1
|
Musa I, Rotaru-Zavaleanu AD, Sfredel V, Aldea M, Gresita A, Glavan DG. Post-Stroke Recovery: A Review of Hydrogel-Based Phytochemical Delivery Systems. Gels 2025; 11:260. [PMID: 40277696 PMCID: PMC12027092 DOI: 10.3390/gels11040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Stroke remains a leading cause of disability worldwide, underscoring the urgent need for novel and innovative therapeutic strategies to enhance neuroprotection, support regeneration, and improve functional recovery. Previous research has shown that phytochemicals such as curcumin, tannic acid, gallic acid, ginsenosides, resveratrol, and isorhamnetin display extensive neuroprotective properties, including antioxidant, anti-inflammatory, and anti-apoptotic effects. These natural compounds could also promote neurogenesis, angiogenesis, and the preservation of the blood-brain barrier. Despite their promising bioactivities, clinical application is often limited by poor solubility, bioavailability, and suboptimal pharmacokinetics. Hydrogels offer a promising solution by encapsulating and controlling the gradual release of these phytochemicals directly at the site of injury. Recent advancements in hydrogel formulations, constructed from biopolymers and functionalized using nanotechnological approaches, could significantly improve the solubility, stability, and targeted delivery of phytochemicals. Controlled release profiles from pH-sensitive and environment-responsive hydrogels could ensure that the compounds' therapeutic effects are optimally timed with individual and critical stages of post-stroke repair. Moreover, hydrogel scaffolds with tailored material properties and biocompatibility can create a favorable microenvironment, reducing secondary inflammation, enhancing tissue regeneration, and potentially improving functional and cognitive outcomes following stroke. This review explores the potential of integrating phytochemicals within hydrogel-based delivery systems specifically designed for post-stroke recovery. The design and synthesis of biocompatible, biodegradable hydrogels functionalized especially with phytochemicals and their applications are also discussed. Lastly, we emphasize the need for additional robust and translatable preclinical studies.
Collapse
Affiliation(s)
- Irina Musa
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.M.); (D.G.G.)
- Doctoral School, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
| | - Alexandra Daniela Rotaru-Zavaleanu
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.D.R.-Z.); (A.G.)
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania
| | - Veronica Sfredel
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.D.R.-Z.); (A.G.)
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania
| | - Madalina Aldea
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.M.); (D.G.G.)
| | - Andrei Gresita
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.D.R.-Z.); (A.G.)
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 2–4 Petru Rares Str., 200349 Craiova, Romania
| | - Daniela Gabriela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (I.M.); (D.G.G.)
| |
Collapse
|
2
|
Kumar A, Rahul, Kanika, Kumar J, Mahajan S, Ali A, Ali N, Bishnoi M, Son YO, Khan R. Multifunctional chrysin-loaded gallic acid-glycerol monostearate conjugate-based injectable hydrogel for targeted inhibition of hypoxia-induced NLRP3 inflammasome in ulcerative colitis. Biomater Sci 2025; 13:1801-1817. [PMID: 39998176 DOI: 10.1039/d4bm01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory condition affecting the colon part of the large intestine. Since there is no cure for this disease, conventional therapies only provide symptomatic relief. Recently, phytomolecules have shown promising treatment results in various diseases. However, short half-life, hydrophobicity, and poor bioavailability limit their therapeutic potential. To overcome all these challenges, we have earlier conjugated a phytomolecule (gallic acid) (GA) with the FDA-approved generally recognized as safe (GRAS) material that is glycerol monostearate (GMS). This GA-GMS conjugate self-assembles as a hydrogel via the heating-cooling method and acts as a pro-drug of GA. The in vivo imaging results suggest that the GA-GMS hydrogel more efficiently adheres to the inflamed colon than a therapeutic enema. Additionally, it is known that the gut microbiota exaggerates UC by creating a hypoxic environment in the colon. This hypoxia is linked with NLRP3 inflammasome activation that triggers the release of IL-1β and IL-18 that downregulates MUC2 protein expression in the colon, responsible for mucin secretion in the colon. Therefore, chrysin (CR) (HIF-1α inhibitor) is encapsulated into the GA-GMS hydrogel to target hypoxia. The CR@GA-GMS hydrogel follows the enzyme-responsive release of the CR and restores DSS-induced damage to colonic tissue. Furthermore, the CR@GA-GMS hydrogel downregulates HIF-1α mediated NLRP3 inflammasome signalling while upregulating MUC2 production.
Collapse
Affiliation(s)
- Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali (SAS Nagar) 140306, Punjab, India.
| | - Rahul
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali (SAS Nagar) 140306, Punjab, India.
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali (SAS Nagar) 140306, Punjab, India.
| | - Jattin Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali (SAS Nagar) 140306, Punjab, India.
| | - Shubham Mahajan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali (SAS Nagar) 140306, Punjab, India.
| | - Aneesh Ali
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali (SAS Nagar) 140306, Punjab, India.
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali (SAS Nagar) 140306, Punjab, India.
| |
Collapse
|
3
|
Huang L, Zhang J, Luo Y. The role of atropine in myopia control: insights into choroidal and scleral mechanisms. Front Pharmacol 2025; 16:1509196. [PMID: 40183102 PMCID: PMC11965631 DOI: 10.3389/fphar.2025.1509196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
In this study, we investigate the inhibitory effects of atropine on the progression of experimental myopia by targeting the functions of the choroid and sclera and exploring its potential therapeutic mechanisms. Form deprivation myopia (FDM) was induced in C57BL/6 mice, with treatment groups receiving atropine. We assessed the effects on ocular morphology, extracellular matrix (ECM) protein expression, choroidal and scleral thickness, and choroidal vascular index (CVI) through histopathology, immunofluorescence, and quantitative quantitative polymerase chain reaction (qPCR). In vitro, mouse scleral fibroblasts (MSFs) were treated with Na2S2O4 to induce hypoxia, followed by atropine treatment. Atropine treatment significantly reduced axial elongation and ECM remodeling in FDM mice, as indicated by a decrease in collagen volume fraction. It restored choroidal and scleral thickness and increased CVI, suggesting improved microcirculation. Atropine also modulated ECM protein expression and reduced the hypoxia marker Hypoxia-Inducible Factor-1α (HIF-1α). In vitro, atropine protected MSFs from hypoxia-induced damage, preserved cytoskeletal integrity, and modulated key signaling pathways, including P53 and β-catenin. These findings suggest that atropine holds promise for controlling myopia progression by improving choroidal microcirculation, reducing scleral hypoxia, and regulating ECM remodeling, supporting its therapeutic application in myopia management.
Collapse
Affiliation(s)
- Longxiang Huang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center of Eye Diseases and Optometry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jingjin Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center of Eye Diseases and Optometry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Youfang Luo
- Department of Rehabilitation, Fuzhou Second General Hospital, Fuzhou, China
| |
Collapse
|
4
|
Zhao XL, Cao ZJ, Li KD, Tang F, Xu LY, Zhang JN, Liu D, Peng C, Ao H. Gallic acid: a dietary metabolite's therapeutic potential in the management of atherosclerotic cardiovascular disease. Front Pharmacol 2025; 15:1515172. [PMID: 39840111 PMCID: PMC11747375 DOI: 10.3389/fphar.2024.1515172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) causes significant morbidity and mortality globally. Most of the chemicals specifically target certain pathways and minimally impact other diseases associated with ASCVD. Moreover, interactions of these drugs can cause toxic reactions. Consequently, the exploration of multi-targeted and safe medications for treating and preventing ASCVD has become an increasingly popular trend. Gallic acid (GA), a natural secondary metabolite found in various fruits, plants, and nuts, has demonstrated potentials in preventing and treating ASCVD, in addition to its known antioxidant and anti-inflammatory effects. It alleviates the entire process of atherosclerosis (AS) by reducing oxidative stress, improving endothelial dysfunction, and inhibiting platelet activation and aggregation. Additionally, GA can treat ASCVD-related diseases, such as coronary heart disease (CHD) and cerebral ischemia. However, the pharmacological actions of GA in the prevention and treatment of ASCVD have not been comprehensively reviewed, which limits its clinical development. This review primarily summarizes the in vitro and in vivo pharmacological actions of GA on the related risk factors of ASCVD, AS, and ASCVD. Additionally, it provides a comprehensive overview of the toxicity, extraction, synthesis, pharmacokinetics, and pharmaceutics of GA,aimed to enhance understanding of its clinical applications and further research and development.
Collapse
Affiliation(s)
- Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang-Jing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke-Di Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Ortiz-Salguero C, Romero-Bernal M, González-Díaz Á, Doush ES, del Río C, Echevarría M, Montaner J. Hyperhomocysteinemia: Underlying Links to Stroke and Hydrocephalus, with a Focus on Polyphenol-Based Therapeutic Approaches. Nutrients 2024; 17:40. [PMID: 39796474 PMCID: PMC11722995 DOI: 10.3390/nu17010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Hyperhomocysteinemia (HHcy), characterized by elevated homocysteine (HCys) levels, is associated with increased risks of neurovascular diseases such as stroke or hydrocephalus. HHcy promotes oxidative stress, neuroinflammation, and endothelial dysfunction, disrupting the blood-brain barrier and accelerating neurodegeneration. These processes highlight HCys as both a biomarker and a potential therapeutic target in vascular-related neurological disorders. Current research suggests that polyphenols, known for their antioxidant and anti-inflammatory properties, may reduce HCys levels and offer neuroprotection. Polyphenols have demonstrated effectiveness in modulating oxidative stress and inflammatory pathways triggered by HHcy. These compounds may also upregulate enzymatic functions involved in HCys metabolism, thus reducing neurotoxicity. Furthermore, polyphenol-rich diets, like the Mediterranean diet, have been linked to lower HCys levels and a reduced incidence of neurovascular disorders. This review provides an overview of HHcy's role in neurovascular pathologies and examines the therapeutic potential of polyphenols in managing HCys levels and preventing HCys-induced neurovascular damage.
Collapse
Affiliation(s)
- Carmen Ortiz-Salguero
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Marina Romero-Bernal
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Ángela González-Díaz
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Elaheh Sobh Doush
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Carmen del Río
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Miriam Echevarría
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain; (C.O.-S.); (M.R.-B.); (E.S.D.)
| | - Joan Montaner
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen Macarena, CSIC, Universidad de Sevilla, 41004 Sevilla, Spain
- Department of Neurology, Hospital Universitario Virgen Macarena, 41004 Sevilla, Spain
| |
Collapse
|
6
|
Luo Y, Liu R, Yuan G, Pan Y. Polyphenols for stroke therapy: the role of oxidative stress regulation. Food Funct 2024; 15:11383-11399. [PMID: 39497601 DOI: 10.1039/d4fo01900h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Stroke is associated with a high incidence and disability rate, which seriously endangers human health. Oxidative stress (OS) plays a crucial role in the underlying pathologic progression of cerebral damage in stroke. Emerging experimental studies suggest that polyphenols have antioxidant potential and express protective effects after different types of strokes, but no breakthrough has been achieved in clinical studies. Nanomaterials, due to small characteristic sizes, can be used to deliver drugs, and have shown excellent performance in the treatment of various diseases. The drug delivery capability of nanomaterials has significant implications for the clinical translation and application of polyphenols. This comprehensive review introduces the mechanism of oxidative stress in stroke, and also summarizes the antioxidant effects of polyphenols on reactive oxygen species generation and oxidative stress after stroke. Also, the application characteristics and research progress of nanomaterials in the treatment of stroke with antioxidants are presented.
Collapse
Affiliation(s)
- Yusong Luo
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ruolan Liu
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Guoqiang Yuan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yawen Pan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Academician Workstation, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
7
|
Dastan M, Rajaei Z, Sharifi M, Salehi H. Gallic acid ameliorates LPS-induced memory decline by modulating NF-κB, TNF-α, and Caspase 3 gene expression and attenuating oxidative stress and neuronal loss in the rat hippocampus. Metab Brain Dis 2024; 40:12. [PMID: 39556267 DOI: 10.1007/s11011-024-01441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/19/2024] [Indexed: 11/19/2024]
Abstract
Neuroinflammation and apoptosis play critical roles in the pathogenesis of Alzheimer's disease (AD), which is responsible for most cases of dementia in the elderly people. Gallic acid is a phenolic compound with radical scavenging, anti-inflammatory and anti-apoptotic activities. This study aimed to explore the protective effects of gallic acid on LPS-induced spatial memory impairment and find the underlying mechanisms. Gallic acid was orally administered (100 mg/kg) to male Wistar rats for 12 days. LPS was injected intraperitoneally at a dose of 1 mg/kg on days 8-12. Morris water maze paradigm was used to evaluate spatial learning and memory. The mRNA level of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α) and Caspase 3, lipid peroxidation and total thiol level was assessed in the rat hippocampus. Neuronal loss and histological changes were also evaluated in the brain. LPS treatment resulted in spatial learning and memory impairment, upregulation of NF-κB, TNF-α, and Caspase 3 mRNA expression, increased lipid peroxidation, decreased total thiol level, and neuronal loss in the hippocampus. Moreover, treatment with gallic acid at a dosage of 100 mg/kg ameliorated memory decline, reduced the mRNA level of NF-κB, TNF-α, and Caspase 3, decreased lipid peroxidation and increased total thiol level in the hippocampus. Gallic acid also prevented LPS-induced neuronal loss and histological changes in the brain. Conclusively, our study demonstrated that gallic acid exerts neuroprotective effect against LPS-induced memory decline in rats. This outcome could be due to anti-inflammatory, antioxidant, and anti-apoptotic activities of gallic acid.
Collapse
Affiliation(s)
- Maryam Dastan
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Rajaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Liu Y, Fang M, Tu X, Mo X, Zhang L, Yang B, Wang F, Kim YB, Huang C, Chen L, Fan S. Dietary Polyphenols as Anti-Aging Agents: Targeting the Hallmarks of Aging. Nutrients 2024; 16:3305. [PMID: 39408272 PMCID: PMC11478989 DOI: 10.3390/nu16193305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Aging is a natural biological process influenced by multiple factors and is a significant contributor to various chronic diseases. Slowing down the aging process and extending health span have been pursuits of the scientific field. Methods: Examination of the effects of dietary polyphenols on hallmarks of aging such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. Results: Polyphenols, abundant in nature, exhibit numerous biological activities, including antioxidant effects, free radical scavenging, neuroprotection, and anti-aging properties. These compounds are generally safe and effective in potentially slowing aging and preventing age-related disorders. Conclusions: The review encourages the development of novel therapeutic strategies using dietary polyphenols to create holistic anti-aging therapies and nutritional supplements.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Xiaohui Tu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Xueying Mo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Lu Zhang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Binrui Yang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Feijie Wang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| |
Collapse
|
9
|
Costet-Mejía A, Trejo-Tapia G, Baca-Ibarra II, Rodríguez-Hernández AA, García-Hernández J, Camacho-Díaz BH, Zamilpa A. An Organic Fraction of Oenothera rosea L'Her Ex. Aiton Prevents Neuroinflammation in a Rat Ischemic Model. Pharmaceuticals (Basel) 2024; 17:1184. [PMID: 39338346 PMCID: PMC11434707 DOI: 10.3390/ph17091184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Oenothera rosea L'Her Ex. Aiton, presenting antioxidant and anti-inflammatory activities, is traditionally used to treat bruises and headaches and as a healing agent. This study aimed to investigate whether its organic fraction (EAOr) has neuroprotective properties against neuroinflammation in the context of ischemia/reperfusion. METHODS The chemical composition of EAOr was determined using HPLC techniques, and its neuroprotective activities were evaluated in a common carotid-artery ligation model for the induction of ischemia/reperfusion (I/R). The animals were supplemented with EAOR for 15 days. On the last day, the animals were rested for one hour, following which the common carotid-artery ligation procedure was performed to induce I/R. The neurological deficit was evaluated at 24 h after I/R using Bederson's scale, and the relative expression of inflammatory genes and structure of hippocampal neurons were analyzed at 48 h. RESULTS The chemical analysis revealed five major compounds in EAOr: gallic acid, rutin, ellagic acid, and glucoside and rhamnoside quercetin. EAOr prevented neurological deficit 24 h after I/R; led to the early activation of the AIF and GFAP genes; reduced Nfkb1, IL-1beta, Il-6 and Casp3 gene expression; and protected hippocampal neurons. CONCLUSIONS Our findings demonstrate that EAOr contains polyphenol-type compounds, which could exert a therapeutic effect through the inhibition of neuroinflammation and neuronal death genes, thus maintaining hippocampal neurons.
Collapse
Affiliation(s)
- Alejandro Costet-Mejía
- Centro de Desarrollo de Productos Bióticos (CEPROBI), Instituto Politécnico Nacional, Yautepec 62739, Morelos, Mexico; (A.C.-M.); (B.H.C.-D.)
- Centro de Investigación Biomédica del Sur (CIBIS), Instituto Mexicano del Seguro Social (IMSS), Xochitepec 62780, Morelos, Mexico
| | - Gabriela Trejo-Tapia
- Centro de Desarrollo de Productos Bióticos (CEPROBI), Instituto Politécnico Nacional, Yautepec 62739, Morelos, Mexico; (A.C.-M.); (B.H.C.-D.)
| | - Itzel Isaura Baca-Ibarra
- Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México 06720, Mexico; (I.I.B.-I.); (J.G.-H.)
| | | | - Julio García-Hernández
- Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México 06720, Mexico; (I.I.B.-I.); (J.G.-H.)
| | - Brenda Hildeliza Camacho-Díaz
- Centro de Desarrollo de Productos Bióticos (CEPROBI), Instituto Politécnico Nacional, Yautepec 62739, Morelos, Mexico; (A.C.-M.); (B.H.C.-D.)
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur (CIBIS), Instituto Mexicano del Seguro Social (IMSS), Xochitepec 62780, Morelos, Mexico
| |
Collapse
|
10
|
Akter R, Morshed MN, Awais M, Kong BM, Oh SW, Oh JH, Alrefaei AF, Yang DC, Yang DU, Ali S. Exploring the synergistic potential of pomegranate fermented juice compounds against oxidative stress-induced neurotoxicity through computational docking and experimental analysis in human neuroblastoma cells. Heliyon 2024; 10:e34993. [PMID: 39157308 PMCID: PMC11327604 DOI: 10.1016/j.heliyon.2024.e34993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
This study explored the neuroprotective potential of fermented pomegranate (PG-F) against hydrogen peroxide (H2O2)-induced neurotoxicity in human neuroblastoma SH-SY5Y cells and elucidated the underlying molecular mechanisms. The fermentation process, involving probiotics, transforms the hydrolyzable tannins in pomegranate juice into ellagic acid (EA) and gallic acid (GA), which are believed to contribute to its health benefits. Molecular docking simulations confirmed the stable interactions between EA, GA, and proteins associated with the antioxidant and anti-apoptotic pathways. PG-F significantly enhanced the viability of H2O2-treated cells, as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, cell morphology observations, and Hoechst 33342 staining. PG-F mitigated the H2O2-induced intracellular reactive oxygen species (ROS) levels, restored mitochondrial membrane potential, and upregulated antioxidant gene expression. The PG-F treatment also attenuated the H2O2-induced imbalance in the Bax/Bcl-2 ratio and reduced the cleaved caspase-3, caspase-7, and caspase-9 levels, suppressing the apoptotic pathways. Further insights showed that PG-F inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and facilitated the nuclear translocation of nuclear factor-erythroid 2-related factor (Nrf2), highlighting its role in modulating the key signaling pathways. A combined treatment with equivalent concentrations of EA and GA, as found in PG-F, induced remarkable cellular protection. Drug combination analysis using the Chou-Talalay method revealed a synergistic effect between EA and GA, emphasizing their combined efficacy. In conclusion, PG-F has significant neuroprotective effects against H2O2-induced neurotoxicity by modulating the antioxidant and anti-apoptotic pathways. The synergistic action of EA and GA suggests the therapeutic potential of PG-F in alleviating oxidative stress-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Reshmi Akter
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Gyeonggido, Republic of Korea
| | - Md Niaj Morshed
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Gyeonggido, Republic of Korea
| | - Muhammad Awais
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Gyeonggido, Republic of Korea
| | - Byoung Man Kong
- Department of Oriental Medicine and Biotechnology, College of Life Sciences Kyung Hee University, Yongin, Gyeonggido, Republic of Korea
| | - Se-Woung Oh
- SMART FRUIT CO., LTD., Guri, Gyeonggi-do, Republic of Korea
| | - Ji-Hyung Oh
- Fruitycompany Co., Ltd., Guri, Gyeonggi-do, Republic of Korea
| | - Abdulwahed F Alrefaei
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Gyeonggido, Republic of Korea
- AIBIOME, 6, Jeonmin-ro 30beon-gil, Yuseong-gu, Daejeon, 34214, Republic of Korea
| | - Dong Uk Yang
- AIBIOME, 6, Jeonmin-ro 30beon-gil, Yuseong-gu, Daejeon, 34214, Republic of Korea
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Republic of Korea
| |
Collapse
|
11
|
Min Y, Yu ZQ. GSK'872 Improves Prognosis of Traumatic Brain Injury by Switching Receptor-Interacting Serine/Threonine-Protein Kinase 3-dependent Necroptosis to Cysteinyl Aspartate Specific Proteinase-8-Dependent Apoptosis. World Neurosurg 2024; 187:e136-e147. [PMID: 38636634 DOI: 10.1016/j.wneu.2024.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is an important health concern in the society. Previous studies have suggested that necroptosis occurs following TBI. However, the underlying mechanisms and roles of necroptosis are not well understood. In this study, we aimed to assess the role of receptor-interacting serine/threonine-protein kinase 3 (RIP3)-mediated necroptosis after TBI both in vitro and in vivo. METHODS We established a cell-stretching injury and mouse TBI model by applying a cell injury controller and controlled cortical impactor to evaluate the relationships among necroptosis, apotosis, inflammation, and TBI both in vitro and in vivo. RESULTS The results revealed that necroptosis mediated by RIP1, RIP3, and mixed lineage kinase domain-like protein was involved in secondary TBI. Additionally, protein kinase B (Akt), phosphorylated Akt, mammalian target of rapamycin (mTOR), and phosphorylated mTOR potentially contribute to necroptosis. The inhibition of RIP3 by GSK'872 (a specific inhibitor) blocked necroptosis and reduced the activity of Akt/mTOR, leading to the alleviation of inflammation by reducing the levels of NOD-, LRR- and pyrin domain-containing protein 3. Moreover, the inhibition of RIP3 by GSK'872 promoted the activity of cysteinyl aspartate specific proteinase-8, an enzyme involved in apoptosis and inflammation. CONCLUSIONS These data demonstrate that RIP3 inhibition could improve the prognosis of TBI, based on the attenuation of inflammation by switching RIP3-dependent necroptosis to cysteinyl aspartate specific proteinase-8-dependent apoptosis.
Collapse
Affiliation(s)
- Yue Min
- Department of Neurosurgery, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Ze-Qi Yu
- Department of Neurosurgery, Armed Police Force Hospital of Sichuan, Leshan, Sichuan, China.
| |
Collapse
|
12
|
Enciso-Martínez Y, Zuñiga-Martínez BS, Ayala-Zavala JF, Domínguez-Avila JA, González-Aguilar GA, Viuda-Martos M. Agro-Industrial By-Products of Plant Origin: Therapeutic Uses as well as Antimicrobial and Antioxidant Activity. Biomolecules 2024; 14:762. [PMID: 39062476 PMCID: PMC11274454 DOI: 10.3390/biom14070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The importance of bioactive compounds in agro-industrial by-products of plant origin lies in their direct impacts on human health. These compounds have been shown to possess antioxidant, anti-inflammatory, and antimicrobial properties, contributing to disease prevention and strengthening the immune system. In particular, the antimicrobial action of these compounds emerges as an important tool in food preservation, providing natural alternatives to synthetic preservatives and contributing to combating antimicrobial resistance. Using agro-industrial by-products of plant origin not only addresses the need to reduce waste and promote sustainability but also inaugurates a new era in the formulation of functional foods. From fruit peels to pulps and seeds, these by-products are emerging as essential ingredients in the creation of products that can promote health. Continued research in this area will unveil new applications and properties of these by-products and open doors to a food paradigm in which health and sustainability converge, paving the way to a healthier and more equitable future. The present review presents an overview of our knowledge of agro-industrial by-products and some of their more relevant health-promoting bioactivities.
Collapse
Affiliation(s)
- Yessica Enciso-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| | - B. Shain Zuñiga-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - J. Abraham Domínguez-Avila
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - Gustavo A. González-Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| |
Collapse
|
13
|
Norouzkhani N, Afshari S, Sadatmadani SF, Mollaqasem MM, Mosadeghi S, Ghadri H, Fazlizade S, Alizadeh K, Akbari Javar P, Amiri H, Foroughi E, Ansari A, Mousazadeh K, Davany BA, Akhtari kohnehshahri A, Alizadeh A, Dadkhah PA, Poudineh M. Therapeutic potential of berries in age-related neurological disorders. Front Pharmacol 2024; 15:1348127. [PMID: 38783949 PMCID: PMC11112503 DOI: 10.3389/fphar.2024.1348127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Aging significantly impacts several age-related neurological problems, such as stroke, brain tumors, oxidative stress, neurodegenerative diseases (Alzheimer's, Parkinson's, and dementia), neuroinflammation, and neurotoxicity. Current treatments for these conditions often come with side effects like hallucinations, dyskinesia, nausea, diarrhea, and gastrointestinal distress. Given the widespread availability and cultural acceptance of natural remedies, research is exploring the potential effectiveness of plants in common medicines. The ancient medical system used many botanical drugs and medicinal plants to treat a wide range of diseases, including age-related neurological problems. According to current clinical investigations, berries improve motor and cognitive functions and protect against age-related neurodegenerative diseases. Additionally, berries may influence signaling pathways critical to neurotransmission, cell survival, inflammation regulation, and neuroplasticity. The abundance of phytochemicals in berries is believed to contribute to these potentially neuroprotective effects. This review aimed to explore the potential benefits of berries as a source of natural neuroprotective agents for age-related neurological disorders.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaghayegh Afshari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | | | - Shakila Mosadeghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hani Ghadri
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safa Fazlizade
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keyvan Alizadeh
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pouyan Akbari Javar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamidreza Amiri
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Elaheh Foroughi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Kourosh Mousazadeh
- School of Medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Ata Akhtari kohnehshahri
- Student Research Committee, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alaleh Alizadeh
- Student Research Committee, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Alsadat Dadkhah
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
14
|
Bouyahya A, Bakrim S, Aboulaghras S, El Kadri K, Aanniz T, Khalid A, Abdalla AN, Abdallah AA, Ardianto C, Ming LC, El Omari N. Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress. Biomed Pharmacother 2024; 174:116432. [PMID: 38520868 DOI: 10.1016/j.biopha.2024.116432] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Tarik Aanniz
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan PO Box: 114, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed A Abdallah
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah 21955, Saudi Arabia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
15
|
Macedo C, Costa PC, Rodrigues F. Bioactive compounds from Actinidia arguta fruit as a new strategy to fight glioblastoma. Food Res Int 2024; 175:113770. [PMID: 38129059 DOI: 10.1016/j.foodres.2023.113770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a significant demand for natural products as a mean of disease prevention or as an alternative to conventional medications. The driving force for this change is the growing recognition of the abundant presence of valuable bioactive compounds in natural products. On recent years Actinia arguta fruit, also known as kiwiberry, has attracted a lot of attention from scientific community due to its richness in bioactive compounds, including phenolic compounds, organic acids, vitamins, carotenoids and fiber. These bioactive compounds contribute to the fruit's diverse outstanding biological activities such as antioxidant, anti-inflammatory, neuroprotective, immunomodulatory, and anti-cancer properties. Due to these properties, the fruit may have the potential to be used in the treatment/prevention of various types of cancer, including glioblastoma. Glioblastoma is the most aggressive form of brain cancer, displaying 90 % of recurrence rate within a span of 2 years. Despite the employment of an aggressive approach, the prognosis remains unfavorable, emphasizing the urgent requirement for the development of new effective treatments. The preclinical evidence suggests that kiwiberry has potential impact on glioblastoma by reducing the cancer self-renewal, modulating the signaling pathways involved in the regulation of the cell phenotype and metabolism, and influencing the consolidation of the tumor microenvironment. Even though, challenges such as the imprecise composition and concentration of bioactive compounds, and its low bioavailability after oral administration may be drawbacks to the development of kiwiberry-based treatments, being urgent to ensure the safety and efficacy of kiwiberry for the prevention and treatment of glioblastoma. This review aims to highlight the potential impact of A. arguta bioactive compounds on glioblastoma, providing novel insights into their applicability as complementary or alternative therapies.
Collapse
Affiliation(s)
- Catarina Macedo
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
16
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
17
|
Zaa CA, Espitia C, Reyes-Barrera KL, An Z, Velasco-Velázquez MA. Neuroprotective Agents with Therapeutic Potential for COVID-19. Biomolecules 2023; 13:1585. [PMID: 38002267 PMCID: PMC10669388 DOI: 10.3390/biom13111585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19 patients can exhibit a wide range of clinical manifestations affecting various organs and systems. Neurological symptoms have been reported in COVID-19 patients, both during the acute phase of the illness and in cases of long-term COVID. Moderate symptoms include ageusia, anosmia, altered mental status, and cognitive impairment, and in more severe cases can manifest as ischemic cerebrovascular disease and encephalitis. In this narrative review, we delve into the reported neurological symptoms associated with COVID-19, as well as the underlying mechanisms contributing to them. These mechanisms include direct damage to neurons, inflammation, oxidative stress, and protein misfolding. We further investigate the potential of small molecules from natural products to offer neuroprotection in models of neurodegenerative diseases. Through our analysis, we discovered that flavonoids, alkaloids, terpenoids, and other natural compounds exhibit neuroprotective effects by modulating signaling pathways known to be impacted by COVID-19. Some of these compounds also directly target SARS-CoV-2 viral replication. Therefore, molecules of natural origin show promise as potential agents to prevent or mitigate nervous system damage in COVID-19 patients. Further research and the evaluation of different stages of the disease are warranted to explore their potential benefits.
Collapse
Affiliation(s)
- César A. Zaa
- School of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Lima 15081, Peru;
| | - Clara Espitia
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Karen L. Reyes-Barrera
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (C.E.); (K.L.R.-B.)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Marco A. Velasco-Velázquez
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
18
|
Li S, Hu J, Aryee AA, Sun Y, Li Z. Three birds, one stone: Disinfecting and turning waste medical masks into valuable carbon dots for sodium hydrosulfite and Fe 3+ detection enabled by a simple hydrothermal treatment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122659. [PMID: 36989697 PMCID: PMC10029333 DOI: 10.1016/j.saa.2023.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Disposable medical masks are widely used to prevent respiratory infections due to their ability to block virus particles from entering the human body. The coronavirus disease 2019 (COVID-19) pandemic highlighted the importance of medical masks, leading to their widespread use around the world. However, a large number of disposable medical masks have been discarded, some carrying viruses, which have posed a grave threat to the environment and people's health, as well as wasting resources. In this study, a simple hydrothermal method was used for the disinfection of waste medical masks under high-temperature conditions as well as for their transformation into high-value-added carbon dots (CDs, a new type of carbon nanomaterial) with blue-emissive fluorescence, without high energy consumption or environmental pollution. Moreover, the mask-derived CDs (m-CDs) could not only be used as fluorescent probes for sensing sodium hydrosulfite (Na2S2O4), which is widely used in the food and textile industries but is seriously harmful to human health, but also be used for detecting Fe3+ which is harmful to the environment and human health due to its wide use in industries.
Collapse
Affiliation(s)
- Sen Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Jingyu Hu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Aaron Albert Aryee
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Pluta R, Miziak B, Czuczwar SJ. Apitherapy in Post-Ischemic Brain Neurodegeneration of Alzheimer's Disease Proteinopathy: Focus on Honey and Its Flavonoids and Phenolic Acids. Molecules 2023; 28:5624. [PMID: 37570596 PMCID: PMC10420307 DOI: 10.3390/molecules28155624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Neurodegeneration of the brain after ischemia is a major cause of severe, long-term disability, dementia, and mortality, which is a global problem. These phenomena are attributed to excitotoxicity, changes in the blood-brain barrier, neuroinflammation, oxidative stress, vasoconstriction, cerebral amyloid angiopathy, amyloid plaques, neurofibrillary tangles, and ultimately neuronal death. In addition, genetic factors such as post-ischemic changes in genetic programming in the expression of amyloid protein precursor, β-secretase, presenilin-1 and -2, and tau protein play an important role in the irreversible progression of post-ischemic neurodegeneration. Since current treatment is aimed at preventing symptoms such as dementia and disability, the search for causative therapy that would be helpful in preventing and treating post-ischemic neurodegeneration of Alzheimer's disease proteinopathy is ongoing. Numerous studies have shown that the high contents of flavonoids and phenolic acids in honey have antioxidant, anti-inflammatory, anti-apoptotic, anti-amyloid, anti-tau protein, anticholinesterase, serotonergic, and AMPAK activities, influencing signal transmission and neuroprotective effects. Notably, in many preclinical studies, flavonoids and phenolic acids, the main components of honey, were also effective when administered after ischemia, suggesting their possible use in promoting recovery in stroke patients. This review provides new insight into honey's potential to prevent brain ischemia as well as to ameliorate damage in advanced post-ischemic brain neurodegeneration.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (S.J.C.)
| | | | | |
Collapse
|
20
|
Gao X, Zhang Y, Li T, Li J, Su Y, Wang H, Yan Z, Qin K. Uncovering the molecular mechanisms of Fructus Choerospondiatis against coronary heart disease using network pharmacology analysis and experimental pharmacology. Anal Biochem 2023:115214. [PMID: 37353066 DOI: 10.1016/j.ab.2023.115214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023]
Abstract
Fructus Choerospondiatis (FC), a Mongolian medicine, was mainly used in Mongolian medical theory for the treatment of coronary heart disease (CHD). Nonetheless, the main components and mechanisms of action of FC in the treatment of coronary artery disease have not been studied clearly. AIM OF THE STUDY The aim of this study is to identify the components of FC and analyze the pathways affected by the targets of these components to probe into the potential mechanisms of action of FC on coronary heart disease. MATERIALS AND METHODS Identification of compounds in FC employing high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS) method, then further investigate the network pharmacology and molecular docking to obtain potential targets and elucidate the potential mechanism of action of FC in the therapy of CHD. Experimental validation was established to verify the mechanism of FC in vitro. RESULTS 21 FC components were identified and 65 overlapping targets were gained. In addition, these ingredients regulated AMPK and PPAR signaling pathway by 65 target genes including IL6, AKT1 and PPARg, etc. Molecular docking displayed that the binding ability of the key target PPARg to FC components turned out to be better. Experimental validation proved that FC treatment decreased the expression of PPARg (p < 0.05) compare with model group, which may be involved in the PPAR signaling pathway. CONCLUSIONS This study was the first to elucidate the mechanism of action of components of FC for the treatment of CHD using network pharmacology. It alleviated CHD by inhibiting the expression of PPARg to attenuate hypoxia/reoxygenation injury, and the results give a basis for elucidating the molecular mechanism of action of FC for the treatment of coronary heart disease.
Collapse
Affiliation(s)
- Xun Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222001, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yue Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222001, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Tingting Li
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222001, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jioajiao Li
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222001, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yingying Su
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222001, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hongsen Wang
- Jiangsu Yuanchuang Pharmaceutical Research and Development Co., Ltd, China
| | - Zhankuan Yan
- Jiangsu Yuanchuang Pharmaceutical Research and Development Co., Ltd, China
| | - Kunming Qin
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222001, China; School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
21
|
Waseem A, Rashid S, Rashid K, Khan MA, Khan R, Haque R, Seth P, Raza SS. Insight into the transcription factors regulating Ischemic Stroke and Glioma in Response to Shared Stimuli. Semin Cancer Biol 2023; 92:102-127. [PMID: 37054904 DOI: 10.1016/j.semcancer.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.
Collapse
Affiliation(s)
- Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Sumaiya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Khalid Rashid
- Department of Cancer Biology, Vontz Center for Molecular Studies, Cincinnati, OH 45267-0521
| | | | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City,Mohali, Punjab 140306, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya -824236, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Haryana-122052, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India; Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| |
Collapse
|
22
|
Bhuia MS, Rahaman MM, Islam T, Bappi MH, Sikder MI, Hossain KN, Akter F, Al Shamsh Prottay A, Rokonuzzman M, Gürer ES, Calina D, Islam MT, Sharifi-Rad J. Neurobiological effects of gallic acid: current perspectives. Chin Med 2023; 18:27. [PMID: 36918923 PMCID: PMC10015939 DOI: 10.1186/s13020-023-00735-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Gallic acid (GA) is a phenolic molecule found naturally in a wide range of fruits as well as in medicinal plants. It has many health benefits due to its antioxidant properties. This study focused on finding out the neurobiological effects and mechanisms of GA using published data from reputed databases. For this, data were collected from various sources, such as PubMed/Medline, Science Direct, Scopus, Google Scholar, SpringerLink, and Web of Science. The findings suggest that GA can be used to manage several neurological diseases and disorders, such as Alzheimer's disease, Parkinson's disease, strokes, sedation, depression, psychosis, neuropathic pain, anxiety, and memory loss, as well as neuroinflammation. According to database reports and this current literature-based study, GA may be considered one of the potential lead compounds to treat neurological diseases and disorders. More preclinical and clinical studies are required to establish GA as a neuroprotective drug.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Mizanur Rahaman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Iqbal Sikder
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Kazi Nadim Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Fatama Akter
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | | |
Collapse
|
23
|
Abdelsalam SA, Renu K, Zahra HA, Abdallah BM, Ali EM, Veeraraghavan VP, Sivalingam K, Ronsard L, Ammar RB, Vidya DS, Karuppaiya P, Al-Ramadan SY, Rajendran P. Polyphenols Mediate Neuroprotection in Cerebral Ischemic Stroke-An Update. Nutrients 2023; 15:nu15051107. [PMID: 36904106 PMCID: PMC10005012 DOI: 10.3390/nu15051107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Stroke is one of the main causes of mortality and disability, and it is due to be included in monetary implications on wellbeing frameworks around the world. Ischemic stroke is caused by interference in cerebral blood flow, leading to a deficit in the supply of oxygen to the affected region. It accounts for nearly 80-85% of all cases of stroke. Oxidative stress has a significant impact on the pathophysiologic cascade in brain damage leading to stroke. In the acute phase, oxidative stress mediates severe toxicity, and it initiates and contributes to late-stage apoptosis and inflammation. Oxidative stress conditions occur when the antioxidant defense in the body is unable to counteract the production and aggregation of reactive oxygen species (ROS). The previous literature has shown that phytochemicals and other natural products not only scavenge oxygen free radicals but also improve the expressions of cellular antioxidant enzymes and molecules. Consequently, these products protect against ROS-mediated cellular injury. This review aims to give an overview of the most relevant data reported in the literature on polyphenolic compounds, namely, gallic acid, resveratrol, quercetin, kaempferol, mangiferin, epigallocatechin, and pinocembrin, in terms of their antioxidant effects and potential protective activity against ischemic stroke.
Collapse
Affiliation(s)
- Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Hamad Abu Zahra
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
| | - Kalaiselvi Sivalingam
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Larance Ronsard
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| | - Devanathadesikan Seshadri Vidya
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Palaniyandi Karuppaiya
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - S. Y. Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Chennai 31982, Saudi Arabia
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College & Hospitals, Saveetha University, Chennai 600077, India
- Correspondence: ; Tel.: +966-0135899543
| |
Collapse
|
24
|
A Review on Polyphenols in Salicornia ramosissima with Special Emphasis on Their Beneficial Effects on Brain Ischemia. Nutrients 2023; 15:nu15030793. [PMID: 36771496 PMCID: PMC9919161 DOI: 10.3390/nu15030793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
There has been an increasing interest in the consumption of halophytes as a healthy food in the last few years. Salicornia ramosissima is a seasonal Mediterranean halophyte with an interesting profile of bioactive compounds, including more than 60 identified polyphenols with a broad range of biological activities. Accumulating evidence supports the role of dietary polyphenols in the prevention of cardiovascular diseases, such as stroke. Stroke is the second cause of death worldwide and it is estimated that a substantial proportion of stroke incidence and recurrence may be prevented by healthier dietary patterns. Here, we have grouped the phenolic acids and flavonoids identified in S. ramosissima and reviewed their potential protective effect on brain ischemia, which are mostly related to the reduction of oxidative stress and inflammation, the inhibition of cell death pathways and their role in the preservation of the vascular function. Despite the fact that most of these compounds have been reported to be neuroprotective through multiple mechanisms, human studies are still scarce. Given the safe profile of polyphenols identified in S. ramosissima, this halophyte plant could be considered as a source of bioactive compounds for the nutraceutical industry.
Collapse
|
25
|
Gadekar GJ, Bhandare PA, Bandawane DD. Amelioration of 5-Fluorouracil Induced Nephrotoxicity by Acacia catechu through Overcoming Oxidative Damage and Inflammation in Wistar Rats. Cardiovasc Hematol Disord Drug Targets 2023; 23:189-201. [PMID: 37946347 DOI: 10.2174/011871529x274030231102065433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
AIM The research intended to explore the possible nephroprotective potential of the ethyl acetate fraction derived from Acacia catechu leaves against nephrotoxicity brought about by 5-fluorouracil (5-FU) in Wistar rats. BACKGROUND While possessing strong anticancer properties, 5-FU is hindered in its therapeutic application due to significant organ toxicity linked to elevated oxidative stress and inflammation. OBJECTIVE The study is undertaken to conduct an analysis of the ethyl acetate fraction of A. catechu leaves both in terms of quality and quantity, examining its impact on different biochemical and histopathological parameters within the context of 5-FU-induced renal damage in rats and elucidation of the mechanism behind the observed outcomes. METHODOLOGY Intraperitoneal injection of 5-FU at a dosage of 20 mg/kg/day over 5 days was given to induce nephrotoxicity in rats. The evaluation of nephrotoxicity involved quantifying serum creatinine, urea, uric acid, and electrolyte concentrations. Furthermore, superoxide dismutase, catalase antioxidant enzymes, and TNF-α concentration in serum were also measured. RESULTS 5-FU injection led to the initiation of oxidative stress within the kidneys, leading to modifications in renal biomarkers (including serum creatinine, urea, uric acid, and Na+, K+ levels), and a reduction in antioxidant enzymes namely superoxide dismutase and catalase. Notably, the presence of the inflammatory cytokine TNF-α was significantly elevated due to 5-FU. Microscopic examination of renal tissue revealed tubular degeneration and congestion. However, treatment involving the ethyl acetate fraction derived from A. catechu leaves effectively and dose-dependently reversed the changes observed in renal biomarkers, renal antioxidant enzymes, inflammatory mediators, and histopathological features, bringing them closer to normal conditions. The observed recuperative impact was mainly attributed to the antioxidant and antiinflammatory properties of the fraction. CONCLUSION The ethyl acetate fraction of A. catechu leaves exhibited a mitigating influence on the renal impairment caused by 5-FU, showcasing its potential as a nephroprotective agent capable of preventing and ameliorating 5-FU-induced nephrotoxicity.
Collapse
Affiliation(s)
- Gayatri Jaising Gadekar
- Department of Pharmacology, P. E. Society's Modern College of Pharmacy, Nigdi, Pune- 44, India
| | | | - Deepti Dinesh Bandawane
- Department of Pharmacology, P. E. Society's Modern College of Pharmacy, Nigdi, Pune- 44, India
| |
Collapse
|
26
|
Li M, Tang H, Li Z, Tang W. Emerging Treatment Strategies for Cerebral Ischemia-Reperfusion Injury. Neuroscience 2022; 507:112-124. [PMID: 36341725 DOI: 10.1016/j.neuroscience.2022.10.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) injury is a common feature of ischemic stroke which occurs when the blood supply is restored after a period of ischemia in the brain. Reduced blood-flow to the brain during CI/RI compromises neuronal cell health as a result of mitochondrial dysfunction, oxidative stress, cytokine production, inflammation and tissue damage. Reperfusion therapy during CI/RI can restore the blood flow to ischemic regions of brain which are not yet infarcted. The long-term goal of CI/RI therapy is to reduce stroke-related neuronal cell death, disability and mortality. A range of drug and interventional therapies have emerged that can alleviate CI/RI mediated oxidative stress, inflammation and apoptosis in the brain. Herein, we review recent studies on CI/RI interventions for which a mechanism of action has been described and the potential of these therapeutic modalities for future use in the clinic.
Collapse
Affiliation(s)
- Mengxing Li
- College of Acupuncture and Massage (Rehabilitation Medical College), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Heyong Tang
- College of Integrated Chinese and Western Medicine (School of Life Sciences), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhen Li
- College of Acupuncture and Massage (Rehabilitation Medical College), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Tang
- College of Acupuncture and Massage (Rehabilitation Medical College), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
27
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
28
|
Magerusan L, Pogacean F, Rada S, Pruneanu S. Sulphur-doped graphene based sensor for rapid and efficient gallic acid detection from food related samples. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Wang Y, Wu H, Sheng H, Wang Y, Li X, Wang Y, Zhao L. Discovery of anti-stroke active substances in Guhong injection based on multi-phenotypic screening of zebrafish. Biomed Pharmacother 2022; 155:113744. [PMID: 36156365 DOI: 10.1016/j.biopha.2022.113744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
Ischemic stroke is a leading cause of death worldwide, and it remains an urgent task to develop novel and alternative therapeutic strategies for the disease. We previously reported the positive effects of Guhong injection (GHI), composed of safflower extract and aceglutamide, in promoting functional recovery in ischemic stroke mice. However, the active substances and pharmacological mechanism of GHI is still elusive. Aiming to identify the active anti-stroke components in GHI, here we conducted a multi-phenotypic screening in zebrafish models of phenylhydrazine-induced thrombosis and ponatinib-induced cerebral ischemia. Peripheral and cerebral blood flow was quantified endogenously in erythrocytes fluorescence-labeled thrombosis fish, and baicalein and rutin were identified as major anti-thrombotic substances in GHI. Moreover, using a high-throughput video-tracking system, the effects of locomotion promotion of GHI and its main compounds were analyzed in cerebral ischemia model. Chlorogenic acid and gallic acid showed significant effects in preventing locomotor dyfunctions. Finally, GHI treatment greatly decreased the expression levels of coagulation factors F7 and F2, NF-κB and its mediated proinflammatory cytokines in the fish models. Molecular docking suggested strong affinities between baicalein and F7, and between active substances (baicalein, chlorogenic acid, gallic acid, and rutin) and NF-κB p65. In summary, our findings established a novel drug discovery method based on multi-phenotypic screening of zebrafish, provided endogenous evidences of GHI in preventing thrombus formation and promoting behavioral recovery after cerebral ischemia, and identified baicalein, rutin, chlorogenic acid, and gallic acid as active compounds in the management of ischemic stroke.
Collapse
Affiliation(s)
- Yule Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310012, China
| | - Huimin Wu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310012, China
| | - Hongda Sheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310012, China
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, 291 Fucheng Road, Qiantang District, Hangzhou 310020, China
| | - Xuecai Li
- Tonghua Guhong Pharmaceutical Co., Ltd., 5099 Jianguo Road, Meihekou 135099, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310012, China; Jinan Microecological Biomedicine Shandong Laboratory, 3716 Qingdao Road, Huaiyin District, Jinan 250117, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Beihua South Road, Jinghai District, Tianjin 301617, China.
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou 310012, China.
| |
Collapse
|
30
|
El-Houssiny AS, Kamel NA, Soliman AAF, El-Messieh SLA, Abd-EL-Nour KN. Preparation and characterisation of gallic acid loaded carboxymethyl chitosan nanoparticles as drug delivery system for cancer treatment. ADVANCES IN NATURAL SCIENCES: NANOSCIENCE AND NANOTECHNOLOGY 2022; 13:025002. [DOI: 10.1088/2043-6262/ac6c22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Gallic acid (GA) is a natural phenolic compound with antioxidant, anti-proliferative, and anticancer effects. However, the potential of GA as an anticancer agent is restricted by its poor absorption, rapid elimination, and low bioavailability. Nanostructure-drug carriers have opened up a new field in cancer therapy by improving the efficacy of drugs. In this work, we developed a nanoformulation of GA in carboxymethyl chitosan (CMC). The particle size, surface charge and molecular structure of the CMC NPs loaded and unloaded with GA were measured using TEM, DLS and FTIR spectroscopy, respectively. The dielectric parameters (permittivity ε′ and dielectric loss ε″) were measured in the frequency range (0.1 Hz–5 MHz) at room temperature. Additionally, the in-vitro anti-cancer effects of the GA, CMC NPs, and GA-CMC NPs were tested against human colon carcinoma (HCT-116), human breast carcinoma (MCF-7), and normal skin fibroblast cells (BJ1) using MTT assay. TEM confirmed that the NPs have a spherical morphology within the size range of 15 nm. DLS studies revealed NPs with a mean diameter of 31.06 nm. The zeta potential results indicated the high suspension stability of the prepared nanoformulation. The FTIR results indicated the interaction between GA and CMC NPs. The dielectric study showed a decrease within the ε″ and conductivity values of GA-CMC NPs which confirmed the successful encapsulation of GA within the CMC NPs. Cytotoxicity studies indicated that the GA-CMC NPs showed specific toxicity towards cancer cells and non-toxicity to normal cells. Overall, these results indicate that the GA-CMC NPs will be an efficient nanocarrier for delivering gallic acid to cancer cells.
Collapse
|
31
|
The enhanced mitochondrial dysfunction by cantleyoside confines inflammatory response and promotes apoptosis of human HFLS-RA cell line via AMPK/Sirt 1/NF-κB pathway activation. Biomed Pharmacother 2022; 149:112847. [PMID: 35364376 DOI: 10.1016/j.biopha.2022.112847] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Cantleyoside (CA) is a kind of iridoid glycosides in Pterocephalus hookeri (C. B. Clarke) Höeck. The purpose of this study was to investigate the effects of CA on human rheumatoid arthritis fibroblast synovial cells (HFLS-RA). METHODS Cell proliferation of HFLS-RA was assessed by CCK-8. ELISA was used to detect cytokines NO, TNF-α, IL-1β/6, MCP-1, MMP-1/3/9 and metabolism-related ATPase activities and ATP levels. JC-1, DCFH-DA, Fluo-3 AM and Calcein AM probes were used to detect mitochondrial membrane potential (MMP), reactive oxygen species (ROS), Ca2+ and mitochondrial permeability conversion pore (MPTP), respectively. Isolated mitochondria assay was used to detect mitochondrial swelling. Oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and real-time ATP production were measured using a Seahorse analyzer. Apoptosis was detected by TUNEL and Hoechst staining. Western blot was used to detect the expressions of AMPK/p-AMPK, Sirt 1, IκBα, NF-κB p65/p-NF-κB p65, Bcl-2 and Bax. Cytoplasmic nuclear isolation was also performed to detect the translocation of NF-κB. RESULTS CA significantly suppressed cell proliferation and the levels of NO, TNF-α, IL-1β/6, MCP-1 and MMP-1/3/9 in HFLS-RA. In addition, CA promoted the apoptosis of HFLS-RA by increasing TUNEL and Hoechst positive cells and the ratio of Bax/Bcl-2. Inhibition of energy metabolism in HFLS-RA by CA reduced OCR, ECAR and real-time ATP generation rate. Importantly, CA promoted p-AMPK and Sirt 1 expression, inhibited IκBα degradation to reduce p-NF-κB and translocation. CONCLUSION The results suggest that CA activates the AMPK/Sirt 1/NF-κB pathway by promoting mitochondrial dysfunction, thereby exerting anti-inflammatory and pro-apoptotic effects.
Collapse
|
32
|
Dong X, Luo S, Hu D, Cao R, Wang Q, Meng Z, Feng Z, Zhou W, Song W. Gallic acid inhibits neuroinflammation and reduces neonatal hypoxic-ischemic brain damages. Front Pediatr 2022; 10:973256. [PMID: 36619526 PMCID: PMC9813953 DOI: 10.3389/fped.2022.973256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Neuroinflammation is a leading cause of secondary neuronal injury in neonatal hypoxic-ischemic encephalopathy (HIE). Regulation of neuroinflammation may be beneficial for treatment of HIE and its secondary complications. Gallic acid (GA) has been shown to have anti-inflammatory and antioxidant effects. In this report we found that oxygen-glucose deprivation and/reoxygenation (OGD/R)-induced cell death, and the generation of excessive reactive oxygen species (ROS) and inflammatory cytokines by microglia were inhibited by GA treatment. Furthermore, GA treatment reduced neuroinflammation and neuronal loss, and alleviated motor and cognitive impairments in rats with hypoxic-ischemic brain damage (HIBD). Together, our results reveal that GA is an effective regulator of neuroinflammation and has potential as a pharmaceutical intervention for HIE therapy.
Collapse
Affiliation(s)
- Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shuyue Luo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ruixue Cao
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijuan Feng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| |
Collapse
|
33
|
Osman SM, Soliman HSM, Hamed FM, Marrez DA, El-Gazar AA, Alazzouni AS, Nasr T, Ibrahim HA. Neuroprotective Role of Microbial Biotransformed Metabolites of Sinapic Acid on Repetitive Traumatic Brain Injury in Rats. PHARMACOPHORE 2022. [DOI: 10.51847/1rj6v3egdu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Salidroside attenuates CoCl 2-simulated hypoxia injury in PC12 cells partly by mitochondrial protection. Eur J Pharmacol 2021; 912:174617. [PMID: 34748770 DOI: 10.1016/j.ejphar.2021.174617] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
Salidroside has been shown to exert neuroprotective effects against hypoxia. However, its mitochondrial protective mechanisms still remain elusive. The present study aimed to explore the mitochondrial protection of salidroside on PC12 cells and the involved mechanisms. The hypoxic injury of PC12 cells was triggered by CoCl2 stimulus. The contents of LDH release, SOD, GSH-PX, Na+-K+-ATPase, ATP, NAD+ and NADH were determined by using commercial biochemical kits. Clark-type oxygen electrode and Seahorse XFe24 analyzer were employed to evaluate cell respiration and measure oxygen consumption rate (OCR), respectively. Mitochondrial swelling and mitochondrial membrane potential (MMP) were measured by using isolated mitochondria from the brain tissue of mice. The proteins expression of cleaved Caspase-3, HIF-1α, ISCU1/2, COX10 and PFKP were tested by immunofluorescence and Western blot. While the genes expression of Caspase-3, HIF-1α, ISCU1/2, COX10 and miR-210 were tested by quantitative real-time PCR (qRT-PCR) analysis. Salidroside alleviated CoCl2-induced oxidative stress in PC12 cells as evidenced by increased cell viability, decreased LDH release and elevated GSH-PX and SOD activities. Salidroside could inhibit apoptosis by suppressing the level of cleaved Caspase-3 and Caspase-3. The enhanced mitochondrial energy synthesis by salidroside treatment was evidenced by the increases of Na+-K+-ATPase activity, ATP content, NAD+/NADH ratio, cellular respiration and OCR. In addition, salidroside could reduce mitochondrial swelling and MMP dissipation in isolated mitochondria. The results of immunofluorescence, Western blot and qRT-PCR analyses further revealed that salidroside raised the level of HIF-1α, ISCU1/2, COX10, and miR-210. Collectively, salidroside can reverse CoCl2-simulated hypoxia injury in PC12 cells partly by mitochondrial protection via inhibiting oxidative stress event, anti-apoptosis and enhancing mitochondrial energy synthesis.
Collapse
|
35
|
Preclinical and Clinical Antioxidant Effects of Natural Compounds against Oxidative Stress-Induced Epigenetic Instability in Tumor Cells. Antioxidants (Basel) 2021; 10:antiox10101553. [PMID: 34679688 PMCID: PMC8533336 DOI: 10.3390/antiox10101553] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023] Open
Abstract
ROS (reactive oxygen species) are produced via the noncomplete reduction in molecular oxygen in the mitochondria of higher organisms. The produced ROS are placed in various cell compartments, such as the mitochondria, cytoplasm, and endoplasmic reticulum. In general, there is an equilibrium between the synthesis of ROS and their reduction by the natural antioxidant defense system, called the redox system. Therefore, when this balance is upset, the excess ROS production can affect different macromolecules, such as proteins, lipids, nucleic acids, and sugars, which can lead to an electronic imbalance than oxidation of these macromolecules. Recently, it has also been shown that ROS produced at the cellular level can affect different signaling pathways that participate in the stimulation of transcription factors linked to cell proliferation and, consequently, to the carcinogenesis process. Indeed, ROS can activate the pathway of tyrosine kinase, MAP kinase, IKK, NF-KB, phosphoinositol 3 phosphate, and hypoxia-inducible factor (HIF). The activation of these signaling pathways directly contributes to the accelerated proliferation process and, as a result, the appearance of cancer. In addition, the use of antioxidants, especially natural ones, is now a major issue in the approach to cancer prevention. Some natural molecules, especially phytochemicals isolated from medicinal plants, have now shown interesting preclinical and clinical results.
Collapse
|
36
|
Qian X, Wu YH, Che YY, Zhao W, Shu LF, Zhu J, Wang YH, Chen T. IP 3R-mediated activation of BK channels contributes to mGluR5-induced protection against spinal cord ischemia-reperfusion injury. Neurochem Int 2021; 150:105191. [PMID: 34547325 DOI: 10.1016/j.neuint.2021.105191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/26/2023]
Abstract
Spinal cord ischemia-reperfusion injury (SCIRI) can cause dramatic neuron loss and lead to paraplegia in patients. In this research, the role of mGluR5, a member of the metabotropic glutamate receptors (mGluRs) family, was investigated both in vitro and in vivo to explore a possible method to treat this complication. In vitro experiment, after activating mGluR5 via pretreating cells with (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG) and 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB), excitotoxicity induced by glutamate (Glu) was attenuated in primary spinal cord neurons, evidenced by higher neuron viability, decreased lactate dehydrogenase (LDH) release and less detected TUNEL-positive cells. According to Western Blot (WB) results, Glu treatment resulted in a high level of large-conductance Ca2+- and voltage-activated K+ (BK) channels, with activation relying on the mGluR5-IP3R (inositol triphosphate) pathway. In vivo part, a rat model of SCIRI was built to further investigate the role of mGluR5. After pretreating them with CHPG and CDPPB, the rats showed markedly lower spinal water content, attenuated motor neuron injury in the spinal cord of L4 segments, and better neurological function. This effect could be partially reversed by paxilline, a blocker of BK channels. In addition, activating BK channels alone using specific openers: NS1619 or NS11021 can protect spinal cord neurons from injury induced by either SCIRI or Glu. In conclusion, in this research, we proved that mGluR5 exerts a protective role in SCIRI, and this effect partially works via IP3R-mediated activation of BK channels.
Collapse
Affiliation(s)
- Xiao Qian
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Yong-Hui Wu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Yuan-Yuan Che
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Wei Zhao
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Long-Fei Shu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Jie Zhu
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China; Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Yu-Hai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China.
| | - Tao Chen
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu, 214044, China; Department of Neurosurgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
37
|
Lan YL, Zhu Y, Chen G, Zhang J. The Promoting Effect of Traumatic Brain Injury on the Incidence and Progression of Glioma: A Review of Clinical and Experimental Research. J Inflamm Res 2021; 14:3707-3720. [PMID: 34377008 PMCID: PMC8350857 DOI: 10.2147/jir.s325678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The role of traumatic brain injury in the development of glioma is highly controversial since first presented. This is not unexpected because traumatic brain injuries are overwhelmingly more common than glioma. However, the causes of post-traumatic glioma have been long discussed and still warrant further research. In this review, we have presented an overview of previous cohort studies and case–control studies. We have summarized the roles of microglial cells, macrophages, astrocytes, and stem cells in post-traumatic glioma formation and development, and reviewed various carcinogenic factors involved during traumatic brain injury, especially those reported in experimental studies indicating a relationship with glioma progression. Besides, traumatic brain injury and glioma share several common pathways, including inflammation and oxidative stress; however, the exact mechanism underlying this co-occurrence is yet to be discovered. In this review, we have summarized current epidemiological studies, clinical reports, pathophysiological research, as well as investigations evaluating the probable causes of co-occurrence and treatment possibilities. More efforts should be directed toward elucidating the relationship between traumatic brain injury and glioma, which could likely lead to promising pharmacological interventions towards designing therapeutic strategies.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.,Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| | - Yongjian Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
38
|
Xie D, Deng H, Feng H. Sevoflurane exerts improved protective effects than propofol on hypoxia-reoxygenation injury by regulating the microRNA-221-5p/ADAM8 axis in cardiomyocytes. Exp Ther Med 2021; 22:893. [PMID: 34257708 PMCID: PMC8243314 DOI: 10.3892/etm.2021.10325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a leading cause of heart disease and death. Decreasing the detrimental effect of I/R remains an urgent issue in clinical practice. The present study examined the interaction of the anesthetics (sevoflurane and propofol), ADAM8, and microRNA (miR)-221-5p in myocardial tissue protection in the hypoxia-reoxygenation (H/R) model. H9C2 cells were cultured and subjected to H/R stimulation for further verifications in vitro. Reverse transcription-quantitative PCR or western blotting was performed to evaluate mRNA or protein expression levels. Cell Counting Kit-8, BrdU, and caspase-3 activity assays were performed to investigate cell viability, proliferation and apoptosis. A dual-luciferase reporter assay was performed to verify the association between miR-221-5p and ADAM8. Sevoflurane had greater protective effects on the life of cardiomyocytes with H/R injury compared with propofol by promoting cell viability, proliferation and inhibiting apoptosis. Concurrently, compared with propofol-treated H/R injured cardiomyocytes, the expression level of ADAM8 in sevoflurane-treated H/R injured cardiomyocytes was higher. In addition, overexpression of ADAM8 promoted the cell viability and proliferation of sevoflurane-treated cardiomyocytes with H/R injury but inhibited cell apoptosis, while the downregulation of miR-221-5p showed an opposite trend to that of ADAM8 overexpression. The present data provide evidence that sevoflurane can mediate the miR-221-5p/ADAM8 axis, playing a better protective role compared with propofol in cardiomyocytes with H/R injury.
Collapse
Affiliation(s)
- Dan Xie
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Huifei Deng
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Hao Feng
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
39
|
Role of Polyphenols as Antioxidant Supplementation in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5471347. [PMID: 34257802 PMCID: PMC8253632 DOI: 10.1155/2021/5471347] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
Stroke is the second most common cause of death globally and the leading cause of death in China. The pathogenesis of cerebral ischemia injury is complex, and oxidative stress plays an important role in the fundamental pathologic progression of cerebral damage in ischemic stroke. Previous studies have preliminarily confirmed that oxidative stress should be a potential therapeutic target and antioxidant as a treatment strategy for ischemic stroke. Emerging experimental studies have demonstrated that polyphenols exert the antioxidant potential to play the neuroprotection role after ischemic stroke. This comprehensive review summarizes antioxidant effects of some polyphenols, which have the most inhibition effects on reactive oxygen species generation and oxidative stress after ischemic stroke.
Collapse
|
40
|
Liu L, Cao Q, Gao W, Li B, Xia Z, Zhao B. Melatonin protects against focal cerebral ischemia-reperfusion injury in diabetic mice by ameliorating mitochondrial impairments: involvement of the Akt-SIRT3-SOD2 signaling pathway. Aging (Albany NY) 2021; 13:16105-16123. [PMID: 34118791 PMCID: PMC8266371 DOI: 10.18632/aging.203137] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
Diabetic patients are more vulnerable to cerebral ischemia-reperfusion (CIR) injury and have a worse prognosis and higher mortality after ischemic stroke than non-diabetic counterparts. Melatonin can exert neuroprotective effects against CIR injury in nondiabetic animal models. However, its effects on diabetic CIR injury and the underlying mechanisms remain unclarified. Herein, we found that melatonin administration improved neurological deficit, cerebral infarct volume, brain edema, and cell viability, reduced mitochondrial swelling, reactive oxygen species generation, and cytoplasmic cytochrome C release, and increased mitochondrial antioxidant enzymes activities, adenosine triphosphate production, and mitochondrial membrane potential in both streptozotocin-induced diabetic mice and high glucose-treated HT22 cells. Importantly, melatonin also activated protein kinase B (Akt) and sirtuin 3 (SIRT3)/superoxide dismutase 2 (SOD2) signaling and upregulated mitochondrial biogenesis-related transcription factors. However, these effects were largely attenuated by LY294002 (a specific Akt signaling blocker) administration. Additionally, 3-TYP (a selective SIRT3 inhibitor) and SIRT3 siRNA inhibited the above protective effects of melatonin as well as the upregulation of SIRT3 and the decrease of SOD2 acetylation but did not affect the p-Akt/Akt ratio. Overall, we demonstrate that melatonin can alleviate CIR injury in diabetic mice by activating Akt-SIRT3-SOD2 signaling and subsequently improving mitochondrial damage.
Collapse
Affiliation(s)
- Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Quan Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wenwei Gao
- Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bingyu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
41
|
Chen K, Li N, Fan F, Geng Z, Zhao K, Wang J, Zhang Y, Tang C, Wang X, Meng X. Tibetan Medicine Duoxuekang Capsule Ameliorates High-Altitude Polycythemia Accompanied by Brain Injury. Front Pharmacol 2021; 12:680636. [PMID: 34045970 PMCID: PMC8144525 DOI: 10.3389/fphar.2021.680636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
Objective: Duoxuekang (DXK) capsule is an empirical prescription for Tibetan medicine in the treatment of hypobaric hypoxia (HH)-induced brain injury in the plateau. This study aimed to investigate the protective effects and underlying molecular mechanisms of DXK on HH-induced brain injury. Methods: UPLC–Q-TOF/MS was performed for chemical composition analysis of DXK. The anti-hypoxia and anti-fatigue effects of DXK were evaluated by the normobaric hypoxia test, sodium nitrite toxicosis test, and weight-loaded swimming test in mice. Simultaneously, SD rats were used for the chronic hypobaric hypoxia (CHH) test. RBC, HGB, HCT, and the whole blood viscosity were evaluated. The activities of SOD and MDA in the brain, and EPO and LDH levels in the kidney were detected using ELISA. H&E staining was employed to observe the pathological morphology in the hippocampus and cortex of rats. Furthermore, immunofluorescence and Western blot were carried out to detect the protein expressions of Mapk10, RASGRF1, RASA3, Ras, and IGF-IR in the brain of rats. Besides, BALB/c mice were used for acute hypobaric hypoxia (AHH) test, and Western blot was employed to detect the protein expression of p-ERK/ERK, p-JNK/JNK, and p-p38/p38 in the cerebral cortex of mice. Results: 23 different chemical compositions of DXK were identified by UPLC–Q-TOF/MS. The anti-hypoxia test verified that DXK can prolong the survival time of mice. The anti-fatigue test confirmed that DXK can prolong the swimming time of mice, decrease the level of LDH, and increase the hepatic glycogen level. Synchronously, DXK can decrease the levels of RBC, HGB, HCT, and the whole blood viscosity under the CHH condition. Besides, DXK can ameliorate CHH-induced brain injury, decrease the levels of EPO and LDH in the kidney, reduce MDA, and increase SOD in the hippocampus. Furthermore, DXK can converse HH-induced marked increase of Mapk10, RASGRF1, and RASA3, and decrease of Ras and IGF-IR. In addition, DXK can suppress the ratio of p-ERK/ERK, p-JNK/JNK, and p-p38/p38 under the HH condition. Conclusion: Together, the cerebral protection elicited by DXK was due to the decrease of hematological index, suppressing EPO, by affecting the MAPK signaling pathway in oxidative damage, and regulating the RAS signaling pathway.
Collapse
Affiliation(s)
- Ke Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ning Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangfang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - ZangJia Geng
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Kehui Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wang
- School of Management, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
42
|
Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
43
|
Fabrication of Gallic Acid Loaded SeNPs and their Neuroprotection Effect for Treatment of Ischemic Stroke. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02070-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Li N, Chen K, Bai J, Geng Z, Tang Y, Hou Y, Fan F, Ai X, Hu Y, Meng X, Wang X, Zhang Y. Tibetan medicine Duoxuekang ameliorates hypobaric hypoxia-induced brain injury in mice by restoration of cerebrovascular function. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113629. [PMID: 33246120 DOI: 10.1016/j.jep.2020.113629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/01/2020] [Accepted: 11/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Duoxuekang (DXK, ཁྲག་འཕེལ་བདེ་བྱེད།) is a clinical experience prescription of CuoRu-Cailang, a famous Tibetan medicine master, which has effective advantages in the treatment of hypobaric hypoxia (HH)-induced brain injury. However, its underlying mechanisms remain unclear. AIM OF THE STUDY The present study was designed to investigate the effects of DXK on cerebrovascular function of HH-induced brain injury in mice. MATERIALS AND METHODS DSC-MR imaging was used to evaluate the effect of DXK on the brain blood perfusion of patients with hypoxic brain injury. HPLC analysis was used to detect the content of salidroside, gallic acid, tyrosol, corilagin, ellagic acid, isorhamnetin, quercetin and gingerol in DXK. The model of HH-induced brain injury in mice was established by an animal hypobaric and hypoxic chamber. The BABL/c mice were randomly divided into six groups: control group, model group, Hongjingtian oral liquid group (HOL, 3.3 ml/kg) and DXK groups (0.9, 1.8 and 3.6 g/kg). All mice (except the control group) were intragastrically administrated for a continuous 7 days and put into the animal hypobaric and hypoxic chamber after the last intragastric administration. Hematoxylin-eosin staining was employed to evaluate the pathological changes of brain tissue. Masson and Weigert stainings were used to detect the content of collagen fibers and elastic fibers of brain, respectively. Routine blood test and biochemical kits were used to analyze hematological parameters and oxidative stress indices. Immunofluorescence staining was applied to detect the protein levels of VEGF, CD31/vWF and α-SMA. RESULTS The results of DSC-MR imaging confirmed that DXK can increased CBV in the left temporal lobe while decreased MTT in the right frontal lobe, right temporal lobe and right occipital lobe of the brain. DXK contains salidroside, gallic acid, tyrosol, corilagin, ellagic acid, isorhamnetin, quercetin and gingerol. Compared with the model group, DXK can ameliorate the atrophy and deformation, and increase the number of pyramidal neurons in hippocampal CA3 area and cortical neurocytes. Masson and Weigert stainings results revealed that DXK can significantly increase the content of collagen fibers and elastic fibers in brain. Routine blood test results demonstrated that DXK can dramatically decrease the levels of WBC, MCH and MCHC, while increase RBC, HGB, HCT, MCV and PLT in the blood samples. Biochemical results revealed that DXK can markedly increase SOD, CAT and GSH activities, while decrease MDA activity. Immunofluorescence revealed that DXK can notably increase the protein levels of VEGF, CD31/vWF and α-SMA. CONCLUSIONS In conclusion, this study proved that DXK can ameliorate HH-induced brain injury by improving brain blood perfusion, increasing the number of collagen and elastic fibers and inhibiting oxidative stress injury. The underlying mechanisms may be involved in maintaining the integrity of cerebrovascular endothelial cells and vascular function. However, further in vivo and in vitro investigations are still needed to elucidate the mechanisms of DXK on regulating cerebral blood vessels.
Collapse
Affiliation(s)
- Ning Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinrong Bai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zangjia Geng
- School of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Tang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ya Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fangfang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yao Hu
- Interdisciplinary Laboratory of Exercise and Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xianli Meng
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaobo Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
45
|
Sandhir R, Khurana M, Singhal NK. Potential benefits of phytochemicals from Azadirachta indica against neurological disorders. Neurochem Int 2021; 146:105023. [PMID: 33753160 DOI: 10.1016/j.neuint.2021.105023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Azadirachta indica or Neem has been extensively used in the Indian traditional medical system because of its broad range of medicinal properties. Neem contains many chemically diverse and structurally complex phytochemicals such as limonoids, flavonoids, phenols, catechins, gallic acid, polyphenols, nimbins. These phytochemicals possess vast array of therapeutic activities that include anti-feedant, anti-viral, anti-malarial, anti-bacterial, anti-cancer properties. In recent years, many phytochemicals from Neem have been shown to be beneficial against various neurological disorders like Alzheimer's and Parkinson's disease, mood disorders, ischemic-reperfusion injury. The neuroprotective effects of the phytochemicals from Neem are primarily mediated by their anti-oxidant, anti-inflammatory and anti-apoptotic activities along with their ability to modulate signaling pathways. However, extensive studies are still required to fully understand the molecular mechanisms involved in neuropotective effects of phytochemicals from Neem. This review is an attempt to cover the neuroprotective properties of various phytochemicals from Neem along with their mechanism of action so that the potential of the compounds could be realized to reduce the burden of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India.
| | - Mehak Khurana
- Department of Biochemistry, Basic Medical Science Block-II, Panjab University, Chandigarh, 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI) Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
| |
Collapse
|
46
|
Yu X, Xiang L, Yang S, Qu S, Zeng X, Zhou Y, Yang R. A near-infrared fluorogenic probe with fast response for detecting sodium dithionite in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118887. [PMID: 32927301 DOI: 10.1016/j.saa.2020.118887] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Developing a reliable fluorescence probe is crucial for accurately monitoring sodium dithionite (Na2S2O4, SDT) in biosystems, but the current reported azo-based ones suffers from short excitation/emission wavelengths and relative slow response speed. To address this issue, we herein present a novel near-infrared emissive fluorescence probe for SDT, namely DCM-MQ, consisting of a dicyanomethylene-benzopyran fluorogenic reporter and a 1-methylquinolinium as recognition moiety. On the basis of the specific reduction mechanism, DCM-MQ exhibited a rapid colorimetric and fluorescent recognition for SDT (less than 3 s) with large Stokes shift (112 nm) and high sensitivity (detection limit was 19 nM). The fluorescence imaging results demonstrate that DCM-MQ is competent for monitoring SDT in living systems.
Collapse
Affiliation(s)
- Xizi Yu
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Lie Xiang
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
| | - Shuanglin Qu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xianqing Zeng
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China; Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
47
|
Rakshit S, Nirala SK, Bhadauria M. Gallic Acid Protects from Acute Multiorgan Injury Induced by Lipopolysaccharide and D-galactosamine. Curr Pharm Biotechnol 2021; 21:1489-1504. [PMID: 32538720 DOI: 10.2174/1389201021666200615165732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Secondary metabolites of plants, the polyphenols, play a vital role in protection from many health problems in human beings. Structurally favored phytochemicals may be studied to protect multiorgan injury. At pharmacological doses, gallic acid is nontoxic to mammals and is generally absorbed in the intestine. AIMS In this present study, gallic acid was evaluated for its protective efficacy against Lipo Polysaccharide (LPS) and d-Galactosamine (D-GalN) induced multiorgan injury, i.e., liver, kidney and brain. METHODS Three different doses of gallic acid (5, 10 and 20 mg/kg p.o.) were administered to the experimental animals for 6 consecutive days, followed by exposure to LPS (50 μg/kg I.P.) and D-GalN (300 mg/kg I.P.) on the 6th day. RESULTS Exposure to LPS and D-GalN resulted in increased oxidative stress and proinflammatory cytokines. Altered hematology and serology due to LPS and D-GalN were restored towards control by gallic acid. Declined antioxidants such as reduced glutathione, superoxide dismutase and catalase due to injurious effects of LPS and D-GalN were rejuvenated by gallic acid. DISCUSSION Exposure to LPS and D-GalN severely increased lipid peroxidation, CYP2E1 activity and tissue lipids while lowered protein content. Gallic acid restored all these parameters towards control in dose dependent manner and 20 mg/kg dose provided the best protection. Histological study showed improved histoarchitecture of liver, kidney and brain that supported biochemical endpoints. CONCLUSION Gallic acid minimized oxidative stress and provided best protection at 20 mg/kg dose against LPS and D-GalN induced multi organ acute injury.
Collapse
Affiliation(s)
- Samrat Rakshit
- Toxicology and Pharmacology Laboratory, Department of Zoology Guru Ghasidas University, Bilaspur, 495009 (C.G.), India
| | - Satendra K Nirala
- Laboratory of Natural Products, Department of Rural Technology and Social Development Guru Ghasidas University, Bilaspur 495009 (C.G.), India
| | - Monika Bhadauria
- Toxicology and Pharmacology Laboratory, Department of Zoology Guru Ghasidas University, Bilaspur, 495009 (C.G.), India
| |
Collapse
|
48
|
Parrella E, Gussago C, Porrini V, Benarese M, Pizzi M. From Preclinical Stroke Models to Humans: Polyphenols in the Prevention and Treatment of Stroke. Nutrients 2020; 13:nu13010085. [PMID: 33383852 PMCID: PMC7823436 DOI: 10.3390/nu13010085] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are an important family of molecules of vegetal origin present in many medicinal and edible plants, which represent important alimentary sources in the human diet. Polyphenols are known for their beneficial health effects and have been investigated for their potential protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical studies, the polyphenolic compounds were effective also when administered after the stroke onset, suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we review the effects of the major polyphenols in cellular and in vivo models of both ischemic and hemorrhagic stroke in immature and adult brains. The results from human studies are also reported.
Collapse
|
49
|
Jiao H, Chen R, Jiang Z, Zhang L, Wang H. miR-22 protect PC12 from ischemia/reperfusion-induced injury by targeting p53 upregulated modulator of apoptosis (PUMA). Bioengineered 2020; 11:209-218. [PMID: 32065044 PMCID: PMC7039629 DOI: 10.1080/21655979.2020.1729321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs have been implicated as critical regulatory molecules in many cerebrovascular diseases. Recent studies demonstrated miR-22 might provide a potential neuroprotective effect. However, the neuroprotective effect of miR-22 in ischemia/reperfusion (I/R) injury has not been thoroughly elucidated. In this study, the PC12 cells were subjected to 4 h oxygen and glucose deprivation (I) and 24 h reoxygenation (R). The PC12 cells were pre-transfected with miR-22 or anti-miR-22 or siRNA-mediated downregulation of p53-upregulated-modulator-of-apoptosis (PUMA)(PUMA siRNA) or their controls at 24 h prior to exposure to I/R. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot were employed to analyze mRNA and protein expression. PI and Annexin V assays and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay were used to quantify the rate of apoptosis. We found that miR-22 expression was significantly downregulated in the PC12 cells subjected to I/R. Loss of function of miR-22 increased PC12 apoptosis after I/R, and overexpression of miR-22 decreases PC12 apoptosis after I/R. PUMA protein was upregulated in the I/R group as compared with the sham group. The increased PUMA protein expression and apoptosis induced by I/R was reversed by transfection with PUMA siRNA. We concluded that I/R enhanced apoptosis and PUMA expression in PC12 cells via downregulation of miR-22. Enhanced miR-22 expression reversed both PUMA expression and apoptosis induced by I/R in PC12 cells. miR-22/PUMA axis has important implications for their clinical applications.
Collapse
Affiliation(s)
- Hongmei Jiao
- Department of Anesthesia, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Renyi Chen
- Department of Anesthesia, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Ziru Jiang
- External Abdominal Section, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Lin Zhang
- Department of Anesthesia, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Hongwei Wang
- Department of Anesthesia, Linyi Cancer Hospital, Linyi, Shandong, China
| |
Collapse
|
50
|
Chen Y, Guo S, Tang Y, Mou C, Hu X, Shao F, Yan W, Wu Q. Mitochondrial Fusion and Fission in Neuronal Death Induced by Cerebral Ischemia-Reperfusion and Its Clinical Application: A Mini-Review. Med Sci Monit 2020; 26:e928651. [PMID: 33156817 PMCID: PMC7654336 DOI: 10.12659/msm.928651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are highly dynamic organelles which are joined by mitochondrial fusion and divided by mitochondrial fission. The balance of mitochondrial fusion and fission plays a critical role in maintaining the normal function of neurons, of which the processes are both mediated by several proteins activated by external stimulation. Cerebral ischemia-reperfusion (I/R) injury can disrupt the balance of mitochondrial fusion and fission through regulating the expression and post-translation modification of fusion- and fission-related proteins, thereby destroying homeostasis of the intracellular environment and causing neuronal death. Furthermore, human intervention in fusion- and fission-related proteins can influence the function of neurons and change the outcomes of cerebral I/R injury. In recent years, researchers have found that mitochondrial dysfunction was one of the main factors involved in I/R, and mitochondria is an attractive target in I/R neuroprotection. Therefore, mitochondrial-targeted therapy of the nervous system for I/R gradually started from basic study to clinical application. In the present review, we highlight recent progress in mitochondria fusion and fission in neuronal death induced by cerebral I/R to help understanding the regulatory factors and signaling networks of aberrant mitochondrial fusion and fission contributing to neuronal death during I/R, as well as the potential neuroprotective therapeutics targeting mitochondrial dynamics, which may help clinical treatment and development of relevant dugs.
Collapse
Affiliation(s)
- Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Yajuan Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Chaohui Mou
- Department of Neurosurgery, Taizhou First People's Hospital, Taizhou, Zhejiang, China (mainland)
| | - Xinben Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Fangjie Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Wei Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|