96.7%) in distinguishing PD-with-FOG from PD-without-FOG patients by using a stepwise multivariate pattern analysis. Our findings indicated frequency-specific regional spontaneous neural activity related to FOG, which may help to elucidate the pathogenesis of FOG.
Collapse
Affiliation(s)
- Huiqing Hu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jingwu Chen
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, 510030, People's Republic of China
| | - Huiyuan Huang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Caihong Zhou
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, 510030, People's Republic of China
| | - Shufei Zhang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Xian Liu
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510030, People's Republic of China
| | - Lijuan Wang
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, People's Republic of China
| | - Ping Chen
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Kun Nie
- Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, People's Republic of China
| | - Lixiang Chen
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Shuai Wang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Biao Huang
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, 510030, People's Republic of China.
| | - Ruiwang Huang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
14
|
Liu J, Shuai G, Fang W, Zhu Y, Chen H, Wang Y, Li Q, Han Y, Zou D, Cheng O. Altered regional homogeneity and connectivity in cerebellum and visual-motor relevant cortex in Parkinson's disease with rapid eye movement sleep behavior disorder. Sleep Med 2021; 82:125-133. [PMID: 33915428 DOI: 10.1016/j.sleep.2021.03.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Rapid eye movement sleep behavior disorder (RBD) frequently occurs in Parkinson's disease (PD), however, the exact pathophysiological mechanism underlying its occurrence is not clear. In this study, we explored whether there is abnormal spontaneous neuronal activities and connectivity maps in some brain areas under resting-state in PD patients with RBD. METHODS We recruited 38 PD patients (19 PD with RBD and 19 PD without RBD), and 20 age- and gender-matched normal controls. We used resting-state functional magnetic resonance imaging (RS-fMRI) to analyze regional homogeneity (ReHo) and functional connectivity (FC), and further to reveal the neuronal activity in all subjects. RESULTS Compared with the PD without RBD patients, the PD with RBD patients showed a significant increase in regional homogeneity in the left cerebellum, the right middle occipital region and the left middle temporal region, and decreased regional homogeneity in the left middle frontal region. The REM sleep behavioral disorders questionnaire scores were significantly positively correlated with the ReHo values of the left cerebellum. The functional connectivity analysis in which the four regions described above were used as regions of interest revealed increased functional activity between the left cerebellum and bilateral occipital regions, bilateral temporal regions and bilateral supplementary motor area. CONCLUSION The pathophysiological mechanism of PD with RBD may be related to abnormal spontaneous neuronal activity patterns with strong synchronization of cerebellar and visual-motor relevant cortex, and the increased connectivity of the cerebellum with the occipital and motor regions.
Collapse
Affiliation(s)
- Jinjing Liu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Guangying Shuai
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Weidong Fang
- Department of Radiology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yingcheng Zhu
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Huiyue Chen
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yuchan Wang
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Qun Li
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yu Han
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Dezhi Zou
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Oumei Cheng
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
15
|
Xing Y, Fu S, Li M, Ma X, Liu M, Liu X, Huang Y, Xu G, Jiao Y, Wu H, Jiang G, Tian J. Regional Neural Activity Changes in Parkinson's Disease-Associated Mild Cognitive Impairment and Cognitively Normal Patients. Neuropsychiatr Dis Treat 2021; 17:2697-2706. [PMID: 34429605 PMCID: PMC8380131 DOI: 10.2147/ndt.s323127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/27/2021] [Indexed: 01/21/2023] Open
Abstract
PURPOSE The aim of this study was to compare regional homogeneity (ReHo) changes in Parkinson's disease mild cognitive impairment (PD-MCI) patients with respect to normal controls (NC) and those with cognitively normal PD (PD-CN). Further, the study investigated the relationship between ReHo changes in PD patients and neuropsychological variation. PATIENTS AND METHODS Thirty PD-MCI, 19 PD-CN, and 21 NC subjects were enrolled. Resting state functional magnetic resonance imaging data of all subjects were collected, and regional brain activity was measured for ReHo. Analysis of covariance for ReHo was determined between the PD-MCI, PD-CN, and NC groups. Spearman rank correlations were assessed using the ReHo maps and data from the neuropsychological tests. RESULTS In comparison with NC, PD-CN patients showed significantly higher ReHo values in the right middle frontal gyrus (MFG) and lower ReHo values in the left supramarginal gyrus, bilateral inferior parietal lobule (IPL), and the right postcentral gyrus (PCG). In comparison with PD-CN patients, PD-MCI patients displayed significantly higher ReHo values in the right PCG, left middle occipital gyrus (MOG) and IPL. No significant correlation between ReHo indices and the neuropsychological scales was observed. CONCLUSION Our finding revealed that decreases in ReHo in the default mode network (DMN) may appear before PD-related cognitive impairment. In order to preserve executive attention capacity, ReHo in the right MFG in PD patients lacking cognition impairment increased for compensation. PD-MCI showed increased ReHo in the left MOG, which might have been caused by visual and visual-spatial dysfunction, and increased ReHo in the left IPL, which might reflect network disturbance and induce cognition deficits.
Collapse
Affiliation(s)
- Yilan Xing
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China.,Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Shishun Fu
- Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Meng Li
- Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Xiaofen Ma
- Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Mengchen Liu
- Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Xintong Liu
- Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yan Huang
- Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Guang Xu
- Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yonggang Jiao
- Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Hong Wu
- Department of Neurology of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Guihua Jiang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China.,Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Junzhang Tian
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China.,Department of Medical Imaging of Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Park CH, Lee PH, Lee SK, Chung SJ, Shin NY. The diagnostic potential of multimodal neuroimaging measures in Parkinson's disease and atypical parkinsonism. Brain Behav 2020; 10:e01808. [PMID: 33029883 PMCID: PMC7667347 DOI: 10.1002/brb3.1808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION For the diagnosis of Parkinson's disease (PD) and atypical parkinsonism (AP) using neuroimaging, structural measures have been largely employed since structural abnormalities are most noticeable in the diseases. Functional abnormalities have been known as well, though less clearly seen, and thus, the addition of functional measures to structural measures is expected to be more informative for the diagnosis. Here, we aimed to assess whether multimodal neuroimaging measures of structural and functional alterations could have potential for enhancing performance in diverse diagnostic classification problems. METHODS For 77 patients with PD, 86 patients with AP comprising multiple system atrophy and progressive supranuclear palsy, and 53 healthy controls (HC), structural and functional MRI data were collected. Gray matter (GM) volume was acquired as a structural measure, and GM regional homogeneity and degree centrality were acquired as functional measures. The measures were used as predictors individually or in combination in support vector machine classifiers for different problems of distinguishing between HC and each diagnostic type and between different diagnostic types. RESULTS In statistical comparisons of the measures, structural alterations were extensively seen in all diagnostic types, whereas functional alterations were limited to specific diagnostic types. The addition of functional measures to the structural measure generally yielded statistically significant improvements to classification accuracy, compared to the use of the structural measure alone. CONCLUSION We suggest the fusion of multimodal neuroimaging measures as an effective strategy that could generally cope with diverse prediction problems of clinical concerns.
Collapse
Affiliation(s)
- Chang-Hyun Park
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
| | - Na-Young Shin
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
17
|
Cao X, Wang X, Xue C, Zhang S, Huang Q, Liu W. A Radiomics Approach to Predicting Parkinson's Disease by Incorporating Whole-Brain Functional Activity and Gray Matter Structure. Front Neurosci 2020; 14:751. [PMID: 32760248 PMCID: PMC7373781 DOI: 10.3389/fnins.2020.00751] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a progressive, chronic, and neurodegenerative disorder that is primarily diagnosed by clinical examinations and magnetic resonance imaging (MRI). In this study, we proposed a machine learning based radiomics method to predict PD. Fifty healthy controls (HC) along with 70 PD patients underwent resting-state magnetic resonance imaging (rs-fMRI). For all subjects, we extracted five types of 6664 features, including mean amplitude of low-frequency fluctuation (mALFF), mean regional homogeneity (mReHo), resting-state functional connectivity (RSFC), voxel-mirrored homotopic connectivity (VMHC) and gray matter (GM) volume. After conducting dimension reduction utilizing Least absolute shrinkage and selection operator (LASSO), fifty-three radiomic features including 46 RSFCs, 1 mALFF, 3 mReHos, 1 VMHC, 2 GM volumes and 1 clinical factor were retained. The selected features also indicated the most discriminative regions for PD. We further conducted model fitting procedure for classifying subjects in the training set employing random forest and support volume machine (SVM) to evaluate the performance of the two methods. After cross-validation, both methods achieved 100% accuracy and area under curve (AUC) for distinguishing between PD and HC in the training set. In the testing set, SVM performed better than random forest with the accuracy, true positive rate (TPR) and AUC being 85%, 1 and 0.97, respectively. These findings demonstrate the radiomics technique has the potential to support radiological diagnosis and to achieve high classification accuracy for clinical diagnostic systems for patients with PD.
Collapse
Affiliation(s)
- Xuan Cao
- Division of Statistics and Data Science, Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Xiao Wang
- Department of Radiology, Affiliated Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, Affiliated Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Shaojun Zhang
- Department of Statistics, University of Florida, Gainesville, FL, United States
| | - Qingling Huang
- Department of Radiology, Affiliated Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, Affiliated Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Li K, Zhao H, Li CM, Ma XX, Chen M, Li SH, Wang R, Lou BH, Chen HB, Su W. The Relationship between Side of Onset and Cerebral Regional Homogeneity in Parkinson's Disease: A Resting-State fMRI Study. PARKINSON'S DISEASE 2020; 2020:5146253. [PMID: 32676180 PMCID: PMC7336244 DOI: 10.1155/2020/5146253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/30/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Motor symptoms are usually asymmetric in Parkinson's disease (PD), and asymmetry in PD may involve widespread brain areas. We sought to evaluate the effect of asymmetry on the whole brain spontaneous activity using the measure regional homogeneity (ReHo) through resting-state functional MRI. METHODS We recruited 30 PD patients with left onset (LPD), 27 with right side (RPD), and 32 controls with satisfactory data. Their demographic, clinical, and neuropsychological information were obtained. Resting-state functional MRI was performed, and ReHo was used to determine the brain activity. ANCOVA was utilized to analyze between-group differences in ReHo and the associations between abnormal ReHo, and various clinical and neuropsychological variables were explored by Spearman's correlation. RESULTS LPD patients had higher ReHo in the right temporal pole than the controls. RPD patients had increased ReHo in the right temporal pole and decreased ReHo in the primary motor cortex and premotor area, compared with the controls. Directly comparing LPD and RPD patients did not show a significant difference in ReHo. ReHo of the right temporal pole was significantly correlated with depression and anxiety in RPD patients. CONCLUSIONS Both LPD and RPD have increased brain activity synchronization in the right temporal pole, and only RPD has decreased brain activity synchronization in the right frontal motor areas. The changed brain activity in the right temporal pole may play a compensatory role for depression and anxiety in PD, and the altered cerebral function in the right frontal motor area in RPD may represent the reorganization of the motor system in RPD.
Collapse
Affiliation(s)
- Kai Li
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Hong Zhao
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Chun-Mei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Xin-Xin Ma
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Shu-Hua Li
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Rui Wang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Bao-Hui Lou
- Department of Radiology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Hai-Bo Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| | - Wen Su
- Department of Neurology, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dong Dan, Beijing 100730, China
| |
Collapse
|
19
|
Singh B, Pandey S, Rumman M, Mahdi AA. Neuroprotective effects of Bacopa monnieri in Parkinson's disease model. Metab Brain Dis 2020; 35:517-525. [PMID: 31834548 DOI: 10.1007/s11011-019-00526-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/01/2019] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by loss of dopaminergic neurons in substantia nigra region and the presence of α-synuclein aggregates in the striatum and surrounding areas of brain. Evidences suggest that neuroinflammation plays a role in the progression of PD. We examined the neuro-protective effects of Bacopa monnieri (BM) in regulating neuroinflammation. Administration of BM suppressed the level of pro-inflammatory cytokines, decreased the levels of α-synuclein, and reduced reactive oxygen species (ROS) generation in PD animal model. Pre-treatment of BM showed more prominent results as compare to co- and post-treatment. Results suggest that Bacopa can limit inflammation in the different areas of brain, thus, offers a promising source of novel therapeutics for the treatment of many CNS disorders.
Collapse
Affiliation(s)
- Babita Singh
- Department of Biochemistry, King George's Medical University (KGMU), Lucknow, UP, 226003, India
| | - Shivani Pandey
- Department of Biochemistry, King George's Medical University (KGMU), Lucknow, UP, 226003, India.
| | - Mohammad Rumman
- Department of Biochemistry, King George's Medical University (KGMU), Lucknow, UP, 226003, India
| | | |
Collapse
|
20
|
Wang M, Liao H, Shen Q, Cai S, Zhang H, Xiang Y, Liu S, Wang T, Zi Y, Mao Z, Tan C. Changed Resting-State Brain Signal in Parkinson's Patients With Mild Depression. Front Neurol 2020; 11:28. [PMID: 32082245 PMCID: PMC7005211 DOI: 10.3389/fneur.2020.00028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/09/2020] [Indexed: 01/17/2023] Open
Abstract
Background: Depression is reported to occur 5–10 years early than the onset of motor symptoms in Parkinson (PD) patients. However, markers for early diagnosis of PD in individuals with sub-clinical depression still remain to be identified. Purpose: This study utilized Regional Homogeneity (ReHo) to investigate the alterations in resting state brain activities in Parkinson (PD) patients with different degrees of depression. Methods: Twenty non-depressed PD patients, twenty mild to moderately depressed PD patients, and thirteen severely depressed PD patients were recruited. Hamilton Depression Scale (HDS) and the Beck Depression Inventory (BDI) were assessed depression. Resting-state functional magnetic resonance imaging (rs-MRI) was analyzed with ReHo. Results: PD patients with mild to moderate depression had decreased ReHo in the left dorsal anterior cingulate cortex when compared with PD patients without depression. PD patients with severe depression exhibited increased ReHo in the left inferior prefrontal gyrus and right orbitofrontal area when compared with PD patients with mild to moderate depression. ReHo values in the bilateral supplementary motor area (SMA) in PD patients with severe depression was also increased when compared with PD patients without depression. Conclusions: This study suggests that rs-MRI with ReHo analysis can detect early changes in brain function that associate with depression in PD patients, which could be biomarkers for early diagnosis and treatment of PD related depression.
Collapse
Affiliation(s)
- Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongchun Zhang
- Department of Radiology, The First Affiliated Hospital, University of Science and Technology of China, Changsha, China
| | - Yijuan Xiang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Siyu Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tianyu Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuheng Zi
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenni Mao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Xu X, Han Q, lin J, Wang L, Wu F, Shang H. Grey matter abnormalities in Parkinson’s disease: a voxel‐wise meta‐analysis. Eur J Neurol 2019; 27:653-659. [PMID: 31770481 DOI: 10.1111/ene.14132] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/19/2019] [Indexed: 02/05/2023]
Affiliation(s)
- X. Xu
- Neurology Department West China Hospital Sichuan University Chengdu China
| | - Q. Han
- Neurology Department West China Hospital Sichuan University Chengdu China
| | - J. lin
- Neurology Department West China Hospital Sichuan University Chengdu China
| | - L. Wang
- Neurology Department West China Hospital Sichuan University Chengdu China
| | - F. Wu
- Neurology Department West China Hospital Sichuan University Chengdu China
| | - H. Shang
- Neurology Department West China Hospital Sichuan University Chengdu China
| |
Collapse
|
22
|
Guan X, Guo T, Zeng Q, Wang J, Zhou C, Liu C, Wei H, Zhang Y, Xuan M, Gu Q, Xu X, Huang P, Pu J, Zhang B, Zhang MM. Oscillation-specific nodal alterations in early to middle stages Parkinson's disease. Transl Neurodegener 2019; 8:36. [PMID: 31807287 PMCID: PMC6857322 DOI: 10.1186/s40035-019-0177-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/07/2019] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Different oscillations of brain networks could carry different dimensions of brain integration. We aimed to investigate oscillation-specific nodal alterations in patients with Parkinson's disease (PD) across early stage to middle stage by using graph theory-based analysis. METHODS Eighty-eight PD patients including 39 PD patients in the early stage (EPD) and 49 patients in the middle stage (MPD) and 36 controls were recruited in the present study. Graph theory-based network analyses from three oscillation frequencies (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.073 Hz; slow-3: 0.073-0.198 Hz) were analyzed. Nodal metrics (e.g. nodal degree centrality, betweenness centrality and nodal efficiency) were calculated. RESULTS Our results showed that (1) a divergent effect of oscillation frequencies on nodal metrics, especially on nodal degree centrality and nodal efficiency, that the anteroventral neocortex and subcortex had high nodal metrics within low oscillation frequencies while the posterolateral neocortex had high values within the relative high oscillation frequency was observed, which visually showed that network was perturbed in PD; (2) PD patients in early stage relatively preserved nodal properties while MPD patients showed widespread abnormalities, which was consistently detected within all three oscillation frequencies; (3) the involvement of basal ganglia could be specifically observed within slow-5 oscillation frequency in MPD patients; (4) logistic regression and receiver operating characteristic curve analyses demonstrated that some of those oscillation-specific nodal alterations had the ability to well discriminate PD patients from controls or MPD from EPD patients at the individual level; (5) occipital disruption within high frequency (slow-3) made a significant influence on motor impairment which was dominated by akinesia and rigidity. CONCLUSIONS Coupling various oscillations could provide potentially useful information for large-scale network and progressive oscillation-specific nodal alterations were observed in PD patients across early to middle stages.
Collapse
Affiliation(s)
- Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Qiaoling Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Jiaqiu Wang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Chunlei Liu
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA USA
| | - Hongjiang Wei
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA USA
| | - Yuyao Zhang
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA USA
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Min-Ming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009 China
| |
Collapse
|
23
|
Liu Y, Li M, Chen H, Wei X, Hu G, Yu S, Ruan X, Zhou J, Pan X, Li Z, Luo Z, Xie Y. Alterations of Regional Homogeneity in Parkinson's Disease Patients With Freezing of Gait: A Resting-State fMRI Study. Front Aging Neurosci 2019; 11:276. [PMID: 31680931 PMCID: PMC6803428 DOI: 10.3389/fnagi.2019.00276] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/25/2019] [Indexed: 01/24/2023] Open
Abstract
Objective The purposes of this study are to investigate the regional homogeneity (ReHo) of spontaneous brain activities in Parkinson’s disease (PD) patients with freeze of gait (FOG) and to investigate the neural correlation of movement function through resting-state functional magnetic resonance imaging (RS-fMRI). Methods A total of 35 normal controls (NC), 33 PD patients with FOG (FOG+), and 35 PD patients without FOG (FOG−) were enrolled. ReHo was applied to evaluate the regional synchronization of spontaneous brain activities. Analysis of covariance (ANCOVA) was performed on ReHo maps of the three groups, followed by post hoc two-sample t-tests between every two groups. Moreover, the ReHo signals of FOG+ and FOG− were extracted across the whole brain and correlated with movement scores (FOGQ, FOG questionnaire; GFQ, gait and falls questionnaire). Results Significant ReHo differences were observed in the left cerebrum. Compared to NC subjects, the ReHo of PD subjects was increased in the left angular gyrus (AG) and decreased in the left rolandic operculum/postcentral gyrus (Rol/PostC), left inferior opercular-frontal cortex, left middle occipital gyrus, and supramarginal gyrus (SMG). Compared to that of FOG−, the ReHo of FOG+ was increased in the left caudate and decreased in the left Rol/PostC. Within the significant regions, the ReHo of FOG+ was negatively correlated with FOGQ in the left SMG/PostC (r = −0.39, p < 0.05). Negative correlations were also observed between ReHo and GFQ/FOGQ (r = −0.36/−0.38, p < 0.05) in the left superior temporal gyrus (STG) of the whole brain analysis based on AAL templates. Conclusion The ReHo analysis suggested that the regional signal synchronization of brain activities in FOG+ subjects was most active in the left caudate and most hypoactive in the left Rol/PostC. It also indicated that ReHo in the left caudate and left Rol/PostC was critical for discriminating the three groups. The correlation between ReHo and movement scores (GFQ/FOGQ) in the STG has the potential to differentiate FOG+ from FOG−. This study provided new insight into the understanding of PD with and without FOG.
Collapse
Affiliation(s)
- Yanjun Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mengyan Li
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haobo Chen
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guihe Hu
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shaode Yu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Radiation Oncology, Southwestern Medical Center, University of Texas, Dallas, TX, United States
| | - Xiuhang Ruan
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jin Zhou
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaoping Pan
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ze Li
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | | | - Yaoqin Xie
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
24
|
Schwartz F, Tahmasian M, Maier F, Rochhausen L, Schnorrenberg KL, Samea F, Seemiller J, Zarei M, Sorg C, Drzezga A, Timmermann L, Meyer TD, van Eimeren T, Eggers C. Overlapping and distinct neural metabolic patterns related to impulsivity and hypomania in Parkinson's disease. Brain Imaging Behav 2019; 13:241-254. [PMID: 29322397 DOI: 10.1007/s11682-017-9812-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Impulsivity and hypomania are common non-motor features in Parkinson's disease (PD). The aim of this study was to find the overlapping and distinct neural correlates of these symptoms in PD. Symptoms of impulsivity and hypomania were assessed in 24 PD patients using the Barratt Impulsiveness Scale (BIS-11) and Self-Report Manic Inventory (SRMI), respectively. In addition, fluorodeoxyglucose positron emission tomography (FDG-PET) imaging for each individual was performed. We conducted two separate multiple regression analyses for BIS-11 and SRMI scores with FDG-PET data to identify the brain regions that are associated with both impulsivity and hypomania scores, as well as those exclusive to each symptom. Then, seed-based functional connectivity analyses on healthy subjects identified the areas connected to each of the exclusive regions and the overlapping region, used as seeds. We observed a positive association between BIS-11 and SRMI scores and neural metabolism only in the prefrontal areas. Conjunction analysis revealed an overlapping region in the middle frontal gyrus. Regions exclusive to impulsivity were found in the medial part of the right superior frontal gyrus and regions exclusive to hypomania were in the right superior frontal gyrus, right precentral gyrus and right paracentral lobule. Connectivity patterns of seeds exclusively related to impulsivity were different from those for hypomania in healthy brains. These results provide evidence of both overlapping and distinct regions linked with impulsivity and hypomania scores in PD. The exclusive regions for each characteristic are connected to specific intrinsic functional networks.
Collapse
Affiliation(s)
- Frank Schwartz
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran.
| | - Franziska Maier
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Luisa Rochhausen
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | | | - Fateme Samea
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | | | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Christian Sorg
- Departments of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center (TUM-NIC), Technische Universität München, Munich, Germany.,Department of Psychiatry, Technische Universität München, Munich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Thomas D Meyer
- McGovern Medical School, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Thilo van Eimeren
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital Cologne, Cologne, Germany.,Department of Neurology, University Hospital Marburg, Marburg, Germany
| |
Collapse
|
25
|
Abnormal spontaneous neural activity of brain regions in patients with primary blepharospasm at rest. J Neurol Sci 2019; 403:44-49. [PMID: 31220741 DOI: 10.1016/j.jns.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/13/2019] [Accepted: 06/03/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Primary blepharospasm (BSP) is characterized by excessive involuntary eyelid spasms without significant morphological brain abnormalities. Its neural bases remain unclear. Resting-state functional magnetic resonance imaging (rs-fMRI) is a powerful tool for exploring cerebral function mechanisms in BSP. METHODS Two subject groups (24 patients with BSP and 24 healthy controls) underwent rs-fMRI scans. The rs-fMRI images were analyzed using the regional homogeneity (ReHo) method to assess the local features of spontaneous brain activity. Correlation analysis was carried out to explore the relationship between the ReHo values of abnormal brain areas and clinical variables including illness duration, symptom severity, and depression/anxiety symptoms. RESULTS Relative to healthy controls, patients with BSP showed significantly decreased ReHo in the left superior temporal pole/left insula, left calcarine cortex, and bilateral superior medial frontal gyrus (mSFG), and increased ReHo in the bilateral supplementary motor area (SMA). There were no significant correlations between ReHo values in these brain regions and clinical variables in the patients. CONCLUSIONS Our results suggest that abnormal spontaneous brain activity in multiple brain regions not limited to the basal ganglia may be trait alterations in the patients, which provides more insights into the pathogenesis of BSP.
Collapse
|
26
|
Nemmi F, Pavy-Le Traon A, Phillips OR, Galitzky M, Meissner WG, Rascol O, Péran P. A totally data-driven whole-brain multimodal pipeline for the discrimination of Parkinson's disease, multiple system atrophy and healthy control. NEUROIMAGE-CLINICAL 2019; 23:101858. [PMID: 31128523 PMCID: PMC6531871 DOI: 10.1016/j.nicl.2019.101858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/17/2019] [Accepted: 05/11/2019] [Indexed: 01/10/2023]
Abstract
Parkinson's Disease (PD) and Multiple System Atrophy (MSA) are two parkinsonian syndromes that share many symptoms, albeit having very different prognosis. Although previous studies have proposed multimodal MRI protocols combined with multivariate analysis to discriminate between these two populations and healthy controls, studies combining all MRI indexes relevant for these disorders (i.e. grey matter volume, fractional anisotropy, mean diffusivity, iron deposition, brain activity at rest and brain connectivity) with a completely data-driven voxelwise analysis for discrimination are still lacking. In this study, we used such a complete MRI protocol and adapted a fully-data driven analysis pipeline to discriminate between these populations and a healthy controls (HC) group. The pipeline combined several feature selection and reduction steps to obtain interpretable models with a low number of discriminant features that can shed light onto the brain pathology of PD and MSA. Using this pipeline, we could discriminate between PD and HC (best accuracy = 0.78), MSA and HC (best accuracy = 0.94) and PD and MSA (best accuracy = 0.88). Moreover, we showed that indexes derived from resting-state fMRI alone could discriminate between PD and HC, while mean diffusivity in the cerebellum and the putamen alone could discriminate between MSA and HC. On the other hand, a more diverse set of indexes derived by multiple modalities was needed to discriminate between the two disorders. We showed that our pipeline was able to discriminate between distinct pathological populations while delivering sparse model that could be used to better understand the neural underpinning of the pathologies. Structuro-functional MRI can discriminate between parkinsonian syndromes Discriminant MRI modalities vary as a function of the discrimination task fMRI is crucial in discriminating between Parkinson's disease patients and controls Structural MRI discriminate between Multiple System Atrophy patients and controls
Collapse
Affiliation(s)
- F Nemmi
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.
| | - A Pavy-Le Traon
- UMR Institut National de la Santé et de la Recherche Médicale 1048, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France; Department of Neurology and Institute for Neurosciences, University Hospital of Toulouse, Toulouse, France
| | - O R Phillips
- Brain Key, Palo Alto, California, USA; NeuroToul COEN Center, INSERM, CHU de Toulouse, Université de Toulouse 3, Toulouse, France
| | - M Galitzky
- Centre d'Investigation Clinique (CIC), CHU de Toulouse, Toulouse, France
| | - W G Meissner
- French Reference Center for MSA, Department of Neurology, University Hospital Bordeaux, Bordeaux and Institute of Neurodegenerative Disorders, University Bordeaux, CNRS UMR 5293, 33000 Bordeaux, France; Dept. Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, Christchurch, New Zealand
| | - O Rascol
- Departments of Clinical Pharmacology and Neurosciences, Clinical Investigation Center CIC 1436, NS-Park/FCRIN network and NeuroToul COEN Center, INSERM, CHU de Toulouse, Université de Toulouse 3, Toulouse, France
| | - P Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| |
Collapse
|
27
|
Chen D, Jiang J, Lu J, Wu P, Zhang H, Zuo C, Shi K. Brain Network and Abnormal Hemispheric Asymmetry Analyses to Explore the Marginal Differences in Glucose Metabolic Distributions Among Alzheimer's Disease, Parkinson's Disease Dementia, and Lewy Body Dementia. Front Neurol 2019; 10:369. [PMID: 31031697 PMCID: PMC6473028 DOI: 10.3389/fneur.2019.00369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
Facilitating accurate diagnosis and ensuring appropriate treatment of dementia subtypes, including Alzheimer's disease (AD), Parkinson's disease dementia (PDD), and Lewy body dementia (DLB), is clinically important. However, the differences in glucose metabolic distribution among these three dementia subtypes are minor, which can result in difficulties in diagnosis by visual assessment or traditional quantification methods. Here, we explored this issue using novel approaches, including brain network and abnormal hemispheric asymmetry analyses. We generated 18F-labeled fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) images from patients with AD, PDD, and DLB, and healthy control (HC) subjects (n = 22, 18, 22, and 22, respectively) from Huashan hospital, Shanghai, China. Brain network properties were measured and between-group differences evaluated using graph theory. We also calculated and explored asymmetry indices for the cerebral hemispheres in the four groups, to explore whether differences between the two hemispheres were characteristic of each group. Our study revealed significant differences in the network properties of the HC and AD groups (small-world coefficient, 1.36 vs. 1.28; clustering coefficient, 1.48 vs. 1.59; characteristic path length, 1.57 vs. 1.64). In addition, differing hub regions were identified in the different dementias. We also identified rightward asymmetry in the hemispheric brain networks of patients with AD and DLB, and leftward asymmetry in the hemispheric brain networks of patients with PDD, which were attributable to aberrant topological properties in the corresponding hemispheres.
Collapse
Affiliation(s)
- Danyan Chen
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China
| | - Jiehui Jiang
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China.,Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai, China
| | - Jiaying Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Huiwei Zhang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Kuangyu Shi
- Department Nuclear Medicine, University of Bern, Bern, Switzerland.,Department of Informatics, Technical University of Munich, Munich, Germany
| |
Collapse
|
28
|
Filippi M, Sarasso E, Agosta F. Resting-state Functional MRI in Parkinsonian Syndromes. Mov Disord Clin Pract 2019; 6:104-117. [PMID: 30838308 DOI: 10.1002/mdc3.12730] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 01/18/2023] Open
Abstract
Background Functional MRI (fMRI) has been widely used to study abnormal patterns of functional connectivity at rest in patients with movement disorders such as idiopathic Parkinson's disease (PD) and atypical parkinsonisms. Methods This manuscript provides an educational review of the current use of resting-state fMRI in the field of parkinsonian syndromes. Results Resting-state fMRI studies have improved the current knowledge about the mechanisms underlying motor and non-motor symptom development and progression in movement disorders. Even if its inclusion in clinical practice is still far away, resting-state fMRI has the potential to be a promising biomarker for early disease detection and prediction. It may also aid in differential diagnosis and monitoring brain responses to therapeutic agents and neurorehabilitation strategies in different movement disorders. Conclusions There is urgent need to identify and validate prodromal biomarkers in PD patients, to perform further studies assessing both overlapping and disease-specific fMRI abnormalities among parkinsonian syndromes, and to continue technical advances to fully realize the potential of fMRI as a tool to monitor the efficacy of chronic therapies.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy.,Laboratory of Movement Analysis San Raffaele Scientific Institute Milan Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy
| |
Collapse
|
29
|
Wang J, Zhang JR, Zang YF, Wu T. Consistent decreased activity in the putamen in Parkinson's disease: a meta-analysis and an independent validation of resting-state fMRI. Gigascience 2018; 7:5039703. [PMID: 29917066 PMCID: PMC6025187 DOI: 10.1093/gigascience/giy071] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
Background Resting-state functional magnetic resonance imaging (RS-fMRI) has frequently been used to investigate local spontaneous brain activity in Parkinson's disease (PD) in a whole-brain, voxel-wise manner. To quantitatively integrate these studies, we conducted a coordinate-based (CB) meta-analysis using the signed differential mapping method on 15 studies that used amplitude of low-frequency fluctuation (ALFF) and 11 studies that used regional homogeneity (ReHo). All ALFF and ReHo studies compared PD patients with healthy controls. We also performed a validation RS-fMRI study of ALFF and ReHo in a frequency-dependent manner for a novel dataset consisting of 49 PD and 49 healthy controls. Findings Decreased ALFF was found in the left putamen in PD by meta-analysis. This finding was replicated in our independent validation dataset in the 0.027-0.073 Hz band but not in the conventional frequency band of 0.01-0.08 Hz. Conclusions Findings from the current study suggested that decreased ALFF in the putamen of PD patients is the most consistent finding. RS-fMRI is a promising technique for the precise localization of abnormal spontaneous activity in PD. However, more frequency-dependent studies using the same analytical methods are needed to replicate these results. Trial registration: NCT NCT03439163. Registered 20 February 2018, retrospectively registered.
Collapse
Affiliation(s)
- Jue Wang
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Institute of Geriatrics, No. 45, Changchun Rd, Xicheng District, 100053, Beijing, P. R. China.,Institutes of Psychological Sciences, Hangzhou Normal University, No. 2318, Yuhangtang Rd, Yuhang District, 311121, Hangzhou, P. R. China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, No. 2318, Yuhangtang Rd, Yuhang District, 311121, Hangzhou, P. R. China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, No. 2318, Yuhangtang Rd, Yuhang District, 311121, Hangzhou, P. R. China
| | - Jia-Rong Zhang
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Institute of Geriatrics, No. 45, Changchun Rd, Xicheng District, 100053, Beijing, P. R. China.,Clinical Center for Parkinson's Disease, Capital Medical University, No. 10, Youanmenwaixi Rd, Fengtai District, 100069, Beijing, P. R. China
| | - Yu-Feng Zang
- Institutes of Psychological Sciences, Hangzhou Normal University, No. 2318, Yuhangtang Rd, Yuhang District, 311121, Hangzhou, P. R. China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, No. 2318, Yuhangtang Rd, Yuhang District, 311121, Hangzhou, P. R. China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, No. 2318, Yuhangtang Rd, Yuhang District, 311121, Hangzhou, P. R. China
| | - Tao Wu
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Institute of Geriatrics, No. 45, Changchun Rd, Xicheng District, 100053, Beijing, P. R. China.,Clinical Center for Parkinson's Disease, Capital Medical University, No. 10, Youanmenwaixi Rd, Fengtai District, 100069, Beijing, P. R. China.,Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, No. 45, Changchun Rd, Xicheng District, 100053, Beijing, P. R. China.,National Clinical Research Center for Geriatric Disorders, No. 45, Changchun Rd, Xicheng District, 100053, Beijing, P. R. China.,Parkinson Disease Imaging Consortium of China (PDICC), No. 45, Changchun Rd, Xicheng District, 100053, Beijing, P. R. China
| |
Collapse
|
30
|
Filippi M, Elisabetta S, Piramide N, Agosta F. Functional MRI in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:439-467. [PMID: 30314606 DOI: 10.1016/bs.irn.2018.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional MRI (fMRI) has been widely used to study abnormal patterns of brain connectivity at rest and activation during a variety of tasks in patients with idiopathic Parkinson's disease (PD). fMRI studies in PD have led to a better understanding of many aspects of the disease including both motor and non-motor symptoms. Although its translation into clinical practice is still at an early stage, fMRI measures hold promise for multiple clinical applications in PD, including the early detection, predicting future change in clinical status, and as a marker of alterations in brain physiology related to neurotherapeutic agents and neurorehabilitative strategies.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Sarasso Elisabetta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy; Laboratory of Movement Analysis, San Raffaele Scientific Institute, Milan, Italy
| | - Noemi Piramide
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
31
|
Abstract
The topological organization underlying the human brain was extensively investigated using resting-state functional magnetic resonance imaging, focusing on a low frequency of signal oscillation from 0.01 to 0.1 Hz. However, the frequency specificities with regard to the topological properties of the brain networks have not been fully revealed. In this study, a novel complementary ensemble empirical mode decomposition (CEEMD) method was used to separate the fMRI time series into five characteristic oscillations with distinct frequencies. Then, the small world properties of brain networks were analyzed for each of these five oscillations in patients (n = 67) with depressed Parkinson’s disease (DPD, n = 20) , non-depressed Parkinson’s disease (NDPD, n = 47) and healthy controls (HC, n = 46). Compared with HC, the results showed decreased network efficiency in characteristic oscillations from 0.05 to 0.12 Hz and from 0.02 to 0.05 Hz for the DPD and NDPD patients, respectively. Furthermore, compared with HC, the most significant inter-group difference across five brain oscillations was found in the basal ganglia (0.01 to 0.05 Hz) and paralimbic-limbic network (0.02 to 0.22 Hz) for the DPD patients, and in the visual cortex (0.02 to 0.05 Hz) for the NDPD patients. Compared with NDPD, the DPD patients showed reduced efficiency of nodes in the basal ganglia network (0.01 to 0.05 Hz). Our results demonstrated that DPD is characterized by a disrupted topological organization in large-scale brain functional networks. Moreover, the CEEMD analysis suggested a prominent dissociation in the topological organization of brain networks between DPD and NDPD in both space and frequency domains. Our findings indicated that these characteristic oscillatory activities in different functional circuits may contribute to distinct motor and non-motor components of clinical impairments in Parkinson’s disease.
Collapse
|
32
|
Longitudinal Alterations of Local Spontaneous Brain Activity in Parkinson's Disease. Neurosci Bull 2017; 33:501-509. [PMID: 28828757 DOI: 10.1007/s12264-017-0171-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/13/2017] [Indexed: 12/12/2022] Open
Abstract
We used resting-state fMRI to evaluate longitudinal alterations in local spontaneous brain activity in Parkinson's disease (PD) over a 2-year period. Data were acquired from 23 PD patients at baseline and follow-up, and 27 age- and sex-matched normal controls. Regional homogeneity (ReHo) and voxel-based-morphometry (VBM) were used to identify differences in local spontaneous brain activity and grey matter volume. With disease progression, we observed a progressive decrease in ReHo in the sensorimotor cortex, default-mode network, and left cerebellum, but increased ReHo in the supplementary motor area, bilateral temporal gyrus, and hippocampus. Moreover, there was a significant positive correlation between the rates of ReHo change in the left cerebellum and the rates of change in the Unified Parkinson's Disease Rating Scale-III scores. VBM revealed no significant differences in the grey matter volume among the three sets of acquisitions. We conclude that ReHo may be a suitable non-invasive marker of progression in PD.
Collapse
|
33
|
Alterations in regional homogeneity of resting-state brain activity in fatigue of Parkinson's disease. J Neural Transm (Vienna) 2017. [PMID: 28647831 DOI: 10.1007/s00702-017-1748-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fatigue is a common complaint in patients with Parkinson's disease (PD). However, the neural bases of fatigue in PD remain uncertain. In this cross-sectional study, our aim was to study the change of the local brain function in PD patients with fatigue. Among 49 patients with PD, 17 of them had fatigue and the remaining 32 patients without fatigue, and 25 age- and gender-matched healthy controls were enrolled. All subjects were evaluated with Fatigue Severity Scale (FSS) and had a resting-state functional magnetic resonance imaging (rs-fMRI) scan. The fMRI images were analyzed using regional homogeneity (ReHo) to study the change of the local brain function. ReHo analysis controlling for gray matter volume, age, gender, and education showed decreased ReHo in the left anterior cingulate cortex (ACC) and the right superior frontal gyrus (dorsolateral part), and increased ReHo in the left postcentral gyrus and the right inferior frontal gyrus (orbital and triangular part), compared PD-F with PD-NF; In PD patients, the regional activity in the left ACC and the right superior frontal gyrus (dorsolateral part) was negatively correlated with the FSS scores, while that in the left postcentral gyrus, the right inferior frontal gyrus (orbital and triangular part) was positively correlated with the FSS scores. This study demonstrates that brain areas including frontal, postcentral and ACC regions indicative of sensory, motor, and cognitive systems are involved in fatigue in PD patients.
Collapse
|
34
|
Harrington DL, Shen Q, Castillo GN, Filoteo JV, Litvan I, Takahashi C, French C. Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson's Disease. Front Aging Neurosci 2017; 9:197. [PMID: 28674492 PMCID: PMC5474556 DOI: 10.3389/fnagi.2017.00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/31/2017] [Indexed: 12/15/2022] Open
Abstract
Disturbances in intrinsic activity during resting-state functional MRI (rsfMRI) are common in Parkinson's disease (PD), but have largely been studied in a priori defined subnetworks. The cognitive significance of abnormal intrinsic activity is also poorly understood, as are abnormalities that precede the onset of mild cognitive impairment. To address these limitations, we leveraged three different analytic approaches to identify disturbances in rsfMRI metrics in 31 cognitively normal PD patients (PD-CN) and 30 healthy adults. Subjects were screened for mild cognitive impairment using the Movement Disorders Society Task Force Level II criteria. Whole-brain data-driven analytic approaches first analyzed the amplitude of low-frequency intrinsic fluctuations (ALFF) and regional homogeneity (ReHo), a measure of local connectivity amongst functionally similar regions. We then examined if regional disturbances in these metrics altered functional connectivity with other brain regions. We also investigated if abnormal rsfMRI metrics in PD-CN were related to brain atrophy and executive, visual organization, and episodic memory functioning. The results revealed abnormally increased and decreased ALFF and ReHo in PD-CN patients within the default mode network (posterior cingulate, inferior parietal cortex, parahippocampus, entorhinal cortex), sensorimotor cortex (primary motor, pre/post-central gyrus), basal ganglia (putamen, caudate), and posterior cerebellar lobule VII, which mediates cognition. For default mode network regions, we also observed a compound profile of altered ALFF and ReHo. Most regional disturbances in ALFF and ReHo were associated with strengthened long-range interactions in PD-CN, notably with regions in different networks. Stronger long-range functional connectivity in PD-CN was also partly expanded to connections that were outside the networks of the control group. Abnormally increased activity and functional connectivity appeared to have a pathological, rather than compensatory influence on cognitive abilities tested in this study. Receiver operating curve analyses demonstrated excellent sensitivity (≥90%) of rsfMRI variables in distinguishing patients from controls, but poor accuracy for brain volume and cognitive variables. Altogether these results provide new insights into the topology, cognitive relevance, and sensitivity of aberrant intrinsic activity and connectivity that precedes clinically significant cognitive impairment. Longitudinal studies are needed to determine if these neurocognitive associations presage the development of future mild cognitive impairment or dementia.
Collapse
Affiliation(s)
- Deborah L. Harrington
- Cognitive Neuroimaging Laboratory, Research Service, VA San Diego Healthcare System, San DiegoCA, United States
- Department of Radiology, University of California, San Diego, La JollaCA, United States
| | - Qian Shen
- Cognitive Neuroimaging Laboratory, Research Service, VA San Diego Healthcare System, San DiegoCA, United States
- Movement Disorder Center, Department of Neurosciences, University of California, San Diego, La JollaCA, United States
| | - Gabriel N. Castillo
- Cognitive Neuroimaging Laboratory, Research Service, VA San Diego Healthcare System, San DiegoCA, United States
- Department of Radiology, University of California, San Diego, La JollaCA, United States
| | - J. Vincent Filoteo
- Psychology Service, VA San Diego Healthcare System, San DiegoCA, United States
- Department of Psychiatry, University of California, San Diego, La JollaCA, United States
| | - Irene Litvan
- Movement Disorder Center, Department of Neurosciences, University of California, San Diego, La JollaCA, United States
| | - Colleen Takahashi
- Cognitive Neuroimaging Laboratory, Research Service, VA San Diego Healthcare System, San DiegoCA, United States
| | - Chelsea French
- Cognitive Neuroimaging Laboratory, Research Service, VA San Diego Healthcare System, San DiegoCA, United States
| |
Collapse
|
35
|
Tahmasian M, Eickhoff SB, Giehl K, Schwartz F, Herz DM, Drzezga A, van Eimeren T, Laird AR, Fox PT, Khazaie H, Zarei M, Eggers C, Eickhoff CR. Resting-state functional reorganization in Parkinson's disease: An activation likelihood estimation meta-analysis. Cortex 2017; 92:119-138. [PMID: 28467917 DOI: 10.1016/j.cortex.2017.03.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/15/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder. Studies using resting-state functional magnetic resonance imaging (fMRI) to investigate underlying pathophysiology of motor and non-motor symptoms in PD yielded largely inconsistent results. This quantitative neuroimaging meta-analysis aims to identify consistent abnormal intrinsic functional patterns in PD across studies. We used PubMed to retrieve suitable resting-state studies and stereotactic data were extracted from 28 individual between-group comparisons. Convergence across their findings was tested using the activation likelihood estimation (ALE) approach. We found convergent evidence for intrinsic functional disturbances in bilateral inferior parietal lobule (IPL) and the supramarginal gyrus in PD patients compared to healthy subjects. In follow-up task-based and task-independent functional connectivity (FC) analyses using two independent healthy subject data sets, we found that the regions showing convergent aberrations in PD formed an interconnected network mainly with the default mode network (DMN). Behavioral characterization of these regions using the BrainMap database suggested associated dysfunction of perception and executive processes. Taken together, our findings highlight the role of parietal cortex in the pathophysiology of PD.
Collapse
Affiliation(s)
- Masoud Tahmasian
- Department of Neurology, University Hospital Cologne, Germany; Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany; Institute of Medical Sciences and Technology, Shahid Beheshti University, Tehran, Iran; Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran.
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience & Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1, INM-7), Research Center Jülich, Jülich, Germany
| | - Kathrin Giehl
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Frank Schwartz
- Department of Neurology, University Hospital Cologne, Germany
| | - Damian M Herz
- Medical Research Council Brain Network Dynamics Unit at the University of Oxford, Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Thilo van Eimeren
- Department of Neurology, University Hospital Cologne, Germany; Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA; South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Mojtaba Zarei
- Institute of Medical Sciences and Technology, Shahid Beheshti University, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Carsten Eggers
- Department of Neurology, University Hospital Cologne, Germany; Department of Neurology, Phillips University Marburg, Germany
| | - Claudia R Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
36
|
Altered Brain Functional Activity in Infants with Congenital Bilateral Severe Sensorineural Hearing Loss: A Resting-State Functional MRI Study under Sedation. Neural Plast 2017; 2017:8986362. [PMID: 28255465 PMCID: PMC5309418 DOI: 10.1155/2017/8986362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/01/2016] [Accepted: 01/09/2017] [Indexed: 01/10/2023] Open
Abstract
Early hearing deprivation could affect the development of auditory, language, and vision ability. Insufficient or no stimulation of the auditory cortex during the sensitive periods of plasticity could affect the function of hearing, language, and vision development. Twenty-three infants with congenital severe sensorineural hearing loss (CSSHL) and 17 age and sex matched normal hearing subjects were recruited. The amplitude of low frequency fluctuations (ALFF) and regional homogeneity (ReHo) of the auditory, language, and vision related brain areas were compared between deaf infants and normal subjects. Compared with normal hearing subjects, decreased ALFF and ReHo were observed in auditory and language-related cortex. Increased ALFF and ReHo were observed in vision related cortex, which suggest that hearing and language function were impaired and vision function was enhanced due to the loss of hearing. ALFF of left Brodmann area 45 (BA45) was negatively correlated with deaf duration in infants with CSSHL. ALFF of right BA39 was positively correlated with deaf duration in infants with CSSHL. In conclusion, ALFF and ReHo can reflect the abnormal brain function in language, auditory, and visual information processing in infants with CSSHL. This demonstrates that the development of auditory, language, and vision processing function has been affected by congenital severe sensorineural hearing loss before 4 years of age.
Collapse
|
37
|
Kang DZ, Chen FX, Chen FY, Liu Y, Wu G, Yu LH, Lin YX, Lin ZY. Altered regional homogeneity of prefrontal cortex in Parkinson’s disease with mild cognitive impairment. Chin Neurosurg J 2016. [DOI: 10.1186/s41016-016-0028-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
38
|
Pan P, Zhan H, Xia M, Zhang Y, Guan D, Xu Y. Aberrant regional homogeneity in Parkinson's disease: A voxel-wise meta-analysis of resting-state functional magnetic resonance imaging studies. Neurosci Biobehav Rev 2016; 72:223-231. [PMID: 27916710 DOI: 10.1016/j.neubiorev.2016.11.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022]
Abstract
Studies of abnormal regional homogeneity (ReHo) in Parkinson's disease (PD) have reported inconsistent results. Therefore, we conducted a meta-analysis using the Seed-based d Mapping software package to identify the most consistent and replicable findings. A systematic literature search was performed to identify eligible whole-brain resting-state functional magnetic resonance imaging studies that had measured differences in ReHo between patients with PD and healthy controls between January 2000 and June 4, 2016. A total of ten studies reporting 11 comparisons (212 patients; 182 controls) were included. Increased ReHo was consistently identified in the bilateral inferior parietal lobules, bilateral medial prefrontal cortices, and left cerebellum of patients with PD when compared to healthy controls, while decreased ReHo was observed in the right putamen, right precentral gyrus, and left lingual gyrus. The results of the current meta-analysis demonstrate a consistent and coexistent pattern of impairment and compensation of intrinsic brain activity that predominantly involves the default mode and motor networks, which may advance our understanding of the pathophysiological mechanisms underlying PD.
Collapse
Affiliation(s)
- PingLei Pan
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, PR China; Department of Neurology, The Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - Hui Zhan
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, PR China
| | - MingXu Xia
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yang Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - DeNing Guan
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, PR China; Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China; Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, PR China.
| |
Collapse
|
39
|
Peraza LR, Colloby SJ, Deboys L, O'Brien JT, Kaiser M, Taylor JP. Regional functional synchronizations in dementia with Lewy bodies and Alzheimer's disease. Int Psychogeriatr 2016; 28:1143-51. [PMID: 26976496 PMCID: PMC4894061 DOI: 10.1017/s1041610216000429] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/21/2016] [Accepted: 02/07/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) is a common cause of dementia in the elderly population after Alzheimer's disease (AD), and at early stages differential diagnosis between DLB and AD might be difficult due to their symptomatic overlap, e.g. cognitive and memory impairments. We aimed to investigate functional brain differences between both diseases in patients recently diagnosed. METHODS We investigated regional functional synchronizations using regional homogeneity (ReHo) in patients clinically diagnosed with DLB (n = 19) and AD (n = 18), and for comparisons we also included healthy controls (HC, n = 16). Patient groups were matched by age, education, and by the level of cognitive impairment (MMSE p-value = 0.36). Additionally, correlations between ReHo values and clinical scores were investigated. RESULTS The DLB group showed lower ReHo in sensory-motor cortices and higher ReHo in left middle temporal gyrus when compared with HCs (p-value < 0.001 uncorrected). The AD group demonstrated lower ReHo in the cerebellum and higher ReHo in the left/right lingual gyri, precuneus cortex, and other occipital and parietal regions (p-value < 0.001 uncorrected). CONCLUSIONS Our results agree with previous ReHo investigations in Parkinson's disease (PD), suggesting that functional alterations in motor-related regions might be a characteristic of the Lewy body disease spectrum. However, our results in AD contradict previously reported findings for this disease and ReHo, which we speculate are a reflection of compensatory brain responses at early disease stages. ReHo differences between patient groups were at regions related to the default mode and sensory-motor resting state networks which might reflect the aetiological divergences in the underlying disease processes between AD and DLB.
Collapse
Affiliation(s)
- Luis R. Peraza
- Institute of Neuroscience,
Campus for Ageing and Vitality, Newcastle
University, Newcastle upon Tyne, NE4
5PL, UK
- Newcastle University Institute of
Ageing, Campus for Ageing and Vitality,
Newcastle University, Newcastle upon
Tyne, NE4 5PL, UK
| | - Sean J. Colloby
- Institute of Neuroscience,
Campus for Ageing and Vitality, Newcastle
University, Newcastle upon Tyne, NE4
5PL, UK
| | - Liam Deboys
- Institute of Neuroscience,
Campus for Ageing and Vitality, Newcastle
University, Newcastle upon Tyne, NE4
5PL, UK
| | - John T. O'Brien
- Department of Psychiatry,
Cambridge Biomedical Campus, University of Cambridge
School of Clinical Medicine, Cambridge,
CB2 0SZ, UK
| | - Marcus Kaiser
- Interdisciplinary Computing and Complex BioSystems
(ICOS) research group, School of Computing Science,
Newcastle University, Newcastle upon
Tyne, NE1 7RU, UK
| | - John-Paul Taylor
- Institute of Neuroscience,
Campus for Ageing and Vitality, Newcastle
University, Newcastle upon Tyne, NE4
5PL, UK
| |
Collapse
|
40
|
Altered Spontaneous Brain Activity in Cortical and Subcortical Regions in Parkinson's Disease. PARKINSONS DISEASE 2016; 2016:5246021. [PMID: 27413576 PMCID: PMC4930823 DOI: 10.1155/2016/5246021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/21/2016] [Accepted: 05/22/2016] [Indexed: 01/29/2023]
Abstract
Purpose. The present study aimed to explore the changes of amplitude of low-frequency fluctuations (ALFF) at rest in patients with Parkinson's disease (PD). Methods. Twenty-four PD patients and 22 healthy age-matched controls participated in the study. ALFF was measured on the whole brain of all participants. A two-sample t-test was then performed to detect the group differences with age, gender, education level, head motion, and gray matter volume as covariates. Results. It was showed that PD patients had significantly decreased ALFF in the left thalamus/caudate and right insula/inferior prefrontal gyrus, whereas they had increased ALFF in the right medial prefrontal cortex (BA 8/6) and dorsolateral prefrontal cortex (BA 9/10). Conclusions. Our results indicated that significant alterations of ALFF in the subcortical regions and prefrontal cortex have been detected in PD patients, independent of age, gender, education, head motion, and structural atrophy. The current findings further provide insights into the biological mechanism of the disease.
Collapse
|
41
|
Impaired interhemispheric synchrony in Parkinson's disease with depression. Sci Rep 2016; 6:27477. [PMID: 27265427 PMCID: PMC4893739 DOI: 10.1038/srep27477] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/19/2016] [Indexed: 01/11/2023] Open
Abstract
The alterations of interhemispheric resting-state functional connectivity (FC) in Parkinson’s disease (PD) with depression remain unclear, so we aimed to explore the differences of interhemispheric FC between PD with and without depression. Twenty-one depressed PD (DPD) patients, 49 non-depressed PD (NDPD) patients and 50 matched healthy controls (HC) participated in this study. Resting-state functional magnetic resonance imaging (fMRI) data were analyzed with the voxel-mirrored homotopic connectivity (VMHC) approach. The DPD patients showed lower VMHC values in the bilateral dorsolateral prefrontal cortex (DLPFC) and calcarine cortex compared to both NDPD and HC groups, and further receiver operating characteristic curves (ROC) analyses revealed that the VMHC in these two brain areas could be used as biomarkers to distinguish DPD from NDPD and from HC. The pooled PD patients (both DPD and NDPD) exhibited decreased VMHC in the bilateral putamen, middle occipital gyrus (MOG), postcentral gyrus (PoCG), paracentral lobule (PCL) and cerebellum posterior lobe when compared with HC. Decreased VMHC values within the DLPFC and calcarine cortex appeared to be unique features for DPD and might be used as potential neuroimaging markers to distinguish DPD patients from NDPD and HC groups. These findings may underlie the neural mechanisms of depression in PD.
Collapse
|
42
|
fMRI in Neurodegenerative Diseases: From Scientific Insights to Clinical Applications. NEUROMETHODS 2016. [DOI: 10.1007/978-1-4939-5611-1_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Regional homogeneity alterations differentiate between tremor dominant and postural instability gait difficulty subtypes of Parkinson's disease. J Neural Transm (Vienna) 2015; 123:219-29. [PMID: 26666253 DOI: 10.1007/s00702-015-1490-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/23/2015] [Indexed: 01/30/2023]
Abstract
Parkinson's disease (PD) can be classified into the tremor dominant (TD) subtype and the postural instability gait difficulty (PIGD) subtype, which present with different clinical courses and prognoses. However, the symptom-specific intrinsic neural mechanisms underlying the subtypes of PD still remain elusive. In the current study, we utilized resting-state fMRI (rs-fMRI) combined with the regional homogeneity (ReHo) method to investigate the modulations of neural activity in 13 patients with predominantly PIGD (p-PIGD) and 15 patients with predominantly TD (p-TD) in the resting state. Compared with healthy controls, the p-PIGD and the p-TD groups both displayed ReHo changes in the default mode network (DMN). By contrast, the p-TD group exhibited more ReHo alterations in the cerebellum involved in the cerebello-thalamo-cortical (CTC) loops, whilst the p-PIGD group in extensive cortical and sub-cortical areas, including the frontal, parietal, occipital, temporal, limbic lobes, basal ganglia and thalamus, which are involved in the striatal-thalamo-cortical (STC) loops. Direct comparison between the two groups showed significant ReHo alterations in the primary visual cortex. Our findings underscore the differential involvement of the STC and CTC circuits underlying the two subtypes of PD. Moreover, relatively widespread neural activity abnormality, especially in the motor-related regions as well as the visual network, is apparently a characteristic feature of PIGD symptoms. This study could shed light on the underlying pathophysiology and clinical heterogeneity of PD presentation.
Collapse
|
44
|
A systematic review on the applications of resting-state fMRI in Parkinson's disease: Does dopamine replacement therapy play a role? Cortex 2015; 73:80-105. [DOI: 10.1016/j.cortex.2015.08.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/08/2015] [Accepted: 08/05/2015] [Indexed: 01/16/2023]
|
45
|
Li Y, Liang P, Jia X, Li K. Abnormal regional homogeneity in Parkinson's disease: a resting state fMRI study. Clin Radiol 2015; 71:e28-34. [PMID: 26628410 DOI: 10.1016/j.crad.2015.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/16/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
Abstract
AIM To examine the functional brain alterations in Parkinson's disease (PD) by measuring blood oxygenation level dependent (BOLD) functional MRI (fMRI) signals at rest while controlling for the structural atrophy. MATERIALS AND METHODS Twenty-three PD patients and 20 age, gender, and education level matched normal controls (NC) were included in this study. Resting state fMRI and structural MRI data were acquired. The resting state brain activity was measured by the regional homogeneity (ReHo) method and the grey matter (GM) volume was attained by the voxel-based morphology (VBM) analysis. Two-sample t-test was then performed to detect the group differences with structural atrophy as a covariate. RESULTS VBM analysis showed GM volume reductions in the left superior frontal gyrus, left paracentral lobule, and left middle frontal gyrus in PD patients as compared to NC. There were widespread ReHo differences between NC and PD patients. Compared to NC, PD patients showed significant alterations in the motor network, including decreased ReHo in the right primary sensory cortex (S1), while increased ReHo in the left premotor area (PMA) and left dorsolateral prefrontal cortex (DLPFC). In addition, a cluster in the left superior occipital gyrus (SOG) also showed increased ReHo in PD patients. CONCLUSION The current findings indicate that significant changes of ReHo in the motor and non-motor cortices have been detected in PD patients, independent of age, gender, education level, and structural atrophy. The present study thus suggests ReHo abnormalities as a potential biomarker for the diagnosis of PD and further provides insights into the biological mechanism of the disease.
Collapse
Affiliation(s)
- Y Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China; Key Laboratory for Neurodegenerative Diseases, Ministry of Education, China
| | - P Liang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China; Key Laboratory for Neurodegenerative Diseases, Ministry of Education, China
| | - X Jia
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China; Key Laboratory for Neurodegenerative Diseases, Ministry of Education, China
| | - K Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China; Key Laboratory for Neurodegenerative Diseases, Ministry of Education, China.
| |
Collapse
|
46
|
Agosta F, Weiler M, Filippi M. Propagation of pathology through brain networks in neurodegenerative diseases: from molecules to clinical phenotypes. CNS Neurosci Ther 2015; 21:754-67. [PMID: 26031656 DOI: 10.1111/cns.12410] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022] Open
Abstract
The cellular mechanisms underlying the stereotypical progression of pathology in neurodegenerative diseases are incompletely understood, but increasing evidence indicates that misfolded protein aggregates can spread by a self-perpetuating neuron-to-neuron transmission. Novel neuroimaging techniques can help elucidating how these disorders spread across brain networks. Recent knowledge from structural and functional connectivity studies suggests that the relation between neurodegenerative diseases and distinct brain networks is likely to be a strict consequence of diffuse network dynamics. Diffusion tensor magnetic resonance imaging also showed that measurement of white matter tract involvement can be a valid surrogate to assess the in vivo spreading of pathological proteins in these conditions. This review will introduce briefly the main molecular and pathological substrates of the most frequent neurodegenerative diseases and provide a comprehensive overview of neuroimaging findings that support the "network-based neurodegeneration" hypothesis in these disorders. Characterizing network breakdown in neurodegenerative diseases will help anticipate and perhaps prevent the devastating impact of these conditions.
Collapse
Affiliation(s)
- Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Marina Weiler
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Laboratory of Neuroimaging, University of Campinas, Campinas, Brazil
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
47
|
Hou Y, Wu X, Hallett M, Chan P, Wu T. Frequency-dependent neural activity in Parkinson's disease. Hum Brain Mapp 2014; 35:5815-33. [PMID: 25045127 PMCID: PMC6869429 DOI: 10.1002/hbm.22587] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 11/10/2022] Open
Abstract
The brainstem and basal ganglia are important in the pathophysiology of Parkinson's disease (PD). Reliable and sensitive detection of neural activity changes in these regions should be helpful in scientific and clinical research on PD. In this study, we used resting state functional MRI and amplitude of low frequency fluctuation (ALFF) methods to examine spontaneous neural activity in 109 patients with PD. We examined activity in two frequency bands, slow-4 (between 0.027 and 0.073 Hz) and slow-5 (0.010-0.027 Hz). Patients had decreased ALFF in the striatum and increased ALFF in the midbrain, and changes were more significant in slow-4. Additionally, changes in slow-4 in both basal ganglia and midbrain correlated with the severity of the parkinsonism. The ALFF in the caudate nucleus positively correlated with the dose of levodopa, while the ALFF in the putamen negatively correlated with the disease duration in both slow-4 and slow-5 bands. In addition, the ALFF in the rostral supplementary motor area negatively correlated with bradykinesia subscale scores. Our findings show that with a large cohort of patients and distinguishing frequency bands, neural modulations in the brainstem and striatum in PD can be detected and may have clinical relevance. The physiological interpretation of these changes needs to be determined.
Collapse
Affiliation(s)
- Yanan Hou
- Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of NeurobiologyBeijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory on Parkinson's DiseaseParkinson Disease Center of Beijing Institute for Brain DisordersBeijingChina
| | - Xuemin Wu
- Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of NeurobiologyBeijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory on Parkinson's DiseaseParkinson Disease Center of Beijing Institute for Brain DisordersBeijingChina
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology BranchNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMaryland
| | - Piu Chan
- Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of NeurobiologyBeijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory on Parkinson's DiseaseParkinson Disease Center of Beijing Institute for Brain DisordersBeijingChina
| | - Tao Wu
- Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Department of NeurobiologyBeijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory on Parkinson's DiseaseParkinson Disease Center of Beijing Institute for Brain DisordersBeijingChina
| |
Collapse
|
48
|
Garcia‐Esparcia P, Llorens F, Carmona M, Ferrer I. Complex deregulation and expression of cytokines and mediators of the immune response in Parkinson's disease brain is region dependent. Brain Pathol 2014; 24:584-98. [PMID: 24593806 PMCID: PMC8029304 DOI: 10.1111/bpa.12137] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/27/2014] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation is common in neurodegenerative diseases including Parkinson disease (PD). Expression of 25 mRNAs was assessed with TaqMan-PCR including members of the complement system, colony stimulating factors, Toll family, cytokines IL-8, IL-6, IL-6ST, IL-1B, TNF-α family, IL-10, TGFβ family, cathepsins and integrin family, in the substantia nigra pars compacta, putamen, frontal cortex area 8 and angular gyrus area 39, in a total of 43 controls and 56 cases with PD-related pathology covering stages 1-6 of Braak. Up-regulation of IL-6ST was the only change in the substantia nigra at stages 1-2. Down-regulation of the majority of members examined occurred in the substantia nigra from stage 4 onwards. However, region-dependent down- and up-regulation of selected mRNAs occurred in the putamen and frontal cortex, whereas only mRNA up-regulated mRNAs were identified in the angular cortex from stage 3 onwards in PD cases. Protein studies in frontal cortex revealed increased IL6 expression and reduced IL-10 with ELISA, and increased IL-6 with western blotting in PD. Immunohistochemistry revealed localization of IL-5, IL-6 and IL-17 receptors in glial cells, mainly microglia; IL-5, IL-10 and M-CSF in neurons; TNF-α in neurons and microglia; and active NF-κB in the nucleus of subpopulations of neurons and glial cells in PD. Distinct inflammatory responses, involving pro- and anti-inflammatory cytokines, and variegated mediators of the immune response occur in different brain regions at the same time in particular individuals. Available information shows that altered α-synuclein solubility and aggregation, Lewy body formation, oxidative damage and neuroinflammation converge in the pathogenesis of PD.
Collapse
Affiliation(s)
- Paula Garcia‐Esparcia
- Institute of NeuropathologyIDIBELLBellvitge University HospitalHospitalet de LlobregatBarcelonaSpain
| | - Franc Llorens
- Institute of NeuropathologyIDIBELLBellvitge University HospitalHospitalet de LlobregatBarcelonaSpain
| | - Margarita Carmona
- Institute of NeuropathologyIDIBELLBellvitge University HospitalHospitalet de LlobregatBarcelonaSpain
| | - Isidre Ferrer
- Institute of NeuropathologyIDIBELLBellvitge University HospitalHospitalet de LlobregatBarcelonaSpain
- Hospitalet de LlobregatUniversity of BarcelonaHospitalet de LlobregatBarcelonaSpain
- CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas)Institute Carlos IIIHospitalet de LlobregatBarcelonaSpain
| |
Collapse
|
49
|
Zhang J, Wei L, Hu X, Xie B, Zhang Y, Wu GR, Wang J. Akinetic-rigid and tremor-dominant Parkinson's disease patients show different patterns of intrinsic brain activity. Parkinsonism Relat Disord 2014; 21:23-30. [PMID: 25465747 DOI: 10.1016/j.parkreldis.2014.10.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a surprisingly heterogeneous neurodegenerative disorder. It is well established that different subtypes of PD present with different clinical courses and prognoses. However, the neural mechanism underlying these disparate presentations is uncertain. METHODS Here we used resting-state fMRI (rs-fMRI) and the regional homogeneity (ReHo) method to determine neural activity patterns in the two main clinical subgroups of PD (akinetic-rigid and tremor-dominant). RESULTS Compared with healthy controls, akinetic-rigid (AR) subjects had increased ReHo mainly in right amygdala, left putamen, bilateral angular gyrus, bilateral medial prefrontal cortex (MPFC), and decreased ReHo in left post cingulate gyrus/precuneus (PCC/PCu) and bilateral thalamus. In contrast, tremor-dominant (TD) patients showed higher ReHo mostly in bilateral angular gyrus, left PCC, cerebellum_crus1, and cerebellum_6, while ReHo was decreased in right putamen, primary sensory cortex (S1), vermis_3, and cerebellum_4_5. These results indicate that AR and TD subgroups both represent altered spontaneous neural activity in default-mode regions and striatum, and AR subjects exhibit more changed neural activity in the mesolimbic cortex (amygdala) but TD in the cerebellar regions. Of note, direct comparison of the two subgroups revealed a distinct ReHo pattern primarily located in the striatal-thalamo-cortical (STC) and cerebello-thalamo-cortical (CTC) loops. CONCLUSION Overall, our findings highlight the involvement of default mode network (DMN) and STC circuit both in AR and TD subtypes, but also underscore the importance of integrating mesolimbic-striatal and CTC loops in understanding neural systems of akinesia and rigidity, as well as resting tremor in PD. This study provides improved understanding of the pathophysiological models of different subtypes of PD.
Collapse
Affiliation(s)
- Jiuquan Zhang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Luqing Wei
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Bing Xie
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yanling Zhang
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Guo-Rong Wu
- Key Laboratory of Personality and Cognition, Faculty of Psychology, Southwest University, Beibei, Chongqing 400715, PR China; Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Henri Dunantlaan 1, B-9000 Ghent, Belgium
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
50
|
|