1
|
10-O-(N N-Dimethylaminoethyl)-Ginkgolide B Methane-Sulfonate (XQ-1H) Ameliorates Cerebral Ischemia Via Suppressing Neuronal Apoptosis. J Stroke Cerebrovasc Dis 2021; 30:105987. [PMID: 34273708 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The 10-O-(N N-dimethylaminoethyl)-ginkgolide B methane-sulfonate (XQ-1H) is an effective novel drug for the treatment of ischemic cerebrovascular disease derived from Ginkgolide B, a traditional Chinese medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. However, whether XQ-1H exerts neuroprotective effect via regulating neuronal apoptosis and the underlying mechanism remain to be elucidated. MATERIALS AND METHODS This study was aimed to investigate the neuroprotective effect of XQ-1H in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and the oxygen glucose deprivation/reoxygenation (OGD/R) induced neuronal apoptosis on pheochromocytoma (PC-12) cells. RESULTS The results showed that administration of XQ-1H at different dosage (7.8, 15.6, 31.2 mg/kg) reduced the brain infarct and edema, attenuated the neuro-behavioral dysfunction, and improved cell morphology in brain tissue after MCAO/R in rats. Moreover, incubation with XQ-1H (1 µM, 3 µM, 10 µM, 50 µM, 100 µM) could increase the cell viability, and showed no toxic effect to PC-12 cells. XQ-1H at following 1 µM, 10 µM, 100 µM decreased the lactate dehydrogenase (LDH) activity and suppressed the cell apoptosis in PC-12 cells exposed to OGD/R. In addition, XQ-1H treatment could significantly inhibit caspase-3 activation both in vivo and in vitro, reciprocally modulate the expression of apoptosis related proteins, bcl-2, and bax via activating PI3K/Akt signaling pathway. For mechanism verification, LY294002, the inhibitor of PI3K/Akt pathway was introduced the expressions of bcl-2 and phosphorylated Akt were down-regulated, the expression of bax was up-regulated, indicating that XQ-1H could alleviate the cell apoptosis through activating the PI3K/Akt pathway. CONCLUSIONS Our findings demonstrated that XQ-1H treatment could provide a neuroprotective effect against ischemic stroke induced by cerebral ischemia/reperfusion injury in vivo and in vitro through regulating neuronal survival and inhibiting apoptosis. The findings of the study confirmed that XQ-1H could be develop as a potential drug for treatment of cerebral ischemic stroke.
Collapse
|
2
|
Su X, Huang Y, Chen R, Zhang Y, He M, Lü X. Metabolomics analysis of poly(l-lactic acid) nanofibers' performance on PC12 cell differentiation. Regen Biomater 2021; 8:rbab031. [PMID: 34168894 PMCID: PMC8218933 DOI: 10.1093/rb/rbab031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/30/2021] [Accepted: 05/21/2021] [Indexed: 11/14/2022] Open
Abstract
The aim of this article is to reveal the influence of aligned/random poly(l-lactic acid) (PLLA) nanofibers on PC12 cell differentiation from the perspective of metabolic level. First, three materials-PLLA aligned nanofibers (PLLA AF), PLLA random nanofibers (PLLA RF) and PLLA films (control)-were prepared by electrospinning and spin coating. Their surface morphologies were characterized. Subsequently, the cell viability, cell morphology and neurite length of PC12 cells on the surface of the three materials were evaluated, indicating more neurites in the PLLA RF groups but the longer average neurite length in the PLLA AF groups. Next, the metabolite profiles of PC12 cells cultured on the surface of the three nanofibers after 12 h, 24 h and 36 h showed that, compared with the control, 51, 48 and 31 types of differential metabolites were detected at the three time points among the AF groups, respectively; and 56, 45 and 41 types among the RF groups, respectively. Furthermore, the bioinformatics analysis of differential metabolites identified two pathways and three metabolites critical to PC12 cell differentiation influenced by the nanofibers. In addition, the verification experiment on critical metabolites and metabolic pathways were performed. The integrative analysis combining cytology, metabolomics and bioinformatics approaches revealed that though both PLLA AF and RF were capable of stimulating the synthesis of neurotransmitters, the PLLA AF were more beneficial for PC12 cell differentiation, whereas the PLLA RF were less effective.
Collapse
Affiliation(s)
- Xiaoman Su
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, China
| | - Yan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, China
| | - Rong Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, China
| | - Yiwen Zhang
- Department of Research, SQ Medical Device Co., Ltd, 17# Xinghuo Road, Nanjing 211500, China
| | - Meichen He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, China
| | - Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2# Si Pailou, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226019, China
| |
Collapse
|
3
|
Yao Z, Liu N, Zhu X, Wang L, Zhao Y, Liu Q, Gao C, Li J. Subanesthetic isoflurane abates ROS-activated MAPK/NF-κB signaling to repress ischemia-induced microglia inflammation and brain injury. Aging (Albany NY) 2020; 12:26121-26139. [PMID: 33373319 PMCID: PMC7803578 DOI: 10.18632/aging.202349] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Isoflurane (ISO) elicits protective effects on ischemia-induced brain injury. We investigated whether sub-anesthetic (0.7%) ISO post-conditioning attenuates the inflammation and apoptosis in oxygen-glucose deprivation (OGD)-insulted co-cultures (microglia and neurons) in vitro and the brain injury of the middle cerebral arterial occlusion (MCAO) rat. We demonstrated that ISO augmented the viability of OGD-treated microglia and neurons. ISO reduced the expression and activation of COX2 and iNOS in OGD-challenged microglia. ISO repressed the production of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-8, and monocyte chemoattractant protein-1 in OGD-exposed microglia. ISO also decreased nucleosomal fragmentation and caspase-3 activity but increased mitochondrial membrane potential in OGD-stimulated microglia and neurons. Mechanistically, ISO suppressed OGD-induced microglial inflammation by blocking ROS-regulated p38 MAPK/NF-κB signaling pathway and hampered OGD-triggered microglial apoptosis in a ROS- or NO-dependent fashion. In vivo results with MCAO rats were partly consistent with the in vitro observation. These findings indicate that sub-anesthetic ISO post-conditioning abates the inflammation and apoptosis in OGD-stimulated rat microglia and the apoptosis of OGD-exposed neurons and the brain injuries of MCAO rats, suggesting it as a potentially effective therapeutic approach for ischemic brain damages.
Collapse
Affiliation(s)
- Zhiqiang Yao
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Ningning Liu
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang 471031, Henan, China
| | - Xiaoshan Zhu
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang 471031, Henan, China
| | - Ling Wang
- Department of Anesthesiology, 150th Central Hospital of PLA, Luoyang 471031, Henan, China
| | - Yali Zhao
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang 471031, Henan, China
| | - Qinqin Liu
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang 471031, Henan, China
| | - Chunfang Gao
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang 471031, Henan, China
| | - Juntang Li
- Centre of Inflammation and Cancer Research, 150th Central Hospital of PLA, Luoyang 471031, Henan, China.,Department of Immunology, The Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| |
Collapse
|
4
|
Wang X, Liu J, Yin W, Abdi F, Pang PD, Fucci QA, Abbott M, Chang SL, Steele G, Patel A, Mori Y, Zhang A, Zhu S, Lu TS, Kibel AS, Wang B, Lim K, Siedlecki AM. miR-218 Expressed in Endothelial Progenitor Cells Contributes to the Development and Repair of the Kidney Microvasculature. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:642-659. [PMID: 31972158 PMCID: PMC7068533 DOI: 10.1016/j.ajpath.2019.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 10/14/2019] [Accepted: 11/08/2019] [Indexed: 01/21/2023]
Abstract
Ischemia due to hypoperfusion is one of the most common forms of acute kidney injury. We hypothesized that kidney hypoxia initiates the up-regulation of miR-218 expression in endothelial progenitor cells (EPCs) to guide endocapillary repair. Murine renal artery-derived EPCs (CD34+/CD105-) showed down-regulation of mmu-Mir218-5p/U6 RNA ratio after ischemic injury, while in human renal arteries, MIR218-5p expression was up-regulated after ischemic injury. MIR218 expression was clarified in cell culture experiments in which increases in both SLIT3 and MIR218-2-5p expressions were observed after 5 minutes of hypoxia. ROBO1 transcript, a downstream target of MIR218-2-5p, showed inverse expression to MIR218-2-5p. EPCs transfected with a MIR218-5p inhibitor in three-dimensional normoxic culture showed premature capillary formation. Organized progenitor cell movement was reconstituted when cells were co-transfected with Dicer siRNA and low-dose Mir218-5p mimic. A Mir218-2 knockout was generated to assess the significance of miR-218-2 in a mammalian model. Mir218-2-5p expression was decreased in Mir218-2-/- embryos at E16.5. Mir218-2-/- decreased CD34+ angioblasts in the ureteric bud at E16.5 and were nonviable. Mir218-2+/- decreased peritubular capillary density at postnatal day 14 and increased serum creatinine after ischemia in adult mice. Systemic injection of miR-218-5p decreased serum creatinine after injury. These experiments demonstrate that miR-218 expression can be triggered by hypoxia and modulates EPC migration in the kidney.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jialing Liu
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenqing Yin
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Farhiya Abdi
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul D Pang
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Quynh-Anh Fucci
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Molly Abbott
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Steven L Chang
- Urology Division, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Graeme Steele
- Urology Division, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ankit Patel
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yutaro Mori
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aifeng Zhang
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shikai Zhu
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tzong-Shi Lu
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Adam S Kibel
- Urology Division, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bin Wang
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kenneth Lim
- Department of Internal Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew M Siedlecki
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
5
|
Kaur H, Xu N, Doycheva DM, Malaguit J, Tang J, Zhang JH. Recombinant Slit2 attenuates neuronal apoptosis via the Robo1-srGAP1 pathway in a rat model of neonatal HIE. Neuropharmacology 2019; 158:107727. [PMID: 31356825 PMCID: PMC6745244 DOI: 10.1016/j.neuropharm.2019.107727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/02/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022]
Abstract
Apoptosis following hypoxic-ischemic injury to the brain plays a major role in neuronal cell death. The neonatal brain is more susceptible to injury as the cortical neurons are immature and there are lower levels of antioxidants. Slit2, an extracellular matrix protein, has been shown to be neuroprotective in various models of neurological diseases. However, there is no information about the role of Slit2 in neonatal hypoxia-ischemia. In this study, we evaluated the effect of Slit2 and its receptor Robo1 in a rat model with neonatal HIE. 10-day old rat pups were used to create the neonatal HIE model. The right common carotid artery was ligated followed by 2.5 h of hypoxia. Recombinant Slit2 was administered intranasally 1 h post HI, recombinant Robo1 was used as a decoy receptor and administered intranasally 1h before HI and srGAP1-siRNA was administered intracerebroventricularly 24 h before HI. Brain infarct area measurement, short-term and long-term neurological function tests, Western blot, immunofluorescence staining, Fluoro-Jade C staining, Nissl staining and TUNEL staining were the assessments done following drug administration. Recombinant Slit2 administration reduced neuronal apoptosis and neurological deficits after neonatal HIE which were reversed by co-administration of recombinant Robo1 and srGAP1-siRNA administration. Recombinant Slit2 showed improved outcomes possibly via the robo1-srGAP1 pathway which mediated the inhibition of RhoA. In this study, the results suggest that Slit2 may help in attenuation of apoptosis and could be a therapeutic agent for treatment of neonatal hypoxic ischemic encephalopathy.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Ningbo Xu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Desislava Met Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jay Malaguit
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA; Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Survival with favorable neurological function after cardiac arrest remains low. The purpose of this review is to identify recent advances that focus on neuroprotection during cardiopulmonary resuscitation (CPR). RECENT FINDINGS Multiple strategies have been shown to enhance neuroprotection during CPR. Brain perfusion during CPR is increased with therapies such as active compression decompression CPR and intrathoracic pressure regulation that improve cardiac preload and decrease intracranial pressure. Head Up CPR has been shown to decrease intracranial pressure thereby increasing cerebral perfusion pressure and cerebral blood flow. Sodium nitroprusside enhanced CPR increases cerebral perfusion, facilitates heat exchange, and improves neurologic survival in swine after cardiac arrest. Postconditioning has been administered during CPR in laboratory settings. Poloxamer 188, a membrane stabilizer, and ischemic postconditioning have been shown to improve cardiac and neural function after cardiac arrest in animal models. Postconditioning with inhaled gases protects the myocardium, with more evidence mounting for the potential for neural protection. SUMMARY Multiple promising neuroprotective therapies are being developed in animal models of cardiac arrest, and are in early stages of human trials. These therapies have the potential to be bundled together to improve rates of favorable neurological survival after cardiac arrest.
Collapse
|
7
|
Li R, Zhang LM, Sun WB. RETRACTED: Erythropoietin rescues primary rat cortical neurons from pyroptosis and apoptosis via Erk1/2-Nrf2/Bach1 signal pathway. Brain Res Bull 2017; 130:236-244. [DOI: 10.1016/j.brainresbull.2017.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/11/2017] [Accepted: 01/24/2017] [Indexed: 11/16/2022]
|
8
|
Zhang DX, Zhang LM, Zhao XC, Sun W. Neuroprotective effects of erythropoietin against sevoflurane-induced neuronal apoptosis in primary rat cortical neurons involving the EPOR-Erk1/2-Nrf2/Bach1 signal pathway. Biomed Pharmacother 2017; 87:332-341. [DOI: 10.1016/j.biopha.2016.12.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/15/2016] [Accepted: 12/27/2016] [Indexed: 12/26/2022] Open
|
9
|
Sevoflurane pre-conditioning increases phosphorylation of Erk1/2 and HO-1 expression via inhibition of mPTP in primary rat cortical neurons exposed to OGD/R. J Neurol Sci 2017; 372:171-177. [DOI: 10.1016/j.jns.2016.11.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/03/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022]
|
10
|
Jin X, Shin YJ, Riew TR, Choi JH, Lee MY. Increased Expression of Slit2 and its Robo Receptors During Astroglial Scar Formation After Transient Focal Cerebral Ischemia in Rats. Neurochem Res 2016; 41:3373-3385. [PMID: 27686659 DOI: 10.1007/s11064-016-2072-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/13/2016] [Accepted: 09/23/2016] [Indexed: 01/30/2023]
Abstract
Slit2, a secreted glycoprotein, has recently been implicated in the post-ischemic astroglial reaction. The objective of this study was to investigate the temporal changes and cellular localization of Slit2 and its receptors, Robo1, Robo2, and Robo4, in a rat transient focal ischemia model induced by middle cerebral artery occlusion. We used double- and triple-immunolabeling to determine the cell-specific changes in Slit2 and its receptors during a 10-week post-ischemia period. The expression profiles of Slit2 and the Robo receptors shared overlapping expression patterns in sham-operated and ischemic striatum. Constitutive expression of Slit2 and Robo receptors was observed in striatal neurons with weak intensity, whereas in rats reperfused after ischemic insults, these immunoreactivities were increased in reactive astrocytes. Astroglial induction of Slit2 and Robo in the peri-infarct region was distinct on days 7-14 after reperfusion and thereafter increased progressively throughout the 10-week experimental period. Slit2 and Robo were prominently expressed in the perinuclear cytoplasm and main processes of reactive astrocytes forming the astroglial scar. This observation was confirmed by quantification of the mean fluorescence intensity of Slit2 and Robo receptors over reactive astrocytes localized at the edge of the infarct area. However, activated microglia/macrophages in the peri-infarct area were devoid of any specific labeling for Slit2 and Robo. Thus, our data revealed a selective and sustained induction of Slit2 and Robo in astrocytes localized throughout the astroglial scar after ischemic stroke, suggesting that Slit2/Robo signaling participates in glial scar formation and brain remodeling following ischemic injury.
Collapse
Affiliation(s)
- Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701, South Korea
| | - Yoo-Jin Shin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701, South Korea
| | - Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701, South Korea
| | - Jeong-Heon Choi
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701, South Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701, South Korea.
| |
Collapse
|
11
|
Park JH, Pak HJ, Riew TR, Shin YJ, Lee MY. Increased expression of Slit2 and its receptors Robo1 and Robo4 in reactive astrocytes of the rat hippocampus after transient forebrain ischemia. Brain Res 2016; 1634:45-56. [PMID: 26764532 DOI: 10.1016/j.brainres.2015.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/26/2015] [Accepted: 12/28/2015] [Indexed: 12/16/2022]
Abstract
Slit2 is a secreted glycoprotein that was originally identified as a chemorepulsive factor in the developing brain; however, it was recently reported that Slit2 is associated with adult neuronal function including a variety of pathophysiological processes. To elucidate whether Slit2 is implicated in the pathophysiology of ischemic injury, we investigated the temporal changes and cellular localization of Slit2 and its predominant receptors, Robo1 and Robo4, for 28 days after transient forebrain ischemia. Slit2 and its receptors had similar overall expression patterns in the control and ischemic hippocampi. The ligand and receptors were constitutively expressed in hippocampal neurons in control animals; however, in animals with ischemic injury, their upregulation was detected in reactive astrocytes, but not in neurons or activated microglia, in the CA1 region. Astroglial induction of Slit2 and its receptors occurred by day 3 after reperfusion, and appeared to increase progressively until the final time point on day 28. Their temporal expression patterns overlapped with the time period in which reactive astrocytes undergo dynamic structural changes and appear hypertrophic in the ischemic hippocampus. The immunohistochemical data were consistent with the results of the immunoblot analyses, indicating that the expression of Slit2 and Robo increased progressively over the relatively long period of 28 days examined here. Collectively, these results suggest that Slit2/Robo signaling may be involved in regulating the astroglial reaction via autocrine or paracrine mechanisms in post-ischemic processes. Moreover, this may contribute to the dynamic morphological changes that occur in astrocytes in response to ischemic injury.
Collapse
Affiliation(s)
- Joo-Hee Park
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 137-701 Seoul, Republic of Korea
| | - Ha-Jin Pak
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 137-701 Seoul, Republic of Korea
| | - Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 137-701 Seoul, Republic of Korea
| | - Yoo-Jin Shin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 137-701 Seoul, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 137-701 Seoul, Republic of Korea.
| |
Collapse
|
12
|
Zhang LM, Zhao XC, Sun WB, Li R, Jiang XJ. Sevoflurane post-conditioning protects primary rat cortical neurons against oxygen-glucose deprivation/resuscitation via down-regulation in mitochondrial apoptosis axis of Bid, Bim, Puma-Bax and Bak mediated by Erk1/2. J Neurol Sci 2015; 357:80-7. [PMID: 26152828 DOI: 10.1016/j.jns.2015.06.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 11/23/2022]
Abstract
Temporal post-conditioning helps provide neuroprotection against brain injury secondary to ischemia-reperfusion and is considered an effective intervention, but the exact mechanism of sevoflurane post-conditioning is unclear. The essential axis involves activator Bid, Bim, Puma (BH3s), Bax, and Bak; activates the mitochondrial death program; and might be involved in a cell death signal. Extracellular signal-related kinases 1/2 (Erk1/2) play a pivotal role in cell growth and proliferation. We hypothesized that sevoflurane post-conditioning might inhibit Bid, Bim, Puma, Bax, and Bak expression and is activated by phosphor-Erk1/2 to decrease neuronal death. To test this hypothesis, we exposed primary cortical neuron cultures to oxygen-glucose deprivation for 1h, along with resuscitation for 24h (OGD/R). MTT assays, propidium iodide uptake (PI), JC-1 fluorescence, and Western blot indicated the following: decreased cell viability (P<0.05); increased cell death (P<0.05); decreased mitochondrial membrane potential (P<0.05); and decreased Bid, Bim, Puma, Bax, and Bak expression with OGD/R exposure. Inhibition of Erk1/2 phosphorylation could attenuate sevoflurane post-conditioning that mediated an increase in neuronal viability and mitochondrial membrane potential, as well as a decrease in cell death and Bid, Bim, Puma, Bax, and Bak expression after OGD/R treatment. The results demonstrated that sevoflurane post-conditioning caused a marked decrease in cortical neuronal death secondary to OGD/R exposure through the downregulation of the mitochondrial apoptosis axis involving Bid, Bim, Puma, Bax, and Bak that was mediated by the phosphorylation/activation of Erk1/2.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Xiao-Chun Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wen-Bo Sun
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Rui Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Jing Jiang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Zhang L, Zhao X, Jiang X. Sevoflurane Post-conditioning Protects Primary Rat Cortical Neurons Against Oxygen–Glucose Deprivation/Resuscitation: Roles of Extracellular Signal-Regulated Kinase 1/2 and Bid, Bim, Puma. Neurochem Res 2015; 40:1609-19. [DOI: 10.1007/s11064-015-1639-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/30/2015] [Accepted: 06/12/2015] [Indexed: 11/29/2022]
|
14
|
Schallner N, Ulbrich F, Engelstaedter H, Biermann J, Auwaerter V, Loop T, Goebel U. Isoflurane but Not Sevoflurane or Desflurane Aggravates Injury to Neurons In Vitro and In Vivo via p75NTR-NF-ĸB Activation. Anesth Analg 2014; 119:1429-41. [DOI: 10.1213/ane.0000000000000488] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|